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1. Introduction. Let T be a completely nonunitary contraction in a Hubert

space Hand let H°° be the Banach algebra of all bounded analytic functions in the

unit disc D. In [15] B. Sz.-Nagy and C. Foias constructed a functional calculus in

this setting. For each T, a map u -> u(T) was defined, the map being an algebra

homomorphism of H™ into the algebra of bounded operators in H with the

following properties :

(i) MDII^HI-
(ii) If {un} is a uniformly bounded set of functions satisfying un(eu) -*■ u(eu) a.e.,

then un(T) converges to u(T) in the strong operator topology.

(iii) u(T)* = ü(T*) where ü(z) = u(z).

The spectral properties of this functional calculus, i.e. the determination of

o(u(T)) in terms of the operator T and the analytic behavior of u, have not been

derived. Some progress in this direction has been made by C. Foias and W. Mlak

[4], who proved that the classical spectral mapping theorem o(u(T)) = u(o(T)) holds

if u can be extended continuously to those points on the unit circle that are in

ein
The above spectral problem is the subject of this paper. At the sacrifice of the

generality in which the Sz.-Nagy-Foias calculus was formulated, this problem has

been completely solved. Instead of dealing with arbitrary, completely nonunitary

contractions, we restrict ourselves to those contractions T whose adjoints can be

represented as restrictions of the left shift to left invariant subspaces of H2(N)

(see §2 for definitions). These operators comprise a fairly general class of operators

since any contraction A in a Hubert space H for which A*n converges to zero in

the strong operator topology is unitarily equivalent to an operator of this form.

This is a refinement of a theorem of Rota [13] due to Sz.-Nagy and Foias [16] and

Branges and Rovnyak [2]. To get our results we will have to assume that dim N is

finite.

Let N he a separable Hubert space. H2(N) is the Hardy class of order 2, i.e.

the set of all N-valued square integrable functions on the unit circle whose Fourier
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coefficients vanish for all negative indices. (For details we refer to [7].) The H2(N)

norm is defined by
fir2" "im

\\n = {ljo mew*} ■

All functions in H2(N) have analytic continuations into the disc, and whenever

convenient we will assume that the functions have been continued.

As usual a subspace of H2(N) is called (right) invariant if it is invariant under

multiplication by z. The operator of multiplication by z in H2(N) is called the right

shift. Its adjoint, the left shift, is the operator that sends F(z) into (F(z)—F(0))/z.

A subspace of H2(N) is called left invariant if it is invariant under the left shift.

The orthogonal complement of a left invariant subspace is right invariant.

Now let A' be a left invariant subspace of H2(N) and P the orthogonal projection

of H2(N) onto K. If we embed H2(N) naturally in L2(N), then we consider P to

be the orthogonal projection of L2(N) onto K. For each F in K and u in 77°° we

define

(1.1) u(T)F = P(uF).

Clearly T* is the left shift restricted to K. The definition above is a special case of

the Sz.-Nagy-Foias calculus.

A basic tool in our approach is the Beurling-Lax representation theorem for

invariant subspaces. Following Halmos [6], we define a rigid analytic function to

be an N-contraction valued analytic function in the unit disc having a.e. partial

isometries with a fixed initial space as boundary values on the unit circle. A rigid

function is called inner if its boundary values are a.e. unitary operators.

We quote now the Beurling-Lax theorem [1], [9], [6].

Theorem. All invariant subspaces of H2(N) are of the form SH2(N) where S is

a rigid analytic function.

As was stated, the objects of our study are the operators u(T) defined by (1.1).

Now the orthogonal complement of K in H2(N) is an invariant subspace and thus

there corresponds to it a rigid analytic function S. S of course is not unique. Our

aim is to study u(T) in terms of u and S. This idea of course is not new. In the scalar

case (dim N= 1) the spectrum of T was determined in such fashion by Moeller

[12], and his work has been generalized by Lax and Phillips [10], Helson [7] and

Sz.-Nagy and Foias [16]. The analysis of o(u(T)) comprises §2 of this paper. The

Carleson corona theorem [3] is fundamentally used. In fact part of the proof of

Theorem 2.3 taken in conjunction with [7, Theorem 11] suggests a possible general-

ization of the corona theorem to the case of matrix valued functions. This is taken

up in §3.

One last remark is in order. Except for the 77 " norm, no attempt has been made

to distinguish in our notation the other norms appearing. We believe that it is

clear from the context which norm is meant. We follow Helson however by always
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taking H-Fie'OII to be the norm of F(en) as a vector in N while reserving ||F|| to the

integrated H2(N) norm.

2. Spectral analysis. As will be seen later there is a marked difference in the

spectral properties of T between the case that a rigid noninner function corresponds

to K1 and that to which the corresponding function is inner. In the case that S is

inner there is a certain symmetry in the roles of T and T*. The exact statement is

given by Theorem 2.1. It is closely related to a theorem in [16, p. 42]. Throughout

this paper, for any operator (scalar) valued analytic function A, we define

Ä(z) = A(z)*.

Theorem 2.1. Let K=H2(N)Q SH2(N) with S inner and T defined in K by

(1.1). T is unitarily equivalent to the left shift in

K = H2(N) 0 SH2(N).

Proof. The space L2(N) has the following decomposition:

L2(N) = K2(N) ®K® SH2(N),

where K2(N) is the space of all conjugate, analytic, square, integrable, V-vector

valued functions with mean values zero. For each F in L2(N) we define

(i-F)(ei!) = e-».S'(e-it)*F(e-ii).

r is a unitary map in L2(N). Clearly t maps SH2(N) onto K2(N), K2(N) onto

SH2(N), and thus K onto K. The following is obvious:

r(e«F(e")) = e-'tS(e-it)*(e-tiF(e-u)) = e'^rF^e11).

Moreover, if P and P are the orthogonal projections on K and K respectively,

then tP=Pt. It follows that tPU=PU*t where U is the right shift in L2(N).

Clearly restricted to K, the operator PU* is the left shift; and thus the theorem

is proved.

A theorem generalizing this one is stated in [5]. The proof is essentially the same.

Lemma 2.1. Let N be finite-dimensional, S inner, d=det S; then det S(z) = d(z).

Proof. Choose an orthonormal basis in N. In terms of the matrix representation

of S, this is trivial.

In the following much use will be made of the eigenfunctions of T and T*. The

next theorem summarizes the needed information concerning them. In this

connection we refer to [11].

Theorem 2.2. Let K=H2(N)Q SH2(N) with S rigid and let X be a complex

number of modulus less than one.

(a) X e op(T*) if and only if S(X)* has a nontrivial null space. The normalized

eigenfunctions of T* have the form (l — \X\2)ll2x/(l — 'Xz) where x is a unit vector

in Nfor which S(X)*x=0.
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(b) If S is inner, then X e op(T) if and only if 5(A) has a nontrivial null space. The

normalized eigenfunctions of T are of the form (1 — \X\2)1,2(S(z)x/(z — A)) where x

is a unit vector in N for which S(X)x=0.

Proof, (a) An eigenfunction of T* with eigenvalue X satisfies T*F=XF or

(F(z)-F(0))/z = XF(z), which means that F(z)=F(0)/(l-'Xz). Thus T*-X has a

null function if and only if for some x in N, x/(l — Xz) is orthogonal to SH2(N).

The orthogonality condition is

°=¿ f (*■**■>• r^ydt-¿ f(5(ew)'x) ä *

= (S(A)C7(A), x) = (G(X), S*(X)x).

Since this is true for all G in H2(N), we infer that x/(l -Xz) is in K if and only if

S(A)*x=0.

(b) While the statement can be easily proven directly, it is a corollary of Theorem

2.2(a) and Theorem 2.1. In fact, A—Thas a null function if and only if S(X)*x=0

for a nonnull x in N. But S(X)* = S(X), so (b) is proved. Under the inverse of t, f

(see Theorem 2.1), f(x/(l - Xeu)) = e~itS(e-it)*(x/(l - Xe~")) = .SXe'Ox/O?«- A), which

exhibits the structure of the eigenfunctions of T. In both cases the normalization is

obtained by a simple computation.

From now on we deal strictly with the case that N is finite-dimensional.

Lemma 2.2. Let S be a rigid analytic function. If S is not inner, then S(z) is

nowhere invertible in the unit disc.

Proof. If S is not inner, det S(eu) vanishes on a set of positive measure, hence,

being in 77œ, vanishes identically. But det S(z)=0 is equivalent to the noninverti-

bility of S(z).

Corollary 2.1. Let K=H2(N) © SH2(N) with S a noninner rigid function, then

<jp(T*) is the open unit disc D.

Proof. In a finite-dimensional space an operator is not invertible if and only if it

has a nontrivial null space. By Lemma 2.2, for each z in D, S(z) is not invertible,

and we use Theorem 2.2(a). No point of the unit circle is in op(T*) as T* is

completely nonunitary.

The following lemma will be needed in the proof of Theorem 2.3.

Lemma 2.3. Let Abe a linear operator in an n-dimensional Hubert space, then

(2.1) |det^| ^ \\A-1\\-n

where || A ~11| ~x=0 if A is not invertible.

Proof. If A is not invertible, (2.1) reduces to a triviality. Otherwise,

n

det A = Y~[ a¡
i=X

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1968] ON THE CORONA THEOREM 59

where a¡ are the eigenvalues of A. erf1 are the eigenvalues of A'1 and clearly

|af *| = M-1II- Thus |a,| ^ \\A~1\\~1, and by taking the product of all inequalities

we get (2.1).

Lemma 2.4. Let S be inner and d=detS, then dH2(N)cSH2(N). In the ter-

minology of Helson d is stronger than S.

Proof. See Helson [7, Theorem 11]. It follows that d(T)=0.

The central result of this section is Theorem 2.3.

Let N be a finite-dimensional Hubert space K=H2(N)Q SH2(N) with S a

rigid analytic function and u(T) defined by (1.1) d=det S(z).

Theorem 2.3. u(T) has a bounded inverse if and only if there exists a 8>0 such

that

(2.2) \u(z)\ + \\S(z)-i\\-^8

for all z in D.

Proof. If IkCOIh-USO)-1!!-1^ for a S>0, then by Lemma 2.3 there exists a

81>0 such that \u(z)\ + \d(z)\ ä 81. By the corona theorem [3] there exist two func-

tions a, b in Hm such that au+bd=l. In terms of operators this becomes

a(T)u(T) + b(T)d(T) = 1,

and as by Lemma 2.4 d(T)=0, a(T)u(T) = u(T)a(T) = l. Thus u(T) has a bounded

inverse. Moreover the inverse of u(T) is again of this form. This, if dim N=l, is a

special case of a theorem of Sarason. (See Remark 2.1.)

To prove the converse assume there is no 8 > 0 for which (2.2) holds. Thus there

are points An in D for which

lim{|«(An)|4-||5(An)-i||-i} = 0.

We will show that there are functions Fn in K such that lim ||Fn|| = 1  and

lim \\u(T)*Fn\\=0, which means that u(T) cannot have a bounded inverse. The

method is an elaboration of the one used by Moeller [12].

We assume first that S is inner. Since

||S(A)-i¡|-i = 115(A)*-1!-1 - min{||S(A)**I! | x = 1},

let xn be such that ||S(An)*;cn|| = l-STA)"1! -1> and let

En(z) = (l-\Xn\2y2xn/(l-Xnz).

En is a normalized eigenfunction of the left shift with An as the respective eigen-

value. By Theorem 2.2(a) En is in K if and only if S(Xn)*xn = 0. We decompose En

into its components Fn in K and Gn in KL. It is elementary to check that

Fn(z) = (1 - \Xn\2y2(l - S(z)S(Xn)*)xn/(l - \z)
and

Gn(z) = (l-\Xn\2y>2S(z)S(Xn)*xn/(l-Xnz).
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In the 772(A0norm|[Gj = ||S(A„)*xJ, and since |FB||a+ ||Gn||2 = l, we have

lim ||F„| = 1. Now u(T)* = u(T*). If we denote by S the right shift in 77%/V), it

follows by a trivial computation that

u(S)*En = u(S*)En = u(Xn)En = ujK)En.

Hence

u(T)*Fn-~u~(X;)Fn = u(S)*Fn-:uJK)Fn = -(u(S)*Gn-uJK)Gn).

Thus we get the following estimate,

\\u(T)*Fn\\ S2\u(Xn)\ + \\u\U-\\Gn\\;

and as the right side tends to zero with increasing n the theorem is proved.

In the case that S is not inner, by Corollary 2.1 there is at least one eigenfunction

of T* for each point in the open unit disc ; and no decomposition of the eigen-

function, as carried out above, is necessary.

It should be noted that the rigid function in the Beurling-Lax theorem is unique

only up to multiplication on the right by a constant rigid function (by a constant

unitary operator if S is inner). It is evident that the formulation of Theorem 2.3 is

independent of the rigid function used.

Remark 2.1. The appearance of the corona theorem in the proof of Theorem

2.3 becomes more transparent by the following argument due to Ralph Gellar.

Let K be a proper left invariant subspace of 772, its orthogonal complement given

by qH2 where a is an inner function. Let T be defined by (1.1). The following

theorem has been proved by D. Sarason [14].

Theorem. Every bounded operator in K commuting with T is of the form u(T)

with u in 77°°.

Since the inverse of an operator commuting with T also commutes with T, the

inverse of u(T), if it exists, is of the same form. Thus the operator u(T) has an

inverse if and only if, under the natural homomorphism of 77°° onto H^/qH™,

u is mapped into an invertible element. This is clearly the case if and only if u and

a are not contained in a proper ideal of 77™, i.e. if and only if there exist a, b e 77°°

such that au+bq=l. By the corona theorem this is equivalent to the existence of a

S >0 such that, for all z in D, \u(z)\ + \q(z)\ ̂  8.

A few corollaries follow immediately from Theorem 2.3.

Corollary 2.2. A e p(u(T)) if and only if there exists a 8>0 for which \X—u(z)\

+ \\S(z)-1\\-1 Z8for allz in D.

Hence the resolvent set and the spectrum of u(T) have been completely deter-

mined.

Corollary 2.3. u e H°°. u(T*) has a bounded inverse if and only if there exists

a 8>0 such that \u(z)\ + |5(z)-1||-1^8/or all z in D.
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Proof. u(T*) has a bounded inverse if and only if u(T*)* = u(T) has. For ü(T)

we apply Theorem 2.3.

The next corollary is the generalization of Moeller's [12] theorem in our context.

Corollary 2.4. Assume S is inner, X a complex number.

(a) |A| < 1, then X e o(T) if and only if S(X) is not invertible;

(b) | A| = 1, then X e a(T) if and only if S(z) has no analytic continuation at X.

Proof. From [7, Theorem 11] it follows that there exists an m>0 for which

\\s(zym-^m\d(z)\.
From the inequality above and Lemma 2.3 it follows that ||S(z)_1||-1 is

bounded away from zero for all z in D sufficiently close to a point A on the unit

circle if and only if \d(z)\ is bounded away from zero there. For d(z) being a scalar

inner function, this condition is equivalent to the possibility of extending d

analytically at the point A. By Theorem 12 in [7] d has an analytic continuation at

A if and only if 5 has, which proves statement (b). (a) of course is trivial.

Corollary 2.5. A e o(T), u e H00.

(a) |A|<1, then u(X) e o(u(T));

(b) | A| = 1 and u extends continuously to A, then u(X) e o(u(T)).

Let A he the subalgebra of//00 of functions having continuous extensions to the

closed unit disc. The theorem that follows is not new (see [4]) but it is an easy

corollary of Theorem 2.3. It is of course a form of the classical spectral mapping

theorem.

Theorem 2.4. u e A, then o(u(T)) = u(o(T)).

Proof. Assume A e o(T). By Theorem 2.3 there are points An in D such that

An -> A and ¡SrA)-1!_1 -+ 0- It follows that

lim{|M(An)-«(A)| + ||5(An)-1||-1} = 0
or that

«(A) e a(u(T)).

Conversely, assume without loss of generality that 0 e o(u(T)). There exist

therefore points An in D for which

\u(Xn)\ + \\S(Xn)-*\\-^0.

Let A be a point of accumulation of the An. Clearly A e o(T) and w(A)=0.

Remark 2.2. By the same argument, o(u(T)) = u(o(T)) holds true even if u has a

continuous extension only to the intersection of o(T) with the unit circle. Again

this is proved in a more general context in [4].

In the rest of this section we will attempt to study the finer properties of the

spectrum. We will assume now that K1 = SH2(N) is given by an inner function S,

N is finite-dimensional, ue H°° and d=àet S.
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Theorem 2.5. 0 e ap(u(T)) if and only If u and d have a nontrivial common inner

factor.

Proof. Assume 0 e ap(u(T)). Hence there exists a nonnull F in K for which

u(z)F(z) = S(z)G(z) for some G in H2(N). It follows that

u(z)M(z)F(z) = d(z)G(z),

M(z) being defined by M(z) = d(z)S(z)~1. Now if d and u have no common inner

factor, we must have M(z)F(z)=d(z)H(z) for some 77 in H2(N). In other words

F(z) = S(z)H(z) which means that Fe K1 contrary to our assumption. Thus d and

u must have a common inner factor.

Conversely, let us assume that u and d have a nontrivial common inner factor,

then also u and a have a nontrivial inner factor, where a is the characteristic scalar

inner function of S. (See [7, p. 81].) Let q=aip and u=bi/> where ip is the common

inner factor of a and u. Since a is the characteristic scalar inner function of S we

cannot have aH2(N)±K. Hence there exists a G in H2(N), for which the decom-

position aG = F+ SH into components in K and K1 respectively, gives a nonnull

F. Obviously Fis a null vector of u(T) for uF=bipF=baipG-SuH=q(bG)-SuH.

Hence «Fis in Kx and u(T)F=0.

As in Theorem 2.3 the foundation of this theorem is independent of the inner

function used in the Beurling-Lax representation of K1. The determinants of two

inner functions corresponding to A'1 differ by a constant of modulus one.

Corollary 2.6. Under the same assumptions, 0 e op(u(T*)) if and only if u and

d have a non trivial common inner factor.

Proof. By Theorem 2.1 T* is unitarily equivalent to the operator in K=

H2(N) © SH2(N) of multiplication by z followed by orthogonal projection into

A*. We apply Theorem 2.5 and note that by Lemma 2.1 det S=d.

Corollary 2.7. u outer, then 0 £ op(u(T)).

The same is true in greater generality [15, Theorem 2].

Corollary 2.8. A e op(T) implies u(X) e ap(u(T)).

Proof. This follows from Property (ii) of the Sz.-Nagy-Foias calculus but also

trivially from Theorem 2.5.

Corollary 2.9. u inner, X a complex number of modulus one, then

Xiop(u(T)).

Proof. For A - u is outer [8, p. 142]. Of course it follows that T itself has no eigen-

values on the unit circle. This is true of any completely nonunitary contraction.

Corollary 2.10. Under the assumption that S is inner, the residual spectrum of

u(T) is empty for all u in Hm.
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Proof. Without loss of generality we will show that 0 £ or(u(T)). Now 0 e

or(u(T)) if and only if u(T) is one-to-one and its range is not dense in K. Equivalently,

0 $ a„(u(T)) and 0 e op(u(T)*) = ap(ü(T*)). By Theorem 2.5 and Corollary 2.6, this

means that u and d have no common nontrivial inner factor while ü and d have,

which is impossible.

Remark 2.3. It should be noted that Corollary 2.10 is true only in the case of N

being finite-dimensional and does not generalize. The above corollary points out

the difference of dealing with inner functions as distinguished from noninner

rigid functions. In general, for a noninner rigid function S, °P(T) is at most the set

of zeros of a Blaschke product, while op(T*) is, by Corollary 2.1, the whole open

unit disc; thus the residual spectrum of Tis fairly large.

In the extreme case where K=H2(N) we have op(T*) = oT(T) = D. In this case

the following is also true.

Theorem 2.6. Let u be a nonnull function in H", T the right shift in H2(N).

(a) 0top(u(T)),

(b) 0 e op(u(T*)) if and only if u is not outer,

(c) 0 e ar(u(T)) if and only if u is not outer.

Proof, (a) Obvious.

(b) 0 e op(u(T*)) = or(u(T)*) if and only if the range of ü(T) is not dense in

H2(N), which by the well-known theorems in [8, p. 101] is the case only if ü is not

outer. But w is outer if and only if u is.

(c) Follows from (a) and (b).

3. The matrix corona theorem. We outline here a generalization of the Carleson

corona theorem [3] to the case of matrix valued analytic functions. The proof is by

reduction to the scalar case via determinants. The availability of this version of the

theorem enables us to tackle spectral problems of greater generality than those in §2.

For a statement of some result in this direction see [5]. A more detailed exposition

will be published separately.

Let N be an «-dimensional Hubert space. Let A,, i= 1,..., p, be bounded TV-

operator valued analytic functions in the unit disc.

Theorem 3.1. (a) A necessary and sufficient condition for the existence of bounded

N-operator valued analytic functions B¡ such that 2f=i Bi(z)Ai(z)= 1 is the existence

of a 8 > 0 for which

(3.1) inf{Z M¡(z)*ll l*e^> Ml - lie *
for all z in D.

(b) A necessary and sufficient condition for the existence of bounded N-operator

valued analytic functions B¡ such that 2f=i Ai(z)Bi(z)=l is the existence of a 8>0

for which

(3.2) infÍ2 IMi(z)**ll \xeN, \\x\\ m U £ 8
for all z in D.
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Proof, (a) The necessity part is simple. If no S>0 exists for which (3.1) is true

for all z in D, then there exist unit vectors xn and points zn in the disc such that

p
lim    2   IMiO^)*J  = 0.

n-*ao    i = 1

Now 2f=i Bi(z)Ai(z)= 1 is impossible, for from 2f=i Ri(zn)Ai(zn)xn=xn we get the

following estimate,

1 S max sup {||TJ^z)|| | z e D} ¿ M.O^KII;
1 i = l

and the right hand side tends to zero.

To prove the sufficiency we choose a fixed orthonormal basis in N and express

the A¡ in matrix form. We retain the letter At for the corresponding matrix and

denote its elements by A%. Let W be the pn x n matrix composed of the rows of all

the Ai. Let Wil...in be the nxn matrix whose rows are the ix, ...,/„ rows of W.

We claim that if (3.1) holds for a 8>0, there exists aS'>0 such that

(3.3) 2ldet^--^z)l ^S1

for all z in D, the summation being on all lSix< ■ ■ ■ <in S pn.

The basic idea is that if 2 |det Wil...in (z)\ =0; then the vectors represented by

the rows of the A¡(z) lie all in a subspace of N of dimension at most n — 1. Therefore

there exists a vector in N orthogonal to all of them, and this implies that for some

unit vector x in N

2 Mi00*|| = 0.i = i
In general if no S1 >0 exists for which (3.3) holds, we have a sequence of points

zv in D satisfying

(3.4) limT|detIfil...in(zv)| = 0.
V

Thus it is enough to show that (3.4) implies

(3.5) liminf J2 \\M?M\ \xeN, \\x\\ = l| = 0.

Let £v = 2 |det Wtl...in(zv)\. Let y¡v) be the vector in N represented by the ith

row of W(zv). There is one set of indices ix- ■ ■ in such that for all ̂  ■ • -j„

(3.6) |det Wh...inizv)\ S [det Wh...inizv)\.

By Lemma 2.3 there exists a unit vector x in N for which |(x, y[v/)\ S e\ln. If ev>0,

then yîf, /'= 1,..., n, are a basis for A^. Thus each j¿v) has a representation ylv) =

l.ißkjy'ii'- From (3.6) it is clear that |/Jw|ál, and thus for each yk, \(x,y(^)\

Sne\ln. This estimate shows that (3.4) implies (3.5).
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We have seen therefore that if (3.1) is true for a 8>0, there exists a 8X>0 for

which (3.2) is true. We invoke now the scalar corona theorem to get the existence

ofa¡,...¡  in//" for which

(3.7) ^ai,..in(z)detWii...iSz)= 1.

To finish the proof we have to show the existence of B$ in Hx which satisfy

(3.8) J   2 B®(z)A<8Lz) = «m
1=1 fc-i

for all z in D. Now for a fixed y (3.7) can, after determinant expansion, be rewritten

in the form

2  Î B%(z)Aflz) = 1
i-i fc=i

where obviously the Bf¿ are in Hx. Thus (3.8) is automatically satisfied whenever

i=j. If i#7, then

2   2 flg(z)49(z) = 2 «i.--in det ̂ î...i,(z)
i=i fc=i

where H^1... ¡„ is equal to Wiv..^ with the rth column replaced by the y'th and thus

det Wt\...in(z) = 0 for all 1 ¿ix< ■ • - < in¿pn. Thus (3.8) holds for all /, j= 1,..., ».

(b) 2f=i Ai(z)Bi(z)=l if and only if 2f-i 5^)1^=1, and we apply part (a)

of the theorem.
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