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On the Convergence of the Inverses of
Toeplitz Matrices and Its Applications
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Abstract—Many issues in signal processing involve the inverses
of Toeplitz matrices. One widely used technique is to replace
Toeplitz matrices with their associated circulant matrices, based
on the well-known fact that Toeplitz matrices asymptotically
converge to their associated circulant matrices in the weak sense.
This often leads to considerable simplification. However, it is well
known that such a weak convergence cannot be strengthened into
strong convergence. It is this fact that severely limits the usefulness
of the close relation between Toeplitz matrices and circulant
matrices. Observing that communication receiver design often
needs to seek optimality in regard to a data sequence transmitted
within finite duration, we define the finite-term strong convergence
regarding two families of matrices. We present a condition under
which the inverses of a Toeplitz matrix converges in the strong
sense to a circulant matrix for finite-term quadratic forms. This
builds a critical link in the application of the convergence theorems
for the inverses of Toeplitz matrices since the weak convergence
generally finds its usefulness in issues associated with minimum
mean squared error and the finite-term strong convergence
is useful in issues associated with the maximum-likelihood or
maximum a posterioriprinciples.

Index Terms—Circulant matrix, maximum a posteriori, max-
imum likelihood, strong convergence, Toeplitz matrix.

I. INTRODUCTION

A FAMILY of Toeplitz matrices is defined by a sequence
of complex numbers such

that the entry of at the th row and th column is equal to
, i.e., . We restrict our discussion to the case

that , where is the complex conjugate of. With this
restriction, becomes Hermitian. Toeplitz Hermitian matrices
play a pivotal role in signal processing. In fact, what is really rel-
evant is the inverse of such a matrix rather than the matrix itself
for many applications. For instance, if represents the auto-
correlation of a stationary random process, the inverse ofis
associated with the joint probability density function ofcon-
secutive samples of the random process. Infiltering problems,
such an inverse appears in the Wiener–Hopf equation [1], [2].

One of the difficulties in analyzing the inverse matrices arises
from the fact that the inverse of a Toeplitz matrix is no longer
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Toeplitz, though it was shown in [3] and [4] that such an in-
verse can be decomposed into multiplication and summation of
Toeplitz matrices.

One technique to tackle the problem is to exploit the rela-
tion between Toeplitz matrices and their associated circulant
matrices. An matrix is called acirculant matrix if its

th entry is only a function of . In partic-
ular, for the family of Toeplitz matrices defined by the sequence

, a family of their associated circulant matrices can be de-
fined through the discrete-time Fourier transform (DTFT) of the
sequence .Let denote the DTFT of , i.e.,

Note that is real due to the Hermitian constraint. Let
denote the unitary matrix defined as

...
...

.. .
...

(1)

and denote the diagonal matrix with theth diagonal entry
equal to , i.e.,

(2)

The matrix

(3)

is a circulant matrix [5], [6].
It has been observed that in many applications substituting

with often leads to very useful and dramatic simplification
to the problems at hand. This is due to the fact that the inverse
of a circulant matrix is still circulant, which can be diagonal-
ized by the discrete Fourier transform (DFT). The DFT-based
eigendecomposition of usually provides additional insight
into the frequency domain. Apparently, in order to make such a
substitution meaningful, the inverses of Toeplitz matrices need
to converge to their associated circulant matrices. Depending on
applications, there are many different ways to define matrix con-
vergence. We first examine the known convergence of Toeplitz
matrices to circulant matrices and typical applications associ-
ated with them.
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The best known convergence is the weak convergence, which
is based on the weak norm defined for an matrix

as

(4)

It can be shown that the Toeplitz matrix converges to
in the weak sense as long as is bounded [5], [6].1 Note
that converging to may not necessarily mean that
converges to even if does exist. A sufficient condition
for the weak convergence of the inverse is that the strong norm
of and is uniformly bounded [6]. The strong norm for
a Hermitian matrix can be defined as

where the maximum is over all the vectors of the same dimen-
sion as . The strong norm is also called thespectrum normfor
a Hermitian matrix. In [7], the weak convergence was extended
to a different family of circulant matrices for the case that

, where depends only on
rather than the entire sequence. Specifically, the diagonal en-
tries of , a diagonal matrix, are taken as those of
and again . In this case, the th entry of

equals [7]

When the condition does not hold, a different family
of with the th entry equal to can be
defined [6]. It can be shown that converges to and
in the weak sense. The convergence can be readily extended to
the inverse of these matrices [6], [7].

Examining the definition of the weak norm in (4), we can
see that the weak convergence is in the mean sense due to the
division factor . Indeed, several successful applications of
the weak approximation theory relate to the evaluation of the
mean of some quantities, such as source coding and filtering
problems based on the minimum mean squared error (MMSE)
criterion, or computing the mean of a quadratic form associated
with a random process [6]–[9].

However, the usefulness of all these convergence theorems
is severely limited due to the fact that many applications actu-
ally involve quadratic forms of . Even if converges to

in the weak sense, substituting with may not
yield correct results since the convergence of a quadratic form
can only be guaranteed if the convergence is in the strong sense.
Note that in the literature, replacing the inverse of a Toeplitz
matrix with a circulant matrix in evaluating quadratic forms as-
sociated with likelihood functions or Wiener filtering problems
has been widely used [10]–[15]. However, such an approxima-
tion was used in the cited references without theoretical basis.
It may potentially lead to erroneous results.

1In [5], CCC is defined through the inverse DFT, i.e., theith diagonal entry of
DDD is equal toF(�2�i=n) andUUU is replaced byUUU . The current notation
is more consistent with engineering conventions.

When the strong convergence is of interest, it is worth men-
tioning that Baxter [16], [17] showed that all the entries of any
fixed row of uniformly converge under the Paley–Wiener
condition. The standard spectral factorization theorem can be
used to give a closed-form formula for the entries of the con-
verged inverse matrix. Actually, Baxter’s results can be used to
show that can converge to a circulant matrix in the strong
sense only when each of the ’s is an identity matrix.

In [12], it is shown that the inverse of abidirectionalinfinite-
dimension Toeplitz matrix with its th entry equal to

has a circulant inverse. Bidirectional infinity means that
and range from to . Note that the result in [12] does
not indicate in any way whether the finite-dimension matrices

converge to the infinite-dimension matrices. This result is
often mistakenly quoted as the theoretical basis for replacing the
inverse of a Toeplitz matrix with a circulant matrix for quadratic
forms.

The association between a Toeplitz matrix and a circulant ma-
trix was also exploited for iterative computation of the inverse
of the original Toeplitz matrix, where a circulant matrix is used
as a preconditioner to reduce the computation load and improve
the stability of the numerical algorithms [18]–[20]. For precon-
ditioning, the major issues include the selection of the precondi-
tioning circulant matrix and the distribution of the eigenvalues
of the preconditioned matrix ( is a Toeplitz matrix,
is its preconditioner). In order to speed up the convergence of an
iterative algorithm, it is desirable to make the eigenvalues of the
preconditioned matrix cluster around a single value. For details,
see [18] and the references therein. As pointed out by Chan and
Ng [18], the circulant approximation in preconditioning isnot
to replace the Toeplitz matrix with a circulant matrix in the sub-
sequent computation, and the preconditioning does not alter the
solution to the Toeplitz systems.

The objective of this paper is to extend the convergence the-
orems to a form of strong convergence such that a large class
of communication receiver design problems involving the max-
imum-likelihood (ML) and maximuma posteriori(MAP) prin-
ciples can benefit from the relation between Toeplitz matrices
and circulant matrices.

Designers of communication systems often seek optimality
for a data sequence transmitted within finite duration, such
as a finite-length training sequence for synchronization, or a
finite-length spreading sequence for spread spectrum. Based
on this observation, in Section II, we introduce the definition
of the finite-term strong convergenceregarding two families of
matrices. We demonstrate that the design schemes based on the
ML and MAP principles can benefit from such a convergence.
The finite-term strong convergence separates the length of the
transmission window from that of the observation window.
By increasing the observation window, the receiver design
approaches the optimal solution when the noise incurred in
the system is correlated. Therefore, we can often obtain a
closed-form formula for the optimal receiver design through
substituting Toeplitz matrices with their associated circulant
matrices when the condition of the finite-term strong con-
vergence is met. Such a convergence builds a critical link in
the application of the convergence theorems for the inverses
of Toeplitz matrices since the well-known weak convergence
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generally finds its usefulness in issues associated with the
MMSE criterion and the finite-term strong convergence is
useful in issues associated with the ML and MAP rules. In
Section III, we further present a condition under which the
inverse of Toeplitz matrices converges to a circulant matrix in
the finite-term strong sense. In Section IV, we demonstrate a
typical application of the finite-term strong convergence by
deriving a novel timing/phase estimator which does not require
an integer number of samples per symbol. This can significantly
reduce the sampling rate requirement for high-speed modem
design. Section V concludes the paper.

II. FINITE-TERM STRONG CONVERGENCE

Consider the quadratic form with having only
a finite number of nonzero terms, without loss of generality,
assuming in the middle of the vector, i.e.,

where does not increase with, the dimension of the vector.
We denote such a quadratic form as afinite-term quadratic
form. The finite-term strong convergence for two families of
Hermitian matrices is defined as follows.

Definition 1: For two families of Hermitian matrices and
, consider the quadratic form

(5)

where is the vector norm for a vector, the max-
imum is over all the -dimension vectors of the form

(6)

If (5) converges to zero for any given as , we say
that converges to in the finite-term strong sense. The
following well-known equation for a Hermitian matrix estab-
lishes the link between the quadratic form and the spectral norm
[6]

where is the largest absolute eigenvalue of.

As pointed out earlier, the weak convergence theorems can be
used in solving linear filtering and coding problems based on the
MMSE criterion [7], [9]. However, they are not very useful for
designing the ML and MAP algorithms that are widely adopted
in digital receivers. We shall show that the finite-term strong
convergence can play a pivotal role in design schemes based on
the ML or MAP principles.

The received signals in many digital communication systems
can be modeled by a desired signal carrying user data and trans-
mission parameters embedded in a Gaussian noise [10], i.e.,

(7)

where is the received signal vector of length, is
the transmitted signal vector, is the user data vector, is
the synchronization and channel parameters,is the channel
noise vector, which is a zero-mean and correlated wide-sense
stationary Gaussian process. The objective of receiver design

is to detect the user data and/or estimate the parameters
based on the observation. We further assume that the signal

has a finite number of nonzero terms. The finite-length
assumption is valid for many receiver design problems in dig-
ital communications. Actually, communication signals are al-
ways both time and bandwidth limited in an engineering sense.
For instance, the number of nonzero terms can be equal to the
length of a training sequence for data-aided synchronization,
or the length of a spread sequence for spread spectrum sys-
tems, etc. Due to the correlation of the noise, optimal receiving
schemes require that the observation window be larger than the
signal transmission window. Therefore, the observation vector

typically is longer than the transmitted data for optimal per-
formance, i.e., can be modeled as the form in (6). Note
that it is unlikely to transmit an isolated data segment in engi-
neering practice. For instance, a training sequence is typically
followed by user data, and a spreading sequence is followed
by another spreading sequence. However, it is a common prac-
tice to analyze and design a communication system based on
one-shot observation of the designated data since it can often
avoid unnecessary complication of the following or preceding
data which are not used in the receiver design. Separating the
observation window and the transmission window can largely
enhance the usefulness of the convergence theorem to be pre-
sented. In [10], [14], [15], besides ignoring the condition for the
convergence, the authors assume that only for long transmission
is it possible to replace the Toeplitz matrices with their associ-
ated circulant matrices.

Following the Gaussian distribution assumption, the likeli-
hood function of can be written as

(8)

where is the autocovariance matrix of the noise process,
which is Toeplitz and Hermitian, and is a constant indepen-
dent of the transmitted signal. The ML algorithm is to find the

and that maximize the likelihood function. It is difficult
to evaluate (8) because the inverse matrix is hard to obtain
analytically. Replacing with its associated circulant ma-
trix naturally leads into the frequency-domain approach
since a circulant matrix can be eigendecomposed by the DFT.
The weak norm approximation is not a sufficient tool to warrant
such a replacement because the transmitted signal can
be arbitrary.

Assume that converges to in the finite-term strong
sense, i.e.,

(9)

Let us examine the condition for replacing with in
(8).The exponent of (8) consists of the following four terms:
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The convergence of

follows directly from the assumed convergence (9). The conver-
gence of and for normalized
received vector follows from the fact that

The term may not converge to since cannot
be modeled as a finite-term vector due to the noise. However,
this does not affect the derivation of the ML (or MAP) solution
since does not include the useful and terms. This means
that we can replace this term with regardless of the
convergence. Therefore, the finite-term strong convergence is
sufficient for replacing with in (8) for a large obser-
vation window.

Note that we did not impose any condition on the transmitted
signal as long as it has a finite number of nonzero
terms. Since the optimal solution calls for a long observation
window, this implies that the solution obtained by increasing
the observation window and using circulant matrices will yield
the true optimal ML or MAP solutions.

In the next section, we will present a condition for the inverses
of Toeplitz matrices to converge to their associated circulant
matrices in the finite-term strong sense.

III. A C ONDITION FOR THECONVERGENCE

For presenting the finite-term strong convergence theorem,
the concept of apartial DTFT is helpful in shortening the nota-
tion. For any integer , the partial DTFT of the sequence
is defined as

(10)

which is based on the observation that is actually the
DTFT of . Note that is the
DTFT of , i.e., . We further denote the
ratio of the partial DTFT to the DTFT as , i.e.,

(11)

Since the difference between and is equal to
, where is the -dimension identity

matrix, we start with the evaluation of the matrix .
The following lemma expresses the entries of
by means of the partial DTFT.

Lemma 1: The th entry of is equal to

(12)

Furthermore, is upper-bounded by

(13)

Proof: See the Appendix.

Lemma 2: Let be of the form defined in (6). Further assume
that every entry of the middle columns of
is bounded by , i.e.,

and there are at most rows of containing
nonzero entries, then

(14)

where is the spectral norm of the matrix.
Proof: The following inequality:

reduces the proof to show that

Let the matrix be obtained by setting all the columns of
to zero except the middle columns, then

for any of the form

Therefore, if we can show that for any

(15)

the lemma will follow. Inequality (15) implies that

where is an eigenvalue of is the
spectrum norm. Since the nonzero entries of are bounded
by , the nonzero entries of are bound by . The
matrix has at most nonzero entries for any row
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or column. This shows that the largest eigenvalue of is
bounded by . Thus,

This completes the proof of the lemma.

Lemma 3: For a continuous , if both the
and are bounded, then

(16)

where

and

Proof: For any , there exists a

such that

(17)

The inequality of (16) follows (13) and (17).

Lemma 4: If the sequence satisfies the following condi-
tions:

and its DTFT , then

(18)

and

(19)

where are constants.
Proof: Under the condition that

the DTFT of is continuous [6]. Therefore, there is a min-
imum for over . Based on the assumption of the
lemma, this minimum is nonzero. Clearly

Similarly, based on the definition of , it follows that

where the second inequality follows the fact that
and

Theorem 1: Let be a family of Toeplitz Hermitian ma-
trices associated with the sequence , and be the DTFT
of . If for and ,

converges to in the finite-term strong sense.
Furthermore, for a vector with the form defined in (6), the

quadratic form is bounded by

(20)

Proof: Since all the rows of are in general
nonzero, the in Lemma 2 becomes and

(21)

It is known that all the eigenvalues (defined as ,
) of are between and [5, p. 64], where

is the greatest lower bound of and is the least upper
bound of , respectively, i.e.,

Since is continuous and nonzero, and have the
same sign, and all the eigenvalues of are bounded by

which means that , the strong norm of , is bounded
by . Now we turn to
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Combining Lemma 3, Lemma 4, and , we can
easily see that

(22)

which follows that

where and . Note that
takes value within . Furthermore

(23)

and

(24)

With the assumption that converges

Combining (22)–(24), we can see that

(25)

Substituting (25) into (21) completes the proof.

If the sequence is of finite order, the convergence rate
can be strengthened.

Theorem 2: Let be a family of Toeplitz Hermitian ma-
trices associated with the sequence of finite order, i.e.,

for [6, p. 23], and let be the DTFT of
. If for , converges to

in the finite-term strong sense. Furthermore, for a vectorwith
the form defined in (6), the quadratic form is bounded by

(26)

Proof: Note that is equal to zero for .
When , (12) shows that is
equal to zero. Therefore, in (21), can be replaced
by . The nonzero entries of can be
bounded exactly the same way as in Theorem 1.

Example: In order to illustrate the theorems derived here,
let us consider a family of finite-order Toeplitz matrices by

limiting the nonzero terms to and . It is
easy to derive the closed-form formula of the inverse matrices.
Therefore, these theorems can be examined.

Let be the determinant of . It can be shown that the
entry at the th row and th column of is equal to

(27)

(28)

It can be readily seen that the determinantof satisfies
the recursive relation

(29)

with the initial condition . Solving the differ-
ence equation (29), we have

where and are the solutions of the equation

Note that as long as , is nonsingular for any .
We consider the case . In this case, and are

complex conjugates with the same magnitude equal to. Let
and . We further limit to be

an irrational number. Under this condition,
for any . This guarantees that is nonsingular. With
these notations, (27) can be rewritten as

(30)

where is the phase of . For fixed and , the denom-
inator and the last term of the nominator are constants. In other
words, (30) varies only with . It can be
shown that are dense over the interval

for irrational . This means that
oscillates with . Taking the diagonal entries as an ex-

ample, with , oscillates with for
any fixed . It is generally true for any fixed . Fig. 1 illus-
trates this oscillation of the diagonal entries of with ,

, and . The oscillation indicates that
cannot converge to a Toeplitz matrix in any sense. Note

that the DTFT of the sequence has zero within if
and only if , i.e., which violates the condition of the
weak norm convergence theorem presented in [6].

Now we consider the case . Under this condition,
and are real, assume . Without loss of generality,

let be even. The th diagonal entry of
is equal to



186 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003

Fig. 1. Diagonal entries ofTTT in the oscillation case(t < 2jt j) with t = 1, t = t =
p
2, andn = 200.

whose ratio to the th entry is

(31)

with the th entry equal to

as . Because , it is easy to see that for large
and intermediate (i.e., is close to ), (31) converges to
as . However, for the on the boundary (i.e., is close
to 0 or )

is close to

is close to .
(32)

This means that the middle segment of the diagonal entries of
converges to , however, the entries on the

boundary are always smaller than . Fig. 2 shows
the diagonal entries of with , , and

. In other words, the entries on the boundary of the in-
verse matrix do not converge to the entries of a circulant matrix.

According to the property of the strong norm for a Hermitian
matrix

(33)

where is an arbitrary entry of , which implies that does
not converge to a Toeplitz or circulant matrix in the strong sense.
However, the central entries of do converge to those of
a circulant matrix, which makes the finite-term quadratic form
converge.

IV. A PPLICATION

Substituting the inverse of a Toeplitz matrix by a circulant
matrix has been widely used in the literature and yielded many
useful results, e.g., [10]–[15]. The theorems derived in this
paper fill the gap in these applications and avoid potential erro-
neous results that ignore the conditions of the convergence. The
convergence rate of the finite-term quadratic form (
or ) also provides an upper bound on the residue error,
giving system designers guidance for the accuracy of the
approximation.

In this section, we further illustrate the idea presented in Sec-
tion II, i.e., the finite-term strong convergence allows us to de-
rive the ML or MAP algorithms and analyze the performance
for finite-length signals. As we pointed out earlier, the DFT
associated with the eigendecomposition of a circulant matrix
leads naturally to the frequency-domain analysis, which is also a
good approximation of the Karhunen–Loeve expansion [7] that
decorrelates a random process. The most basic communication
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Fig. 2. Diagonal entries ofTTT in the convergence case(t > 2jt j) with t = 1, t = t = 0:35, andn = 200.

channel model is the additive white Gaussian noise (AWGN)
model. Even for an AWGN channel, due to the prefiltering in
the receiver front end, the noise processis no longer white
when multiple samples per symbol period are used for receiver
front-end design. In order to simplify the analysis, it was often
simply assumed that the noise is white, or is prewhitened. How-
ever, the white noise assumption is often oversimplified and
the prewhitening operation may lead to large intersymbol inter-
ference and needs the statistics of the noise process. The DFT
eigendecomposition decorrelates the noise process in the fre-
quency domain without the knowledge of the noise process,
which is based on the circulant matrix approximation. This is
especially useful in designing robust estimation algorithms [13].

The sequel illustrates this methodology by applying the fre-
quency-domain approach to design the data-aided ML joint car-
rier phase and symbol timing offsets estimator. Using the theo-
rems to compute the performance limits (e.g., the Cramer–Rao
lower bound) for parameter estimations in colored Gaussian
noise can been found in [22].

Following the signal model defined in (7), we assume that
the entries of are the digital samples of the desired
(i.e., no noise) receiver matched filter output, whoseth

entry is equal to

(34)

where is the pulse-shaping function, e.g., the raised-co-
sine function, is the training sequence of length,

is the sampling period, is the symbol period with ,
and are the symbol timing offset and

carrier phase offset, respectively. We further assume that the
sampling rate is not lower than the Nyquist sampling rate. Note
that does not need to be an integer. The th entry of the
autocovariance matrix is

i.e., the noise process is colored due to the matched filter.
Because of the correlation of the noise, the length of the obser-
vation window should be longer than the length of the trans-
mitted signal for optimal reception. Following the ML rule, the
ML estimates of and are the arguments that maximize the
likelihood function, i.e.,

(35)

The pulse shape usually decreases faster than
, e.g., the raised cosine pulse has
. Therefore, the condition of the finite-term strong

convergence theory is met for the positive-definite. Re-
placing with defined in (3), we obtain theth diagonal
entry of equal to

(36)



188 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003

where is the DTFT of , is the Fourier
transform of .

After some arithmetic, we obtain

(37)

where is the real part,

and

Define as

(38)
The two-dimension maximization can be downsized to a one-
dimension search

(39)

Therefore, the ML estimate of is

(40)

and the ML estimate of is

(41)

The inverse DFT of with
is equal to

where is the continuous time signal output of the
matched filter, and the inverse DFT of

is equal to

(42)

In the case that is an integer, (42) becomes

where if and if else. Based on Par-
seval’s relation, when is an integer, is equal to

(43)

which provides a time-domain implementation. In fact, the time-
domain estimator (43) is derived in [10, p. 297] using a different
method that is only applicable to the case that the sampling rate
is a multiple of the symbol rate [10]. In order to satisfy the
Nyquist sampling condition, the sampling rate of the time-do-
main estimator has to be at least two samples per symbol pe-
riod even for a signaling with 20% excessive bandwidth. The
frequency-domain estimator proposed here can reduce the sam-
pling rate to be the exact Nyquist sampling rate (i.e.,symbol
rate), which reduces the sampling speed by more than 40%. For
high-speed broad-band modem design, increasing the sampling
rate can be extremely difficult and costly.

V. CONCLUSION

This paper closes a critical link in the application of the
convergence theorems for the inverses of Toeplitz matrices:
strengthening the well-known weak convergence theorem into
the strong sense convergence for finite-term quadratic forms.
We showed that this convergence is conditional. Prior literature
essentially ignores the possibility of erroneous results by
simply applying the weak convergence to compute quadratic
forms. We further showed that the strong sense convergence
theorem can naturally lead to frequency-domain solutions due
to the fact that the eigendecomposition of Toeplitz matrices
can be approximated by the DFT. Demonstrating the applica-
tion of the convergence theorem, we derived a novel timing
and carrier phase offsets estimator. This estimator takes the
frequency-domain approach. For applying the estimator, we do
not require the sampling rate to be an integer multiple of the
symbol rate. This can significantly reduce the sampling rate
requirement for high-speed modems. Due to the pivotal role
of the inverses of Toeplitz matrices for a stationary random
process, the strong sense convergence theorem presented in
this paper can be applied to a wide range of detection and
estimation problems. In a separate paper, by applying the
finite-term strong convergence theorem, we derive the true
Cramer–Rao lower bound for data-aided synchronization [22].

APPENDIX

A. Proof of Lemma 1

Proof: Following the definition of in (3), the th
entry of is equal to

(44)

then the th entry of is equal to

(45)
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Based on the definition of

we have

(46)

where the second equality follows the Hermitian assumption
. Substituting (46) into (45), we obtain that

(47)

The second equality follows

otherwise.

Therefore, the first term of (47) corresponds to an identify ma-
trix for . This shows that the th entry
of can be expressed as

(48)

Actually, represents the ratio of the partial
DTFT to the DTFT, i.e.,

(49)

For convenience, let denote the following:

(50)

thus, (50) is equal to

With this notation, (48) can be written as

(51)

which proves (12).

Now consider the following summation obtained by replacing
in (51) with :

(52)

The terms of (52) with even indexare equal to those of (51). It
can be readily verified that the difference between (51) and (52)
is equal to

(53)

Thus, the difference can be upper-bounded by

(54)

For even and odd, (52) is, respectively, equal to

(55)

and

(56)

By using the following inequality:

where , which is within
, we obtain that

(57)

Substituting (57) into (55), (55) can be upper-bounded by

(58)
Similarly, (56) can be upper-bounded by

(59)

Both (58) and (59) are smaller than

(60)
Therefore, is upper-bounded by the summa-
tion of (54) and (60).
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