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Abstract

We present a new algorithm for conversion between binary code and binary{re
ected Gray

code that requires approximately

2K

3

element transfers in sequence for K elements per node,

compared to K element transfers for previously known algorithms. For a binary cube of n = 2

dimensions the new algorithm degenerates to yield a complexity of

K

2

+ 1 element transfers,

which is optimal. The new algorithm is optimal within a factor of

1

3

with respect to the best

known lower bound for any routing strategy. We show that the minimum number of element

transfers for minimum path length routing is K with concurrent communication on all channels

of every node of a binary cube.

1 Introduction.

Minimizing the required data motion in memory hierarchies has been crucial in achieving high

performance almost since the beginning of modern computer technology. In conventional mem-

ory hierarchies, minimizing data motion takes the form of preserving temporal and spatial

locality of reference in scheduling operations. Massively parallel processors with thousands of

processing nodes are currently the only alternative to extreme performance, i.e., a performance

of a trillion operations per second and beyond. Scalability of the design, as well as perfor-

mance, dictates that each processing node has its own memory system, possibly extended with

a physically shared memory. In such distributed memory hierarchies, the bandwidth between

a processor and its local memory hierarchy is often considerably higher than the bandwidth to

the memory units of other processors or shared memory if it exists. The latency is another

important performance issue. Our focus is on e�cient use of the communications bandwidth.

The communication system in distributed memory hierarchies often represents a consider-

able fraction of the total system cost. Nevertheless, due to the limited network bandwidth, it

is often a bottleneck for performance in many computations. Minimizing the demands on the

communication system through proper data placement, such that data frequently used together

reside in the same memory unit or adjacent memory units, is important. Once the data place-

ment has been made, it is important to select paths and schedule the data motion such that the

routing time (contention) is minimized. Placing the data among the memory units for optimum
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performance is a very hard problem. Often di�erent allocations are preferable during di�erent

phases of the computations. High Performance Fortran [2] is an extension of Fortran-90 in which

directives have been added for user control over data placement among memory units. In this

paper we address the routing issues in changing the data placement from one common placement

in binary cubes, binary{re
ected Gray code [8], to another common placement, binary code, or

the converse.

Computations on regular grids constitute an important class of computations in science and

engineering. So called explicit methods for �nite di�erence approximations of partial di�erential

equations and many signal and image processing tasks fall into this class. The computations in

explicit methods for �nite di�erence approximations are often dominated by the evaluation of

the di�erence approximation, known as di�erence stencil or di�erence molecule. The operation

is the same as what is typically known as convolution in signal and image processing. Data

references are local in Cartesian space, which is used to represent the problem domain for

most regular discretizations. However, the fast Fourier transform, FFT, is a powerful algorithm

that is used frequently both for the solution of partial di�erential equations and in signal and

image processing. The Cooley-Tukey FFT [1] references data that are adjacent in binary space.

Both techniques may be used on the same data set. Thus, if a distributed memory hierarchy

allows for an e�cient placement with respect to references both in Cartesian and binary space,

such a placement may be used. If the memory hierarchy is such that either one or the other

reference pattern can be supported, but not both simultaneously, then conversion between the

two placements become important. This is the issue addressed in this paper for a collection of

memory units interconnected by a binary cube network.

Cartesian grids with axes' lengths being powers of two are subgraphs of binary cubes if the

total number of elements is less than, or equal to, the number of nodes in the cube. Binary{

re
ected Gray codes [8] are often used for the embedding of arrays in binary cubes, since such

codes preserve adjacency in Cartesian space. For multidimensional arrays, the Gray code encod-

ing is typically applied to the di�erent axes independently, thereby preserving adjacency along

each axis. In this case, distinct subsets of address bits are assigned to di�erent axes. We refer

to each such subset as an address �eld. For arrays with axes' lengths not being powers of two,

preserving adjacency forces an expansion of the number of required cube nodes [3]. But, even

if the adjacency requirement is relaxed for multidimensional arrays with arbitrary axes' lengths

in order to limit the expansion, binary{re
ected Gray codes can be used for the embedding of

subsections of arrays [5].

A conventional binary encoding of array axes is suitable for many divide{and{conquer algo-

rithms, such as the FFT. In the binary code, adjacency is preserved in the binary space. The

binary cube nodes can be labeled such that adjacent nodes di�er in precisely one bit.

This paper focuses on the optimal routing of data for conversion between data placements

based on binary{re
ected Gray codes and binary codes in binary cube networks, in particular

in such networks allowing concurrent communication on all channels of every node, all{port

communication. The Connection Machine models CM{2 and CM{200 [4, 9] are examples of

architectures using a binary cube network allowing all{port communication. Our results can

easily be modi�ed to systems allowing concurrent communication on some, but not all, channels

of every processor. The results also provide interesting insights into the properties of binary{

re
ected Gray codes. The algorithms require very small temporary storage and the control can

be made distributed, i.e., each node can determine its own actions based on its address and the

local history of events.
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The main new result is an algorithm that forK elements per node of a binary n{cube requires

d

2K�(n�2)

3

e+(n�2) element transfers in sequence with all{port communication. The algorithm

is based on pipelining of the element transfers. It yields an improvement of about

K

3

element

transfers in sequence over previous algorithms [6, 7]. The new algorithm is within a factor of

1

3

of the best known lower bound. It is optimal for n = 2. We also present an optimal minimum

path length routing algorithm. Though the number of element transfers in sequence is higher

than for the nonminimum path length routing algorithm, the minimum path length algorithm

may yield fewer communication startups in a packet{switched system with packet sizes of the

same order as the local data set. We give lower bounds for two routing strategies: one for using

any set of routing paths, one for using only minimum length paths.

The outline of the paper is as follows. We �rst give some properties of binary cubes and

binary{re
ected Gray codes, state our assumptions of the communication system, and our ob-

jectives for the routing algorithms. Then, we present an optimal minimum path length routing

algorithm, followed by the nonminimum path length routing algorithm that is the main result

of the paper. We conclude with a summary.

2 Preliminaries.

A binary n{cube has N = 2

n

nodes. Two nodes are adjacent i� their addresses di�er in exactly

one bit. There exist n disjoint paths between any pair of nodes in a binary n{cube. For nodes

at distance d, d of those paths are of length d, and n� d paths are of length d+ 2. The binary

encoding of i is B

n

(i) = (b

n�1

b

n�2

� � � b

0

) and its binary{re
ected Gray code encoding is G

n

(i) =

(g

n�1

g

n�2

� � �g

0

). The processor address bits are (a

n�1

a

n�2

: : : a

0

). Z

N

= f0; 1; � � � ; N � 1g and

(1

j

) is a string of j instances of a bit with value one. \jj" is the concatenation symbol. For the

complexity estimates we assume bidirectional channels and concurrent communication on all

channels, all{port communication. The number of elements per node is K.

^

G

n

is the sequence

of n{bit binary{re
ected Gray codes for Z

N

, i.e.,

^

G

n

= (G

n

(0); G

n

(1); � � � ; G

n

(2

n

� 1)).

De�nition 1 [8] The binary-re
ected Gray code is de�ned recursively as follows.

^

G

1

= (G

1

(0); G

1

(1));where G

1

(0) = 0; G

1

(1) = 1:

^

G

n+1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0jjG

n

(0)

0jjG

n

(1)

.

.

.

0jjG

n

(2

n

� 2)

0jjG

n

(2

n

� 1)

1jjG

n

(2

n

� 1)

1jjG

n

(2

n

� 2)

.

.

.

1jjG

n

(1)

1jjG

n

(0)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

In the following, we refer to the binary{re
ected Gray code just de�ned as Gray code. The

highest order bit is the same in the binary code and in the Gray code. The remaining bits in the
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Figure 1: Routing by exchanges in a 2-cube and a 3-cube.

encoding of i 2 Z

N=2

are de�ned by G

n�1

((b

n�2

b

n�3

� � �b

0

)). The remaining bits in the encoding

of i 2 Z

N

� Z

N=2

are de�ned by G

n�1

((b

n�2

b

n�3

� � �b

0

)).

Lemma 1 [8] b

m

= g

n�1

� g

n�2

� � � � � g

m

, m 2 Z

n

. Conversely, g

m

= b

m

� b

m+1

, m 2 Z

n

with b

n

= 0.

We present all of our results for Gray{to{binary conversion, i.e., conversion from Gray code

encoding to binary code encoding. The adaptations of the results to binary{to{Gray conversion

is straightforward. We assume that each address �eld subject to the Gray{to{binary conversion

is of length at least two. This assumption avoids the trivial case of a one bit code for which the

Gray code encoding is the same as the binary encoding.

Bidirectional communication is assumed for our complexity estimates. All communication

complexities are stated in terms of the number of element transfers in sequence. Given B

n

(i)

and G

n

(i), an exclusive{or operation on the two �elds determines the cube dimensions through

which the data from each node must be routed. The issues we address are:

� routing with constant storage (permutation routing)

� minimizing the congestion

� routing without tags

A routing that can be viewed as a sequence of permutations between neighboring nodes is

highly desirable since such a routing conserves memory requirements. Limiting the problem size

due to a demand for bu�er space is often met with severe criticism from users. The Gray{to{

binary conversion has the property that the communication can be performed as a sequence of

exchanges, thereby realizing the �rst objective. This property of the two codes is illustrated in

Figure 1 for the cases n = 2 and n = 3.

Our minimal path length algorithm is based on Theorem 1 below. Before proving the theo-

rem, we prove one critical property of the binary{re
ected Gray code.

Lemma 2 Let node a in a binary n-cube initially contain the element of index G

�1

(a). For

any m 2 f1; 2; � � � ; n � 1g, if each node a for which a

n�1

� a

n�2

� � � � � a

m

= 1 exchanges its

element with its neighbor across dimension m � 1, then node a contains the element of index

G

�1

(a

n�1

� � �a

m

)jjG

�1

(a

m�1

� � �a

0

) after the exchange.
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Proof: It su�ces to show that

G

�1

(a

n�1

� � �a

m

)jjG

�1

(a

m�1

� � �a

0

) =

�

G

�1

(a

n�1

� � �a

m

� � �a

0

); if a

n�1

� � � � � a

m

= 0,

G

�1

(a

n�1

� � �a

m

� � �a

0

); otherwise.

Let G

�1

(a

n�1

� � �a

m

)jjG

�1

(a

m�1

� � �a

0

) = (a

0

n�1

� � �a

0

0

), let G

�1

(a

n�1

� � �a

0

) = (a

00

n�1

� � �a

00

0

) and

let G

�1

(a

n�1

� � �a

m

� � �a

0

) = (a

000

n�1

� � �a

000

0

). It follows from Lemma 1 that a

0

j

= a

n�1

�� � ��a

j

=

a

00

j

= a

000

j

for m � j � n� 1. For j being in the range 0 � j � m� 1, consider two cases.

(i) Case 1: a

n�1

� � � � � a

m

= 0. Then, a

00

j

= a

n�1

� � � � � a

j

= a

m�1

� � � � � a

j

= a

0

j

.

(ii) Case 2: a

n�1

�� � ��a

m

= 1. Then, a

000

j

= a

n�1

�� � ��a

m

�� � ��a

j

= 1�a

n�1

�� � ��a

j

=

a

m�1

� � � � � a

j

= a

0

j

:

Lemma 2 is easily generalized to the splitting of one out of several address �elds by observing

that the splitting of one address �eld is independent of other address �elds and their encoding.

Theorem 1 The Gray{to{binary conversion can be performed as a sequence of exchanges in

dimensions f0; 1; � � � ; n� 2g taken in arbitrary order.

Proof: Performing an exchange as in Lemma 2 creates two independently Gray coded address

�elds. The same splitting procedure can be applied to the created sub�elds in arbitrary order

until there are n � 1 address �elds of one bit each. Since the Gray code and binary code for a

one bit �eld is identical, the proof is complete.

The proof of Lemma 2 provides a way of deriving the exchange control locally. Let m be the

current exchange dimension, and let x be the next higher dimension which has already appeared

in the exchange sequence. If no such dimension exists, then let x = n � 1. Then, the current

data of node a should be exchanged if and only if a

x�1

� � � � � a

m+1

= 1.

Figure 2 gives an example of using an algorithm proceeding from dimension n�2 to dimension

0. Initially, processor G

4

(i) contains data of index i. After the conversion, i is assigned to

processorB

4

(i). A pseudocode for the algorithm is given below. Initially, g

m

(i)! a

m

,m 2 Z

n�1

and on termination b

m

(i)! a

m

,m 2 Z

n�1

, where a = (a

n�1

a

n�2

: : :a

0

), is the processor address

as before.

/* Converting Gray code to binary code

starting from the most signi�cant dimension */

for j := n� 2 downto 0 do

if a

j+1

= 1 then

exchange content with the neighbor in dim. j

endif

enddo

For the optimal minimum path length routing algorithm we present later, any dimension

may be used as a starting dimension. For an arbitrary starting dimension m, m 2 Z

n�1

with
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Gray code Exchange Exchange Exchange

dim. 2 dim. 1 dim. 0

data paddr b

3

data b

2

data b

1

data

00 0000 0 00 0 00 0 00

01 0001 0 01 0 01 0 01

02 0011 0 02 0 02 1 03

03 0010 0 03 0 03 1 02

04 0110 0 04 1 07 1 06

05 0111 0 05 1 06 1 07

06 0101 0 06 1 05 0 05

07 0100 0 07 1 04 0 04

08 1100 1 15 1 12 0 12

09 1101 1 14 1 13 0 13

10 1111 1 13 1 14 1 15

11 1110 1 12 1 15 1 14

12 1010 1 11 0 11 1 10

13 1011 1 10 0 10 1 11

14 1001 1 09 0 09 0 09

15 1000 1 08 0 08 0 08

Figure 2: Conversion of a Gray code to binary code.

exchanges in successive dimensions of decreasing order, cyclicly, the �rst exchange requires the

computation of the mth bit of G

�1

(a), which is a

n�1

� � � � � a

m+1

. The subsequent steps are

similar to the algorithm above. Figure 3 gives an example. Sequence 2 is the same as in Figure 2.

The �gure shows the location of i for each step of the algorithm for each sequence.

/* Converting Gray code to binary code starting from

dimension m. Dimensions in decreasing order, cyclically*/

if a

n�1

� a

n�2

� � � � � a

m+1

= 1 then

exchange content with the neighbor in dim. m

endif

for j := m� 1 downto 0 do

if a

j+1

= 1 then

exchange content with the neighbor in dim. j

endif

enddo

for j := n� 2 downto m+ 1 do

if a

j+1

= 1 then

exchange content with the neighbor in dim. j

endif

enddo

3 Lower bounds.

We �rst consider the case where Gray{to{binary conversion shall be performed on a single

processor address �eld. We then consider the case for multiple processor address �elds, where

6



Gray code Seq 2 Seq 1 Seq 0

assignment Exchange dim. Exchange dim. Exchange dim.

Data paddr 2 1 0 1 0 2 0 2 1

0 0000 0 0 0 0 0 0 0 0 0

1 0001 1 1 1 1 1 1 1 1 1

2 0011 2 2 3 2 3 3 3 3 3

3 0010 3 3 2 3 2 2 2 2 2

4 0110 4 7 6 7 6 6 4 4 6

5 0111 5 6 7 6 7 7 5 5 7

6 0101 6 5 5 5 5 5 7 7 5

7 0100 7 4 4 4 4 4 6 6 4

8 1100 15 12 12 8 8 12 8 14 12

9 1101 14 13 13 9 9 13 9 15 13

10 1111 13 14 15 10 11 15 11 13 15

11 1110 12 15 14 11 10 14 10 12 14

12 1010 11 11 10 15 14 10 12 10 10

13 1011 10 10 11 14 15 11 13 11 11

14 1001 9 9 9 13 13 9 15 9 9

15 1000 8 8 8 12 12 8 14 8 8

Figure 3: Concurrent conversion of a Gray code to binary code.

each �eld is subject to a Gray{to{binary conversion.

3.1 A single �eld.

Theorem 2 With the communication for Gray{to{binary conversion restricted to minimum

length paths only, a lower bound is max(K; n� 1) element transfers in sequence for a code �eld

of n bits on an n{cube with all{port communication.

Proof: With K elements per node either all or no elements must be communicated to some

other node for code conversion. For any n � 2 there always exists a pair of nodes at distance one

that must exchange data (nodes 2 and 3). Restricting the communication to minimum length

paths implies that the code conversion requires at least K element transfers in sequence.

Theorem 3 A lower bound for the number of element transfers in sequence required for Gray{

to{binary conversion on an n{cube with all{port communication is max((1�

1

n

)

K

2

; n� 1).

Proof: The total amount of communication required for Gray{to{binary conversion using only

minimum length paths is 2

P

n�1

i=0

�

n�1

i

�

i = (n � 1)2

n�1

K. (It follows from the de�nition of the

Gray code that the number of paths of length i is 2

�

n�1

i

�

.) The number of available edges in an

n{cube is n2

n

. Hence, the lower bound follows.

Theorem 3 does not give a tight lower bound, since the only way in which the full bandwidth

of the binary cube can be used is by using nonminimum length paths. For instance, for n = 2

Theorem 3 yields the bound

K

4

. A bound based on the number of disjoint paths is

K

2

. An upper

bound for n = 2 is

K

2

+ 1. Simply route

K

2

+ 1 elements along the length one path and

K

2

� 1

elements over the length-3 path. Figure 4 illustrates the routing of the data. The bound

K

2

+ 1

is also a lower bound for K � 2, since using two paths implies the use of nonminimum path

length routing.
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Figure 4: Routing paths in a 2-cube.

3.2 Multiple independent �elds.

For the embedding of multidimensional arrays a separate encoding is often used for each address

�eld. With d separately encoded address �elds and a total of n dimensions used for the encoding,

Theorem 2 is modi�ed as follows.

Theorem 4 With the communication for Gray{to{binary conversion restricted to paths of min-

imum length only, a lower bound for the number of element transfers in sequence is max(K; n�d)

for all{port communication with a code �eld of n bits distributed among d axes.

Proof: There exists a pair of nodes (say the nodes with indices 2 or 3 for one axis, and all other

axis indices 0) at distance one that must exchange data. Thus, a time K is required using only

minimum length paths.

Theorem 5 A lower bound for the number of element transfers in sequence for Gray{to{binary

conversion on an n{cube with all{port communication is max((1 �

d

n

)

K

2

; n � d) for d address

�elds separately encoded in n bits.

Proof: The routing requirements for axis i encoded in n

i

bits is (n

i

� 1)2

n

i

�1

K. There are

2

n�n

i

such subcubes. Hence, the total routing need is

P

d�1

i=0

(n

i

� 1)2

n�1

K = (n� d)2

n�1

K.

4 Algorithms using only minimum length paths.

In this section we use the property that the code conversion can start in an arbitrary dimension

to generate several concurrent exchange sequences for all{port communication. The routing

algorithm below uses only minimum length paths. It may be advantageous compared to the

nonminimum path length algorithm in the next section when there are other simultaneous rout-

ing needs. The total load on the communications network is minimal for the minimum path

length routing, but the contention is not. The minimum path length routing may also be prefer-

able when there is a signi�cant communications overhead in a packet{switched communications

system and the maximum allowable packet size is relatively large. The minimum path length

routing described below may yield up to 40% fewer startups than the nonminimum path length

routing for cubes of high dimension and a maximum packet size of at least

K

n�1

elements.
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4.1 Conversion of a single address �eld.

We will �rst consider code conversion of a single address �eld. Consecutive and cyclic data

allocation [6] of one{dimensional arrays satisfy this constraint. The data allocation can be

depicted as follows in terms of the address �eld:

(g

p�1

g

p�2

� � �g

p�n

| {z }

paddr

b

p�n�1

b

p�n�2

� � � b

0

| {z }

maddr

) Consecutive

(b

p�1

b

p�2

� � � b

n

| {z }

maddr

g

n�1

g

n�2

� � �g

0

| {z }

paddr

) Cyclic

In the consecutive allocation, the processor address �eld is assigned to the most signi�cant

bits of the array index domain. In the cyclic allocation, the processor address �eld is instead

assigned to the least signi�cant bits of the array index domain. In the illustration, it is in

both cases assumed that the local memory addresses are encoded in binary code and that the

processor address �eld is encoded in Gray code.

Theorem 6 The Gray{to{binary conversion for a �eld of n bits can be attained with max(n�

1; K) element transfers in sequence using only minimum length paths and (n � 1)-port commu-

nication.

Proof: The main idea is to generate several independent concurrent exchange sequences that

creates a uniform load on all channels used by a minimum path length routing strategy. For the

proof we consider three di�erent sets of values of K, the number of local elements. Case 1 is

used for most elements for large values of K and is the only relevant case when K is a multiple

of n � 1. Case 2 is used to assure optimal transmission for the remainder of elements when K

is large but not a multiple of n � 1.

Case 1. K mod n � 1 = 0: Create n � 1 exchange sequences that are di�erent rotations of

the dimensions n� 2; n� 3; � � � ; 0. Partition the data set in each processor into n� 1 sets of the

same size and assign one sequence to each data set. If the data set in a node does not require

communication in a dimension, then the communication is simply not performed. The number

of element transfers in sequence is K.

Case 2. n � 1 < K < 2n � 2: Let x = K � (n � 1). Create K exchange sequences that

are distinct rotations of the dimensions n� 2; n� 3; � � � ; 0; �

1

; �

2

; � � � ; �

x

, where �

i

's are dummy

dimensions. No exchange is performed in a dummy dimension. During each step, no dimension

in Z

n�1

is used by more than one sequence. The number of element exchanges in sequence is

K.

Case 3. K < n � 1: It is easy to see that n � 1 element transfers in sequence are necessary

and su�cient.

For arbitrary K � n � 1, de�ne the routing by partitioning the data set such that cases 1

and 2 apply.

In implementing the algorithm, a table can be set up in each processor such that for each

memory partition there is a table entry for each dimension. The entry indicates whether or not

a communication shall be performed.

9



4.2 Conversion of multiple address �elds.

For d address �elds encoding a total of n bits there are n� d dimensions for which an exchange

is required. For K mod (n � d) = 0, n � d exchange sequences can be generated by applying

n � d di�erent rotations to some basic sequence in a manner analogous to the single address

�eld case. The local data set can be divided into n � d partitions with each partition assigned

one of the exchange sequences. The cases for K mod (n� d) 6= 0 can also be handled in a way

similar to the case with a single address �eld to attain the lower bound of max(K; n�d) element

transfers in sequence.

5 Algorithms using nonminimum length paths.

5.1 A single address �eld.

In order to achieve a time complexity of less thanK element transfers in sequence, it is necessary

to use nonminimum length paths for the conversion. In the following, we refer to the two

subcubes with respect to the most signi�cant dimension as the zero and one subcube, depending

upon whether or not the leading dimension is zero or one.

For n = 2 a lower bound is

K

2

+ 1, and we have already given an optimal algorithm, Figure

4. The critical observation for the algorithm was that of the two edges in dimension 0, only one

being used for the minimum path length routing and none of the edges in dimension 1 being

used. Hence, routing part of the data to the subcube containing the unused edge in dimension

0 (the zero subcube), performing the code conversion for part of the data in that subcube, then

routing the converted data back allows the time to be reduced, by reducing the contention.

By considering the routing paths in Figure 1, it can be observed that if the 3{cube is collapsed

into a 2{cube along dimension 2 by identifying nodes 0 and 7, 1 and 6, 2 and 5 and 3 and 4,

then all bidirectional links in the resulting 2{cube would be used evenly. Hence, by exchanging

data between the zero and one subcubes, all edges in both subcubes can be used for the code

conversion. For the case n = 2 there is no exchange between the zero and one subcubes, since

there is no routing requirement in the zero subcube. For n = 3 the edges between nodes 2 and

5, and 3 and 4, respectively, are used in both directions for data from both the zero and the one

subcubes. All other edges are used for \single" exchanges.

We will now prove that the routing paths for Gray{to{binary conversion always can be

determined such that if an n{cube is collapsed into a (n � 1){cube along the most signi�cant

dimension, all edges are used evenly in the collapsed cube.

Theorem 7 If the routing paths for the Gray{to{binary conversion traverse the cube dimensions

in ascending order, then an edge is used for an exchange in subcube zero, i� the corresponding

edge in subcube one is not used.

Proof: Let the exchange sequence for the Gray{to{binary conversion proceed through the cube

dimensions in the order 0; 1; � � � ; n � 2. Let the �rst exchange step be step 0. From Lemma 2,

an exchange in step 0 is performed for all nodes such that a

n�1

� � � � � a

1

= 1. It is easy to

show that the exchange in step i, 0 � i � n � 2, is determined by a

n�1

� � � � � a

i+1

. Since
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Figure 5: Routing for code conversion in a 4{cube.

a

n�1

is always in the expression determining whether or not a node shall exchange data, only

one node in a pair di�ering in their most signi�cant bit exchange data in any of the dimensions

0; 1; : : : ; n� 2. Thus, an edge is used for an exchange in subcube zero i� the corresponding edge

in subcube one is not used.

Figure 5 shows the edges used for Gray{to{binary conversion with routing paths de�ned by

routing in dimensions of ascending order. Note that by folding the 4{cube onto a 3{cube, all

edges in the 3{cube are used evenly in the same way as all edges are used evenly if a 3{cube

is folded onto a 2{cube. For binary to Gray code conversion, the same property holds for an

exchange sequence using the cube dimensions in descending order.

The basic idea of our algorithm requiring approximately

2K

3

element transfers in sequence is

as follows.

1. Divide the local data set into two sets: the �rst set S

1

of size M �

2K

3

and the second set

S

2

of size M

0

= K �M �

K

3

. The larger data sets S

1

are routed over minimum length

routes, short routes. The smaller data sets S

2

are routed over nonminimum length paths,

long routes, by �rst routing the data to the node obtained by complementing the most

signi�cant dimension.

2. Perform the following two algorithms concurrently for each node i in communicating the

data sets S

1

and S

2

to their destination node G

�1

(i).

(a) Route each element in S

1

along an ascending order of cube dimensions 0; 1; � � � ; n�2,

as needed. Pipelining theM elements results in a total ofM+n�2 element transfers

in sequence.

(b) Route each element in S

2

along cube dimensions n � 1; 0; 1; � � � ; n � 2; n � 1. Note

that dimension n� 1 needs to be routed twice for each element since routing in this
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dimension is not part of the code conversion. Pipelining is applied in the following

manner, assuming M

0

� n.

� Pipelining the M

0

elements along dimensions n � 1; 0; 1; � � � ; n � 2 results in a

total of M

0

+ n� 1 element transfers in sequence.

� Initiating the �nal exchange along dimension n� 1 for the M

0

elements after M

0

time steps of the previous procedure results in M

0

time steps with n � 1 steps

overlapped with the previous procedure.

Note that the set of short routes is edge{disjoint from the set of long routes, thus allowing

for the element transfers to be pipelined without contention. Before determining the optimum

size of the small and large data sets, we state the result.

Theorem 8 The Gray{to{binary conversion requires at most d

2K�(n�2)

3

e + (n � 2) element

transfers in sequence with all{port communication for K > n + 3. The number of element

transfers in sequence for K � n + 2 is n.

For a precise optimization of the number of element transfers in sequence, we note that with

M elements assigned to each short route, the time for these routes, T

s

(M), satis�es the relation

T

s

(M) �M + n� 2:

One simple scheduling for the long routes, which are subject to contention in dimension n� 1,

is to pipeline the transfers of the elements across dimension n� 1 with the routing required for

code conversion in the complemented subcube. The converted data remains in the complemented

subcube until the edges in dimension n � 1 become free, when the converted data is brought

back to the originating subcube. Thus, for M

0

elements assigned to long routes,

T

l

(M

0

) �M

0

+ max(M

0

; n)

The optimal partition of the data set K, is determined by T

s

(M) = T

l

(K �M). This equality

yields M = d

2K�(n�2)

3

e for K > n+ 2, and M = 2 for K � n+ 2.

T

min

=

(

d

2K�(n�2)

3

e + (n� 2) K > n+ 2

n K � n+ 2

5.2 Multiple address �elds.

With Gray{to{binary conversion required on multiple address �elds, the number of element

transfers in sequence is almost identical to code conversion for a single address �eld encoded

in the same number of bits. For the routing, the local data sets can be divided into as many

partitions as there are axes. The code conversion for the di�erent partitions can be performed

concurrently. All partitions must undergo code conversion for each axis.

5.3 Binary{to{Gray conversion.

A binary{to{Gray conversion is obtained by running our algorithms backwards. Thus,
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Theorem 9 The binary{to{Gray conversion requires at most d

2K�(n�2)

3

e + (n � 2) element

transfers in sequence with all{port communication for K > n + 3. The number of element

transfers in sequence for K � n + 2 is n.

The theorem follows from Theorem 8 by using descending order routing for the code con-

version and combining routing along short and long routes as in the Gray{to{binary conversion

case.

6 Summary.

We have given an algorithm for the conversion between binary{re
ected Gray code and binary

code that requires approximately

2K

3

element transfers in sequence. The algorithm o�ers a

reduction in the number of element transfers in sequence by about

K

3

compared to previously

known algorithms. For n = 2, the new algorithm is optimal for any routing strategy. For larger

values of n, it is nonoptimal by at most a factor of

1

3

compared to the best known lower bound,

K

2

+ 1.

We have also given an optimal minimum path length routing algorithm that for K elements

per node and concurrent communication on all channels of every processor in a binary n-cube

requires max(K; n�d) element transfers in sequence. The algorithm has n�2 element transfers

less than a pipelined algorithm [6], when K � n � 1.

The Connection Machine models CM{2 and CM{200 are distributed memory architectures

which allow concurrent communication on all channels of every node, with the nodes intercon-

nected as a binary cube. The code conversion routine on the Connection Machine was imple-

mented before the nonminimum path length routing algorithm was discovered. The existing

routine use the pipelined algorithm in [6]. The results here show that the code conversion time

on the Connection Machine can be sped up by as much as 50%.

For a packet{switched communication system with a maximum packet size B, the minimum

path length routing requires d

K

(n�1)B

e(n � 1) startups. The nonminimum length path routing

requires max(d

2K

3B

e+ n� 2; 2d

K

3B

e+ n� 1) startups. For B = d

K

n�1

e, the minimum length path

routing requires n � 1 startups, while the nonminimum path length routing requires approxi-

mately 2d

2(n�1)

3

e + n � 1 startups. For large n, the ratio of the number of startups between

minimum path length routing and nonminimum path length routing approaches 0.6. For

K

B

� 1,

the ratio instead approaches 1.5.
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