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Abstract. We show that all multivariate extreme value distributions, which

are the possible weak limits of the K largest order statistics of i.i.d. samples,

have the same copula, the so called K-extremal copula. This copula and its

density are described through exact expressions. We also study measures of

dependence, we obtain a weak convergence result and we propose a simula-

tion algorithm for the K-extremal copula.

1 Introduction

In the study of extremes of i.i.d. sequences, a question of interest is whether or

not the dependence relation among the marginals of the limit distribution of the

K largest order statistics relies on the parent distribution function of the sequence.

One way to evaluate nonlinear dependence between random variables is through

the copula associated to them, this is already discussed in several books as the ones

by Joe (1997), Nelsen (2006) and Drouet-Mari and Kotz (2001). In the present

paper, we show that every multivariate extreme value distribution, which are the

possible weak limits of the K largest order statistics of i.i.d. samples, have the

same copula called the K-extremal copula. From the extremal types theorem, see

below, extremal distributions are obtained from linear transformations of one of

three basic distributions. We prove that the copula for the three basic types is the

K-extremal copula, thus all K-dimensional multivariate extremal distribution have

the same nonlinear dependence among its marginals. This is not remarkable since

the copula for any group of order statistics of an i.i.d. sample of size n with con-

tinuous parent distribution do not depend on this distribution, see Lemma 6 in

Averous, Genest and Kochar (2005). However, a proper characterization of the K-

extremal copula is relevant as well as their consequences. Our result generalizes

the case K = 2 which was considered in Mendes and Sanfins (2007).

The K-extremal copula is a K-dimensional continuous distribution function

which, together with its density, will be described through exact expressions. We

show that the copula of the K largest order statistics of i.i.d. sequences with con-

tinuous parent distribution converges in distribution to the K-extremal copula.
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We also study the behavior of Spearman’s rho and Kendall’s tau for the bivari-

ate marginals of the K-extremal copula. As a last result, we propose a simulation

algorithm to sample from the K-extremal copula.

As pointed out above, this paper deals with a multivariate copula. Most of the

literature on copulas focusses on the bivariate case. In contrast, there are only few

descriptions and construction schemes of higher dimensional copulas. For more on

recent results and innovations concerning multivariate copulas, we suggest to the

reader the papers Aas et al. (2009), Liebscher (2008) and Morillas (2005), together

with the references therein.

In Section 2, we will present and discuss the results in this paper postponing all

the proofs to Section 3.

2 Statements

Fix an integer K ≥ 2. For every n ≥ K , let M1,n, . . . ,MK,n be the K largest order

statistics of an i.i.d. sample of size n with parent distribution not depending on n.

The extremal types theorem, see Sections 2.2 and 2.3 in Leadbetter, Lindgreen and

Rootzen (1983) and Section 4.2 in Embrechts, Kluppelberg and Mikosch (1997),

states that if for some sequences of real numbers (an)
∞
n=1 and (bn)

∞
n=1 the random

variables anM1,n + bn converge in distribution then the random vectors

(anM1,n + bn, . . . , anMK,n + bn) (2.1)

also converge in distribution. The limit belongs to a family of distributions

parametrized by −∞ < μ < ∞, σ > 0 and −∞ < ξ < ∞. For a choice (μ,σ, ξ)

of the parameters, the marginals of a limit distribution have distribution function

and density functions given respectively, by

Gm(z) =

⎧
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⎩

exp{−�(z)}
m−1
∑

j=0

�(z)j

j !
, if ξ

(

z − μ

σ

)

> −1 for ξ �= 0 or

z ∈ R for ξ = 0,

0, if z < μ −
σ

ξ
for ξ > 0,

1, if z > μ −
σ

ξ
for ξ < 0.

(2.2)

and

gm(z) =
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⎪

⎪

⎪

⎩

exp{−�(z)}
�′(z)�(z)m−1

(m − 1)!
,

if ξ

(

z − μ

σ

)

> −1 for ξ �= 0 or

z ∈ R for ξ = 0,

0, otherwise,

(2.3)
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where

�(z) = �ξ,μ,σ (z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

1 + ξ

(

z − μ

σ

)]−1/ξ

, if ξ �= 0,

exp

(

−
z − μ

σ

)

, if ξ = 0

for m ≥ 1. A distribution function as above is called a Generalized Extreme Value

(GEV) distribution which are classified in types I, II and III according, respec-

tively, to ξ = 0, ξ > 0 and ξ < 0. Note that the function � is strictly decreasing

positive function and satisfies

lim
z→−∞

�(z) = +∞ and lim
z→∞

�(z) = 0, if ξ = 0,

lim
z↓(μ−σ/ξ)

�(z) = +∞ and lim
z→∞

�(z) = 0, if ξ > 0, (2.4)

lim
z→−∞

�(z) = +∞ and lim
z↑(μ−σ/ξ)

�(z) = 0, if ξ < 0.

Also by the extremal types theorem, the joint density function g̃K of a limiting

extreme value distribution for normalized sums of the K largest order statistics of

an i.i.d. sequence, as in (2.1), is given by

g̃K(z1, . . . , zK) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(−1)K exp{−�(zK)}
K
∏

j=1

�′(zj ),

if (z1, . . . , zK) ∈ �ξ ,

0, otherwise,

(2.5)

where

�ξ =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

R
K , if ξ = 0,

{

(z1, . . . , zK) ∈ R
K : z1 > · · · > zK > μ −

σ

ξ

}

, if ξ > 0,

{

(z1, . . . , zK) ∈ R
K :μ −

σ

ξ
> z1 > · · · > zK

}

, if ξ < 0.

A continuous distribution function with density as in (2.5) for parameters −∞ <

μ < ∞, σ > 0 and −∞ < ξ < ∞ is called a Multivariate Generalized Extreme

Value (MGEV) distribution function.

Remark 2.1. A broader class of stationary sequences of random variables have a

MGEV distribution as the assymptotic distribution of the largest maxima. These

sequences should satisfy some weak dependence condition. The results can be

found for instance in Embrechts, Kluppelberg and Mikosch (1997).

Our first result gives an explicitly expression for the distribution function asso-

ciated to the density g̃K .
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Proposition 2.1. The distribution function G̃K of a limiting extreme value distri-

bution for a normalized vector of the K largest order statistics of i.i.d. continuous

random variables has the following representation

G̃K(z1, . . . , zK) = HK(z1,min(z1, z2),min(z1, z2, z3), . . . ,min(z1, . . . , zK))

for every (z1, . . . , zK) ∈ R
K , where

HK(z1, . . . , zK) = exp{−�(zK)}JK(�(z1), . . . ,�(zK))

for min(z1, . . . , zK) > μ − σ
ξ

, if ξ > 0, or for min(z1, . . . , zK) < μ − σ
ξ

, if ξ <

0, or (z1, . . . , zK) ∈ R
K , if ξ = 0, otherwise HK(z1, . . . , zK) = 0. The function

JK : RK
+ → R+ is a polynomial in K variables which is defined by induction by

putting J1 ≡ 1 and

Jm(x1, . . . , xm) =
m−1
∑

j=0

x
j
m

j !
−

m−1
∑

j=1

x
j
j

j !
Jm−j (xj+1, . . . , xm) for m ≥ 1.

We can now compute the density of the copula associated to the density g̃K of

a MGEV distribution function, which we call the K-extremal copula and turns out

to not depend on the parameters ξ , μ and σ .

Proposition 2.2. The density of the copula of a MGEV distribution function is

given by

cK(u1, . . . , uK) =
(

K−1
∏

j=1

d logψj

duj

(uj )

)

dψK

duK

(uK) (2.6)

=
(

K−1
∏

j=1

(−1)j−1ψj (uj )
(logψj (uj ))

j−1

(j − 1)!

)−1

(2.7)

×
(

(− logψK(uK))K−1

(K − 1)!

)−1

for (u1, . . . , uK) ∈ (0,1)K such that u1 > ψ2(u2) > · · · > ψK(uK), where ψm :
(0,1) → (0,1) is the increasing function that satisfies the following implicit equa-

tion

u = ψm(u)

m−1
∑

j=0

(−1)j
(logψm(u))j

j !
, (2.8)

otherwise cK(u1, . . . , uK) = 0.

Remark 2.2. The function ψm which appears in the expression for the density

of the K-extremal copula can be obtained from a MGEV distribution function as

ψm(u) = exp{−�(G−1
m (u)} for every u ∈ (0,1) and m ≥ 1.
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Also with the expression of the MGEV distribution function, it is straightfor-

ward to write the expression for the K-extremal copula which we present in the

next result.

Proposition 2.3. The copula of a MGEV distribution is given by

CK(u1, . . . , uK) = HK(u1, r1(u1, u2), r2(u1, u2, u3), . . . , rK−1(u1, . . . , uK))

for every (u1, . . . , uK) ∈ [0,1]K , where

rm−1(u1, . . . , um) = ψ−1
m (ψl(ul)) = ψl(ul)

m−1
∑

j=0

(−1)j
(logψl(ul))

j

j !
,

if ψl(ul) = min(ψ1(u1), . . . ,ψm(um)) and for every (u1, . . . , uK) such that u1 =
ψ1(u1) ≥ ψ2(u2) ≥ · · · ≥ ψK(uK)

HK(u1, . . . , uK)

= ψK(uK)JK(− logu1,− logψ2(u2), . . . ,− logψK(uK))

= uK − ψK(uK)

K−1
∑

j=1

(− logψj (uj ))
j

j !

× JK−j (− logψj+1(uj+1), . . . ,− logψK(uK))

with Jm defined in the statement of Proposition 2.1.

By a simple generalization of Lemma 6 in Averous, Genest and Kochar (2005),

we have that the multivariate copula of the K largest order statistics of an i.i.d.

sample of size n do not depend on the continuous parent distribution of the sample.

This copula will be denoted by C̃
(n)
K , where n denotes the size of the sample. The

next proposition is a convergence result for copulas that has the consequence that

for continuous distributions the nonlinear dependence structure of the K-largest

order statistics of large i.i.d. samples is approximately captured by the K-extremal

copula.

Proposition 2.4. The copula C̃
(n)
K converges in distribution to CK as n → ∞.

From the K-extremal copula, we can obtain the copula between the m largest

and the l largest limiting order statistics for every choice of m and l, or between any

two marginals of a MGEV distribution. Then we can use these bivariate copulas

to obtain measures of dependence as the Spearman’s rho and Kendall’s tau. For a

copula C, the Spearman’s rho is defined by

12

∫ 1

0

∫ 1

0
C(u, v) dudv − 3 = 12

∫ 1

0

∫ 1

0
uv dC(u, v) − 3
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and Kendall’s tau by

4

∫ 1

0

∫ 1

0
C(u, v) dC(u, v) − 1.

We are going to study here the behavior of Spearman’s rho and Kendall’s tau for the

mth and the lth marginals of the K-extremal, for 1 ≤ m < l ≤ K and K ≥ 2. We

denote these measures respectively by ρm,l and τm,l . We point out that ρ1,2 = 2/3

and τ1,2 = 1/2 have been obtained in Mendes and Sanfins (2007). For more on

measures of dependence of order statistics see Averous, Genest and Kochar (2005)

and Chen (2007).

As a first result, we show that ρ1,K and τ1,K converge to zero as K → ∞. Using

the convergence result in Proposition 2.4, this characterizes the behavior of these

measures for the first and the K th largest order statistics of large samples with

continuous parent distribution.

Proposition 2.5. Both sequences (ρ1,K) and (τ1,K) converges to zero as K → ∞.

Remark 2.3. In the proof of Proposition 2.5, we obtain an explicit expression for

ρ1,K which is

ρ1,K = 12

(

(−1)K−1
K−1
∑

l=0

∞
∑

j=K−1

(−1)j

(

l + j

l

)

1

2l+j+1

)

− 3. (2.9)

From this formula, we can verify that ρ1,2 = 2/3 and show that ρ1,3 = 19/36. For

the sake of completeness, we have included the straightforward computation of

ρ1,2 and ρ1,3 in Section 3, just after the proof of Proposition 2.5. For τ1,K , we

were not able to obtain an explicit expression.

Still concerning measures of dependence, it is reasonable to expect that both

ρm,l and τm,l decrease as l increases and increase as m increases. In Tables 1

Table 1 Estimates for Spearman’s rho, ρm,l , obtained from the bivariate marginals of the 10-

extremal copula using a sample of size 10,000

ρm,l l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10

m = 1 1.000 0.664 0.525 0.446 0.395 0.358 0.330 0.308 0.289 0.274

m = 2 1.000 0.794 0.675 0.597 0.541 0.498 0.464 0.436 0.412

m = 3 1.000 0.850 0.751 0.680 0.626 0.582 0.547 0.517

m = 4 1.000 0.882 0.798 0.734 0.682 0.641 0.605

m = 5 1.000 0.903 0.829 0.771 0.723 0.683

m = 6 1.000 0.917 0.852 0.798 0.754

m = 7 1.000 0.927 0.869 0.820

m = 8 1.000 0.935 0.882

m = 9 1.000 0.942

m = 10 1.000
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Table 2 Estimates for Kendall’s tau, τm,l , obtained from the bivariate marginals of the 10-extremal

copula using a sample of size 10,000

τm,l l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10

m = 1 1.000 0.500 0.375 0.313 0.274 0.247 0.226 0.210 0.196 0.185

m = 2 1.000 0.625 0.500 0.430 0.383 0.349 0.322 0.301 0.283

m = 3 1.000 0.688 0.570 0.500 0.451 0.414 0.385 0.362

m = 4 1.000 0.726 0.617 0.549 0.500 0.462 0.432

m = 5 1.000 0.754 0.651 0.585 0.537 0.500

m = 6 1.000 0.774 0.678 0.614 0.567

m = 7 1.000 0.790 0.699 0.637

m = 8 1.000 0.804 0.716

m = 9 1.000 0.814

m = 10 1.000

and 2, just below, we present a numerical evidence of this fact listing all the values

of ρm,l and τm,l estimated from a sample of the 10-Extremal copula. The procedure

to sample from the copula is discussed later in this section.

We here present a formal proof that ρm,l increases as m increases.

Proposition 2.6. For every 0 < m < l, ρm,l ≤ ρm+1,l .

We now describe a simulation algorithm to generate samples from the K-

extremal copula. The method is based on a technique of conditional sampling

to sample from multivariate copulas, see, for instance, Cherubini, Luciano and

Vecchiato’s book Cherubini, Luciano and Vecchiato (2004). We can resume the

procedure with the following steps:

(i) Put Cm(u1, u2, . . . , um) = C(u1, u2, . . . , um,1, . . . ,1) for m = 2, . . . ,K ;

(ii) Sample u1 from the uniform distribution in (0,1);

(iii) Sample um from the conditional distribution Cm(·|u1, . . . , um−1) for m =
2, . . . ,K ;

We now are going to focus on how to sample uk from the conditional distri-

bution Ck(·|u1, . . . , uk−1). To sample um from Cm(·|u1, . . . , um−1), we sample q

from U(0,1) and we put um = C−1
m (q|u1, . . . , um−1). Therefore, we should know

explicitly Cm(·|u1, . . . , um−1). We compute it in the following lemma.

Lemma 2.7. The conditional distribution function of Um|(U1,U2, . . . ,Um−1)

when (U1, . . . ,UK) has distribution function given by the K-extremal copula is

given by

Cm(um|u1, . . . , um−1) =
ψm(um)

ψm−1(um−1)
. (2.10)
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If we now put q = Cm(um|u1, . . . , um−1), we have that:

um = C−1
m (q|u1, . . . , um−1) = ψ−1

m

(

q · ψm−1(um−1)
)

.

From definition (2.8), we get

um = ψm

(

q · ψm−1(um−1)
)

m−1
∑

j=0

(−1)j
(logψm(q · ψm−1(um−1)))

j

j !
.

Therefore, we solve numerically ψm−1(um−1) and then ψm(q · ψm−1(um−1)) to

obtain um.

In Figure 1, we plot the bivariate marginals taken from a sample of size 200 of

the 4-extremal copula.

Figure 1 The six bivariate samples taken from a unique sample of size 200 of the 4-extremal copula

whose marginals are denoted by U1, . . . ,U4.
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3 Proofs

Proof of Proposition 2.1. We show that G̃K is a K-dimensional distribution func-

tion with density given by g̃K . By the definition of g̃K , the multiple integral
∫ z1

−∞
· · ·

∫ zK

−∞
g̃K(y1, . . . , yK) dy1 · · · dyK

is equal to
∫ z1

−∞

∫ min(z1,z2)

−∞
· · ·

∫ min(z1,...,zK )

−∞
g̃K(y1, . . . , yK) dy1 · · · dyK .

Therefore, G̃K(z1, . . . , zK) = G̃K(z1,min(z1, z2), . . . ,min(z1, . . . , zK)). From

now on, we suppose that z1 > z2 > · · · > zK . Then, from (2.5), G̃K(z1, . . . , zK) is

equal to

(−1)K
∫ zK

Aξ

∫ zK−1

yK

· · ·
∫ z2

y3

∫ z1

y2

exp{−�(yK)}
K
∏

j=1

�′(yj ) dy1 · · · dyK ,

where Aξ = μ − σ
ξ

, if ξ > 0, and Aξ = −∞ otherwise. Considering the following

change of variables in the last integral, xj = �(yj ), for 1 ≤ j ≤ K , we get the

following integral

IK(w1, . . . ,wK) := (−1)K
∫ +∞

wK

∫ xK

wK−1

· · ·
∫ x3

w2

∫ x2

w1

e−xK dx1 · · · dxK ,

where wj = �(zj ). To complete the proof, we show by induction that

IK(w1, . . . ,wK) = e−wK JK(w1, . . . ,wK).

For K = 1, a simple verification shows that the result holds. Now suppose that it

holds for 1 ≤ K ≤ L − 1. For K = L, we perform the first iterated integral in the

expression for IK(w1, . . . ,wK) to obtain that it is equal to

(−1)K
∫ +∞

wK

∫ xK

wK−1

· · ·
∫ x3

w2

x2e
−xK dx2 · · · dxK − w1IK−1(w2, . . . ,wK).

Then perform the first iterated integral in the first term of the previous expression

to obtain

(−1)K
∫ +∞

wK

∫ xK

wK−1

· · ·
∫ x4

w3

x3

2
e−xK dx3 · · · dxK

− w2

2
IK−2(w3, . . . ,wK) − w1IK−1(w1, . . . ,wK).

Following recursively this procedure, we get

IK(w1, . . . ,wK) = e−wK

m−1
∑

j=0

w
j
K

j !
−

m−1
∑

j=1

w
j
j

j !
IK−j (wj+1, . . . ,wK).
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By the definition of JK and the induction hypotheses, we complete the proof. �

Proof of Proposition 2.2. Let us fix a limiting extreme value distribution function

G̃K . We have that

cK(u1, . . . , uK) =
g̃K(G−1

1 (u1), . . . ,G
−1
K (uK))

∏K
j=1 gj (G

−1
j (uj ))

.

Therefore, we just apply formulas (2.3) and (2.5) to obtain that cK(u1, . . . , uK) is

equal to

(

K−1
∏

j=1

exp{−�(G−1
j (uj ))}

�(G−1
j (uj ))

j−1

(j − 1)!

)−1
(

�(G−1
K (uK))K−1

(K − 1)!

)−1

.

From this formula, if we put ψm(u) = exp{−�(G−1
m (u)} we get (2.7) in the state-

ment. Now (2.8) is a direct consequence of the explicit formulas for the distribution

function Gm given in (2.2).

It remains to verify (2.6). If we derive both sides of (2.8), we get that

1 =
(

m−1
∑

j=0

(−1)j
(logψm)j

(j)!
−

m−2
∑

j=0

(−1)j
(logψm)j

(j)!

)

dψm

du

= (−1)m−1 (logψm)m−1

(m − 1)!
dψm

du
,

which implies that

dψm

du
= (−1)m−1

(

(logψm)m−1

(m − 1)!

)−1

(3.1)

and

d logψm

du
= (−1)m−1

(

ψm

(logψm)m−1

(m − 1)!

)−1

. (3.2)

From (3.1), (3.2) and (2.7), we arrive at (2.6). �

Proof of Proposition 2.3. Let us fix a limiting extreme value distribution function

G̃K . Then the K-extremal copula is given by

CK(u1, . . . , uK) = G̃K(G−1
1 (u1), . . . ,G

−1
K (uK))

for every (u1, . . . , uK) ∈ [0,1]K which by Proposition 2.1 is equal to

HK(G−1
1 (u1),min(G−1

1 (u1),G
−1
2 (u2)), . . . ,min(G−1

1 (u1), . . . ,G
−1
K (uK))).

By the definition of HK , monotonicity and the expression for ψm in Remark 2.2,
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see also the proof of Proposition 2.2, the previous expression is equal to

min
1≤l≤K

(ψl(ul))JK

(

− logu1,− log min
l=1,2

(ψl(ul)), . . . ,− log min
1≤l≤K

(ψl(ul))
)

.

Using the definition of rm in the statement, write the above expression as

ψK(rK(u1, . . . , um))JK(− logu1,− logψ2(r2(u1, u2)), . . . ,

− logψK(rK(u1, . . . , um))),

which completes the proof. �

Proof of Proposition 2.4. Let M1,n, . . . ,MK,n be the K-largest order statistics of

a sample of size n with a given continuous parent distribution function F which

belongs to the domain of attraction of a GEV distribution. This means that there

exists (an)
+∞
n=1 and (bn)

+∞
n=1 sequences of real numbers such that the random vector

(anM1,n + bn, . . . , anMK,n + bn)

converges in distribution to some G̃K which is a MGEV distribution function. By

invariance concerning composition with affine transformations the copula associ-

ated to (M1,n, . . . ,MK,n) and (anM1,n + bn, . . . , anMK,n + bn) is C̃
(n)
K indepen-

dently of F .

Let Fj,n be the distribution function of anMj,n + bn. Therefore, if we define the

function Vn(x1, . . . , xK) = (F1,n(x1), . . . ,FK,n(xK)), (x1, . . . , xK) ∈ R
n then

Vn(anM1,n + bn, . . . , anMK,n + bn) (3.3)

has the distribution function equal to the copula C̃
(n)
K .

The K-extremal copula is the distribution function of V (Y1, . . . , YK), where

V (x1, . . . , xK) = (G1(x1), . . . ,GK(xK)), (x1, . . . , xK) ∈ R
n. By Theorem 5.1 in

Billingsley (1968), (3.3) converges in distribution to the K-extremal copula if

Vn converges uniformly to V on compact intervals, but this is a consequence of

Pólyas’s theorem which implies that Fj,n converges uniformly to Gj since the last

is absolutely continuous. �

Proof of Proposition 2.5. We shall prove through estimates on exact expressions

that ρ1,K → 0. The analogous result can be applied to τ1,K since ρ1,K ≥ τ1,K ≥ 0.

This last assertion can be verified through Theorem 5.1 of Fredricks and Nelsen

(2007). Indeed, according to their terminology, for two order statistics, the largest

is always left-tail decreasing and smallest is right-tail increasing.

Applying directly the definition, we can write (ρ1,K + 3)/12 as

∫ 1

0

∫ 1

ψ−1
K−1(ψK (uK ))

· · ·
∫ 1

ψ−1
2 (ψ3(u3))

∫ 1

ψ2(u2)
u1uKcK(u1, . . . , uK) du1 · · · duK (3.4)
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which we are going to show that converges to 1/4 as K → ∞ resulting in

ρ1,K → 0. By (2.6), the previous iterated integral can be rewritten as

∫ 1

0

∫ 1

ψ−1
K−1(ψK (uK ))

· · ·
∫ 1

ψ−1
2 (ψ3(u3))

∫ 1

ψ2(u2)
u1uK

×
(

K−1
∏

j=1

d logψj

duj

(uj )

)

dψK

duK

(uK) du1 · · · duK .

By induction in 1 ≤ m ≤ K − 1, we show that

∫ 1

ψ−1
m (ψm+1(um+1))

· · ·
∫ 1

ψ−1
2 (ψ3(u3))

∫ 1

ψ2(u2)
u1

m
∏

j=1

d logψj

duj

(uj ) du1 · · · dum

is equal to

(−1)m

[

ψm+1(um+1) −
m−1
∑

j=0

(logψm+1(um+1))
j

j !

]

. (3.5)

Indeed, ψ1 is the identity function in (0,1) and therefore

∫ 1

ψ2(u2)
u1

d logψ1

du1
(u1) du1 = (−1)[ψ2(u2) − 1].

Now suppose that (3.5) holds for some 1 ≤ l ≤ K − 2 then

(−1)l

[

ψl+1(ul+1) −
l−1
∑

j=0

(logψl+1(ul+1))
j

j !

]

d logψl+1

dul+1

(ul+1)

is equal to

(−1)l
d

dul+1

(

ψl+1(ul+1) −
l

∑

j=1

(logψl+1(ul+1))
j

j !

)

and, since ψl+1(1) = 1, integrating on the variable ul+1 over the interval

(ψ−1
l+1(ψl+2(ul+2)),1), we obtain that (3.5) holds for m = l + 1.

Therefore, the integral in (3.4) is equal to

∫ 1

0
u
dψK

du
(u)(−1)K−1

[

ψK(u) −
K−2
∑

j=0

(logψK(u))j

j !

]

du.

Put v = ψK(u), u ∈ (0,1) and uses the power series expansion

v =
∞
∑

j=0

log(v)j

j !
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to write the previous integral as

(−1)K−1
∫ 1

0
ψ−1

K (v)

( ∞
∑

j=K−1

log(v)j

j !

)

dv.

Another change of variables and (2.8) allows us to write the integral in (3.4) as

(−1)K−1
K−1
∑

l=0

∞
∑

j=K−1

(−1)j

j !l!

∫ +∞

0
yl+je−2y dy

which, since
∫ +∞

0
yl+je−2y dy =

(l + j)!
2l+j+1

,

can be rewritten as

(−1)K−1
K−1
∑

l=0

∞
∑

j=K−1

(−1)j

(

l + j

l

)

1

2l+j+1
.

We finish the proof showing that

lim
K→∞

{

(−1)K−1
K−1
∑

l=0

∞
∑

j=K−1

(−1)j

(

l + j

l

)

1

2l+j

}

= 1

2
.

From this point, we suppose that K is odd, for K even the proof is similar with

few sign changes. The left-hand side term in the previous convergence statement

is equal to

K−1
∑

l=0

∞
∑

j=K−1

(

l + j

l

)

1

2l+j
−

K−1
∑

l=0

∞
∑

j=(K−1)/2

(

l + 2j + 1

l

)

1

2l+2j
. (3.6)

Now apply the identities
(

l + 2j

0

)

= 1 and

(

l + 2j + 1

l

)

=
(

l + 2j

l − 1

)

+
(

l + 2j

l

)

for l ≥ 1,

to write the second term in (3.6) as

∞
∑

j=K−1

(

2j + 1

K − 1

)

1

22j+1
−

K−1
∑

l=0

∞
∑

j=K−1

(

l + j

l

)

1

2l+j
.

Therefore, (3.6) is equal to

∞
∑

j=K−1

(

2j + 1

K − 1

)

1

22j+1
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which is

∞
∑

j=2K

(

j − 1

K − 1

)

1

2j
+

∞
∑

j=K−1

(

2j + 1

K − 1

)

(

1 −
2j + 2

2(2j − K + 3)

)

1

22j+2
.

Let Y be a random variable with negative binomial distribution with parameters K

and 1/2. Then the second term in the sum above is equal to

E

[(

1 − Y

2(Y − K + 1)

)

I
{

Y even, Y ≥ 2K
}

]

,

which is bounded above by

E

[(

1 −
Y

2(Y − K + 1)

)

I{2K ≤ Y ≥ 2K + K3/4}
]

+ P(Y ≥ 2K + K3/4)

≤
(

1 −
2 + K−1/4

2 + 2K−1/4 + 2K−1

)

+ P

(

Y − E[Y ]√
2K

≥
K1/4

√
2

)

that goes to zero as K → ∞ by the central limit theorem.

Therefore, the limit of (3.6) as K → ∞ is the same as the limit of

∞
∑

j=2K

(

j − 1

K − 1

)

1

2j

which is the probability that a negative binomial distribution with parameters K

and 1/2 takes a value greater or equal to 2K . This probability converges to 1/2

again by the central limit theorem. �

Computation of ρ1,2 and ρ1,3. From Formula (2.9), we have that

ρ1,2 = 12

1
∑

l=0

+∞
∑

j=1

(−1)j+1

(

l + j

l

)

1

2l+j+1
− 3

= 12

(

3

2

+∞
∑

j=1

(−1)j+1

2j+1
+

+∞
∑

j=1

(−1)j+1j

2j+2

)

− 3

and

ρ1,3 = 12

2
∑

l=0

+∞
∑

j=2

(−1)j

(

l + j

l

)

1

2l+j+1
− 3

= 12

(

7

4

+∞
∑

j=2

(−1)j

2j+1
+

7

4

+∞
∑

j=2

(−1)j j

2j+2
+

1

2

+∞
∑

j=2

(−1)j j2

2j+3

)

− 3.

Just to simplify the calculus of the above series, let Y be a geometric distribu-

tion with parameter 3/4, that is, P(Y = k) = 3
4k , for k = 1,2,3, . . . . We have the
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following equalities

+∞
∑

j=1

(−1)j+1

2j+1
=

+∞
∑

k=1

1

4k
−

1

2

+∞
∑

k=1

1

4k
=

1

2

+∞
∑

k=1

1

4k
=

1

6
,

+∞
∑

j=1

(−1)j+1j

2j+2
=

+∞
∑

k=0

(

2k + 1

22k+3
−

2k + 2

22k+4

)

=
+∞
∑

k=0

k

22k+3
=

1

8

+∞
∑

k=0

k

4k
=

E[X − 1]
6

=
1

18

and

+∞
∑

j=2

(−1)j j2

2j+3
=

+∞
∑

k=1

(

4k2

22k+3
−

(2k + 1)2

22k+4

)

=
1

2

+∞
∑

k=1

k2

4k
−

1

16

+∞
∑

k=1

(2k + 1)2

4k

=
E[X2]

6
−

E[(2X + 1)2]
48

=
8

48

20

9
−

1

48

137

9
=

23

48 × 9
.

Therefore,

ρ1,2 = 12

(

3

2

1

6
+ 1

18

)

− 3 =
2

3

and

ρ1,3 = 12

(

7

4

(

1

4
− 1

6

)

+ 7

4

(

1

8
− 1

18

)

+ 1

2

23

48 × 9

)

− 3 = 254

72
− 3 = 19

36
.

Proof of Proposition 2.6. Fix K > m. Write (ρm,l + 3)/12 as

∫ 1

0

∫ 1

ψ−1
K−1(ψK (uK ))

· · ·
∫ 1

ψ−1
2 (ψ3(u3))

∫ 1

ψ2(u2)
umul

(3.7)

× cK(u1, . . . , uK) du1 · · · duK .

By induction, we can show that for 2 ≤ m ≤ K − 1

∫ 1

ψ−1
m−1(ψm(um))

· · ·
∫ 1

ψ2(u2)
cK(u1, . . . , uK) du1 · · · dum−1

=
(− logψm(um))m−1

(m − 1)!
d logψm

dum

(um)

(

K−1
∏

j=m+1

d logψj

duj

(uj )

)

dψK

duK

(uK),
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and since

(− logψm(um))m−1

(m − 1)!
d logψm

dum

(um) = 1

ψm(um)
,

we have that the integral in (3.7) is equal to

∫ 1

0

∫ 1

ψ−1
K−1(ψK (uK ))

· · ·ul

∫ 1

ψ−1
m (ψm+1(um+1))

um

ψm(um)
dum

×
(

K−1
∏

j=m+1

d logψj

duj

(uj )

)

dψK

duK

(uK) dum+1 · · · duK .

Now, note that, since um ≥ ψ−1
m (ψm+1(um+1)),

um

ψm(um)
=

m−1
∑

j=0

(− logψm(um))j

j !
≤

m−1
∑

j=0

(− logψm+1(um+1))
j

j !

≤
m

∑

j=0

(− logψm+1(um+1))
j

j !
=

um+1

ψm+1(um+1)
.

Therefore,

∫ 1

ψ−1
m (ψm+1(um+1))

um

ψm(um)
dum

≤
um+1

ψm+1(um+1)
[1 − ψ−1

m (ψm+1(um+1))]

≤ um+1

ψm+1(um+1)
.

But replacing the integral in · · · by the
um+1

ψm+1(um+1)
, we have ρm+1,l . �

Proof of Lemma 2.7. Let (U1,U2, . . . ,UK) be a random vector whose distribu-

tion function is CK . The conditional distribution of Um given U1,U2, . . . ,Um−1

has distribution function

Cm(um|u1, . . . , um−1) = P(Um ≤ um|U1 = u1, . . . ,Um−1 = um−1)

=
(

∂m−1Cm(u1, . . . , um)

∂u1 · · · ∂um−1

)

(3.8)

/

(

∂m−1Cm−1(u1, . . . , um−1)

∂u1 · · · ∂um−1

)

for every m = 2, . . . , k.
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We first deal with the numerator in (3.8) which by the formula in Proposition 2.3

can be written as

∂m−1

[

−ψm(um)

m−1
∑

j=1

− log(ψj (uj ))
j

j !

× Jm−j (− logψj+1(uj+1), . . . ,− logψm(um))

]

/

∂u1 · · · ∂um−1.

If we remove the terms that do not depend on all the variables u1, . . . , um−1, we

obtain that the last partial derivative is equal to

∂m−1[−ψm(um)
∏m−1

j=1 (− log(ψ(uj )))]
∂u1 · · · ∂um−1

. (3.9)

Using that

d logψm

du
= (−1)m−1

(

ψm

(logψm)m−1

(m − 1)!

)−1

,

we obtain that (3.9) is equal to

(−1)mψm(um)(−1)m−1
m−1
∏

j=1

(−1)j−1

(

ψj (uj )
log(ψj (uj ))

j−1

(j − 1)!

)−1

. (3.10)

Now we consider the denominator in (3.8) which is equal to the density function

of the (m − 1)-extremal copula. Hence, it is equal to

(

m−2
∏

j=1

(−1)j−1ψj (uj )
(logψj (uj ))

j−1)

(j − 1)!

)−1

(3.11)

×
(

−
(logψm−1(um−1))

m−2

(m − 2)!

)−1

.

Finally, replace the expressions in (3.10) and (3.11), respectively, in the numer-

ator and denominator in (3.8) to obtain that

Cm(um|u1, . . . , um−1) = ψm(um)

ψm−1(um−1)
.

�
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