ON THE CONVOLUTION TRANSFORM

By YUxicHI TANNO

1. Introduction.

In this paper we shall study the inversion theory for the class of con-
volution transforms

(1) f(x)zr Glo — t)g(t) dt
for which the kernel G(t) is of the form

_ 1 (= _1
(2) Gt =5 Lw sy ©ds
Here

(3) (=11 =570

w21 (1 —s%/ex?) ’
where {a;}7 and {c;}7 are positive constants such that
(4) 0<aiZar=-++; =S =--+; ar=csy

lim * =2>2=1im ",

n>o Qn n>oo Cp

We agree that from certain point on, all ¢, may =oco. In fact, the case was
extensively studied by Hirschman and Widder [1] Chapter IX. We shall
follow after their arguments to consider the generalization.

If we set a,=@k—1)/2, ¢y =00 (k=1,2,8, ---), Theorem 7 and Theorem

8 below will give known results for the Stieltjes transform [17.

2. Properties of the kernel.
We suppose that

oo 2
- 1—i>
(1) B =11(1-2,
where
(2) 0<a;<a,<---, lim;’ = Q.

LEMMA 1. If E(s) is defined by equations (1) and (2), then
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CONVOLUTION TRANSFORM 41
lim r~tlog | E(re*)| = 2 |sin 0|
r—>oo

uniformly for 6 in any closed interval not containing an integral mul-
tiple of «.

This is known; see [1] p. 213.

LEMmMmA 2. If F(s) s defined by equations (8) and (4) of §1, then
lim r~!log | F(re'®) | = n( — 2')| sin 0]

uniformly for 6 in any closed interval mnot containing an integral mul-
tiple of =.

This is an immediate consequence of Lemma 1.
We define
) = .__a_kz l ! e~ %klul
ht®) = Ve akj_m du+ 25t

where j(t) is the standard jump function, that is, j(¢)=0 for t<0, 1/2 for
t=0 and 1 for t>0. It is easily verified that hu(t) is a distribution function
with mean 0 and variance 2(a; 2 —c¢;"2) and that

i -st — 1— 32/Ck2
(3) L’e dht)= 1= 5o,

the bilateral Laplace transform converging absolutely for —a; < Rs < ay.
THEOREM 1. If

1. F(s) is defined by (8) and (4) of §1,
2. M denotes the multiplicity of a; as a zero of F(s),

and
3. G(t)=-—1 r’ 1 stds (— oo <t < oo)
271 ) _ioo F( ) !
then
A. G@®) 13 a frequency function with mean 0 and variance 237 ai™?
"21 c:9),
B. G(t)e‘“dt—l/F(s), the bilateral Laplace transform converging

absolutely m the strip —a; < Rs< ay,

C. Git)eC~,

D. G@)=p@)e !+ R, (t), G(t)=p(—t)e*t* + R_(t)
where p(t) 1s a real polynomial of degree u—1 and

(—d—>”R+(t) _ O(e—<a1+s>t) as t—oo (n = 0, 1’ 2’ . .)’

(ci)R(t)—O(e‘“l*“‘) as t—»—oc (10=0,1,2---)
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Jor some ¢ >0.

Proof. If we set
H,(t) = ha(t) 7 ho(t) 7 « - - 3 hal?)

where operation 7 denotes the Stieltjes convolution for distribution fune-
tions, that is, A # k means

r It — u) die(u),
then by the convolution theorem [2] H,(t) is a distribution function with the
bilateral Laplace transform
o B n 1 — S2 /ck2
SAH, () =T] — 275,
e amo=[11= e
We have
. 71— 82/ Ck2 1
1 =
M Il e = F(s)
uniformly for s in any compact set of the s-plane punctured at +a;, = as, «--.
Thus 1/F (i) is the characteristic function of a distribution funection H(¢)

= limn—>oo Hn(t),

I _ 1
Lf AH®) = pocs.
Further, by Lévy’s theorem

H(t,) — H(ts) =-

1 doo esﬁl —_ es£2 d
o S
2rt

—ic0 SF(S) ’

Since by Lemma 2

(4) log | F(it)| ~n(2 —2) 7] as 7> oo,

it follows that H(t) is infinitely differentiable. If G(t) = dH(t)/dt, then G(t) is
a frequency function, and

_L 30 est
(5) CO=55 f W Fe %

From this the conclusion C follows.

To demonstrate the coneclusion D, let us choose & >0 so small that no
ar (k=2,8,++:) lies in the interval —a;—e¢<o<a; (s=o0+17r). Integrating
about the rectangular contour with vertices at 47T, —a; — ¢+ 4T and letting
T increase without limit, we obtain

S o Jgids.

Gt)=p(t)e ™ + B,(&) R.(t)= -2711—@ o
—al—s—ioo

Again by Lemma 2 if >0 then

il F%s) 1}=O(e‘”<”—9"”"”) as 7okt
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uniformly for ¢ in any finite interval. From this it is easily seen that

<%>”R+(t)=0(e"“1+"‘) as t—oo.

The second part of conclusion D will be established similarly.
From D we see that

r e G(t) dt

converges absolutely for |Rs| < a; and defines in this strip an analytic funec-
tion. Since

r Gt dt =t

F(ir)’
we have demonstrated the conclusion B; that is, for |Rs| < a;
R— _ 1
(6) S_we Gt = .

From this equation the conclusion A follows by the the straightforward com-
putations.

THEOREM 2. If G(t) is defined as in Theorem 1, then

aG@) _
sgn —dt = sgnt.
This follows from the fact that the functions %.(f) are convex distribu-

tion functions.

3. Properties of the transform.

THEOREM 3. If
1. G(t) is defined as in Theorem 1,

2. a(t) 1s of bounded variation in every finite interval,
and

3. jw G(xo—t)da(t) converges,

then
r Gz — t) dalt)

converges uniformly for x in any finite interval.

Proof. It is enough to show that
B
(1) lim g G — t)dalt) =0,
JA

A, B>+oo

(1y lim ram — O da(t)=0,

A,B>+o
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uniformly for x in any finite interval. By Theorem 1 we have

G—t) _ AT Ge—t7_ /1
(2) Glo—y =0W and dt[—a<xo_¢)]—0<?) as oo,

uniformly for « in any finite interval. If we set

L(t) = fG(xo — O dalt),

then
(3) L(t)=0(1) as t— + oco.
We have
SBG(w —tda(t) = jB g((x tt)) G(xo — t) da(t)
_ Gz —1) d Glx—1t)
- [ G@o—1) L(t)] 5 <dt Glao—1) )L(t)dt'

Using equations -(2) and (3) we see that equation (1) holds uniformly for .
We can establish (1)’ similarly.

4. Operational calculus.

Denote by D the operation of differentiation. We define the operation
(1—D/a;)™* after Hirschman and Widder [1] by the following equation:

(= D/a) o) = | e esp@hdy,

where
h(y) = { ¢ (=0,
0 (0, o0),
that is, by the equations

(1= D/ax) " p(x) =

—_ akeakx

ayetr” rgo(y)e‘“kydy if ar>0,

xgo(y)e“‘kydy if a:<O0.

For example, if a; >0 then
eSL

(1 —D/ay) et = for NRs<ay.
1—s/ax
Therefore
_ 1 200 est
1-D 1 =
(1= D/a)G) = = 5 e P —s/an

the integral converging absolutely by Lemma 2.
Let us define
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(1) Fo(s) = ﬁ 1—s%a;?

kens1 1 —8%ce?’

n 1 — 82/ak2

(2) Fn*(8)=7!—-4[1\1—-82/0k2’
_ L 400 B —est
(3) Gt =53 S e

THEOREM 4. If

1. F.(s) is defined by equation (1),

2. Ga(t) is defined by equation (3),
then

A. G.(t) 1s a frequency function of mean 0 and variance 2(>lawiar?
“'2:0+lclc—2)o

B. r G.(t)e *dt =1/F.(s), the bilateral Laplace transform converging

absolutely in the strip —an,  <Rs< an.1,
C. G.,(t)eC~, — oo <L t< o,
and
D. Gu(t) = pa(t)e *»+1* + Ry ,(2), G(t) = pu(— t)e*n+1' + Ry, (2),

where p,(t) 1s a polinomial of degree m,—1, u, denoting the multiplicity
of s=an,,1 as a zero of F,.(s), and

<%>"Rn,+(t)=O(e““"“*"‘) as t—+o (m=0,1,2,--),

(%)”Rn,-m=0<e<an+1+'“> as t——o (m=0,1,2,---)

Jor some &> 0.
This is an immediate consequence of Theorem 1.

From this theorem and Theorem 1 we have
(4) F.*(D)G(t) = Ga(d).

5. Inversion theorem.

THEOREM 5. If

1. G(t) s defined as in Theorem 1,

2. F,*(D) and G,(t) are defined by (2) and (3) of §4,

3. «a(t) is of bounded variation in every finite interval,
and

4. fx)= Yo G(x —t)da(t) converges,
then -
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FD)f@)=|" Guw—t)datd,
the integral converging uniformly for x im any finite interval.

Proof. From the relation (4) of §4 it is enough to show that the integral
(1) r Gl — 8 dat)

converges uniformly for x in any finite interval. By Theorem 1 and Theorem
4 the integral

(2) 5"" d Gu(x—1t) dt

o dt Gx—1t)

converges uniformly for x in any finite interval and we have

. Gax—1)
dm —cw—t <

uniformly for . For any ¢ (— oo <z <) we set
L(t) = th(x — tyda(t),
0
then by Theorem 4, L(t) is bounded and L(+ o), L(— o) exist. For arbitrary
T, T, we have

r"’Gn(x—t)da(t) j —"((”%dL(t)
Ty

=[Gan 0l [ a ey Jro

The last two terms converge as T;— — oo, Ty— + oo, uniformly for « in any
finite interval.

COROLLARY 5. 1. G(t) ¢s defined as in Theorem 1,
2. F.X(D), G,(t) are defined by (2) and (3) of §4,
3. ¢(t) is integrable on every finite interval,

4. f(x)= jw Gz —t)p(t)dt converges,
then i
FD)f@)=|" Gita—tit)a,
the integral converging absolutely for x in any finite interval.

In the previous theorem, set

ﬁgo(t) dt = a(t).
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Then the result follows immediately.

LeEMMA 8. [1] Let ¢(t) be continuous and a(t) of bounded variation in
every finite subinterval of a<t<oco. If

1. ¢(t) is positive and monotonic,
and
2. S o(t)da(t) converges,

then limysw@(t) =0 implies that

a(t)-o( )‘Ias t— -+ oo,

¢(t)
THEOREM 6. If

1. G(t) is defined as in Theorem 1,

2. F.*(D) and G.(t) are defined by (2) and (3) of §4,
3. a(t) is of bounded variatian in any finite interval,

and .
4. f(=x) =S G(x —t)da(t) converges,

then for n sufficiently large

szn*<D)f<x)dx=j°°

—~c0

Gz — Dalt) dt — r Gl — a(t) dt.

—0

Proof. By Theorem 2 and Lemma 3 we have
(1) at)=o0[G(x —t)]* as t— +oo.
By Theorem 5
F(D)f@)= " Gulw—t)datt),

the integral converging uniformly for z in any finite interval. Integrating by
parts, we obtain

FD)f) = [ Guw—tatt)]” — j:[%am —t) att)dt.

Theorem 1, Theorem 4 and the estimation (1) show that the integrated parts
vanishes uniformly for z; <z <2x,. Thus

FX(D)f() = — j‘;[im b Jattydt = "]

at —ool__ 6

the integral converging uniformly for z,<x <x,. We have

JrrDis@de= e[ | 560 awds

Gials — t)Ja(t) dt,

Because of the uniform convergence of the inner integral we may invert the
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order of integration and we have

(2) rZFn*(D)f(w) do = j " [Gu@e— ) = Gulor — 1) [act)dt.
xl -0

Using Theorem 1, Theorem 4 and the estimate (1), we see that if n is suffi-
ciently large, the integral (2) will converge absolutely.

LEMMA 4. If G.(t) is defined as in (3) of §4, then
lim G.(t) =0 0<|t] < o).

Proof. Let t, be an arbitrary number different from zero. Then
we have

|

20/2 ( l t02 I =) 2
G.(t)dt < G(t)dt ==\ G (t)dt
% 121>1201/2 4 )

lt0|2<2a 210102).

2 \at1
Hence
. (%2 !
lim S Ga(t) dt | = 0.
12 |

n->o0

But by Theorem 2 G.(¢) is monotonic over the range of this integral and
takes its smallest value at ¢o; i.e.

Gt ’t" < H n(t)dt

From this inequality the result follows immediately.

THEOREM 7. If

1. G(t) is defined as in Theorem 1,

2. ¢(t) is integrable on every finite interval,
3. f(x) =j°° G(x — t)p(t)dt converges,

4. F.*(D) is defined by (2) of §4,

and
5. ¢(t) is continuous at z,

then
lim F*(D)f (%) = ¢().

Proof. By Corollary 5 we have
F.H(D)f (0) = j“’ Gl — t)p(t) dt.

Since G.(t) is a frequency function
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Fir(D)f @)~ 9@ =" Gulw—1ot) - @] dt

By the condition 5, for an arbitrary ¢ >0 we may choose 6 >0 so small that
o) —¢(x)| < [t —x| <o.
Put

x—3

x+d oo
5 Gl — DL 0(t) — p(a)1dt —j +j i +j =I,+ L+ I, say.
—00 x—0d x+4d
We have

| L] <ej ,,(x—t)dtger Go(t)dt = s.

=3 —o0

1= " G- olpw —g@nar= | [ T 16— i)~ ¢@)dr

By Theorem 1 and Theorem 4, for & >0, there exists T, such that for suffi-
ciently large n

Go(x—1t)
G(x—1t)

‘<8 &> To).

Thus

5 [G?(w ~ 4 Jree — e~ ¢@nat| < o).

Furthermore by Lemma 4 we have

ST;GM — ) {e(t) — p(@)}dt ] =o0.

lim

7->00

Hence
lim | I;| < &(1+ 0(1)),

and similarly
lim | I, | < &1+ O(1)).
>0

Thus we get

lim

7>

j_ Gl — 1) (t) — sa(w)]dt,_eoa),

Since ¢ is arbitrary our theorem is proved.

THEOREM 8. If

1. G(@t) is defined as in Theorem 1,
a(t) 1s of bounded variation in every finite interval,

2.
3. f(w)= r G(x — t)da(t) converges,
4, F,X(D) 1s defined by (2) of §4,
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and
5. al(t) is continuous at x, and 2z,

then
lim S”"Fn*(p)f(x)dx = a(is) — aly).
z

7n->»0
This is an immediate consequence of Theorem 6 and Theorem 7.

REFERENCES

[1] HIRSCHMAN, I. I., AND D. V. WiDDER, The convolution Transform. Princeton,
1955.
[2] WIDDER, D. V., The Laplace Transform. Princeton, 1941.

HirosAKI UNIVERSITY.



