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Abstract. Denote the expected number of facets and vertices and the expected 
volume of the convex hull Pn of n random points, selected independently and 
uniformly from the interior of a simple d-polytope by En(f), E.(v), and E~(V), 
respectively. In this note we determine the sharp constants of the asymptotic 
expansion of En(f), E.(v), and En(V), as n tends to infinity. Further, some results 
concerning the expected shape of P~ are given. 

1. Introduction 

Let P be a convex polytope in Euclidean space Rd(d > 1) with positive volume 
l/(p), ~t the a-algebra of  all Borel subsets of  P, and # the restriction of  V(P)- 12 a to 
d ,  where 2d is Lebesque measure in ff~d. For  any integer n > d + 1, the convex hull 
of n independent uniform random points in P, i.e., the measurable map 
P,:  (X1 . . . . .  X,)~-- ,conv{X 1 . . . . .  X.} from the probabili ty space (pn, ~r174174 
into the space ~ of  convex polytopes in ~d (where conv denotes the convex 
hull and ~ is endowed with the Hausdorff  metric), is almost surely a simplicial 
d-polytope with at most  n vertices. For  any measurable functional r on the space 
{Q e ~ l Q  c P} let E.(~)  be the expected value of ~k o P. .  In the following our 
main interest concerns the cases in which ~k is the number  f of  facets ( ( d -  1)- 
dimensional faces), the number  v of  vertices, and the volume V. All asymptot ic  
expressions appearing in the text refer to n ~ ~ .  

* The work of F. Affentranger was supported by the Swiss National Foundation. 
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For d = 2, the asymptotic behavior of E. ( f )  = E.(v) and E.(V) was first studied 
in two classical papers [14], [15] by R6nyi and Sulanke. For instance, for a 
polygon with r vertices they prove 

2r 
E. ( f )  = ~ (log n + C) + C,(P) + o(1), 

where C is Euler's constant and C~(P) is a constant depending on P. A detailed 
investigation of the planar case was given later by Buchta [4]. 

In higher dimensions (d > 3), only a few results have been established. Buchta 
[6] proved that 

E.(v) "~ 3 log2 n 

for a tetrahedron in It~ 3. Recalling that P. is simplicial and taking into account 
Euler's polyhedron theorem, the asymptotic behavior of E. ( f )  can be directly 
obtained from E.(v). In the general case estimates for E.( f ) ,  E.(v), and E.(V) have 
been given by Dwyer [8], Bhr~ny and Larman [1], [2], and Buchta [7]. Dwyer 
also pointed out the role of E,(v) and E, ( f )  in the design and analysis of algorithms 
concerning the construction of convex hulls. Recently, van Wel [18] obtained the 
asymptotic expansions of E . ( f )  and E.(v) for a d-cube, where the asymptotic 
constants are expressed by means of quite complicated integrals whose explicit 
determination seems to become hard for d > 4. Van Wel [18] also sketched an 
extension to simple d-polytopes, but it is not obvious how one should proceed 
exactly. 

Further results and references about the convex hull of random points and 
related problems can be found in the surveys of Buchta [5] and Schneider [17]. 

In the present paper we extend the results mentioned above in the following 
sense. For a simple d-polytope in ~d (d > 1) with r vertices we prove 

r d d  d - 
E . ( f ) =  d ! M l ( A n _ l ) l o g  l n + O ( l o g  d-2n), 

rd 
E.(v) - (d + 1) d-1 Iogd-ln + O(1ogd-2 n), 

and 

rdV(P) 1ogd-ln +O((1og~ -2n)  
E.(V) = V(P) (d + 1)d-, n 

where M I(A d_ 1) is the first normalized moment of the volume of a random simplex 
in a (d - 1)-dimensional simplex. Further, we also give some results concerning the 
shape of P,  (Propositions 1 and 2) and in particular the position of the vertices of 
P,  (Proposition 3). The main tool in our proofs is a class of affine invariant 
functionals introduced in 1-20]. We show that they can be related asymptotically to 
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E,(f) ,  E,(v), and E,(V).  This approach enables us to avoid a separate study of the 
functionals in question. 

For definitions and classical tools in integral geometry and the theory of convex 
polytopes see the books by Santal6 [16] and Brendsted [3], respectively. 

2. The Results 

First we have to define the class of functionals mentioned in the introduction. Let Q 
be a (convex) polytope contained in P and let F(Q) be the set of facets of Q. For 
F ~ F(Q) let 24_ I(F) be the (d - 1)-dimensional volume ofF,  and denote by ~F the 
distance between the affine hull aft F of F and the supporting hyperplane of P 
parallel to F and separated from Q by aft F. Finally, for q > 0 define 

Tq(Q) ..= ~ y~r2]-l(F). 
F ~ F(Q)  

In the case of a simple d-polytope P in R d, an asymptotic expression for E,(Tq) 
involving the kth normalized moment  of the volume of a random simplex 
in a ( d -  1)-dimensional simplex can be obtained. More precisely, for a 
(d - l)-dimensional convex body K in ~d- 1 and for k E ~ define 

fK " s~a| /X Xd), Mk(K)  = 2 a J i k ( K )  z~-l(conv{Xl . . . . .  Xa})u'~a-1, 1 . . . . .  
d 

where 2 a_ 1 denotes the Lebesque measure in R d-1. Further, let An-1 be any 
(d - l)-dimensional simplex in ~a-1. Since Mk is invariant with respect to affine 
transformations, Mk(Aa_ 1) does not depend on the particular choice of the simplex 
An-1-We shall prove the following result. 

Theorem. I f  P is a simple d-polytope in ~d with r vertices, then 

E,,(Tq) = V(P) q 
r(d + q -- 1)! d a+q-1 . .  . log a-1 n o(loga-2n'~ 

( (d- l ) ! )  ~ M~+,~,~_~) n~ + \ ~ -] 

for each integer q > 0 as n tends to infinity. 

It can be readily verified that To = f .  Hence the following corollary follows 
immediately from the Theorem. 

Corollary 1. For a simple d-polytope P in ~d with r vertices, we have 

rd a 
E , ( f )  = ~(. MI(Aa-1) log  d- 1 n + O(log ~-2 n) 

as n tends to infinity. 
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To describe the relation between E,(T1),  E.(V) and E.(v) we need another 
functional which seems to be of interest in its own right. For  any polytope Q in •n 
and any x e Q let 

N(Q, x)  := {y E Rnl(y,  z - x )  < 0 for all z e Q} 

be the convex cone of all normal vectors of Q at x, and let ~(Q) be the number of 
vertices x of Q such that N(Q, x) c N(P,  y) for some vertex y of P. Between 
E. (TO,  E.(V) ,  and E.+ l(v - /7)  we have the following inequalities. 

Proposition 1. I f  P is a simple d-polytope in R d and n > d + 1, then 

1 1 
d E . ( T O  < V(P) - E , (V)  < ~l E"(T1) + V(P) E.+ l(V - / 7 )  

= = n + l  

The next proposition shows that V ( P ) -  E.(V), ,~ (1 /d)E. (T  0 as n tends to 
infinity. 

Proposition 2. For a simple d-polytope P in ff~a, we have 

E,(v - ~) = O ( l o g  d - 2  n)  

as n tends to infinity. 

While the explicit value of M~(Ad_ 0 is still unknown for d > 4 (see the 
discussion in [12] and [11] for a lower bound), Reed 1-13] obtained 

( d -  1)! 
M2(Ad- 1) = d d- X(d + 1)d- 1 " 

Hence, combining Proposition l, Proposition 2, and the Theorem, we get the 
following expression for E.(V). 

Corollary 2. I f  P is a simple d-polytope in R d with r vertices, then 

rd l o g a - l n  (logan 2 ) 
E. (V)  = V(P)  - V(P)  (d + 1) d- 1 n + 0 n 

as n tends to infinity. 

Now by Efron's relation [9], 

E.(v) 
n 

E._ ~(v) 
v ( P )  ' 

n ~ d + 2 ,  

the next corollary is an obvious consequence of the Theorem, Proposition 2, and 
Corollary 2. 
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Corollary 3. For a simple d-polytope P in ~d with r vertices, we have 

and 

rd 
E.(v) = (d + 1 )  d: i l~ a-  'n  + O(loga-Zn) 

rd 
E.(f)  - (d + 1) n-~ 1ogd-ln + O(logd-2n) 

as n tends to infinity. 

Corol lary  3 implies that  E.(v) ~ E.(~)) as n tends to infinity. Another  result of this 
type concerning the posit ion of the vertices of P .  seems to be of interest. For  any 
polytope Q contained in P and any e > 0 let rE(Q) be the number  of vertices x of  Q 
such that  Ix - Y l < e for some vertex y of P, where [ - I denotes the Euclidean norm. 

Proposition 3. For a simple d-polytope P in ~d with r vertices and for  e > 0 we have 

rd 
E.(v~) - (d + 1) d - l  l ~  + O(logd-2n)' 

and hence E.(v~) ~ E.(v) as n tends to infinity. 

Remark  1. For  simplicial polytopes  with a large number  of vertices the extreme 
values of f / v  given in the lower and upper  bound  theorems (see [3]) are far f rom 
each other. Hence it seems worth noticing that  for a simple d-polytope  P in R d, 
Corollaries 1 and 3 together  imply that  

l i m E _ " ! f ) = ( l d ) M l ( A n - 1 )  
. ~  E.(v) Mz(Ad_  O'  

since this equality provides some informat ion about  the shape of P.  (for large 
values of n) in the "average  case". In [20] a similar expression was obtained for the 
corresponding limit in the case where P is replaced by a ball in ~d, namely 

2d(d + 3) Mx(Bd_l )  

(d 2 + 1)(d 2 + d + 2) M2(Bd_I)  

Here B d_ 1 is the unit ball of  ~d-  X 

Remark  2. For  any d-polytope Q contained in P let 

V(Q + eP) - V(Q) 
Sp(Q) := lim 

e ~ O  g 
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be the Minkowski  area of  Q relative to P. Then it is not difficult to see that  

T , ( Q )  = Sv(Q) - dV(Q).  

Hence, if P is a simple d-polytope in R d, Proposi t ions  1 and  2 imply that  

v ( P )  - d E~(S~) = o 

as n tends to infinity. 

3. P r o o f  o f  the Results  

We shall need the following lemma.  

Lemma.  For all integers r, s > 0 and d > 2 and f o r  all c ~ (0, 1] 

I . . . . .  (1 - cx 1 . . .  Xd)"-S(Xl . . .  Xa)" dxx "'" dxa 

r! log a -  'n  0 (lo_ga - 2 n'] 
= ( d -  1 ) ! c  "+' n '+1 + \ n '+1 fl 

as n tends to infinity. 

Proof. Fol lowing Dwyer  [8], we consider the distr ibution function F defined by 

F(y)  = 2a({(x 1 . . . . .  xa) e [0, 1]alxl .. .  x d ~ y}), 

The  density function of F is 

(d 1)~ 

0 < y < l .  

l;o I - (d 1)~ (1 - cy) n-sy~ loga-  1 dy 

- -- 1 z ' ( log  c ( n  - s )  - log  z ) a -  1 d z  
( d -  1)! (c(n - s)) '+1 ao n - s 

a -  1 1 loga-  1-kc( n _ S) I n 

= k = o  ~ k!(d - l - k ) !  c ~ ( n  Z ~) "-;i k ( ) ,  

(see w of [10] and the c o m m e n t  by Dwyer  on p. 691 of [8]). Hence, for large n, we 
have 
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where 

lk(n) = 1 z ' ( - l o g  z) k dz. 
�9 JO n S 

Here we have used the substitution z = c(n - s)y. Now, a slight modification of the 
argument  given on p. 242 of  [19], shows that l o ( n ) = r !  + O(1/n). For  
k = 1 . . . . .  d - 1 the absolute value of the integrand in lk(n) is majorized by e-Zz  r+k 
for 1 < z < c ( n - s )  and by z ' l logz l  k for 0 < z < l .  Hence, for k = l  . . . . .  d - 1  
there is a c k > 0 such that l~(n) < Ck for all n e N. Finally, it is easy to see that 

log p c(n - s) logPn / l o g  p- i n \  
( n - - s )  '+1 -- n ~ i  + 0 ~  n~g 5 ) 

as n tends to infinity, which completes the proof. [ ]  

With a similar argument  it is easy to see that for d = 1 

,' ( )  O 1 
I - (cn),+ 1 + n~Z5 

as n tends to infinity. We are now in a position to prove the Theorem. 

Proof  of  the Theorem. For  2~| all (X 1 . . . . .  Xa) e pd there is exactly one 
hyperplane L(X1 . . . . .  Xd) through X 1 . . . . .  X~. I f  H is a hyperplane and y is a 
vertex of P define 

if H is parallel to a support ing hyperplane of  P through y, 

otherwise. 

Further, let r/y(H) be the distance of y f rom H and let f ' (H)  be the volume of  the 
part  of P cut off by H and containing y. Now, define 

I .(P, y)'.= V(p)q+ n - ~ ( f f ) )  try_ a(rlyoL)q(eyoL) d2~ | , 

where a~_ , (X  1 . . . . .  Xd) = 2d_t(conv{X t . . . . .  Xd} ). Then s tandard arguments  
show that 

E.(Tq) = V(P) q ~ I .(P, y). (1) 
y vertex of P 

Moreover,  for each affine t ransformat ion q~ of •d we have l.(tpP, tpy) = I . (P,  y). 
Hence, in order to compute  I ,(P, y) we may  assume that  y is the origin 0 and that 
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the d vertices adjacent to y are e 1..=(1, 0 . . . . .  0) . . . . .  ea. '=(0 . . . . .  0, 1). By the 
Blaschke-Petkantschin identity (see p. 201 of  1-16-1) we have 

i . ( P , y ) _ ( : )  ( d - l ) '  
- v ( p ) }  # #v,  

where ge  is the set of  all hyperplanes meeting P, v is the usual mot ion  invariant 
measure on the space of hyperplanes, and for H e g e  

J(H) f q+l d| = a n -  1 d 2 e -  t .  
J( H c~ P )  a 

For  any integrable function f on the space of  hyperplanes we have 

f f  av = fo f(H,..)dz do9(u), 

where o9 is the usual surface area measure on S a-  1 and 

n , , .  = u> = 

Substituting z = u/z and defining Hz .'= {x ~ ~nl(x,  z )  = 1} for z > 0, z :# 0, we get 

f f d v = f ~  f(Hz)lzl-a-'d2a(z)" 

Now,  for p = 0, : . . ,  d define 

8P(y) := {Hz e o~elzl > 1 for exactly p coordinates  zi of z} 

(i.e., d'P(y) is the set of all hyperplanes separating y from p of the vertices adjacent to 
y) and 

ip(P,y)..=(nd) ( d - l ) '  
1 - V(P~) rl~e,J dv. V(p)q +n 

For  H~ E 8d(y) and z = (z 1 . . . .  , zd) it is easy to see that  

~'(H,) = (d! zx . . -  zd)- 1, r/y(H~) = ]z[- x, 

and 

d~'(Hz) 
fly(H,) 

A d_ l(Hz) .'= 2 d_ a(H~ c~ P) = = ((d - 1)! z I ... za)- X]z[. 
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Moreover ,  since Mq + ~ is invar iant  with respect to affine t ransformat ions ,  we have 

1( A,~- 1)Aa- 1 (H.). J(H~) = Mq+ ,~+q+ 1 

It follows 

I~.(P, y) = V(p)q+,~ Mq+I(Aj_ I) 

• ... l ~ , ~  ,~;(H~)A~_V~(Hz)I~I-,-1 dz~ .-. d~, 
i i vt )/ 

/ \ 

V(P'q+a((d-1)')a+" f l  "" fx ( 1 - d '  V ( P ' z ~ ' " z a )  

x (z 1 ... zd) -a-q-1 dzl ""dzd. 

Substi tut ing x i = z7 1, we get 

I~(P, y) = 
( ~ ) M q  + I(A a_ 1) 

V(p)q+,~((d_ 1)!)~+q 

~o' f o (  xl'"x~'-~,,-)/"] • ... 1 d ! , - , ~ _  (x~ . . . xd )d+' - Idx~ . . .dxd  

and since d! V > 1, the preceding l emma yields 

la(P,y ) (d + q - 1)! d a+q-1 loga-  in o ( l o g a - E n ~  
= ( ( d - l ) ! )  2 M q + ~ ( A a _ l ) - - q  + \ ~ ,}. (2) 

We now turn to the es t imat ion  of I~(P, y) for p = 1 . . . . .  d -  1. Suppose  that  
Hzer and assume without  loss of generality that  zl . . . .  , z p >  1 and 
zp+ 1 . . . . .  zd < 1. Then, H z n [0, or d is a simplex a (p - 1)-side of which is 

B(zl . . . . .  zp)..= {(xl . . . . .  xa) e [0, 1]alxlzl  + . . .  + xpzp = 1, x , + l  . . . . .  xa = 0}. 

Hence, by the compactness  of  P, there is a constant  ct depending only on P, d, and p 
such that  

2,~_ l(Hz c~ P) <_ ot2p_ t(B(z 1 . . . . .  zp)) 

= ~ ( ( p  - 1)! z l . . .  z , ) - ' ( z ~  + . . .  + z~)  ~/2 

< ~ ( ( p  - 1 ) ! z l  . . .  z p ) -  l l z l .  
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Further ,  since the points z~- le 1 . . . . .  z~ lep, ep+ 1 . . . . .  ea lie in the halfspace bounded  
by Hz and containing y, ~'(Hz) is not  smaller than the volume of the convex hull of 
these points, which implies 

~ ' (n , )  > (d! Z I ' ' "  gp)-- 1. 

These a rguments  show that  there is a constant/3 depending only on P, d, and p such 
that  

It(P, Y) = < dn fl 1 . . . . . .  1 1 d! V(P)Zl ... zp 

• ((p -- 1)! zl "'" zp)-a-q- ldz l  "'" dzp) dzp+~ -.. dzd. 

Using the subst i tut ion xi = z [ l  (for i =  1 . . . . .  p) as above and the Lemma,  we 
conclude that  

o(log"- 1 n) (3) 
It(P, Y) = \ n-~ �9 

Finally, for Hz �9 8~ we have ~'(Hz) > 1/d! and hence 

I~ y) = 0 n a 1 d! V(P) /  ]" (4) 

Now,  the assert ion follows from (1), (2), (3), and (4) together. []  

Proof of Proposition 1. Fo r  X1 . . . . .  X~ �9 P let Qn(X 1 . . . . .  X , )  be the union of all 
sets of  the form conv({y} w F) where y is a vertex of P and F is a facet of 
P.(X1 . . . . .  X.)  such that  the outer  unit no rma l  vector  of P, (X~, . . . ,  X , )  at F 
belongs to N(P, y). Then, it is easy to see tha t  

1 
2d(Q,) = d T1 and Q, c P \ P , ,  (5) 

which implies (1 /d)E. (T 1) < V(P) - E.(V). We now turn to the p roof  of the second 
inequality. If X �9 P \ P , ( X ~ , . . . ,  X . )  satisfies 

N(P.+ x(X, Xa . . . . .  X.) ,  x) = N(P, y) 

for some vertex y of  P, then all facets of P.+~(X, X1 . . . . .  X. )  containing X are 
parallel to a suppor t ing  hyperp lane  of P at  y, and it can be readily verified that  
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X ~ Q(X, . . . . .  x , ) .  Hence, defining 

e(X,X,,., X.) = {10 
i fX ~ P \ ( P . ( X  1, ., Xn) u Q,,(X, . . . .  , x .)) ,  
otherwise, 

and f o r i =  1,. n +  1 

6i(X1,. 
[ 1 

, X ,+I )  = 
! 0 

if N(P.+ 1 ( X 1 , . ,  X.+ x), X,) 95 N(P, y) 

for each vertex y of P, 

otherwise, 

we have e(X, X ,  . . . . .  X,)  < 6,(X, X, . . . . .  X.)  for all X, X,  . . . . .  X ,  e P. This im- 
plies 

E.(2a(P\(P . u Q,))) 

< V(p)-" f 51(X, . . . . .  X.+I)dA(a"+')| . . . . .  X.+x) 
d p n + l  

1 V(P)-" 5i(X 1 . . . .  X.+l)d2(~"+l)| X.+l)  - -  , , . . . ~  

n - ~ -  I d P  " + I  i = 1  

v(P) 
- -  E n +  i ( v  - -  ~ ) .  

n + l  

Now the second inequality follows from (5), which completes the proof of 
Proposition 1. [] 

Proof of Proposition 2. First remark that for any polytope Q, any k-face F of Q 
(1 < k < d - 1), and any x, y belonging to the relative interior of F we have 
N(Q, x) = N(Q, y), i.e., N(Q, x) does not depend on the particular choice of x, and 
we denote this convex cone by N(Q, F). Now, suppose that Q = P and x is a vertex 
of Q with N(Q, x) r N(P, y) for each vertex y of P. Then there are at least two 
vertices y and ~ of P such that N(Q, x) meets the interior of N(P, y) and N(P, y). 
Since N(Q, x) is convex and has interior points, there is an edge K of P such that 
N(Q, x) meets the relative interior of N(P, K). Hence, denoting by 0K(Q) the 
number of all vertices x of Q such that N(Q, x) meets the relative interior of 
N(P, K), we have 

v(Q)  - < E 
K edge of P 
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Thus, to prove E.(v - ~) = O(log a-  2n), it suffices to show that  E.(SK) = O(log a- 2n) 
for each edge K of  P. Let K be an edge of P. It is easy to see that E,(fK) is invariant 
with respect to affine t ransformations of  R a. Hence, we may assume that  0 is a 
vertex of  P, that  the vectors eL, . . . ,  ed of the s tandard basis of ~d are the vertices 
adjacent to 0, and that  K is the edge joining 0 and ca. For  i =  1 . . . . .  n and 
X 1 . . . . .  X .  ~ P define 

ei( X1 . . . . .  X .) ,= ! 1 

I 0 

i f X  i is a vertex of  P,(X~ . . . . .  X,)  and 
N(P.(XI . . . . .  X,), Xi) meets the relative 
interior of N(P, K), 

otherwise. 

Suppose that s~(X~ . . . . .  X, )  = 1 and that u E N(P.(X~ . . . . .  X.), X~) belongs to the 
relative interior of  N(P, K). Then we have 

(u, ej)<O for all j ~ { 1  . . . . .  d - l } ,  (u, en)=O, 

x j :=(Xl , e j )>=O for all j ~ { 1  . . . . .  d} 

and hence 

d 

(u, xie i -- X1)  = xi(u, el) -- ~ xj(u, ei) 
j = l  

d 

= -- ~_, xj(u, ej) > 0 
j = l  

for i = 1 . . . . .  d -  1. This implies that  conv{0, xle  1 . . . .  , X d - l e d - 1 ,  en} and 
P,(X~ . . . . .  X,)  are separated by the hyperplane or thogonal  to u through X~. Thus, 
denot ing by C(XO the interior of 

conv{0, min{x 1 , 1}e, . . . . .  min{xd- , ,  1}ed-,, ed}, 

we have C(X 0 c P and X 2 . . . . .  X,  r C(X1). It follows that 

E.07x) = V(P)-" fp.,:,~ ~, d2"a| = nV(P)-" fe ,  ~, d2~ | 

n 1 - d2d(Xt) 
< V(P) ~ ,] 

- f x , n  .-1 (1 - / (6) 

where 

Rv:= {x ~ P[xi < 1 for exactly p of  the first d - 1 coordinates  xi of x}. 
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Now, for p ~ { 1  . . . . .  d -  1} and X l , = ( x  ~ . . . . .  x d ) ~ R  p with xl  . . . . .  xp < 1 and 
Xp+l . . . . .  Xd-1 > 1, e.g., we have V ( C ( X 1 ) ) = ( 1 / d ! ) x l . . . x  p, hence there is a 
cons tant  cp > 0 such that  

1 - - l ) ( p  i-v(c(xO)Y-,] dita(X~) =< cp ... 1 d! V(P) J dXl ... dx,  

o(lOgTn ) 
where the last re la t ion follows from the Lemma.  Fur ther ,  for X~ ~ R ~ we have 
V(C(X1)) = l/d! and hence n t imes the integral  over  R ~ in (6) converges  to 0 as n 
tends to infinity. It follows that  

E.(~K) = O ( l o g  a -  2n)  ' 

which completes  the proof.  [ ]  

Proof of Proposition 3. F o r  any po ly tope  Q conta ined  in P and  any vertex y of P 
define 

wy.~(Q) := {x e ~dlx is a vertex of Q, N(Q, x) c N(P, y), Ix - Yl > ~}, 

and for A c Nd let J A[ denote  the card ina l i ty  of A. We shall  prove  that  
E,(I Wy,~[) = O(logd-Zn) for each vertex y of P, the asser t ion then follows from 
Coro l l a ry  3. Hence,  let y be a vertex of P, wi thout  loss of general i ty  y = 0. Fur ther ,  
let b 1 . . . . .  bn be the vertices of P adjacent  to y = 0. F o r  0 < a < 1 a n d j  = 1 . . . . .  d 
define 

W~(P, b 1 . . . . .  bn, Q) 

,= x = ~ xibi[xis  a vertex of Q, N(Q,x )  c N(P,y) ,  x~ > 
i=1 

and U~(Q),= W~(P, bl . . . . .  bd, Q). If ~ is small  enough,  then 

d 

wy,~(Q) = ~ U~(Q), 
j = l  

and for any injective l inear  m a p  q~: Ed __, Ed we have 

W{(~o(P), q3(b,) . . . . .  q~(ba), q3(Q)) = q~(W{(P, b~ . . . . .  b d, Q)). 

Hence, to prove  that  E,(I Wy,~l) = O(logd-2n), it suffices to show that  E,(I U~I) = 
O(loga-Zn) (n--* oo) for j = 1 . . . . .  d. F o r  this pu rpose  we may  assume that  
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{b~ . . . . .  ba} is the standard basis of I~ d. Now, as in the proof of Proposition 2, 
X~ . . . . .  Xn e P and X t e U~(Pn(X 1 . . . . .  Xn)) imply that 

conv{0, xl bl . . . . .  x i -  1 bj_ t, otbj, xj+ lbj+ 1 . . . . .  Xdbd} 

and Pn(X~ . . . . .  Xn)  are separated by a supporting hyperplane of Pn(X 1 . . . .  , X . )  
through X~. Hence, the argument used in the proof of Proposition 2 shows that 

e,,(] U~])  = O ( l o g  a -  2n) 

f o r  j = 1 . . . . .  d a s  n t e n d s  t o  i n f i n i t y ,  w h i c h  c o m p l e t e s  t h e  p r o o f .  [ ]  
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