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ON THE CO:;V»;IGI:KCK or w u / ì o n ' s ra»-co;;rou:iiT;G 

ELKni;t\T FO:I SOLVMX; VDZ K I A C T I C v^rnuùi: 

Pierre LìioAlKV 

ABSTRACT ; A nop-corp^orrrin^ finite elcniont, Wilson's elencai:, fcr solving 

the elastic problem is mathematically studied. This clement p^ses the 

Patch-Test. The errors on thr» ntrcsreo end displacements are rhovn to be 
2 

asymptotically ci: order li and n , respectively, where h is tb?. suprercu:^ 

of the elcMiints1 side lengths. 
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IIOTvODVCTION 

Conforming and non-con £ o v i i i *• 3 f initio, element methods for the* } 
bending problem have, been e>:/jensively studied : coo CIAKLET /1 /, CIAViL^T and 
JlAVTART) /2/, T/.SCAUX and LF,SAII>T /3/, KITSCH}' In the conforming ca^o., 
finite elements of class c / are needed, such as the well-known 2l~c:cgrees 
of freedom triangle of ARGYRIS "Variational crimes*1 way also be C O ; : H 

mitted (IROXS /6/, STRAKG /7/) by using elements which are not of class; C" 
C 

and in some .cases not even of class C , and thur> defining a non«-co:.:formin:; 
h l O L i l O C i , 

In the sane way, we can solve the elastic problem either by confor
ming methods, using elements of class C^ such as the 3-nodes o:: the S-nooo.s 
triangle, or by non-conforming methods, constructed with elements which are 

0 
not of class C . 

The purpose of this paper is to present and analyse niathein^ilcaily 
one of these non-conforming elements, Wilson's element /8/, which if: pra~ 
tically used by the engineers to solve the elastic problem in tv.o (or three) 
dimensions. 

To cbtain the error estimates corresponding to non-conforming 
methods, the keystone is the Patch-Test of IRONS /6/. Ic has been already 
shewn (IRON /6/J STRANG /7/) that Wilson !s element pasras the Patch-Test. 
In thip paper, we give a mathematical proof of convergence for this element 
and we show that the errors on the stresses and displacements are *>&yr^to 

2 
tically of order h and h , respectively, where h is the supremum of the 
elements'side lengths. One of the main difficulties consists in showing 
that the stiffness matrix of the problem is positive definite, independently 
of It ($3), Tor the rake of simplicity, the results are presented foi pro
blems in two dimensions, but they are also true in three dimensions. 

An outline of the paper is as follows. In .<1 we recall the varia
tional formulation of an elastic problem. In §2 we define general non
conforming merhods, give the corresponding error estimates and introduce the 
Patch-Test. The results of §2 arc then applied to VMicoa's element which is 
described and studied in §3. 
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I. ELASTIC PROBLEM 

Let ft be a bounder] open subset: of the plain x~y, with a 
Lipschxtz-continuous CT9J) boundary T. We shall denote by s a curvilinear 
abscissa along F , by ̂  the derivative along the outer normal on T and vp 
the tangential derivative along T. 

For. a given integer in ̂  0, we let 
m 

H n O - C I / l ^ v l 2 dxdy)lA , | | v | | a = ( I | v | * / A , 

-..here a is a raultiindex such that a = (cxi>a2), cu > 0, |aj = ai + a 2 and 

9 a = (-g~) a i' ( " ^ 7 ) C l 2 - ^ applications \'\ $ and n arc respectively 

a seminorm and a norm over the Sobolev Space ̂ ( Q ) 

In what follows, we shall be interested in the space 

(1-2) V = {v=(v.) € (H^flJ2 ; v. = 0 on r 0 , "2/, where T0 is a 
* 1 1 

measurable subset of the boundary T. 

The following inclusions hold 

(1-3) (H0
](fi))2c: V c C R 1 ^ ) ) * 

end the subset V of ( H 1 ^ ) ) 2 is closed in (R X(.Q)) 2. 

For any v - (v^, v^) £ V, the expressions (|vi|̂  ̂  + ' l V 2 ^ p)^ anc* 

( l « v - < 0 + ! I V < / 2 W i l i s t U l b e d e n 0 C e d h* M»,n a n d l'V I'm.rr 

One can show chat if the measure of To is strictly posicive, 
then the application : v € V -> |v|- ̂  is a norm over the space V, equivalent 

< • » i u 

We want to calculate the displacements relative to an equilibrium 
state of an homogeneous and isotrop elastic continuum ft, under the action of 
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distributed body farces f = (f: i, £2) per unit volume and external loading 
£ ~ (Ci> E?-) Pc'r uui-t area, tlie displacements bcin£ specified and equal to 
zero along the subset To of F. 

For any v : (vi, v?) £ V, we let 

J 1 

(1-5) o (v) = X(div v) 6 ^ + 2u t.^v) , 1 < i, j « 2 , 

where the constants X > 0 and y > 0 appearing in the relationship (1-5) 
between the stresses o*. . and the strains £. .are the coefficients of Lame of 

0 for i =/= j 
the continuum and where 6".. . = { 

( 1 for i •= j 

We let the bilinear form a(., .) be defined on V x V by 
2 

(1-6) a(u,v) « / . I o..(u) e . . ( v ) dx dy = 
"il . . . J J 

2^ 
• X / div u. div v dxdy + 2]X f £ e..(u). e..(v) dx dy, 

ft ft . . . 1 J 1 J 

and the linear form v ••• (f,v) defined on V by 

(1-7) (f;v) = / (fi-n + f 2 V 2 ) dx dy + / (gjvr f g 2v 2) ds, for 
ft r 

fiC L2(ft), g j £ L 2 ( r i ) , i - 1, 2, where I'i = T - Y0. 

The elastic problem described above can be formulated as follows JjO 

To find the displacements u = (u x, u 2) £ V such that : 

(1-8) a(u ,v) = (f,v) f for all v - ( v x , v 2 ) C V. 

Using Korn inequality, which can be written as follows 
2 

(1-9) | |v| | < c( I I k i j ^ l l ^ + Hvll2 $ for all v € <H»n>*, 

where the constant c > 0 depends only on the domain ft, one can show ([? j, [9]) 
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th.it if the rccasurc of r o is strictly positive, then the application 

(1-10) v £ V - ( I H e . ^ v ) ! ! ^ 

is a norm over the space V,cquivalent to the norm }[ • |{̂  ^ . 

As a consequence, we get, for a constant c > 0 depending only on.fi 

2 

(1-11) a(v v) > 2u I || E. . (v)||2

 Q > c||v||2

 D , for all v £ V. 

¿,3 = 1 

On the other hand, we have 

(1-12) a(u,v) < c|u| 0 |v| „ for all u.v CV. 

Inequalities (1-3), (1-11) and (i-l"2) imply (by Lax-Milgram Lemma) 

that problem (1-8) has a unique solution u € V. 

We have the following Green's formula [id] : 

2 a 
(1-13) a(u,v) = - / I v - a..(u) v. d + / X a..(u) n. v. ds, 

ft . . , 3 x j 1 J 1 x r . . , 1 J J 1 

where n = (ni, n 2) denotes the outer normal or. T. 

When the solution u of problem (1-8) is smooth enough, then one 

can show, using Green's formula (1-13) that u is also solution of the 

prcblam : 

2 
, . v V 3 a. .(u) - f. in Q, U i U , 

(l-u) - 2. 1.1v 1 ' 

(1-15) - 0 on To , K< i s< 2 , 

2 

(1-16) X Oij(u) i lj s £ i o n Ti, 1 < i < 2. 

j-l 
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2. KON CONFORMING METHODS 

Definition 2,1. Given an integer k £,0, we let 1?̂  and denote 
the spaces of polynomials in x and y defined by 

(2-1) pfc - {P ; P - X " j ^ V ) . 

(2-2) Q R = {q J q = I 0jjm A 1 " ! 
^m < k 

Given a triangulation of ft in finite elements K, with boundary 
3K, such that U K = ft, we let 

KfT, n 

h ~ max h^, with h^ •* diam (K) for all K £ T^. 

Over each element K, we are given a finite dimensional space ?^ of shape 
functions such that the following inclusions hold :~ 

(2-3) P K c Cl(VL) , P R => Pi , for all K € ^ 

which implies that a first practical necessary condition of convergence is 
satisfied (Zienkiewicz [ll, page 28] ) . We are also given on each K £ 
a set of degrees of freedom allowing to define a basis of the space P . 

In what follows, we assume that the finite elements (K, Z , ? ) 
are of the same type, for all K £ T^. 

We let the subspace of L2(ft) be the space of functions 
defined by their degrees of freedom on the elements K of T, , and continuous 

n 
fcr these degrees of freedom along each face common to two adjacent elements, 
and whose restriction to each K belongs to P . 

The finite dimensional space in which we look for an 
approximate solution will be the subspace of (X^) 2 °f functions 
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whose degrees of freedom along the boundary To satisfy boundary conditions 
(1-15)• A second practical necessary condition for convergence 
(Zienkiewicz [ll, page 29]) would imply that the inclusion 
V. C V H C°(l0 holds. On the contrary, v:e shall consider finite elements n 
for which the preceding inclusion does not necessarily hold. Such elements, 
and also the corresponding finite element method, are called non conforming 
t[>], [ 1 2 ] ) . 

Since the functions of are smooth on each K C T^, according 
to inclusions (2-3), it is then natural to define a new bilinear form 
a (...) on V, x V, by : ti. n n 

2 

(2-4) ^ f t ( V v h ) - I / I a i j ( u h ) e i j ( v h ) d x d y -
2 

~ Y U / (div u, div v, )dx dy + 2y / Y e. . (uj e. . (v, )dxd;^ \ v n n K ij h ij h / 

The discrete problem will then be defined as^ fallows 

To find u, € V, such that 
• — - n n 

(2-5) a h(u h,v h) « (f,v h) for all v h € V h« 

We let the applications || • ||̂  and HI'M^ from into R be 
defined by : 

(2-6) | ! v h | | b - ( I | v h | J > f 

Vicff T h 

2 

(wj « i » h m h - ( i 1 i k j M ^ v * . 

and we make the following hypotheses : 

(2-8) HI • |||̂  is a norm on the space V^, 

There exists a constant c > 0 independent of h such that 
• -' '•"« ••• ••• • - •" — '• • 

(2-9) ||v||h < c|||vjj||h, for_all v h £ V h. 
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li hypothesis (2~o) holds, then problem (2-5) has a unique solution u^ € V . 

We shall now derive as in [3j, [^]» [. 7 J > some general 
estimates for the errors done on the stresses and strains (measured by 
the norm ||*||^).and on the displacements (measured by the norm || 0|l o ^ • 
Those estimates will lead to a practical condition of convergence for 
non-conforming elements, called Patch Test ([&])• 

Theorem 2.1. Assume that hypotheses (2-8) and (2-9) hold. 
Let u^ = (u^ ? ^) <? be the solution of problem (2-5) and u C V be 
the solution of problem (1-6}-. We have the estimate : 

(2-10) jjju-uj^ < c(inf ||u-v||h + sup - Y ^ f - ) , 

where the constant c > 0 is independent of h, and where 

(2-M) E (u,w) - - J. ( ! £ a..(u)n. vv.if\ * I I g.w.ds, 

the n. „ s, j = l,2 being the components of the outer normal on dK, j f £ 
-Proof. We let F^ be defined by F^ = a^u^-v, u^-v) , for aLl v=(vi, v 2 ) ^ V h . We have 

F h>.2y | | l V v | | | J » c | lu h -v | |^ , 

F h = " a h ^ v , u h ~ v ^ * ah^ u~ v> " h " ^ * (f»uh""v^ - ah^ U , Uh"" V^ # 

On the other hand, we have 

(f,uh-v) - a h(u,u h-v) = 

J£ ' \ / 2 N 
« 1 / - £ [£; ^j(u) (^^-v.) • o..(u) . e. ( Vv)ldxdy + / ( I g.w.jj, 

KCi h
 K i,j=A J ' ' n x i = i ' 

Applying Green's formula (1-13) on each element K <1 T w e get 
a 

Xf,u -v) - (u,u -v) = X f (- L V..(u)n. (u ,-v.))ds + / X g.w.ds. 
K£T h

 d K V i,j=l ' l li«l 

Combining the last relations with the triangular 
inequality, we get estimate (2-10). 

L; 
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The first part of the right hand side of inequality (2-10) is 
the same as the term of error obtained in the case of a conforming method 
and can be estimated by using results in approximation theory ( [ 2 ] , [ l 3 ] ) ; 

the second part containr only terms arising from the non continuity of the 
functions of V, at the interfaces between the elements, a.id should converge h 
to zero as h approaches zero, i.e. . 

( 2 1 2 ) lim E, (u,w) = 0 for all u C V and w £ V, . . n n h->o 
Condition of convergence (2-12) is replaced in practice by the 
"Patch Test", which consists in shoeing that ( [ ^ [ 7 ] ) : 

(2-13) EL (u,w) = 0 for all u € Pi, w € V. and all h > G. n * ll 
It can be shown on most examples ( [3] and § 3) that the Patch Test combined 
with continuity requirements at the nodes common to two (or more) elements 
implies convergence. 

Consider now the following smoothness hypothesis for the sysr.em of 
elasticity. 

For all g = (gi, g 2) C (L 2(Ji)) 2, the system 
2 

(2-U) J if. « 0 on To, 1 < i < 2 

2 

J X °£j(y> c , " O o n T i , 1 < 2 
j - l 

has a unique solution if - (fi, <f2) C (H2(.Q))2 fl V and have 

We can show the following results, the proof of which can already be fouud 

in [ 3 ] , [ 4 ] . 
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Theorem 2.2. Assume- thai the hypothosMfto(2-8), (2-9) and 
(2-1 A) ho Id, Let u. = (u ,u ) € V. be the solution of problem (2-5) 
and u 6" V be the solution of problem (1-8) . We then have : 

/ ^ ( u , u^ > if , tph)\ 
(2-15) ||u-uJL.o < c s u ^ I inf ~ )> with 

(?.»16) E(u,uh>ip , <ph) « ^ ( " " V * " ^ - E h(u, ? h ) + Eh(y», , 

where the constant c > 0 is independent of h, 

I roof, V7e use the following classical duality argument (jH [lr>]) 

|(u~u h, g)| 

For some g = (gi, gi) £ (L2(ft))2 , we let f ~ (fi,.f2> £ V be the solution 
of the system of elasticity. According to hypothesis (2-14), we 
have if>£(H2(ft))2 n v and ||f ||2 Q < ^lig|l 0 q t so that r 

(u-u h,g) 
(2-17) l!u-u, || , n <: c sup . 

•l

 v c h W ||f|| a f f l 

On the other hand, using Green's formula, we may write, as in (1-13) 

(2-18) (u-i^, g) - a j l ( u ~ v V ? ) * E h ^ , a " " U h ^ ' a n d 

(2-19) 0 - ^ ( u - t ^ , p h ) + E ^ u , f h ) , for all p f c € V h . 

Since we have E^C^u) - 0, for all <f ,u C V , we get inequality (2-15) from 
inequality (2-17) and equalities (2-18) and (2-19). 
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3. WILSON'S ELKMLNT 

Assume now that: the. doi:"..iin fi is the square ]0,l[ x ] o , l[. 
For the sake of simplicity, we consider a triangulation of ft in equal 
squares with sides equ^l to h = y, for some integer 1, but tb̂ . following 
results are still valid when the, elements are non-equal rectangles. We let 

- - x k - k h, y £-JUi, Kkl « (x k , y £ ) , for 0 4 k, H 4 1, 

\ l = ( ( k + I ) h ' a + I ) b ) ' *Sa = [ V T c + J X I>A' xaJ ' f o r 0 < k ' K < I " 1 

For 0 < k, £ < 1-1, we let F, 0 C (Pi) z be the affine transformation mapping 
the reference square K - [-1,+1 ] x [-1 , + l] on the square K ^ , with 
F k £ : (£,n) £ K — (x,y) £ 1 ^ , 

(3-,) x ^ x k + l + - ^ x k 

( 3 - ? ) y . i ^ l ^ . M l ^ . 

T)ef inition 3.1. Wilson's f,Brickff [8;] can be defined on the 
reference square K as follows (figure 1) : 

(i) The space of shape functions is P = P 2, 

(ii) The degrees of freedom Z are the values of the functions p at the 
four vertices of the squire and the values of and on the square K, 

The function p C P such that 

(3-3) £(a.) - p x, i < i < 4, ̂ | - p c , 

can be written as follows 

(3-4) g = Q+gH'+n> P l + (-O(Hn) p z + C-Q(iiDl p 3 + (HO(i-n) p t > + 

•+:-l«a-0 P c + l < n 2 - 0 P n • 
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The finite elements (K, P ) ^ . will be the imap.es by the 
transformations F, n of the element of refcrence(K, P) , with 

(3-5) - {p p o F~^ ; V p C ? ) , 0 4 k , U J-l. 

The finite dimensional subspace X^ of L2(ft) will be the space 
of functions defined by their values at the vertices of the elements o, 

3 3 
an'd by the values of their second derivatives .and -̂ -"T on each 

3x2 3y2 
element and whose restriction to each element K^^ belongs to 
F k £ ' 0 < k , A < 1-1. In the general case, the inclusion X^ c c°(J2) docs 
not hold. 

We shall also need the space of continuous functions defined 
by their values at the vertices of the elements and whose restriction to 
each element Kj ̂ , 0 < k , I 4 1-1, is a polynomial of Qi. The following 
inclusion holds : 

(3-6) Y h c 0 C°(?2) . 

Definition 3.2. For any function if £ H (K), its interpolate Tl <f 
will be the unique function of P, equal to <f at the vertices of K and 
such that 

t gfr «f- nV> dgdn = / - njp) d?dn » o . 
K X. 

The following equality is then satisfied: 

(3-7) f-rif~0 tor all f£?2-

Now for all u = (ui, U 2 ) ^ ^ ( H ^ 2 , we let its (X^) ̂ interpolate 
H^u be the unique function of (X^) 2 whose restriction to each element K of 
T. has its components respectively equal to TIui &n(3 IIu2. 

We shall need the following hypothesis on the triangulation T 

/ Assume thr-t T = U T . , where the T . fs are 
0 k<i<i0 °'x 

(3-8) j subsets of T, then the end points of ^, Ki<i^, 

\ are nodes of the triangulation, 
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The space Vj will be the subspace of (X^) 2 of functions equal 
to zero at the vertices belonging to To. In the same way, we define the 
space W^ as the subspace of O ^ ) 2 - of functions equal to zero at the 
vertices belonging to I'o. We then have 

(3-9) U'h C V n C°(ft) . 

For any v h = ( v h > 1 , v h > 2 ) € we let 

v i , y ( < W - h 2-<lyT \%C> « W . i " ».2 , 0.< k, t O - l . 

For any V h - (v h , v h ? ) £ (J^) 2 , we let 

v h/£ - Vh,i ( Ak£> > i = ! ' 2 • 

2 

(3-,0) B k , ( v h ) = Z ( v i i J t + r v i f l ) . » + K + 1 > , + f - v i + 1 ) , ) 2 - . ( ^ ^ - v ^ ^ C v ^ ^ V ^ ) ' 

i = l 

< 3" u> W = ( v u + r v M ) 2 + ( v k + 1 , m - v k + 1 , . ) ? + < v k + i , ^ r < u i ) 4 + K + 1 , K , i > 

+ ( ( v k + i , v k+i, £+r v k, r v k, ii+i} + < v k + i , * + i * v k . ^ r v k + i , « " v k ^ ) j 2 , 

for 0 < k, £ < I-t, 

We shall show that hypothesese (2-8) and (2-9) are satisfied. 

Lemma 3 . 1 . Assume that hypochesis 3-8 holds. Then there exisL two 
constants c and C, with o < c < C, independent of h ; such that 

(3-<2) c | i ie . . . ' v h >i i> « w * i : ( [ ' U ( y ) , < ! - i l , ( « i i ) i ) 
i , j=l 0 , Y t i=l ' 

« c I l l « i j < V l l * 0 . . 

for all v h « (v h ? ) c(X h) and for o < k, Z 4 I-S . 
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Proof. On the square of reference l<, we let 

<f(S.n) = v

h j /
x » y ) » <KS>n) = v

h > 2 <
x » y ) » 

with (x,y) = F ^ ' ( C , n ) . We have 

i n ^ u M i ' -¿((11)'. ( ! * ) ' • ( D i • ! ? ) > * > 

According to equality (3-4), we may write : 

||.= J (fi " f2 ~ f3 +-Yi.) + J (Vi " f2 + - fu) + € ^ 

In = i ^ + * 2 " * 8 " ̂  + 4 ( l h " * ? + ^ - to) + n ^ 

Irj + H = { (<f1 + ^ --Yi - f - + to ~ to - to + to) + 

+ f <?i - Y2 + f 3 - n + * to) + J (to - to + to - to + * f n ) • 

If the expression (3-13) is equal to zero, we then haye : 

if - $ - ! H ! - ° • 

and then 

Vi ~ f2 e fs ~ * to ~ to - to " to s = f n

 = - " 0 , 

(?i + f 2 ~ fa ~ f*) + (to " 2̂ ~ to + to) - 0» 

so that there exists two constants c and C, with o < c < C, depending only 

on K such that 

2 

c I ||e.. Cv > 1| « (Yi -< f 2 )
2 + (fi - y > 2 + (to - to)2 + (to - to)2 + 

i,j-l VJl 

2 

(«f̂ )2 + (fn) + + <4» n)
2 + ^fi+«f2 - «3 -y* + to - to - to + to)2 

2 

* C I H ^ i j ^ V i i o , ^ 

i. j-« 

which is exactly inequality (3-12). 
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In the same w a y , one can easily show 

Lemma 3.2. Assume t h a t hypothesis 3-8 holds. Then there exist 

two constants c and C, w i t h o ^ c ^ C, independent of h , such t h a t : 

2 

^-^ c l v J U o < W
 + T-(i^\s?Y - (viiy

(V)2)^< c,vhl',K.p • 

For a l l v. = (v. , v, ) C (X,) 2 and f o r 0 ̂  1:, I < I-!. 
h ii, l n, 2 n 

Collorary 3.1 . Tine application (resp. |H ; \\\^) is a norm 

on the subspace o f functions o f (X^) ? equal to zero a t one (resp. two) vertices 

belonging to T. "The applications || • |j and j|| • |J|̂  are then norms on the 

space V^. 

We have the -following result 

Lemma 3.3. The two norms H'lj^ j^d on are uniformly 

equivalent with respect to h, that is to say, there exist two constants 

c and C, with o < c < C, independent of h, such that 

(3-15) H h « |!|vh|Hh 4 C||vh!|h, for all v h € V f c. 

Proof. The proof of inequality l!i ̂ 11 ̂  ̂  c Ik̂  ¡1 ̂  * c straightforward.. 

We shall show the other one. For any v, = (v, , v*. ) £ V, , we let 
J h h . ,1 h , 2 ' h 

w, *= (w, , w. ) be the function of (Y,) 2, talcing the same values as V 
n n « , i n , 2 n n 
at the vertices of the elements. We then have 

v, € V P. C°(fl). 
n 

Using inequalities (I-IO) and (l-ll) (Korn inequality) wc may write : 

2 

i.j-l 

where the constant c ! > 0 is independent of h. 

Now, applying Lemmas 3.1. and 3.2. to the functions £ (X^) 2 

such that w,,^ (G^^) « (G k J J) = 0, o < k, I < 1-1, i = 1,2, we have : 

W • W ^ c , wiJt.K k J t. 
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2 

Combining the last three inequalities, we get 

where the constant C > 0 if. independent of h. 

Inequality (3-15) is then a consequence of inequality (3~16) and Lcomas (3.1) 
and (3.2). 

We let V u = {v. C V u •; v. = 0 on V} . h,o h h h 
Lemma 3.4. Patch Test. Assume that hypothesis (3-b) holds and 

that g i = 0, i = 1,2. Then : 

(3-17) E ^ u , v h) - 0 for all u C (Pi) 2 , V j . € V 

Proof. For any v, = (v, , v, ) € V, , we let w, be the function n h,i n , 2 n,o n 
of (Y, ) 2 equal to v, at the vertices of the elements. The function w, belongs 
to the space I H* (Ji)J2 i\ \C° (tt))2 and we have 

(3-18) E ^ u , v h) = E ^ u , v h - w h ) . 

We let, for any K € 
2 

(3-19) B j <u, v h - w h) - / ( Y ot.Mn i v h 9 ± - w h f.)) ds , j - i,2 

* (C»'l) s v. (x,y) * v- (C,n) t 

I i f Z " » 2 

with ::,y = FK(^,n) • 

We then have 
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If u 6 (Pi) , then (u) is a constant for 1 41, J < 2 and wc may wrj te : 

2 

K i f K ( u . v h - w h ) - I Io..(u) / ((Vb.r-h.i^ 1'^-^^.^^.)^,,:,)) dn 
i=l 

Since (v. - w, )(l,n) = -5- ( r' 2 " '>Vn = ( 0 ь ~ " 1 - К^.ч) . h, 1 h, 1 2 1 rj h, i h, 1 

(v - w )(1,Л) = i (П2 * D'!>n - (v, " w )(vl,n) , n, 2 h, 2 2 П h, 2 h, 2 

we get 

EJ,K ( U> V V = ° ' 1 < J < 2 ' 

Summing up on all the elements К «Г Tj leads u s to equality (3-i7) • 

Remark 3.1. Equality (3-17) is not true for all v^ С V^, because 
of the boundary conditions. To derive the estimates, we shall in fact use 

2 
the equalities : £с7^(и) n^ - g^$ for i = 1,2, on \\ , and equality (3-13) 

j = l 

is then still valid. 

We shall need the following generalization of Eramble and Hilbert" Lemma Jjcj 

to. bilinear forms [l] : 

Lemma 3.3. Let ft be an open bounded subset of R 2 with a sufficiently 
smooth boundary, let r and ra be two integers and let W be a space of functions 
satisfying the inclusions Р щ

 с W H m + 1(ft) ; the space W is considered 
as being equipped with the ncrm !i # ! l m + 1 ^ Finally, let A : Н Г + 1 (ft) x W —• R 
be a continuous bilinear form such that 

(3-20) A(u,v) = 0 for all u € P^, v f W, 

(3-21) A(u , v ) = 0 for all u € H r + 1(ft), v С P . 
1 m 

Then there exists a constant С ~ С (ft) such that 

(3-22) |A(u,v)| « С ||A|| l u l r 4 > r J v | m | i ^ f o r - a l l u £ Н Г** (ft) , v 6 W. 
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The classical inverse inequality holds : 

Lemma 3.6. For all v ^ C ^ ) 7 , we have 

f o r all K C T^, the c o n s t a n t c > 0 being independent of h. 

Using equality (3-7) and results in approximation theory [l'3j, 
we get Lemma 3.7. Let s be an integer with 2 <: s ̂  3, let u € ^OlS(ft)j 2 H V, 
and JI. u C V, , the'V. interpolate of u. We have h h h ' 

(3-24) | u - n h u | ^ K « c h S " m | u J s 5 K f 0 « m < s f 

s 
for all u C H (ft) , all K £ T^, the constant c > 0 being independent ol h. 

We are now able to show the following fundamental result. 

Lemma 3.8. Assume that hypothesis (3*-8) holds, then we hâ /e 

(3-25) y „ , v h) < c
 k 2 ! u l 2 , ^ I K \ \ ^ k > 

h 

(3-26) E ^ u , v h ) < c h l u | 2 > J i | | v L | | h , 

For all u C V, and C the constant c > 0 being independent of h . 

Proof. -Consider expressions (3-18) and 0~19). We may write 

" . +i 2 ^ ^ ^ _ ^ 

'*' • i=l 

- | e (0... v h - < y , with a; = ( 9 t j , & 2 j ) . 

The mapping : (&., v.̂ ) E (8j, ̂ h~^h^ * S ^ n e a r a n c* continuous from 
(H 2(K)) 2 x (H 2(K)) 2 into R and we have 



- 18 -

K (&., v.-w.) - 0 for all ft. C (P 0 ) ? , v, £ ( H 2 ( K ) ) 2 

j h . I i J n \ / 

£ (Q , v h-w h) = U for all 0\ C (li1 (K)) 2, v h 6 (Qi) ? 

A consequencp of Tirana 3.5 ir» then 

Using the inverse of the transformation F^, v;e get 

I V ( u » W l < C H ' I U I 2 ) k >vhl2,K ' f o r a 1 1 K 6 v 

Summing up on all the elements K £ and on the indices j = 1,2, we get 
inequality (3-25). Inequality (3-26) is a direct consequence of inequalities 
(3-25) and (3-23). 

We have the error estimates 

Theorem 3.1. Let u C ^ H 2 ( Q ) j 2 H V he the soluticn of problem ( 1 - 8 ) 

and C be the solution of problem (2-5) , the s'pace being constructed 
by using Wilsonfs brick. Assume that hypothesis (3-£) holds. Then we have \ 

(3-27) Hu-i^l^ * c h |u| 2^ , 

where the constant c > 0 is independent of h. 

Moreover, if hypothesis (2-15) holds, then we have : 

(3-28) H u - u J I ^ 4 e h 2 !«| 2 > J J • 

Proof. Since hypotheses (2-8) and (2-9) are satisfied, for the 
space constructed above, we can apply rheorera 2.1 end we-have 

/ |E (u,w)j\ 
||u-uK|| 4 c !|u-nh u | ^ + sup . 

\ w - \ I M I h / 

where the function u is the - interpolate of u. 
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According to ̂ pircnas 3.7 and 3.8, v/e have respectively the estimates 

K h(u, w) 4 c h Hw|l h > 

|iu-II hu|| h< c h j u | 2 f n • 

Ii: last: throe inequalities lead to estimate (3-27), and also to the i ol j.ov: i ug 
) iK-.ouali ty 

||uh - n h u|| < c-h | u | ^ n . 

Using L.emmas 3.6 and 3.7, we get 

K T h K £ T h 

Assume now that hypothesis (2-15) holds ; then we may apply .Theorem 2,2. : 

Lemma 3.7 ana inequality (3-27) imply that 

According to Lemma 3.8 and inequality (3-29), we get 

Finally, with lemmas 3.7 and 3.3 v* car. tjrit^ 

K £ T h 

Estimate (3-28) is a consequence of the last four inequalities. 
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