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Abstract In this paper, we model any nonconvex quadratic program having a mix
of binary and continuous variables as a linear program over the dual of the cone of
copositive matrices. This result can be viewed as an extension of earlier separate results,
which have established the copositive representation of a small collection of NP-hard
problems. A simplification, which reduces the dimension of the linear conic program,
and an extension to complementarity constraints are established, and computational
issues are discussed.

Mathematics Subject Classification (2000) 90C25 · 90C26 · 90C20

1 Introduction

A recent line of research has shown that several NP-hard optimization problems can
be expressed as linear programs over the convex cone of copositive matrices (called
copositive programs, or COPs). In particular, as far as we are aware, the following
is a complete list of all problems known to have representations as COPs: standard
quadratic programming [3], the maximum stable set problem [7], and quadratic pro-
grams over transportation matrices satisfying specialized quadratic constraints [15].
(Transportation matrices are element-wise nonnegative with pre-specified row- and
column-sums.) The last class of problems includes, for example, a certain minimum-
cut graph tri-partitioning problem [17] and the quadratic assignment problem [16]. In
each case, the COP has a natural associated dual linear program over the dual cone of
completely positive matrices (called a completely positive program, or CPP).
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480 S. Burer

While expressing a problem as a COP or CPP does not resolve the difficulty of the
problem, it does allow one to “package” the difficulty completely inside the convex
cones of copositive and/or completely positive matrices. Whatever knowledge is then
gained about copositive or completely positive matrices can be applied uniformly to
multiple types of NP-hard problems. For example, Parrilo [13] (see also de Klerk
and Pasechnik [7]) discusses a hierarchy of linear- and semidefinite-representable
cones approximating the copositive cone from the inside. More precisely, letting Cq

denote the cone of q × q copositive matrices, there exist closed convex cones {Kr
q :

r = 0, 1, 2, . . .} such that Kr
q ⊂ Kr+1

q for all r ≥ 0 and ∪r≥0Kr
q = Cq . The dual

cones {(Kr
q)∗ : r = 0, 1, 2, . . .} approximate the completely positive cone C∗

q from
the outside, i.e., (Kr

q)∗ ⊃ (Kr+1
q )∗ for all r ≥ 0 and ∩r≥0(Kr

q)∗ = C∗
q . Explicit

representations of the approximating cones have been worked out by Parrilo [13]
and Bomze and de Klerk [2]. For example, K0

q is the cone of all symmetric matrices
that can be written as the sum of a positive semidefinite matrix and an element-
wise nonnegative matrix, and (K0

q)∗ is the cone of all symmetric matrices that are
simultaneously positive semidefinite and element-wise nonnegative. Moreover, using
these approximation ideas in the case of standard quadratic programming, Bomze
and de Klerk [2] prove bounds on the approximation error as a function of r . This
line of reasoning also leads to a polynomial-time approximation scheme for standard
quadratic programming (and an extension by de Klerk et al. [6]).

Other than the handful of problems listed above, what types of problems can be rep-
resented as COPs or as CPPs? In Sect. 2 of this paper, we consider the extremely large
class of nonconvex quadratic programs, having any mixture of binary and continuous
variables, and prove that they can be expressed as CPPs. By “quadratic program,”
we mean any program with a quadratic objective and linear constraints (other than
the binary conditions on the discrete variables). In Sect. 3, we show that it is often
possible to reduce the dimension of the completely positive representation and also
establish an extension to complementarity constraints over bounded variables. Then,
in Sect. 4, we compare our approach with earlier results, highlighting key similarities
and differences, and in Sect. 5, we discuss some computational issues. In Sect. 6, we
conclude with a few final remarks.

1.1 Definitions and notation

The closed, full-dimensional convex cone of q × q copositive matrices is defined as

Cq :=
{

X ∈ �q×q : X = X T , vT Xv ≥ 0 ∀ v ∈ �q
+
}

,

and its dual is the closed, full-dimensional convex cone of q × q completely positive
matrices:

C∗
q :=

{
X ∈ �q×q : X =

∑
k∈K

zk(zk)T for some finite {zk}k∈K ⊂ �q
+\{0}

}
∪ {0}.
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On the copositive representation of binary and continuous nonconvex quadratic programs 481

Note that the decomposition of nonzero X ∈ C∗
q defines zk 
= 0 for all k ∈ K . A

(linear) copositive program (COP) is any optimization over X ∈ Cq whose objective
and constraints are linear in X . Associated with every copositive program is a dual
problem over the cone of completely positive matrices, which is a (linear) completely
positive program (CPP). In general, satisfaction of Slater’s condition in either the
primal or dual is needed to guarantee that there is no duality gap between such dual
problems.

We use Sq to denote the cone of q × q positive semidefinite matrices. The generic
notation Feas(·) and opt(·) will be used to denote the feasible set and optimal value
of a given problem. Conv(·) will be used to denote the convex hull of a given set, and
Cone(·) indicates the conic hull. The notation eq will be used to denote the q-length
vector of all ones; if the dimension q is clear from the context, then we will drop the
subscript. The matrix I represents the identity matrix of the appropriate dimension.
Also, Diag(v) is the diagonal matrix whose diagonal is v. For a matrix M , vec(M) is
the vector gotten by stacking the columns of M in order. Given two conformal matrices
A and B, A • B := trace(AT B).

2 The problem and its completely positive representation

The general-form problem we consider is

min xT Qx + 2 cT x (P)

s.t. aT
i x = bi ∀i = 1, . . . , m

x ≥ 0

x j ∈ {0, 1} ∀ j ∈ B

where x ∈ �n+ and B ⊆ {1, . . . , n}. We assume Feas(P) 
= ∅. Clearly, any problem as
described in the third paragraph of the Introduction (“nonconvex quadratic programs,
having any mixture of binary and continuous variables”) can be put in the form of (P),
and so (P) encompasses a huge class of NP-hard problems, e.g., all 0-1 linear inte-
ger programs, all nonconvex (continuous) quadratic programs, and all unconstrained
0-1 quadratic programs. As it will turn out, a distinguishing feature of (P) is that all
general linear constraints are represented as equations (as opposed to inequalities).

We make a particular assumption (referred to as the key assumption) regarding the
linear portion L := {x ≥ 0 : aT

i x = bi ∀ i = 1, . . . , m} of Feas(P):

x ∈ L ⇒ 0 ≤ x j ≤ 1 ∀ j ∈ B. (1)

If B = ∅, then the key assumption is vacuous. On the other hand, if B 
= ∅ and the key
assumption is not already implied, then one can achieve it without loss of generality.
For example, one could augment (P) by adding the constraint x j + s j = 1, where
s j ≥ 0 is a slack variable, for all j ∈ B. Related to the key assumption, we also define
the recession cone of L , namely L∞ := {

d ≥ 0 : aT
i d = 0 ∀ i = 1, . . . , m

}
, which
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482 S. Burer

has the following property from (1):

d ∈ L∞ ⇒ d j = 0 ∀ j ∈ B. (2)

Standard techniques, including the relaxation of the rank-1 matrix (1; x)(1; x)T to
the symmetric matrix (1, xT ; x, X), yield the following CPP, which is a relaxation
of (P):

min Q • X + 2 cT x (C)

s.t. aT
i x = bi ∀i = 1, . . . , m

aT
i Xai = b2

i ∀i = 1, . . . , m

x j = X j j ∀ j ∈ B(
1 xT

x X

)
∈ C∗

1+n .

In comparison with (P), (C) contains O(n2) number of variables but only twice as
many general equations. Of course, the difficulty in (C) is the completely positive
constraint.

Define the following convex sets of symmetric matrices of size (1 + n) × (1 + n):

Feas+(C) :=
{(

1 xT

x X

)
: (x, X) ∈ Feas(C)

}
,

Feas+(P) := Conv

{(
1
x

) (
1
x

)T

: x ∈ Feas(P)

}
,

L+∞ := Cone

{(
0
d

) (
0
d

)T

: d ∈ L∞

}
.

We now establish the following fundamental result.

Proposition 2.1 Feas+(P) ⊆ Feas+(C) = Feas+(P) + L+∞.

The inclusion Feas+(P) ⊆ Feas+(C) holds by construction.
Next, we examine L+∞ and its relationship to the recession cone of Feas+(C), which

equals

⎧⎨
⎩

(
0 dT

d D

)
∈ C∗

1+n :
aT

i d = 0 i = 1, . . . , m
aT

i Dai = 0 i = 1, . . . , m
d j = D j j j ∈ B

⎫⎬
⎭.

Because (0, dT ; d; D) ∈ C∗
1+n , it follows that d = 0 and so the recession cone

simplifies to

{(
0 0T

0 D

)
∈ C∗

1+n : aT
i Dai = 0 i = 1, . . . , m

D j j = 0 j ∈ B

}
.
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On the copositive representation of binary and continuous nonconvex quadratic programs 483

From (2), this implies that L+∞ is contained in the recession cone, and hence Feas+(C)

⊇ Feas+(P) + L+∞.
To show the remaining “⊆” inclusion, let (x, X) ∈ Feas(C) and consider a com-

pletely positive decomposition

(
1 xT

x X

)
=

∑
k∈K

(
ζk

zk

) (
ζk

zk

)T

, (3)

where (ζk; zk) ∈ �1+n+ for all k ∈ K .

Lemma 2.2 Let (x, X) ∈ Feas(C). Given the decomposition (3), define K+ := {k ∈
K : ζk > 0} and K0 := {k ∈ K : ζk = 0}. Then:

(i) zk/ζk ∈ L for all k ∈ K+;
(ii) zk ∈ L∞ for all k ∈ K0.

Proof Directly from (3), we see ∑
k∈K

ζ 2
k = 1. (4)

Moreover, since aT
i x = bi and aT

i Xai = b2
i , we have

bi =
∑
k∈K

ζk(a
T
i zk) and b2

i =
∑
k∈K

(
aT

i zk
)2

(5)

for all i = 1, . . . , m. Thus,

(∑
k∈K

ζk

(
aT

i zk
))2

=
(∑

k∈K

ζ 2
k

) (∑
k∈K

(
aT

i zk
)2

)
,

and so by the equality-case of the Cauchy–Schwarz inequality, it follows that there
exist δi (i = 1, . . . , m) such that

δi ζk = aT
i zk ∀k ∈ K , i = 1, . . . , m. (6)

The second statement of the proposition follows directly from (6) and the fact that
ζk = 0 for all k ∈ K0. To prove the first statement, it suffices to show δi = bi for
all i . Indeed, the first equality of (5), (6), and (4) imply

bi =
∑
k∈K

ζk

(
aT

i zk
)

=
∑
k∈K

ζk(δi ζk) = δi .

��
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By taking λk := ζ 2
k and vk := zk/ζk for all k ∈ K+, we can write the completely

positive decomposition (3) in the more convenient form

(
1 xT

x X

)
=

∑
k∈K+

λk

(
1
vk

) (
1
vk

)T

+
∑

k∈K0

(
0
zk

) (
0
zk

)T

, (7)

where λk > 0 for all k ∈ K+,
∑

k∈K+ λk = 1, and vk ∈ L for all k ∈ K+. To establish

the “⊆” inclusion, it remains only to show vk
j ∈ {0, 1} for all j ∈ B.

Lemma 2.3 Let (x, X) ∈ Feas(C). Then, in the representation (7), vk
j ∈ {0, 1} for all

k ∈ K+ and all j ∈ B.

Proof Fixing j ∈ B, (1) and (2) imply 0 ≤ vk
j ≤ 1 for all k ∈ K+ and zk

j = 0 for all
k ∈ K0. Further, the equality x j = X j j implies

∑
k∈K+

λk vk
j =

∑
k∈K+

λk

(
vk

j

)2 +
∑

k∈K0

(
zk

j

)2 ⇐⇒
∑

k∈K+
λk

(
vk

j −
(
vk

j

)2
)

= 0.

The last equation expresses that the sum of nonnegative numbers is 0, and so λk(
vk

j − (vk
j )

2
)

= 0 for all k ∈ K+. Since λk > 0, we conclude vk
j =

(
vk

j

)2
. ��

This completes the proof of Proposition 2.1.
Because all matrices in the cone L+∞ have zeros in the 0-th row and column, Propo-

sition 2.1 also gives rise to the following characterization.

Corollary 2.4 Conv(Feas(P)) = {x : (x, X) ∈ Feas(C) for some X}.
Said differently, the convex hull of Feas(P) is the projection of Feas(C) onto the
coordinates corresponding to x . Moreover, in the case when L∞ = {0}, i.e., when
Feas(P) is bounded, we can make a slightly stronger statement.

Corollary 2.5 If Feas(P) is bounded, then Feas+(P) = Feas+(C).

Note that Feas(P) is bounded if and only if L is bounded due to (1) and (2).
We are now prepared to state and prove the main theorem relating (P) and (C).

Theorem 2.6 (C) is equivalent to (P), i.e.: (i) opt(C) = opt(P); (ii) if (x∗, X∗) is
optimal for (C), then x∗ is in the convex hull of optimal solutions for (P).

Let

�(Y ) :=
(

0 cT

c Q

)
• Y ;

note that � is linear in Y . Then we can express opt(P) and opt(C) as follows:

opt(P) = min
Y∈Feas+(P)

�(Y ) and opt(C) = min
Y∈Feas+(C)

�(Y ).
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On the copositive representation of binary and continuous nonconvex quadratic programs 485

Hence, the inclusion of Proposition 2.1 immediately implies opt(P) ≥ opt(C). If
opt(P) = −∞, then opt(C) = −∞, and item (i) of the theorem follows. In case
opt(P) 
= −∞, to prove opt(P) ≤ opt(C) and hence item (i), it suffices to use the
equation of Proposition 2.1 in conjunction with the following lemma.

Lemma 2.7 If opt(P) 
= −∞, then � is nonnegative over L+∞.

Proof We prove the contrapositive. Suppose � is negative somewhere on L+∞. Then,
since � is linear, there exists some 0 
= d ∈ L∞ such that

�

((
0
d

) (
0
d

)T
)

= dT Qd < 0.

This shows that d is a negative direction of recession for (P), i.e., opt(P) = −∞.
��

Item (ii) of Theorem 2.6 is proved by examining the representation (7) for (x∗, X∗).
In such a case, we must have vk optimal for (P) for all k ∈ K+; otherwise, Q • X∗ +
2 cT x∗ would not equal opt(C) = opt(P). (In fact, we know (zk)T Qzk = 0 for all
k ∈ K0.) Since x∗ = ∑

k∈K+ λkv
k , this proves item (ii).

In addition to Theorem 2.6, we remark that, when opt(P) 
= −∞, the optimal value
of (C) is actually attained because the optimal value of (P) is attained.

3 A simplification and an extension

3.1 Eliminating x from the completely positive representation

We now show that it is often possible to eliminate the variable x in (C) and restrict
the completely positive optimization to C∗

n instead of C∗
1+n . The key property required

of (P) is the following:

∃ y ∈ �m s.t.
m∑

i=1

yi ai ≥ 0,

m∑
i=1

yi bi = 1. (8)

In this subsection, we assume (8) and define

α :=
m∑

i=1

yi ai ≥ 0. (9)

Note that, by Farkas’s lemma, (8) holds if and only if the set {z ≥ 0 : aT
i z = −bi ∀i =

1, . . . , m} is empty. Note also, that if the sum of any subset of variables of x ∈ Feas(P)

can be bounded explicitly, then (8) can be achieved by adding a slack variable and a
new redundant equation to (P). For example, if x ∈ Feas(P) implies x1 + x3 ≤ 2.5,
then adding the constraint x1 + x3 + s = 2.5 enables (8) by taking y to have a weight
of 0.4 on the new constraint and 0 on all others.
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486 S. Burer

A direct consequence of (8) is that αT x = 1 is redundant for (P). So we consider

min xT Qx + 2 cT x

s.t. x ∈ Feas(P)

αT x = 1

as well as its completely positive representation

min Q • X + 2 cT x (10)

s.t. (x, X) ∈ Feas(C)

αT x = 1

αT Xα = 1,

which is equivalent to (C). The construction of (C) from (P) and Proposition 2.1 also
make it clear that the constraint Xα = x is redundant for (C) and (10), which means
that (10) is equivalent to the reduced problem

min Q • X + 2 cT Xα (11)

s.t. (Xα, X) ∈ Feas(C)

αT Xα = 1.

Finally, the equations αT Xα = 1 and

(
1 αT X

Xα X

)
= (

α I
)T

X
(
α I

)

along with α ≥ 0 imply that

X ∈ C∗
n ⇒

(
1 αT X

Xα X

)
∈ C∗

1+n .

Moreover, the converse holds because principal submatrices of completely positive
matrices are completely positive. Hence, (11) is in turn equivalent to

min Q • X + 2 cT Xα (C ′)
s.t. aT

i Xα = bi ∀i = 1, . . . , m

aT
i Xai = b2

i ∀i = 1, . . . , m

[Xα] j = X j j ∀ j ∈ B

X ∈ C∗
n

αT Xα = 1.

Overall, we conclude that (C) is equivalent to (C ′), as stated in the following theorem.
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Theorem 3.1 Suppose (8) holds, and define α as in (9). Then (C ′) is equivalent to
(P), i.e.: (i) opt(C ′) = opt(P); (ii) if X∗ is optimal for (C ′), then X∗α is in the convex
hull of optimal solutions for (P).

Besides a more compact representation, an additional benefit of (C ′) over (C) is
that Feas(C ′) may have an interior, whereas Feas(C) never does. This is an important
feature of (C ′) since the existence of an interior is generally a benefit both theoretically
and computationally. Let us consider an interior solution (x, X) ∈ Feas(C). It satisfies
the additional condition that (1, xT ; x, X) is an element of int(C∗

1+n). A fundamental
fact, which is clear from the definition of the completely positive matrices, is C∗

q ⊆ Sq ,
where Sq is the set of all q×q positive semidefinite matrices, and so int(C∗

q ) ⊆ int(Sq).
However, (x, X) ∈ Feas(C) implies

(
bi

−ai

)T (
1 xT

x X

)(
bi

−ai

)
= 0 ⇒

(
1 xT

x X

)

∈ int (S1+n) ⊇ int

(C∗
1+n

)
,

establishing that (C) does not have an interior. (This argument also shows that the
lack of interior for (C) will also hold for any semidefinite relaxation.) On the other
hand, since (C ′) optimizes over C∗

n instead of C∗
1+n , it certainly may have an interior.

For example, consider Feas(P) = {x ≥ 0 : eT x = 1} (see also Sect. 4.1). In this case,
(8) holds with α = e, and Feas(C ′) = {X ∈ C∗

n : eT Xe = 1} has an interior since
Cone(Feas(C ′)) = C∗

n . In particular, 1
n I is known to be an element of the interior.

In addition to eliminating x , one may also wonder if it is possible to eliminate
the constraints aT

i Xα = bi in Feas(C ′), which are in some sense the last remnants
of x . One example when it is possible has just been demonstrated in the previous
paragraph. In general, however, it is not possible as the following example shows.
(This specific example was first considered by Bomze et al. [3].) Let κ ∈ (0, 1), and
consider Feas(P) = {(x1, x2) ≥ 0 : x1 = κ, x1 + x2 = 1} and

Feas(C ′) =
⎧⎨
⎩

(
X11 X21
X21 X22

)
∈ C∗

2 :
X11 + X21 = κ

X11 = κ2

X11 + 2X21 + X22 = 1

⎫⎬
⎭.

Clearly, Feas(P) = {(κ, 1 − κ)}, and

Feas(C ′) =
{(

κ2 κ(1 − κ)

κ(1 − κ) (1 − κ)2

)}
=

{(
κ

1 − κ

) (
κ

1 − κ

)T
}

,

as predicted. However, the set

{(
X11 X21
X21 X22

)
∈ C∗

2 : X11 = κ2

X11 + 2X21 + X22 = 1

}

contains additional points, e.g.,

(
κ2 0
0 1 − κ2

)
.
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3.2 Complementarity constraints on bounded variables

A natural question is whether the techniques of Sect. 2 can be extended to represent
quadratically constrained quadratic programs as CPPs. Indeed, at least one important
case, namely that of complementarity constraints on bounded variables, can be han-
dled. We proceed by briefly stating a somewhat general extension and then immediately
specializing it to complementarity constraints.

Consider the following extension of (P):

min xT Qx + 2 cT x (P̄)

s.t. x ∈ Feas(P)

xT Q̄x + 2 c̄T x + κ̄ = 0,

where Q̄ is symmetric. Let B̄ be the index set of variables x j involved in the quadratic
constraint, i.e., B̄ := { j : Q̄· j 
= 0 or c j 
= 0}. Although a constraint of the form
x j ∈ {0, 1} has already been included in Feas(P), its representation as x j − x2

j = 0
serves as a good example for a quadratic equation such as the above. Define L and
L∞ as before and assume

x ∈ L ⇒ xT Q̄x + 2 c̄T x + κ̄ ≥ 0 and d ∈ L∞ ⇒ d j = 0 ∀ j ∈ B̄.

In the case of x j − x2
j = 0, these assumptions are implied by (1) and (2). In fact,

one can easily check that these assumptions are natural generalizations of (1) and (2)
and enable the extension of Proposition 2.1, Lemmas 2.3, and 2.7 to (P̄) (note that
Lemma 2.2 is unchanged), thus enabling the extension of Theorem 2.6 to (P̄). The
resulting form of the equivalent CPP is

min Q • X + 2 cT x (C̄)

s.t. (x, X) ∈ Feas(C)

Q̄ • X + 2 c̄T x + κ̄ = 0,

Additional quadratic constraints can be included in (P̄) and (C̄) as long as each satisfies
the two assumptions.

Now we consider complementarity constraints. Let E be a collection of pairs ( j, k)

indicating the complementarities, e.g., x j xk = 0 for all ( j, k) ∈ E , and let Bc =
{ j : ( j, k) ∈ E for some k} be the set of all indices of variables involved in the
complementarity constraints. The extension of (P) is as follows:

min xT Qx + 2 cT x (Pc)

s.t. x ∈ Feas(P)∑
( j,k)∈E

x j xk = 0.
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On the copositive representation of binary and continuous nonconvex quadratic programs 489

The corresponding CPP is

min Q • X + 2 cT x (Cc)

s.t. (x, X) ∈ Feas(C)∑
( j,k)∈E

X jk = 0.

Related to the assumptions of the previous paragraph, note that x ≥ 0 ensures∑
( j,k)∈E x j xk ≥ 0 for all x ∈ L . To guarantee d ∈ L∞ ⇒ d j = 0 for all j ∈ Bc,

some additional knowledge on L is required. For example, if x ∈ L implies that x j is
bounded for all j ∈ Bc, then the condition is satisfied. We have the following theorem.

Theorem 3.2 For each j ∈ Bc, suppose the variable x j is bounded in L. Then (Cc)

is equivalent to (Pc), i.e.: (i) opt(Cc) = opt(Pc); (ii) if (x∗, X∗) is optimal for (Cc),
then x∗ is in the convex hull of optimal solutions for (Pc).

One interesting application of Theorems 2.6 and 3.2 is the following. Consider the
case when B = ∅. Then it is known that (P) can be formulated as a linear program
with complementarity constraints via its first-order KKT conditions [9], although care
must be taken to bound the complementary variables (i.e., those with j ∈ Bc; see
Burer and Vandenbussche [5]). Hence, Theorems 2.6 and 3.2 provide two different
CPPs for the same problem.

4 Previous results: description and comparison

4.1 Standard quadratic programming

As far as we are aware, Bomze et al. [3] have established the first copositive represen-
tation of an NP-hard problem. In particular, they study quadratic optimization over the
simplex (called standard quadratic programming), i.e., the special case of (P) with
m = 1, B = ∅, and (a1, b1) = (e, 1). Without loss of generality, they take c = 0
because, if c 
= 0, then c can be absorbed into the quadratic part by optimizing with
(Q̃, c̃) = (Q+ecT +ceT , 0), which has the same objective as (Q, c) over the simplex.
They also replace eT x = 1 with the equivalent eT xxT e = 1 and subsequently study
min{xT Qx : eT xxT e = 1, x ≥ 0}. The CPP that Bomze et al. consider is

min
{

Q • X : eT Xe = 1, X ∈ C∗
n

}
, (12)

which is equivalent to (C ′) in this case. Establishing the special case of Theorem 3.1
then requires the following result: the extreme points of (12) are precisely the rank-1
matrices xxT with eT x = 1 and x ≥ 0.

Working in a somewhat different direction, Sturm and Zhang [18] examine the idea
of generalized copositive and completely positive cones based on a general domain
D ⊆ �q :
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Cq(D) :=
{

X ∈ �q×q : X = X T , vT Xv ≥ 0 ∀v ∈ D
}

,

C∗
q (D) :=

{
X ∈ �q×q : X =

∑
k∈K

zk(zk)T for some finite {zk}k∈K ⊂ D\{0}
}

∪ {0}.

For example, if D = �q , then both Cq(D) and C∗
q (D) are equal to Sq , and in the case of

D = �q
+, we have the regular copositive and completely positive cones, Cq and C∗

q , as
defined in this paper. Using these definitions, one implication of their work is that any
quadratic minimization over the set {x ∈ D : eT x = 1} can be represented as a linear
program over C∗

q (D). In this sense, Sturm and Zhang prove a natural extension of the
work of Bomze et al. It is also interesting to note that the Sturm–Zhang construction
keeps the variable x explicit in the equivalent conic linear program, just as we have
kept x explicit in (C).

4.2 The maximum stable set problem

The next example of representing an NP-hard problem as a completely positive pro-
gram is the maximum stable set problem as established by de Klerk and Pasechnik
[7]. One description of their result is as follows. Given a graph G = ({1, . . . , n}, E),
it is not difficult to show (see Burer et al. [4]) that the maximum stable set number α

for G satisfies

α = max
{

xT eeT x : x ≥ 0, ‖x‖2 = 1, xi x j = 0∀(i, j) ∈ E
}

.

De Klerk and Pasechnik show that the corresponding CPP also has optimal value α,
i.e.,

α = max
{

eeT • X : X ∈ C∗
n , I • X = 1, Xi j = 0∀(i, j) ∈ E

}
.

This program is also closely related to the Lovász-theta-number SDP [10], which is
achieved by relaxing X ∈ C∗

n to X ∈ Sn .
In fact, the maximum stable set problem can be formulated as a standard quadratic

program [11], and so it is known from Bomze et al. [3] that the maximum stable
set problem has a completely positive representation. In this sense, the result of
de Klerk and Pasechnik is not completely new. However, in addition to the represen-
tation above, de Klerk and Pasechnik show further results, e.g., that an approximation
of C∗

n by (Kr
n)∗ with r = α2 (see the Introduction) yields the optimal value α (after

rounding down).

4.3 Quadratic problems over transportation matrices

As mentioned in the Introduction, Povh [15] has shown that a certain class of quadratic
programs over transportation matrices can be represented as CPPs. In the following
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subsections, we investigate two specific cases, which have appeared prior to the
generalization established by Povh.

4.3.1 A minimum-cut graph tri-partitioning problem

Povh and Rendl [17] have recently shown that a certain NP-hard graph partitioning
problem can be posed as a CPP. Given a graph G = ({1, . . . , n}, E) and a length-three
integer vector s = (s1; s2; s3) such that eT

3 s = n, the problem is to partition {1, . . . , n}
into sets Si (i = 1, 2, 3) with |Si | = si such that the number of edges in E crossing
from S1 to S2 is minimal. Letting x ∈ �3n and Y ∈ �n×3 be associated by the equation
x = vec(Y ), the problem can be formulated as the minimization of a (homogeneous)
quadratic objective over the feasible set

{
x = vec(Y ) : x ≥ 0, Y e3 = en, Y T en = s, x j ∈ {0, 1} ∀ j = 1, . . . , 3n

}
.

(13)
From this representation, Theorem 2.6 thus implies that this partitioning problem can
be represented as a CPP.

However, Povh and Rendl take an interesting alternative route. It can be shown that
(x, Y ) is feasible for (13) if and only if Y is in the set

{
Y ≥ 0 : Y e3 = en, Y T en = s, Y T Y = Diag(s)

}
.

Then they multiply linear constraints to include redundant quadratic constraints—
ones that ultimately allow them to drop all linear constraints and obtain a completely
(homogeneous) quadratic representation of the feasible set:

{
Y ≥ 0 : (Y e3)

2 = en, Y e3eT
n Y = ensT , Y T eneT

n Y = ssT , Y T Y = Diag(s)
}
.

Here (Y e3)
2 indicates the Hadamard (i.e., component-wise) product of Y e3 with itself.

The corresponding CPP is then shown to be equivalent to the graph partitioning
problem.

4.3.2 The quadratic assignment problem

In addition to the graph partitioning problem of the previous subsection, Povh and
Rendl [16] also study the quadratic assignment problem (QAP), for which a similar
approach is possible. Letting x ∈ �n2

and Y ∈ �n×n be identified by the relationship
x = vec(Y ), the QAP can be formulated as minimizing a (homogeneous) quadratic
objective over the feasible set

{
x = vec(Y ) : x ≥ 0, Y en = en, Y T en = en, x j ∈ {0, 1} ∀ j = 1, . . . , n2

}
,

(14)
and Theorem 2.6 establishes a completely positive representation.
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Here again, however, Povh and Rendl take a different approach. It can be shown
that (x, Y ) is in the feasible set (14) if and only if Y is in the set

{
Y ≥ 0 : Y T Y = I

}
.

After adding the redundant constraints Y Y T = I and (eT
n Y en)2 = n2 to yield

{
Y ≥ 0 : Y T Y = Y Y T = I, (eT

n Y en)2 = n2
}

,

they prove that the resulting CPP represents the QAP exactly.

4.4 Comparison

The results of this paper fit naturally between those of Bomze et al. [3] and Sturm and
Zhang [18] (see Sect. 4.1). Indeed, Theorems 2.6 and 3.1 are generalizations of the
work of Bomze et al. On the other hand, in contrast to Sturm–Zhang, the theorems
make clear that it is not necessary to explicitly utilize all features of the feasible set
inside the cone. Instead, the (regular) copositive and completely positive cones suffice.
This is an important property since emerging tools are available for approximating Cq

and C∗
q (see the Introduction)—but not for Cq(D) and C∗

q (D) in the case of general
D ⊆ �q .

From the descriptions above, we see that all previous examples of representing
NP-hard problems as CPPs share the following common characteristic: before repre-
sentation as a CPP, the NP-hard problem is first expressed with homogeneous quadratic
objective and homogeneous quadratic equality constraints. We point out that it is not
obvious how to extend our approach to more general quadratic constraints (homo-
geneous or otherwise) beyond the discussion in Sect. 3.2. In this sense, our analysis
cannot be said to subsume previous analyses (although the previously studied prob-
lems can be formulated differently to fit our setup). On the other hand, our approach
does interestingly require that each linear constraint be squared and added as a redun-
dant homogeneous quadratic equation. Overall, it seems that the original equation and
its squared version are critical for Theorems 2.6 and 3.1. A related observation is that
all previous completely positive representations have been in terms of X only as with
(C ′), not in terms of both x and X as with (C).

Some additional points of comparison can be made with the works of Povh and
Rendl:

– For the graph partitioning problem and the QAP, Povh and Rendl prove the
completely positive representation by appealing to the equality case of the Cauchy–
Schwarz inequality (in addition to other arguments). In fact, we use Cauchy–
Schwarz in a very similar manner as they—namely to prove important properties
of the rank-1 matrices in the completely positive decomposition. It is interesting
that both approaches share this proof technique.

– For the graph partitioning problem, Povh and Rendl start with a mixed linear
and quadratic representation of the feasible set, and then multiply various linear
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equations to ultimately convert everything to quadratic equations. In particular,
some linear equations are squared, and some are multiplied pair-wise with others.
Our approach employs squared equations but does not require pair-wise multipli-
cations.

– Povh and Rendl handle integrality in an implicit manner via the formulations, while
we handle it in a more straightforward manner.

5 Computational considerations

The primary purpose of the current paper is theoretical—to demonstrate that a broad
class of NP-hard problems can be modeled as a specific class of well-structured con-
vex programs. However, a long-term goal is certainly to provide new practical tools
for computationally solving difficult optimization problems. For this reason, we now
discuss some computational issues related to the completely positive representations
(C) and (C ′).

It is important to keep in mind that, while both (C) and (C ′) are convex programming
problems, they are themselves NP-hard due to their equivalence with (P). So the
results of this paper are not a “magic bullet” for solving NP-hard problems. Indeed,
formidable computational challenges still (necessarily) exist. However, the paper does
demonstrate that the main obstacle for solving (P) via (C) or (C ′) is working with
the cone of completely positive matrices C∗

q ; the only other considerations are linear
constraints and a linear objective.

Hence, a natural computational approach is to focus attention on approximating C∗
q

to obtain tractable convex relaxations of (P). This is the idea behind the linear- and
semidefinite-representable cones (Kr

q)∗ mentioned in the Introduction. Variations and
simplifications of (Kr

q)∗ are explored by Peña et al. [14]. Another approach, which
dynamically provides better and better polyhedral approximations of C∗

q via a type of
variable generation scheme, has recently been proposed by Bundfuss and Dür [8]. In
each case, the computational burden for improving the quality of the approximation
is substantial. For example, the size of the representation of (Kr

q)∗ is approximately
O(nr ), which makes the full use of (Kr

q)∗ only feasible for small r .
Complementary to approximating C∗

q , a standard approach for developing convex
relaxations of (P) is incorporating valid linear constraints in the space (x, X). For
example, one could consider the SDP relaxation

min Q • X + 2 cT x

s.t. aT
i x = bi , ∀i = 1, . . . , m

aT
i Xak = bi bk ∀i = 1, . . . , m, k = i, . . . , m

x j = X j j ∀j ∈ B(
1 xT

x X

)
∈ S1+n,

which introduces O(m2) more linear constraints compared to (C) (though the cone is
much simpler). Other variations and types of valid constraints are certainly possible,
e.g., there exists an entire class of valid inequalities coming from the binary conditions
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x j ∈ {0, 1} for j ∈ B [12]. The number and strength of added constraints is of primary
computational importance.

In light of the above, an important computational insight provided by the current
paper is the following:

(C) and (C ′) make clear that the two complementary strategies of approximat-
ing C∗

q and adding valid constraints on (x, X) can actually be combined in a
single intuitive framework and applied to a wide class of difficult optimization
problems.

For any specific situation, determining the most practical way to combine the two
strategies will likely require careful consideration, and simple combination strategies
may not be possible. (An added layer of complexity arises when (P) can be formulated
in different ways, giving rise to different formulations of (C) and (C ′).) Nevertheless,
we feel the above insight is a critical contribution of this paper and deserves future
investigation.

Finally, we mention two success stories arising from the perspective of completely
positive programming. (The first is derived directly from this paper, while the second
arises from the work of Povh and Rendl). In our opinion, these examples support the
viewpoint that the current results can lead to new computational insights for difficult
optimization problems.

First, Anstreicher and Burer [1] have recently used the results of this paper to
provide a closed-form polyhedral and semidefinite representation of

Conv

⎧⎪⎨
⎪⎩

⎛
⎝

1
x1
x2

⎞
⎠

⎛
⎝

1
x1
x2

⎞
⎠

T

: 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

⎫⎪⎬
⎪⎭

,

answering a fundamental open question in the field of global optimization. While this
low-dimensional result may seem of limited computational value, it actually provides
a complete characterization of all valid constraints for 3×3 leading submatrices in the
space (1; x)(1; x)T for the box-constrained quadratic program min{xT Qx + 2 cT x :
0 ≤ x ≤ e}. As such, this result is important for the global solution of high-dimensional
box-constrained QPs.

Second, by relaxing C∗
q to Sq in their completely positive representation of QAP

(see Sect. 4.3.2), Povh and Rendl [16] have derived an efficiently computable SDP
relaxation of QAP whose quality significantly dominates all previously known SDP
relaxations of the same (approximate) size.

6 Conclusion

This paper significantly broadens the application of copositive and completely positive
programming. Still, more work is necessary to exploit these formulations in practice
as discussed in Sect. 5. Some other questions of interest are:

– Can more general quadratic constraints beyond those in Sect. 3.2 be included
in (P)?
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– Can we extend the bounds on approximation error proved by Bomze and de Klerk
[2] for standard quadratic programming? Even more interesting, can we extend
the polynomial-time approximation scheme for standard quadratic programming
to more general constraint structures?

– Are there cases in which one can bound r so that (P) is equivalent to optimization
over (Kr

1+n)∗? Positive results along these lines by de Klerk and Pasechnik [7]
have been shown for their approach to the maximum stable set problem.
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