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On the Convergence Rates of Variational Methods. I.
Asymptotically Diagonal Systems*

By L. M. Delves and K. O. Mead

Abstract. We consider the problem of estimating the convergence rate of a variational
solution to an inhomogeneous equation. This problem is not soluble in general without
imposing conditions on both the class of expansion functions and the class of problems
considered; we introduce the concept of "asymptotically diagonal systems," which is
particularly appropriate for classical variational expansions as applied to elliptic partial
differential equations.

For such systems, we obtain a number of a priori estimates of the asymptotic con-
vergence rate which are easy to compute, and which are likely to be realistic in practice.
In the simplest cases these estimates reduce the problem of variational convergence to the
simpler problem of Fourier series convergence, which is considered in a companion paper.
We also produce estimates for the convergence rate of the individual expansion coefficients
a,-n), thus categorising the convergence completely.

I. Introduction. Variational methods for the solution of elliptic partial dif-
ferential equations have a long and fruitful history in mathematical physics [1], [2].
More recently, the finite element method, as one particular variational procedure, has
been widely used in engineering problems and its convergence properties have been
studied.

There are, perhaps, two dominant features of any proposed algorithm for this
type of problem:

(1) The rate of convergence of the numerical solution (to the exact solution).
(2) The ease of use of the method; that is, the cost of setting up the equations, and,

in particular, the difficulty of treating awkward boundaries or boundary conditions.
The finite element method is notably favourable with respect to (2), and at least

acceptable with respect to (1), when compared with alternative finite-difference
formalisms.

It is well known that what may be called "classical" variational methods in which,
typically, the expansion is made in terms of a set of orthogonal functions, such as,
e.g., {Sin nx}, can lead, in favourable cases, to extremely rapid convergence. How-
ever, no general analysis of the convergence rate problem for such classical expansions
appears to have been made. In this paper, we present such an analysis. Although we
make no specific reference to the expansion set used, the conditions placed on the
systems analysed are motivated by those typifying the classical expansions. Our aim
is to understand and to be able to predict the convergence rates to be expected, with
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700 L. M. DELVES AND K. O. MEAD

an eye to condition (1) above; we do not take cognisance of condition (2). Such an
analysis may be expected to be of value in two ways. When actually computing a
variational solution to a system, a knowledge of the asymptotic convergence rate
enables one to predict the number of expansion functions (the value of N) necessary to
obtain an approximate solution of the required accuracy. The second, and more
important, application arises in the initial choice of the expansion set. "A priori"
convergence rate estimates facilitate selection of a realistic expansion set before
commencing the computation and so help to eliminate the present trial-and-error
evaluation of such sets.

The case for such an analysis was originally made by Schwartz [3] and illustrated
by the examination of a particular system (having physical significance) and a limited
class of expansion sets. In the present paper, we seek to provide the basis for a general-
isation of this approach.

The procedure for finding numerical solutions to a differential (or other) equation
by a variational method has two stages. First, we look for a functional defined over a
Hubert space containing the exact solution and possessing the property that it is
stationary at such a solution. Throughout the present paper, we shall use as an
example the inhomogeneous equation

(1) £f = g
defined over a space R, and require that the operator £ is Hermitian with respect to
the inner product used. For this equation, we can easily verify by differentiation that
the functional

(2) F[u] = («. JE«) - («, 8) - (g, «)

fulfills our requirements.
Secondly, we choose a complete, and perhaps orthogonal, set of functions ¡A,} in

the Hubert space, in terms of which the solution F may be expanded. We write

(3) / =  £ b,h,
i-l

where the A,- are generalised Fourier coefficients of /. As an approximation to this
solution, we take the finite sum

(4) U -  £ aT'h,.
i-l

Substitution of (4) into (2) leads to the well-known equations
(4a) Lmaim = giN)

where

L?J = (hu£h,),
*r = (h,g),     Uj= u '">N-

Where no ambiguity is likely to arise, we shall omit the superfix N.
The conditions under which this procedure converges to a solution of (1) have been

considered by other authors, for example [1], [2]. We assume that convergence is
assured and seek to estimate the rate of convergence for a given choice of an expansion
set {hA.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE CONVERGENCE RATES OF VARIATIONAL METHODS 701

Error Analysis. Throughout this section, reference is made to Diagram 1, in which
the variational coefficients af1 are displayed in a triangular array, together with the
Fourier coefficients ¿\ of the exact solution.

Diagram 1
Expansion coefficients of the
approximate solution w.r.t. a
finite subset of the expansion
functions. These are determined
by a variational procedure.

„(2)ax „<3>«i

„(2>     „(3>a2      a2

a3 as

Expansion (Fourier)
coefficients of the exact
solution w.r.t. the
complete set of expansion
functions.

b,

b2

b3

"Horizontal"    •
convergence

"Diagonal"
convergence 0

0
"Vertical"
or Fourier
convergence

The error in our Mh solution is given by
N CD

eN = f - U =   £ (¿i - aliN))hi +    £   bihi.
i-l i-N+1

If we assume the A ¿ to be orthonormal with respect to some weight g, we have

(5)
Mi;= £(*i-«!"')2+ £ b2

s[m + si

Since both S[N) and S2N) are defined as sums of squares and therefore positive
quantities, convergence in this norm occurs if and only if both sums converge to zero
with increasing N. Clearly, the convergence of S2N) depends only on the rate at which
the Fourier coefficients of / tend to zero; this convergence is denoted by a vertical
arrow in the diagram. Rapid convergence in this direction is seen to be a necessary
condition for rapid convergence of the variational procedure and its consideration is
therefore likely to be a major factor in the choice of a suitable expansion set {hi}.
Determining the convergence rate of S2N> is a problem lying purely within approxi-
mation theory and it may be resolved for a large class of systems on the basis of certain
qualitative information concerning the solution /. We consider this question in detail
for one-dimensional systems in a second paper. The problem of convergence of S[!f)
may be considered as the compound of two different types of convergence problems.
First, we require that the variational coefficients a\N> tend to the corresponding
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702 L. M. DELVES AND K. O. MEAD

Fourier coefficients b{ with increasing N, i.e.

\bi - a\N)\ ->0    as N-* ».

Secondly, we want

\bi - ai"| -*0    as i-> ».

Since the series \bi} —> 0, this will occur if \a\°} —» 0. We refer to Diagram 1, where
these two convergence problems are, respectively, termed "horizontal" and "diagonal"
convergence.

By considering bounding rates of convergence for these problems, it can easily be
shown that the resulting convergence rate of 11 Cjv 110 is approximately that of the slowest
of these separate convergence rates. For example, we take the case:

(6a) {bilûk/f,
(6b) \bi - a\m\ g  K/i{"-a)Na,

i.e. the vertical convergence rate is 0(i'T) from (6a); putting N = i in (6b), the diagonal
convergence rate is 0(rv), and with i constant the horizontal rate is 0(N~"). Then, by
bounding the sums S[m and S2N), it can easily be shown that

¡MI = 0(N")    or    0(AT,+1/2)    where s = min(p, q, r).

Similar results hold when one or more of the series converge exponentially. All three
convergence problems must therefore be investigated to determine the net convergence
rate of the solution.

Under certain conditions, however, it is possible to prove that variational con-
vergence (horizontal and diagonal) is rapid, and hence that it is the Fourier con-
vergence rate which characterises the overall convergence. As an extreme example, we
consider choosing an expansion set which is orthogonalised with respect to the
weight £, i.e., (A,, £,h¡) = 5,,.

(For a positive definite operator £, we can always orthogonalise an arbitrary
expansion set in this way using a Gram-Schmidt process.) For such a choice, it is well
known that the variational coefficients computed for the system (1) will be identically
equal to the corresponding Fourier coefficients; this result is computationally obvious
since the operator matrix L is a unit matrix. Thus, at the TVth stage of approximation,
we obtain

«,W) = bi,       i - 1, ••• , N,

and an error

\M\% =  £ b2.
i-If+l

The rate of decrease of the error term depends solely on the convergence rate of the
Fourier series.

In principle, one may, therefore, always estimate the convergence rate, in the
energy (£) norm, by estimating the coefficients A,- with respect to this set. In practice,
this merely begs the question, first, because the appropriate orthogonalised expansion
set is not known explicitly, and second, because one would often like the convergence
rate in a fixed norm other than the energy norm. For any fixed choice of expansion set,
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THE CONVERGENCE RATES OF VARIATIONAL METHODS 703

the operator matrix will not, in general, be diagonal; the convergence properties of the
problem in a given norm then reside in the structure of the matrix L(m, and in the
right-hand side vector g<ÍO; both of these are reflected of course in the properties of the
exact solution/, that is in the coefficients Ai. In many practical examples the matrix
the matrix L, although not diagonal, does have a particularly simple structure.

Definition. A matrix L is said to be asymptotically diagonal (A.D.) of degree p if,
for fixed j and all /,

m~nfcir -c¡i"'   Ci-p > °-
It is uniformly asymptotically diagonal (U.A.D.) of degree p if, in addition, for

some finite C,

c¡ ^ c,     vy.
It should be noted that these properties are invariant under a diagonal transformation
of L, since, if V = DLDT and D is the diagonal matrix (a^), we have

\L'u\ _ \diLudA _ |L,.,|
(\L'u\ iL'uir2      (\diLadi\ \diLudi\Y2       (\Lu\ |L,.,.|)1/2'

It follows that the properties are invariant under a renormalisation of the expansion
set {hi}.

As an example of an asymptotically diagonal system, we consider the solution of
the elliptic equation over a closed region C:

Lf s [V2 +   V]f = g,        f(C) = 0,
with expansion sets \hn} defined as the (orthonormal) solutions of

[V2 + W - X„]A„ = 0,        An(C) = 0,

where W, V are point operators. In this case, we find immediately

Li, = \iSt, + (hKV -  W)hi).
Thus, for fixed j 7^ i, the behavior of the matrix element £,, is given by the Fourier
coefficients with respect to the set (A.) of the fixed function (V — W)hi. The con-
siderations of paper II then lead to the result that the matrix Lu is at least A.D. for a
wide class of functions V, W. Similar results follow for a very wide class of problems of
practical interest. More generally, we know that for any positive definite operator £
there exists at least one expansion set for which the matrix L is suitably asymptotically
diagonal (namely, the set defined above which makes L the unit matrix).

The class of asymptotically diagonally systems is in fact very wide:
Theorem 0. Given that the operator £ maps R—>R, and the set j h¡} is orthonormal

in R, then the matrix L is A.D. of degree at least \, provided that |L,,| is bounded below.
Proof. We have Z,,, = (A¡, £h¡) = (A,-,/,-) where, for fixed /, /,- = £h¡ is a fixed

element of R. Hence, .£,<, is the z'th Fourier coefficient A¿ of/,- and the series £ |A2|,
therefore, converges. Whence the theorem follows, provided that, for some 7,
\LU\ > y.   Q.E.D.

The last restriction on La is satisfied quite generally for partial differential
equations.
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704 L. M. DELVES AND K. O. MEAD

In the following sections, we develop the theory of U.A.D. systems and obtain
estimates of the convergence rate of S[N). These estimates yield sufficient conditions
under which the convergence of the variational procedure may be characterised by the
more easily determined Fourier series convergence. In particular, we show that, for
A.D. systems of sufficiently high degree, the convergence of \\eN\\s is directly related to
the convergence of the coefficients g i and also, that for such systems, the sum S[N) is
negligible and S¡m dominates in the error expansion. We further derive relations
between the convergence of g¡, b¡, and the structure of LN, and characterise the
convergence of the variational coefficients a|W) with respect to both i and N.

II. Theorems for U.A.D. Systems. In this section, we prove a number of
theorems related to the solution of (4a). No reference will be made to the variational
origin of these equations; the theorems are therefore valid for any numerical method
(such as the method of moments) leading to such a set of equations with L symmetric
and U.A.D.

First, we prove that if L belongs to a particular subset of U.A.D. matrices, and if
there exists a lower triangular matrix T which diagonalises L, then T is itself U.A.D.
and of the same degree. We note that, for positive definite matrices L, a suitable
diagonalising T will always exist.j^See [4], or consider the Cholesky decomposition
of IT1.)

In this paper, we shall assume that the operators under discussion are Hermitian,
but not necessarily positive definite (see Theorem 5 for an exception to this). We do
not, therefore, assume that the diagonal elements of the matrix L are positive; for a
given expansion set, we normalise for convenience so that Lu = ±1, and introduce
the diagonal matrix J: 7, = Ju = sign (Lu). This matrix relates to the triangular
decomposition of L~l in the form L~l = TTJT.

For nonorthogonal systems, the operator matrix L may not be asymptotically
diagonal. However, the variational solution fN is invariant under a nonsingular linear
transformation of the set {ft,-, î = 1, • • • , N}; we may therefore transform to an
orthogonal set before estimating the error.

Theorem 1. Let L be an N X N symmetric matrix having

La =  Jii= ±1,t for i = 1, • ■• , N,

and satisfying

\Lu\ ^ Ci~v,    for all i ?¿ j, with p > 1 andO < C g C(p) [defined in the proof ].

Also let T be a lower triangular N X N matrix such that

TLTTi=  J.

Then if we write T = I + X, we have that X is also lower triangular and satisfies

I-ST.il ̂  Kf",       0 < K < K(p, C).

Proof. Let us write L = J + U + UT, where U is a lower triangular matrix (having
zero diagonal). Then, the transformed matrix

L =  TLTT =  TJTT + T(U +   UT)TT =   J.
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THE CONVERGENCE RATES OF VARIATIONAL METHODS 705

Thus, TJTT = J - T(U+ UT)TT. Writing T = I + X,

(I + X)J(I + XT) =  J - (I + X)(U + UT)(I + XT),

i.e.

(7)        XJ + JXT = -(£/ +  UT) - X(U +  UT) - (U +  UT)XT - XLXT.

We may write this as Z = F(Z), where

Zu =  XuJj    for i ^ j,

=  XjiJt    otherwise.

Since both Z and Eq. (7) are symmetric, we can look on Fas a function in a %N(N + 1)-
dimensional vector space, with components Ztl = XuJ, i ja j. We seek a region in
which the solution of (7) lies, i.e. we require a region R such that F: J? —> R and over
which F has a Lipschitz constant which is less than unity. Consider the region R:
\Zu\ i% KF" where K, q are constants. From the conditions on L, we have \Uu\ H\
Crv. Also \Zii\ g KT" implies \XU\ ^ Ki~q. Substituting into (7) for the case i > j:

\Fu\ á \Vu\ + £ |*„| \uik\ + £ \xik\ \uki\ + £ \uik\ \xik\
it-1 t-j+i t-i

+   £   £   l*«l   \Lkm\   l*f.|

g crp + Kcr'j-"+1 + , KC„ r'j-'+1 + Kcfj"-*1
(p — i)

+ K2rrQ £ £ |i*.|.
t-l  m-l

Each term is maximised with j = 1, hence

|F„| ^ [crc+a + KC^j^j + KCrp+° + K2 + (7=1)]''"°-

Similarly, for the case i = j:

\Ftt\ ^ \ \_2KCf'+x + K2 + ^^ r«+1]r'.

A sufficient condition for^F: R^—tJtjfs that

l^ll^l*«'"*,    for all i, j.

This holds if

CFv+° + KC^—^J + KCCP+Q + K2 +     Ky    \ g K

and

\ \2KCrv+l + K2 + ,  K*C^ rq+1\ <  K    for all ¿.2 L (p - 1)       J
These clearly imply
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706 L. M. DELVES AND K. O. MEAD

(a) 1 ú q á p   and   p ^ 1.

It follows that the inequalities will hold for all / if they hold for / = 1. In addition, the
second inequality will hold if the first one does. Hence

(b) "'[' + <íf¡>j + K[(v^i> -'] + «••
(a) and (b) are sufficient conditions for F: R —> R. A Lipschitz constant for F will be
given by

M = sup
R

dF„
dZ, = sup  max     £

B      i ,i;i£i   I , n ; i ^ n

dFu
dZh

For the case i > j, (7) gives
1-1 i I i I

Fu = ~Uu — £ XikUjk —   £   XikUki — £ UikXik —  £ £ XikLkmX,m.
i-l t-i + 1 t-1 *-l   m-1

Thus,

TIT" =  — £ LimXim for I = i, n = j,
O Ji-ln m-1

= — tf/» — £ ¿n-»^,-n    for I = i,n < j,
m-1

i

=  — Í/»/ —  £ LnmXim     for / = i, n > j,
m-1

i

= — Ufn — £ XikLkn     for / = /, n g ;,
i-l

= 0 otherwise.

Summing these terms,

dFu
oZu

+ £ Ujn  ~T    ¿^   ^n«^i«      " ¿^ ^nj / ->   ^nin *i jt

+ £ fin   "T    2^    XikLkn\

g JD~" + /i:cy"I>-5+r+ £* cf + kj~q + Kcy—^-Af'n-'*1

+  £ [Cn~p + KCj-Q+\-p]

Clearly, the Lipschitz constant which results may be minimised by choosing q as large
as possible. The maximum value of q consistent with inequality (a) is q = p, and this
choice leaves (b) unaltered. Also
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THE CONVERGENCE RATES OF VARIATIONAL METHODS 707

£ n~p+l á  £ n-p+1 S£l-)ai.

Thus:

dFu
dZln

g  Kf + KCf    + Cj-p+i H- XT*    H- KO
.-v+l

+ (C + KC) (P - 1)

This is maximised for i = 1, j = 1, and

+ crp+1 + /sTr"-"1 + idp+i

(8)

When i = y,

max   £
i,i;i>i    l.n

dFu
dZ„ (p -1) c-^>-

i—l i       i i

^ii    = 2-<    XikUik —   ¿_,   2_,    -^ití'tm-í'imí
k-1 ¿   t-1  m-1

from which we similarly obtain the bound

dFumax £
* — i      I, n 3Zu

]KC

which is clearly smaller than (8). Hence,

M = sup  max     £     §£"1*3* + fe^f)c + sf-^-rW
R     i.i.iii  I.n;iïn    OZln\ \p  —   I / \p   —   1/

So a sufficient condition for M < 1 is

which implies that

«{'+ (^t)cM(t^í)c -']<•■
Comparing this with inequality (b), both will be satisfied if

«■['+fc^H+*feV - 0+c * »■
which in turn will hold if K lies between the zeroes of the L.H.S., provided that these
zeroes are real, and that at least one of them is positive.

Reality of the zeroes requires that

This will be true if C ^ C(p), where

O-l)c(p) = W=W= j. I((8p - 7)' + (8/ - 8p- l))1" - (8p - 7)]

and this is a condition of the theorem.
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708 L. M. DELVES AND K. O. MEAD

For at least one (and in fact both) of the zeroes to be positive we must have

■ - (fei)c > »,
whence

This inequality is also always satisfied as a result of the condition C < C(p). We may
take K(p, C) to be the larger of the two zeroes.   Q.E.D.

In the next few theorems, we use Theorem I to characterise the error norm ||ew||£.
To simplify the statement of these theorems, we define the following class of

systems:
Definition. Let £/ = g be an inhomogeneous equation, and let Lb = g be the

corresponding infinite linear system, with ¡A,} as expansion set. We shall call this a
"nice" system of degree/> if for the given choice of \h(}, every submatrix LW) satisfies
the conditions of Theorem 1.

We note that the requirement Lu = ±1 can be obtained by suitable normalisation
of the functions A,, and is not a real restriction since asymptotic diagonality is in-
variant under a diagonal transformation.

Theorem 2. For a "nice" system, the error in the Nth approximate solution, defined
by

e„ = u - f = £ «!*'*« - /

satisfies the bounding inequality
CO

IMU ^ *   £    la*''|,    where 0 < k g k(p, C).
i-N+l

Proof Let us orthogonalise the first N expansion functions with respect to the
operator £, using a Gram-Schmidt process. That is, we define

i
hi =  £ Tuhj,        i = 1, ••• , N,

i-i
where T is a lower triangular matrix such that

(hi, £h,) = «„/,.

The transformed operator matrix is
Lm = TL{N)TT =  J™.

The Mh approximate solution is invariant under this orthogonalisation and may be
written

AT

fN =  £ a^hf = a<iv)-A    (in an obvious notation),
i-l

where aw> is the (trivial) solution of

junuan = ?<*>    and    ßan _ (Ä<> g)_
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THE CONVERGENCE RATES OF VARIATIONAL METHODS 709

Let us now add hK+i to the expansion set. The operator matrix becomes

¡T   0I"*"
0     1

j W) (N)

(N)T ,
y        Jn+i.

TT    0

0      1

jiN) Tmf(N)

vy     i      Jn+i )

where y^ = (hi, £hN+i) and hence the system
¿m       tjn)

Y T JN+i J

W+l)

lAv+1     ) [g«

(A')

,(if)    (N+l)     , W+l) —IN)   _   r,(N)Ja + aN+i   Ty      = ¡5

This implies

(9)
and
,im t.N)T~,T    (N+l)     ,       j        „(A'+D   _   „(10) y       T a + JN+iaN+i    = gN+i.

The (N + l)th approximate solution may be written:
N

/AT+l    =    2-1 a< "»   "+"   ^AT+l     "iV+1.
i-1

Hence

^at+i       Cat = Jn+i       1n

= a        -h + aN+i   hN+i — a     -n

_     T(N)n(N)   r _W+n  7<Ar)/"r«.<A'h £  J_r«<A,+1)i. , ,(N)n{N)   r—   J     ]S      h — aN+i   J     (ly     )h +iaN+i   hff+i — jj    ¡J     -h.

Using (9) and J2 = I, this becomes

= ajv+i   [Aat+i —  J     Ty     -h].

Therefore,

IK - «*«|| ^ |«&îu| (lililí + £ l(rr(W))i|B||íi
(. i-l

Using the £ norm, IIAai+JI = ¡|Â\|| = 1, and hence

IMU - lfor«IU ̂ IK -«,«IU ^ l«£î"l {i + II7yW)IIi}.
But

,„}■

11Tym ||i ^ | |YW Ili {11'! li + 11 X\ |i}    using Theorem 1 notation

g CAT*+1{l + max £ |JT„|}.
I Í-1        i-i )

From Theorem 1, \XU\ ^ Ki~p, so

£ \XU\ g, (—£-r)*f*\    maximised by ; = 1.

Thus

|rYw|l è C + (p/(p - l))CK   and    |I^|U - |K+1|U ̂  * K+V'l
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710 L. M. DELVES AND K. O. MEAD

with k ^ 1 + C + (p/(p - \))CK. For M > N,

M« - 11**11* =   £   (Iki-ilU - IMU, ̂    £  *|«í°|.
i-A'+l i-W+l

As M —» », He*|U —* 0, and in the limit

IMU úk   £   |aí°|. Q.E.D.
i-.V+l

We have now shown that, for the class of problems under consideration, the con-
vergence of the error norm is characterised by the diagonal convergence of the system.
However, the diagonal elements \a\"\ are not readily computable, so we proceed by
relating them to quantities which are. The next theorem shows a connection with the
column of free terms g.

Theorem 3. For a "nice" system having

gi = (hi, g) á err    withr > 1,

it follows that

WnN+\"\ ¿aN" + ßN-p

and hence that

IMU èa'N-+1 + ß'N~p+1,
where a, ß, a', ß' are positive constants.

Proof. From the proof of Theorem 2, Eq. (9) gives
AN+l)   _      T(N)~(N) „<tf+l)   r(N)^,(N)    (N)a —   J    5      — aN+i   J     I     y

Substituting into Eq. (10),
• -,   (N)*T      T(N)n(N) frr   (N)^T       (N+l) T(N) -,   <N)     ,        . „(AM-1)    _ .„(Ty     )  -J    (5       — (Ty     )  -aN+i   J     Ty      +  JN+iaN+i     = lgN+i.

Hence

j       (N+i) _      gN+i — (Ty    ) • J    g■'A'+lflA'+l        —

since

Therefore

(11)

1 - JN+i(TyiN))T-fmTym

gN+i-(Tyw)T-fN\Tgw)

1 -  JN+KTy^f-(Ty^)

(h, g) = (7h, g) =  7g(Ar).

f+A + \\(Tyw)T-Jw(Tg^)\U
i- ||(rrHO)r./in(rr0o)||1

z \gN+i\ + l|7Vwll-llrgwlli
1 - \\Tym\U \\Tym\U

< |g^i|+ 11r||i ||r|U||TwIUI|g(W)|
"    i - imii urn- IIyW)IU IIyw>IIi
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provided the denominator of (11) is positive.
We now bound the norms as follows:

WTUt* i + 11*11 ¿ i + (jzz~[)k,

\\T\U ^ 1 + ||*||- é 1+ *.

Ilgw>l|1áe£rge(rf1),

IIyW)IU ̂  C(N+ ir' g CN~P,

\\y(N)\\i è C(N + I)''*1 g CAT**1.

Hence, the denominator of (11)

= l -11 + (~3~r) K\[1 + K^N~2v+1

è 1 - KCN~2P+

^ 1 - KC> 0.
Therefore,

(using an inequality from the proof of Theorem 1)

i    (iV+l)|   <■

(1 -  ÄTC)
ATr +  rf^f-HAT'     á «AT" + ßN~'

where a ^ 6/(1 - KQ and 0 g (Ä6/(l - KQ\r/(r - 1)).
Using Theorem 2,

Ikrll« a* £ wr + ßr9]
i-.V

__,      kar     xf-r+i   ■       kßp      »r-j>+i
- (r - 1) (p - 1)

= a'7V~r+1 + ß'N~p+1. Q.E.D.

This result enables us to predict the asymptotic convergence rate of the variational
procedure, provided we know the convergence properties of the terms g( = (hit g),
i.e. the convergence rate of the generalised Fourier coefficients of the function g.
It is frequently unnecessary, however, to compute these coefficients in order to deter-
mine their convergence rate. Given certain qualitative information about a function
(such as its continuity, its differentiability, and its boundary behaviour) the con-
vergence of generalised Fourier coefficients, with respect to a given expansion set, may
frequently be predicted "a priori". This problem is considered further in a separate
paper (II).

We conclude this section by considering the case in which, either through physical
considerations or otherwise, we have qualitative information concerning the true
solution of our equation and are thus in a position to predict the convergence rate of
the coefficients bi. The next theorem relates this "vertical" convergence to the con-
vergence of the error norm.
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712 L. M. DELVES AND K. O. MEAD

Having determined the error convergence in terms of properties of a known
function g, it may well seem unnecessary to obtain a similar result in terms of
properties of the unknown solution /.

However, the step is of importance in considering the extension of these results to
homogeneous systems (e.g. eigenproblems) for which, of course, no right-hand side
function g exists. For an inhomogeneous system, the convergence rates of the 6, and
gi are related; we display the relation later.

Theorem 4. For a "nice" system having

bi = (A,,/) g kC\    withq > 1,

it follows that \gN\ é yN'" + 8N~P and hence that ||ew||x û y'N'^1 + 6'N~'*1,
where y, 5, y', 8' are positive constants.

Proof

gN = (A.v, g) = (A,v, £/)

= (hN, £ £ bihi) =  £ 6,(A.v, £ht)\ ,_i        /        ,_i
CO N-l 00

=   £ b¡Lffi =   JNbN +  £ ¿>iL.vi +    £    b¡LNi.

Thus,

= yN~" + SA'"'.

From the proof of Theorem 3,

kv+1   ' - (1 -  KC) + ßN   ■

Hence

I     (.V+l)i    <r-
\as+i   | á (1 -  KC)

and so

IklU úk £   |««>|

N" + [rhc + e]N-

kyq V""41 4-     kp-
(1 -  KC)(q - 1) p - 1

0        +ß
1 -  KC Ja"p+i

á t'AT'*1 + a'Arp+1. Q.E.D.

An important conclusion from the above theorem is that the Fourier (vertical) con-
vergence rate will dominate, provided p > q.
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III. A Theorem Based on the Variation Principle (2). The theorems of Section
II made no reference to the variational functional (2). If we assume that this functional
exists, and in addition that the operator £ is positive, we may rederive Theorem 4 in a
stronger form:

Theorem 5. £ is a positive Hermitian operator, and the solution of (I) is given by

f: min F(w) = F(f).
ca€(Ä

In addition, for the suitably normalised expansion set ¡A.j  the matrix L is U.A.D.
(P, C) with La = 1 andp > \ andbi = (A„ /) ^ kF"; q > %; p + 2q > 2.

We do not here require any restrictions on the constant C; further, the restrictions on
p, q are weaker than in Theorem A. Under these assumptions,

I Ml* ^ y"N~2° + 1 + 5" N~ip+2Q-2).

Proof We have for any element jN = / + (n,

F(fN) = F(f) + (eN, £«„) = F(f) + IMII.
The minimum of F(jN), and hence of He^H, is therefore no greater than that given

for any choice of the coefficients ajw\ We choose

af = bi,        i = 1,2, ••• , N,
and hence find

mi; è  £ btb.Lu

^    £    \b<\2 + 2   £     £   |6,| |A,| |L..,.|
i-N+l   j-i + 1

g*2 £  r2° + 2K2c £  r £
i-N+l i-N+1 i-i + 1

^ y^-7 iV-20+1 + r~T-7ZF%T-,-ñ N-<'+2-'\    Q.E.D.2q — 1 (p + a — l)(p + 2q — 2)

This result is slightly better than that given by Theorem 4.

IV. The Fourier and Variational Convergence Rates. The proof of Theorem 4
bounds the coefficients g¿ in terms of the Fourier coefficients A¿ ; both Theorems 4 and
5 bound the norm 11 tN \ |£ in terms of the convergence rate of the b,- and the degree p of
L. Both the bi and the variational coefficients a\N) are, of course, uniquely determined
by L and g. In this section we derive several theorems relating the convergence of b¡ ;
and of OiN> to bi ; to the convergence of L and of g. We first give a bound on the coeffi-
cients bi.

Theorem 6. For a "nice" system having

gi = (hi,g) ^ er    withr > 1,

it follows that, for all i and some D,

\bi\ ^  DJ'    where s = min(p, r).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



714 L. M. DELVES AND K. O. MEAD

whence

Proof The coefficients b satisfy the infinite set of equations

Lb = g.

In terms of the triangular matrix T of Theorem 1, we set

b = TTc,

so that

c =  JTg,

\d\ è Z\Tu\ \gi\ = £l*.-,l 1*1 + \g,\i-i i-i

^ Are £ rpj" + er'¿-i

g -^r*T err,     r> i.
r — 1

We now, similarly, bound b¿ = c¿ + £"_,■ *,iC, to obtain the result

\bi\ g -^ rp + er' + .    2^rp   .. r2- + *«* + » r—».r — I (r — \)(2p — 1) (p + r — 1)

Hence, for some Z),

|A,| ^  DC'    where 5 = min(p, r). Q.E.D.

Comment. We may feed this result back into Theorem 4; we then recover Theorem
3. This suggests that the bounds we obtain are the best possible so far as the predicted
convergence rates are concerned. We see also that the Fourier (vertical) convergence
rate dominates the convergence in the £ norm provided that p > r (see Theorem 4).

Finally, a similar procedure allows us to investigate the convergence of the in-
dividual variational coefficients alN>:

Theorem 7. Under the conditions of Theorem 6 it follows that

\bi - a\N)\ g   n.r^-11/-"-1' + D2N'a'        VN;i= 1, 2, •• • , N,

where q' = min{/7 + r — 1, 2p — 1, 2p +  r —   2J. If r 2;   2,  this implies
q' = min\p + r — 1, 2p — 1}.

Proof. We remark that the finite matrix TN is a submatrix of T. We also have
„W)   _    TT  j(N)~a      — lNJ     rNgif,

b =  TTJTg,

whence it follows, after some reduction, that

bi - ar = £  JiXugi + [££ + ££+££ ]xkijkxkigi.
i-N + l Li-ik-N+1 i-N+1   k-i i=l S.ftlJ

Inserting the bounds on X, g and bounding the series as before, we find
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\bi - «n è Ke
P + r - 1

AT(p+r-1)
+

K'Gr
(2p - \)(r - 1)

N-l2v-l).-U-l)

+
2pK2e

(2p - \)(2p + r - 2) AT(2B+I--2)
+

K er
(2p - l)(r - 1) N' (2j>-1)

whence the theorem follows by inspection.
Comments. (1) In view of the form of the second term in the theorem, no essential

information is lost by the following simplification:
Corollary 1. For some D3, \bi - af°| g D.N"1'.
(2) The uniform nature of the bound (with respect to /) implies rather surprisingly

that diagonal convergence is as rapid as horizontal convergence.
(3) We have provided in Theorems 6, 7 upper bounds on bt, A, — a\m. If, in

addition, we assume that the bounds on A, are sufficiently tight we may obviously
bound the relative error in a^ :

Corollary 2. If for some subset {m} of the integers [i], \bm\ ̂  DjrT' where s is
given in Theorem 6, then

Am — a
(m)

^  D.m'

Further, for all N > m,

Am — a (N) *  "iÎÎ■»"'•
where q" = q' — s > 0. Hence, for all values of m E{m}, a(Jf)/bm —» 1, TV —> ».

V. Convergence in the Natural Norm. Theorems 6 and 7 essentially characterise
the convergence problem. From these, we can bound the error in norms other than
the energy (£) norm considered so far. As an example, we compute the natural norm

I Ml2   =    («AT.  Zn)
under the assumption that the set ¡A,} is orthogonal in R. This norm is given by (5);
we recall however that the normalisation implied there for the A, is not that used in
Theorems 1-7. We define an orthonormal set of functions A;:

(12) hi = yihû        (hi, hi) = Sul        (hi, hi) = 772,

where the A¿ have the normalisation of Theorems 1-7 and y¡ satisfies

(13) (hi,£hi) = y2.

In terms of the expansion coefficients a\ff), bi appropriate to the set {hi}, (5) becomes
N oo

(14) «JV = £ t72 \bi a i +   £  t72a2.

Whence from Theorems 6 and 7, we obtain the following result.
Theorem 8. The conditions of Theorems 6 and 7 apply and in addition

< Tiy
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Then

II—H2 è C2^ A—+ 1 + 2s _^_ l AT—.

Proof As before, we bound the terms in (14), using the results of Theorems 6 and
7 and Corollary 1.

Comment. The two terms correspond to Si(N), S2(N) respectively; hence, since
q' > s we see that for the systems considered, S2(N) dominates the convergence rate.

VI. Conclusions. In this paper, we have been concerned with characterising the
convergence of a variational calculation in terms of parameters which are easy to
compute. We believe that, for systems of the structure considered, the bounds are
realistic; they may be used in practice to give a priori estimates of the convergence rates
for a given expansion set, and hence to influence the choice of this set.

Although our results are obtained only for U.A.D. systems, it is our belief that they
can be extended to a much wider class of A.D. systems; we hope to report on suitable
extensions at a later date.
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