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ON THE CORRECTNESS OF SOME ALGORITHMS TO 
GENERATE FINITE AUTOMATA FOR REGULAR 

EXPRESSIONS 

H.M.M ten Eikelder & H.P.J. van Geldrop 
Eindhoven University of Technology 

Department of Mathematics and Computing Science 
P.O. Box 513, 5600 MB Eindhoven, The Netherlands 

Abstract 

We discuss the method given by Glushkov, McNaughton-Yamada and Berry-Sethi and a related 
method given by Aho, Sethi and Ullmann to generate a deterministic finite automaton accepting 
the language of a given regular expression. For both methods a formal description and a simple 
correctness proof is given. 
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1 Introduction 

There are several methods to construct a deterministic finite automaton that accepts the language 
described by a given regular expression. In this note we discuss two methods. The first method! is 
described by G1ushkov [Glu, theorem 16], McNaughton and Yamada [MY, page 44] and Berry and 
Sethi [BS, Algorithm 4.4]. A strongly related method has been given by Aho, Sethi and Ullman 
[ASU ,Algorithm 3.5]. In this note we give a simple correctness proof for both methods. It is based 
on a simple property, from which the correctness of both methods can easily be derived. The proof 
uses neither techniques like derivatives of regular expressions (see [BID nor algebra's of automata as 
in [Wa]. 

Both methods consist in fact of two steps: (i) first the construction of a non-deterministic automaton 
corresponding to the given regular expression is described, (ii) then this automaton is converted into 
a deterministic one. Since step (ii) is a standard construction, we shall mainly focus on step (i). In 
Section 2, regular expressions and various related notions, such as the language C( e) corresponding 
to a given regular expression e, will be defined. In Section 3, an alternative "language" K:(e) cor
responding to e is defined. In general .c(e) <;; K:(e). However, we shall formulate a condition C(e) 
which implies that the languages are equal. This property is the basis for the correctness proof of 
the two constructions. A special kind of finite automata is introduced in Section 4. We describe 
two mappings of regular expressions to finite automata. One of these mappings corresponds to the 
McNaughton-Yamada, Glushkov and Berry-Sethi construction, the other corresponds to the Aho
Sethi-Ullman construction. It is easily proved that both mappings, applied to an arbitrary regular 
expression e, yield automata that accept the language K:(e). Hence, if the condition C(e) holds, we 
have automata accepting .c(e). The restriction that this construction can only be applied to the class 
of regular expressions satisfying C(e) will be removed in Section 5. There .we show how for an arbi
trary regular expression e a "marked version" e' can be constructed such that C(e') holds. Moreover 
the automata for .c(e') can easily be adapted such that they accept .c(e). In general this process 
yields non-deterministic automata. The conversion to deterministic automata (step (ii) above) is in 
fact a standard construction and is described in Section 6. For automata obtained with the Aho
Sethi-Ullman mapping we show that the combination of step (i) and (ii) finally leads to the algorithm 
described in [ASU]. 

2 Preliminaries 

In this section we give the definitions of various well-known notions in the field of regular languages. 
In this note we always assume that V is a (finite) alphabet. 

Definition 1 (REv, regular expressions over V) The set REv of regular ezpressions over V is 
the smallest set X satisfying the following rules. For a E V, e,J E X: 

< EX 
a EX 
(e I f) EX 
(e. f) EX 
e' EX 

0 

As usual we shall reduce the number of parentheses by: (i) giving priorities to the operators: prio( *) > 
prio(·) > priom, (ii) using the associativity of the operators· and I , (iii) not writing outermost 
parentheses. 

1 The methods described by Glushkov, McNaughton-Yamada and Berry-Sethi are very similar. However, the used 
markings (see section 5) are different. 
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Definition 2 (C, language defined by regular expression) The mapping 
Cv : REv- 'P(V') is defined recursively as follows. For all a E V, e, f E REv: 

o 

Cv«) = {<} 
Cv(a) = {a} 
Cv(e I f) = Cv(e) U Cv(f) 
Cv(e· f) = Cv(e)Cv(t) 
Cv(e') = (Cv(e»' 

Language (and string) concatenation is denoted by juxtaposition. Cv(e) will be called the language 
defined by the regular expression e. If the alphabet V is obvious, the mapping Cv will be written as 
C. 

Definition 3 (Null) The predicate Null on REv is defined recursively as follows. For all a E V, e, f E 
REv: 

o 

Null( <) = true 
Null(a) = false 
Null(e I f) = Null(e) V Null(t) 
Null(e . f) = Null(e) 1\ Null(t) 
Null(e') = true 

Definition 4 (First) The mapping First: REv- 'P(V) is defined recursively as follows. For all 
a E V,e,f E REv: 

First«) = 0 
First(a) = {a} 
First(e I f) = First(e) U First(t) 

. { First(e) 
Fmt(e . f) = First(e) U First(t) 

if .Null(e) 
otherwise 

First(e') = First(e) 
o 

Definition 5 (Last) The mapping Last 
a E V,e,f E REv: 

Last«) = 0 
Last(a) = {a} 
Last(e I f) = Last(e) U Last(t) 

{ 
Last(t) 

Last(e . f) = Last(e) U Last(t) 

Last(e') = Last(e) 
o 

REv- 'P(V) is defined recursively as follows. For all 

if .Null(t) 
otherwise 

Definition 6 (Follow) The mapping Follow: REv- 'P(Vx V) is defined recursively as follows. For 
all a E V, e, f E REv: 

Follow«) = 0 
Follow (a) = 0 
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o 

Follow(e If) = Follow(e) U Follow(J) 
Follow(e· f) = Follow(e) U Follow(J) U (Last(e)x First(J)) 
Follow(e') = Follow(e) U (Last(e) x First(e)) 

It is easily seen that NUll(e) = " E .c(e). The sets First(e) and Last(e) consist of all symbols that can 
appear as the first, respectively last, element of a string from .c(e). Furthermore (a, b) E Follow(e) if 
.c(e) contains a string that has ab as a substring. Summarizing, if wE V ... , then 

wE .c(e) 
(7) =} 

(w =" A Null(e))V 
(W1 E First(e) A wn E Last(e) A (lfi: 1:-:; i < n: (Wi, Wi+d E Follow(e))) 

where n =\ w \. Note tha.t in general the reverse implication does not hold, take for instance e = aa and 
w = aaa. In the next section we shall impose an additional condition on e which ensures equivalence 
in (7). 

3 A basic property 

Here we formulate a condition which ensures equivalence in (7). This equivalence will be the basis 
for our explanation of the Glushkov-McNaughton-Yamada and Berry-Sethi algorithms. First we give 
some definitions. 

Definition 8 ( in ,#) The mapping in : V x REv-> IB (written in infiz notation) is defined 
recursively as follows. For all a, b E V, e, f E REv: 

a in e = false 
a in b = (a = b) 
a in e . f = a in e V a in f 
a in elf = a in e V a in f 
a in e'" = a in e 

The mapping # : V x REv-> IN is defined recursively as follows. For all a, b E V, e, f E REv: 

o 

=0 

{ 
0 if a I' b 

= 1 if a = b 
#(0, e . f) = #(0, e) + #(0, f) 
#(0, elf) = #(0, e) + #(0, f) 
#(o,e') = #(o,e) 

#(0, ,,) 

#(a, b) 

So a in e means that the alphabet symbol a OCCUIS somewhere in the regular expression e and #(a, e) 
denotes the number of occurences of a in e. 
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Definition 9 (C, S) The mapping C: REv~ IB is defined as follows. For all e E REv: 

C(e) = (Va E V :: #(a, e) :0; 1) 

The mapping S : REv~ P(V) is defined as follows. For all e E REv: 

S( e) = {a E V 1 a in e} 

o 

So C( e) means that each alphabet symbol appears at most once in the regular expression e . For 
instance C(a. b 1 c) holds but C(a. b 1 a) does not hold. Furthermore S(e) is the set of alphabet 
symbols that actually appear in e, e.g. S(a. b 1 c) = {a, b, c}. Using definition 8 the following relations 
are easily proved. 

(10) Ch 1 e2) = C(e.) A C(e2) A (S(e,) n S(e.) = 0) 

(11) C(e, . e2) = C(e,) A C(e2) A (S(e,) n S(e2) = 0) 

(12) C(e') = C(e) 

To formulate the main theorem of this section we give the following definition2. 

Definition 13 (P,.Ie) The mapping P : V· X REv~ IB is defined as follows. For all w E V· and 
e E REv: 

P(w,e) 

(w = e A Null(e»V 
(Wl E First(e) A wn E Last(e) A (Vi: 1:0; i < n: (Wi, Wi+l) E Follow(e))) 

where n =1 W I. 
The mapping .Ie : REv~ P(V') is defined as follows: 

.Ie(e) = {w E V· 1 P(w,e)} 

o 

Clearly (see (7» we have that for all regular expressions e 

C(e) ~ .Ie(e) 

In the remaining part of this section we shall formulate conditions which imply that both languages 
are equal. The equality is then proved using induction with respect to the regular expression. The 
following lemma's correspond to the various cases in that proof. 

Lemma 14 .lC(e) = {e} 

2Note that P(w,e) is equal to the right hand side of (7). 
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Proof: Trivially P(w,<) = (w = <). 
o 

Lemma 15 For all symbols a E V : 

K:(a) = {a} 

Proof: Trivially P(w, a) = (w = a) for all a E V. 
o 

Lemma 16 For all e" e, E REv with S(e,) n S(e,) = 0 : 

K:(e, Ie,) = K:(e,) U K:(e,) 

Proof: It is sufficient to prove that for all w E V·: 

P(w, e, Ie,) = P(w, e,) V P(w, e2) 

<=: Trivially for all e" e, E REv: P( w, e,) V P( w, e,) =} P(w, e, Ie,) 
=}: For w = < this follows immediately from the definition of Null. Using S( e,) n S( e,) = 0 we observe 
that for w oF < : P(w,e, I e,) II w, E S(e;) =} w E S(e;)' for i = 1,2. Hence, for w oF < : P(w,e, I 
e,) II w, E S(e;) =} P( w, ei) for i = 1,2. 
o 

Lemma 17 For all e" e, E REv with S(e,) n S(e,) = 0 : 

K:(e, . e,) = K:(e,)K:(e,) 

Proof: It is sufficient to prove that for all w E V': 

P(w,e"e,) = (3u,v E V':w =uv : P(u,e,) II P(v,e,)) 

<=: Trivially for all e" e, E REv: P(u, e,) II P(v, e,) =} P( uv, e, . e,) 
=}: This implication is proved by using the observation that, since S(e,) n S(e,) = 0, we have 
P(w,e"e,) =} w E S(e,)'S(o,)'. 
o 

Lemma 18 For all e E REv: 

K:(e') = K:(e)' 

Proof: It is sufficient to prove that for all w E V": 

P(w, e') = w E K:(e), 

<=: Trivially P«,e') and P(u,e) IIP(v,e') =} P(uv,e'). 
=}: Assume P(w,e') holds. Using Follow(e') = Follow(e) U (Last(e) x First(e)) we conclude that 
there exists a (possibly empty) index set I C; {I, ... , I w I-I} such that 

(lfi: 1 ::; i <I willi rt I: (Wi, WH,) E Follow(e)) II 

(lfi: i E I: (Wi, Wi+,) E (Last(e) x First(e)) \ Follow(e)) 
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Hence w can be written as a concatenation of I =1 I 1 +1 strings, say w = vI .. . v' such that P(vi,e) 
holds for all i E {I, ... , I}. This means that W E !C{e)' ~ !C{e)". 

o 
N ext we state the main theorem of this section. 

Theorem 19 Let e E REv such that C{e) holds. Then 

.c{e) = !C{e) 

Proof: Using the lemma's 14 - 18 the induction proof is easily given. 
o 

4 A utomata for a restricted class of regular expressions 

The result proved in theorem 19 can be used to construct two types of finite automata accepting the 
language of a given regular expression. In the first instance this method can only be applied to regular 
expressions for which condition C holds. In the next section we shall dispose of this restriction. First 
we give a definition of the used type of finite automaton. 

Definition 20 (SNFA) A special finite automaton (SNFA) is a 5-tuple (Q, W, LI., S, F) with: 

o 

Q a finite set of states, 
W a finite alphabet, 
.6., the transition relation, is a subset of Q x W x Q I 
S~ Q is the set of start states, 
F~ Q is the set of final states. 

The characteristic properties of an SNFA automaton are that: (i) it has a set of start states and (ii) 
there are no ~-transitions. The set of all SNFA automata over an alphabet V will be denoted by 
SN:FAv. In cases where the alphabet is obvious, the subscript V will be omitted. 

Definition 21 (!Lv) The language !Lv{M) accepted by an SNFA M = (Q, w, LI., S, F) is defined as: 

!Lv{M) 

o 

Again the subscript V will be omitted when obvious. 

Next we define two mappings from regular expressions to SNFA's. 

Definition 22 (Glushkov McNaughton-Yamada Berry-Sethi mapping) The mapping 
MG : REv--> SN:FA is defined by MG{e) = (Q, V, LI., {@},F) where: 

@IlV 
Q = S{e) U {@} 
F = Last{@. e) 
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.Il.~ Qx Vx Q is such that 
(p,a,q) E.Il. = (p,q) E Follow(@·e)Aa=q 

o 

This method of constructing a finite automaton is part of a construction that has already been 
described by McNaughton and Yamada [MY] ,Glushkov [Glu] and Berry-Sethi[BS]. Note that MG(e) 
is always a deterministic automaton because (p, a, q,) E .Il. A (p, a, q,) E .Il. => q, = q,. 

Definition 23 (Aho-Sethi-Ullman mapping) The mapping MA : REv~ SNFA is defined by 
MA(e) = (Q, V,.Il., S, {@}) where: 

o 

@>1V 
Q = S(e) U {@} 
S = Fir.t(e . @) 
.Il.~ Qx Vx Q is such that 
(p,a,q)E.Il. = (P,q)EFollow(e.@)Aa=p 

This construction can be found in [ASU]. In general MA(e) will be a non-deterministic automaton3
. 

Next we describe the languages accepted by these automata. 

Theorem 24 For all e E REv : 

!L(MG(e)) = K(e) 

Proof: Let e E REv and let M = MG(e) = (Q, V,.Il.,{@},F). We consider two cases. For strings 
wE V' with length n =1 W I> 0: 

wE !L(M) 
= { definition 21 } 

(3qo, ... ,q" E Q:: qo E S Aq" E F A (Vi: 0::: i < n: (qi, Wi+" qi+,) E .Il.)) 
= { definition 22 } 

(3qo, ... ,q" E Q:: qo = @Aq" E Last(@·e) A 

(Vi: 0::: i < n: Wi+l = qi+l A (qi' qi+,) E ({@} x First(e)) U Follow(e)) 

= {n>O} 
(@,Wl) E ({@} x First(e)) U Follow(e) A w" E Last(@.e) A 

(Vi: 0 < i < n: (Wi, Wi+l) E ({@} x First(e)) U Follow(e)) 

= {@~V} 

W, E First(e) A w" E Last(e) A 
(Vi: 1::: i < n: (Wi,Wi+l) E Follow(e)) 

{ definition 13 } 

wE K(e) 

For the empty string: 

< E !L(M) 
{ definition M } 

@ E Last(@ . e) 
{@~V} 

3Note that the reverse automaton, i.e. the automaton obtained by reversing all transition arrows and interchanging 
initial and final states, is detenninistic. 
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o 

Null(e) 
{ definition13 } 

< E qe) 

Theorem 25 For all e E REv : 

Proof: Similarly to the proof of theorem 24. 
o 

Theorem 26 Let e E REv such that C(e) holds. Then: 

lL(MG(e»= .c(e) 
IL(MA(e»= .c(e) 

Proof: Trivial using the theorems 19 and 24 respectively 25. 
o 
Hence we have shown, that if C holds for a regular expression e, the automata MG(e) and MA(e) 
accept the language corresponding to e. Note that MG{e) is a deterministic automaton. In the 
next section we shall construct automata for the case that C(e) does not hold. In general that will 
unfortunately lead to nondeterministic automata. 

Example 27 
Consider the regular expression e = 1 I 2' . 3. Then 

S(e) = {I, 2, 3} 
Last(@ . e) = {I, 3} 
Follow(@ . e) = {(@, 1), (@,2),(@,3), (2, 2), (2, 3)} 

The corresponding automaton MG(e) = (Q, V,~, {@},F)is given by 

Q = S(e) U {@} = {I, 2, 3,@} 
F = Last(@ . e) = {I, 3} 
~ = {(p, q, q) I (p, q) E Follow(@· ej} = {(@, 1, 1), (@, 2, 2), (@, 3, 3), (2, 2, 2), (2,3, 3)} 
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The automaton has the following graphical representation'. 

@ 

1 

Note that this is indeed a deterministic automaton. 
Furthermore 

First(e . @) = {l, 2, 3} 

2 

3 

Follow(e . @) = {(l,@)'(2,2),(2,3),(3,@)} 

Hence the automaton MA(e) = (Q, V, Ll, S, {@}) is given by 

Q = S(e) U{@}={I,2,3,@} 
S = First(e . @) = {I, 2, 3} 

2 

2 

3 

Ll = {(p,p, q) I (p, q E Follow(e . @)} = ((l,l,@), (2,2,2)' (2, 2,3), (3, 3,@)} 

with the following graphical representation. 

2 

2 
2 3 

3 

I 
~ ________ I ________ ~I~ 

Note that this is not a deterministic automaton. Since condition C(e) holds, we obtain from theorem 
26 that both automata given above accept the language .c(e). 

o 

As already suggested by the example above, there is a simple relation between the automata obtained 
via the Glushkov McNaughton-Yamada Berry-Sethi mapping and the Aho-Sethi-Ullman mapping. To 
make this remark more explicit, we define the mappings 

ReVM : SNFA.~ SNFA. by 

4 Start states will be depicted with an unlabeled incoming arrow and final states will be depicted by two concentric 
circles. 
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RevM((Q, V,~, S, F)) = (Q, V, ~', F, S)) 
with (p,a,q) E ~ = (q,a,p) E~' 

and 

Rev, : REv---> REv by 

Rev,(e) = e 
Rev,(a) = a for all a E V 
Rev,(e, Ie,) = Rev,(e,) I Rev,(e,) 
Rev,(e, . e,) = Rev,(e,) . Rev,(e,) 
Rev,(e') = Rev,(e)' 

So RevM reverses SNFA's and RetJe reverses regular expressions. Then, for all e, the following relations 
hold: 

RevM(MG(e))= MA(Rev,(e)) 
RevM(MA(e))= MG(Rev,(e)) 

Both relations are easily proved using SOllle simple properties of Null First Last and Follow. In fact 
this property could also be used to prove the correctness of one of the automata from the correctness 
of the other one. 

5 Automata for arbitrary regular expressions 

Next we consider an arbitrary regular expression e E REv. In general C(e) will not hold. However, we 
can construct a related alphabet V' and regular expression e' E REv' such that C(e') holds. Then the 
automaton accepting .evl(e'} can easily be adapted to an automaton accepting the original language 
Cv(e). 

Definition 28 (Marking) A marking with respect to a regular ezpression e over an alphabet V is a 
triple < V',e', unmark > such that: 

- V' is an alphabet 
- e' E REv' 
- C(e') holds 
- unmark: V'---> V is such that e = unmark,(e') 

where unmarkl : REv'-+ REv is defined as the unique homomorphic extension5 of unmark to REvl. 
o 

In the sequel of this section we assume that < V',e',unmark > is a marking with respect e E REv. 
Then, since C(e') holds, the mappings described in the previous section yield the automata MG(e') 
and MA(e'), both accepting C(e'). Next we show that these automata can be "unmarked", thus 
yielding automata accepting C(e). To achieve this goal we give the following definitions 

Definition 29 (Unrnarkings) The mappings unmark,: V"---> V', unmark3 : P(V")---> P(V') 
and unmark.: S./IfFAv'---> S./IfFAv are defined as follows: 

unmark,(e) 
unmark,(a) 

=e 
= unmark(a) for all a E V' 

5i.e. unmarkt(e);; e, unmark1(a);; unmark(a), unmark1(el I e2):;;;; unmark1(eJ) I unmark1(e2), unmark1(el' 
e2) ;; unmark} (el) . unmark} (e2) and unmark1 (j*) ;:::: (unmarkt(J))*. 
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unmark2(",y) = unmark2(",)unmark 2(y) for all "', y E v" 

unmark3 (L) = {unmark2 (",) 1 '" E L} 

unmark.((Q, v', f),!, S, F)) = (Q, V,.:l, S, F) with 
.:l = {(p, unmark(a), q) 1 (p, a, q) E .:l'} 

So the mapping unmark: V' ---+ V gives rise to similar "unmarkings" for regular expressions, strings, 
languages and finite automata6 • 

Lemma 30 unmark3 0 LV' = .evo unmark 1 

Proof: It is easily shown using induction that for all e" E REv' : unmark3 (L:v' (e")) = L:v(unmark, (e")). 
o 

Lemma 31 unmark30 ILvl = ILvo unrnark4 

Proof: Let M = (Q, V', .:l', S, F) be an SNFA over V'. Then unmark.(M) = (Q, V,.:l, S, F) with.:l = 
{(p, unmark(a), q) 1 (p, a, q) E .:l'}. We have to show that unmark3 (1L v ' (M)) = ILv(unmark.(M)). 
Let W E V· with n =1 wi. Then 

o 

wE ILv(unmark.(M)) 
= { definition 21 } 

(3qo, ... , qn E Q :: qo E S II qiwi E F II (Vi: 0 ~ i < n: (qi, Wi+" qi+,) E .:l)) 

{ (p, a, q) E .:l = (3a' E V' : a = unmark(a') : (p, a', q) E .:l') } 

(3qo, ... ,qn E Q:: 
qo E S IIqn E F II (Vi: 0 ~ i < n: (3a' E V': Wi+! = unmark(a'): (qi, a', qH,) E .:l')) 

= { interchanging quantifications} 

(3qo, ... ,qn E Q:: 
qo E S II qn E F II (3v E V,. : W = unmark2 (v) : (Vi: 0 ~ i < n : (qi, VHl, qi+!) E .:l')) 

= { interchanging quantifications} 

(3v E V,. : W = unmark2(v) : 
(3qo, ... ,qn E Q:: qo E S IIqn E F II (Vi: 0 ~ i < n: (qi,Vi+l,qi+,) E .:l')) 
) 

{ definition 21 } 

(3v E V,. : W = unmark2(v) : v E ILv,(M)) 

wE unmark3 (lLv,(M) 

Recall that we assume in this section that < V', e', unmark> is a marking of the (arbitrary) regular 
expression e over V. The following theorem gives finite automata accepting C(e). 

6The sets REv, P(V) and SNFA can all be given a r-algebra structure, see for instance [Wa]. Then various 
mappings can be considered as E-homomorphisms and in some proofs we could use the initiality of the algebra REv. 
However, we feel that in this simple case introducing that machinery is not useful. 
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Theorem 32 Both automata unmark.(MG(e')) and unmark.(MA(e')) accept the language .c(e). 

Proof: 

!Lv (unmark.(MG (e'))) 
= {lemma 31 } 

unmark3(!Lv' (MG(e'))) 

= { C(e'), theorem 26 } 

unmark3( .cv' (e')) 

= {lemma 30} 

.cv( unmark. (e')) 

{ unmark.(e') = e } 

.cv(e) 

The proof for the automaton unmark.(MA(e')) proceeds similarly. 

o 

So far we have assumed that < V', e', unmark> was a marking of e. It is easily seen that such 
markings exist. We give some examples 

• In e E REv each occurrence of an alphabet symbol, say a, is replaced by the pair 
< a, position of this occurrence of a in e >. Then V' = Vx {I, ... ,n} where n is the number 
of occurrences of alphabet symbols in e, and the mapping unmark: V'--+ V is projection on the 
first coordinate. 
For instance the expression e = a· (a 1 b)' ·bover V = {a,b} is mapped onto e' =< a,l > .« 
a,2 > 1< b,3 >)'. < b,4 > over V' = Vx {I, ... , 4}. This marking, with the second pair element 
written as a subscript, is used by Glushkov [Glu] and by Berry and Sethi [BS] . 

• In e E REv each occurrence of an alphabet symbol, say a, is replaced by the position of this 
occurrence of a in e. Then V' = {I, .. " n} where n is the number of occurrences of alphabet 
symbols and the mapping unmark: V'--+ V is defined by 

unmark(k) = "symbol at position k in e" 

For instance the expression e = a· (a 1 b)'· b over V = {a, b} is mapped onto e' = 1· (213)'·4 
over V' = {I, ... , 4}. This marking is used in [ASU], algorithm 3.5. 

Example 
Consider the regular expression e = a 1 a' . b. As the symbol a appears twice, it does not satisfy the 
condition C(e). Following the second method above < {I, 2, 3}, e', unmark> with e' = 1 1 2' ·3 and 
unmark(l) = a, unmark(2) = a, unmark(3) = b is a marking of e. Note that e' equals the regular 
expression used in example 27. Hence the automata MG(e') and MA(e') are equal to the automata 
given in example 27. After unmarking we obtain the automaton unmark.(MG(e')) with graphical 
representation 
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a 

a 
@ 2 

a b b 

and the automaton unmark.(MA(e')) with graphical representation 

a 

a 
2 3 

b 

1 l-----a-----+{10 

Theorem 32 implies that both automata accept the language C(e). 
o 

6 Deterministic automata 

The mapping from regular expressions to automata described in the sections 4 and 5 consists of three 
steps: 
(a) mark the regular expression e to obtain a marked version el, 

(b) apply one of the mappings MG or MA, as described in section 4, to e', thus obtaining an SNFA 
accepting C(e'), 
(c) unmark the obtained SNFA to obtain an SNFA accepting C(e). 
The intermediate automaton MG(e) is deterministic, while, in general, the intermediate automaton 
MA(e) is not deterministic. However, due to the unmarking process we will generally end up with a 
non-deterministic automaton 7. Since we ultimately want a deterministic automaton accepting £(e), 
a fourth step has to be added: transform the automaton obtained in step (c) into a deterministic 
one. The process of transforming a non-deterministic automaton into an equivalent deterministic 
automaton is well-known; it is usually denoted by the term "subset construction". The set of states 
of the resulting deterministic automaton is the powerset of the set of states of the original automaton. 
Hence this leads to a rather large automaton. In most cases this automaton contains states that 
cannot be reached from the start state. Eliminating these unreachable states may lead to a smaller 
but equivalent (deterministic) automaton. Here we will use the subset construction, followed by 

1rr unmark is not injective, the mapping unmark", can map a deterministic SNFA into a non-deterministic one. 
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the elimination of unreachable states. For this combination we will use the term "subset-reachable 
construction". We now give the various formal definitions. 

Definition 33 (DFA) A deterministic finite automaton (DFA) is as-tuple 
(Q, V, 0, s, Ac) with: 

o 

Q a finite set of states, 
V a finite alphabet, 
6, the transition mapping, is a mapping Q x V ---+ Q, 
sEQ is the start state, 
Ac <;; Q is the .. t of final states. 

The set of all DFA's will be denoted by 1XFA. 

Definition 34 The language lL' (M) accepted by a DFA M = (Q, V, 6, s, Ac) is defined as: 

o 

lL' (M) = {w E V" 10"(s, w) E F} 

where the mapping 0" : Q x V" -+ Q is defined by 

O"(q, <) = q 
o"(q, awl = o"(o(q, a), w) 

Definition 35 (Subset construction) The mapping Subset: SN:FA-+ 1J:FA is defined by: 

Subset« Q, V, t., S, F» = (1'( Q), V, 6, {S}, F,) 

where 

o(R,a) = {q E Q 1 (:lr E R:: (r,a,q) E t.)} 
F, = {R E 1'(Q) 1 R n F "# 0} 

Due to the absence of e-transitions the subset construction for SNFA's as described above, is somewhat 
simpler than the version for more general nondeterministic automata. It is a standard result that the 
deterministic automaton obtained by the subset construction accepts the same language as the original 
automaton, i.e. 

(36) lL' , Subset = lL 

Definition 37 (Elimination of unreachable states) The mapping Reachable: 1J:FA-+ 1J:FA is 
defined by: 

Reachable«Q, V,O,s,F)) = (Q" V,b"s,F,) 

with 

Q, = W(s,w) 1 wE V"} 
.I, = 6 lQ,xv 
F, = FnQ, 

where .I" is the mapping introduced in definition 34 

Trivially the elimination of unreachable states does not change the language accepted by the automa
ton, i.e. 
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(38) IL' 0 Reachable = IL' 

The composition Reachableo Subset corresponds to the subset-reachable construction mentioned above. 
From (36) and (38) we obtain that 

(39) IL' 0 Reachableo Subset = IL 

The following standard theorem describes an algorithm for the subset-reachable construction. 

Theorem 40 (Algorithm for subset-reachable construction) For all SNFA's 
M = (Q, V,.:l,S,F): 

o 

Reachableo Subset«Q, V,.:l,S,F)) = (D, V,b,s,Ac) 

where D, b, s, Ac are computed by the following algorithm: 

var Z, G : 1'(1'( Q)) ; U, T : 1'( Q) ; a: V 
I Z:= 0; G:= {S} 
; do Goj 0-

let T E G 
; Z:= Z U {T} ; G:= G \ {T} 
; forallaEVdo 

od 
od 

U := {q E Q I (3p E T :: (p, a, q) E .:l)} 
if U ric G U Z _ G:= G U {U} 

DUE G U Z - skip 
fi 
biT, a) := U 

;D:=Z; s:={S}; Ac:={UEDlunFoj0} 

Next we apply the subset-reachable construction to an SNFA obtained by step (a)-(c) above. So let 
e be an arbitrary regular expression over an alphabet V and let < V', e', unmark> be a marking 
of e. If in step (b) the Aho-Sethi-Ulhnan version is chosen we obtain the following automaton (see 
definitions 23 and 29): 

unmark.(MA(e')) 

where 

Q = S(e') U {@} 

(Q, V,.:l, S, {@}) 

.:l = {(p,unmark(a),q) I (p,q) E Follow(e' ·@)I\a=p} 
S = Fir.t(e' . @) 

Applying the subset-reachable construction to this SNFA yields: 

Subseto Reachable(unmark.(MA(e'lll = (D, V,b,s,Ac) 

where D, b, s, Ac are computed by the following algorithm: 

var Z, G: 1'(1'(Q)) ; U, T: 1'(Q) ; a: V 
I Z:= 0; G:= {Fir.t(e'.@)} 
; do Goj 0-

let T E G 

15 



o 

Z:=ZU{T}; G:=G\{T} 
forallaEVdo 

od 
od 

U := {q E Q I (3p E T :: (p, q) E Follow(e' . @) /\ a = unmark(p))} 
if U rt G U Z ~ G:= G U {U} 
DUE G U Z ~ skip 
fi 
b(T,a) := U 

; D:= Z; s:= {First(e' .@)}; Ac:= {UE D I@EU} 

where Q = S(e') U {@} 

This strongly resembles algorithm 3.5 in section 3.9 of [ASU]. The only essential difference is the 
treatment of the empty set as state of the deterministic automaton. In [ASU] the empty set is 
excluded from the states of the constructed deterministic automaton, although the transition function 
can have the empty set as an entry_ In our opinion that is incorrect, either the empty set is treated 
as a ordinary state (sometimes called the "dead state"), or it is totally excluded (in that case a 
partial automaton is obtained). Here we have chosen the first version. The marking used in [ASU] 
is the second one described in Section 5. The functions firstpos, lastpos and nullable, used in [ASU], 
correspond to our functions First, Last and Null. Furthermore the function Jollowpos is related to our 
relationS Follow by: q E followpos(p) = (p, q) E Follow(e' . @). 

7 Conclusions 

We have given a simple correctness proof of the automata constructions of McNaughton-Yamada 
[MY], Glushkov [Glu] and Berry-Sethi [BS] and a related method described by Aho, Sethi and Ullman 
[ASU]. The correctness proof of both constructions relies on theorem 19, i.e. C(e) '* K(e) = C(e). 
The only difference between the proofs for the two methods consists of the proof of IL(MG( e)) = K(e) 
for the Glushkov McNaughton-Yamada Berry-Sethi version versus lL(MA(e» = K(e) for the Aho
Sethi-Ullman version. Moreover, the construction is given in two steps: (i) construct the intermediate 
nondeterministic automaton (unmark.(MG(e')) Iesp. unmark.(MA{e')) ) and (ii) apply the subset
reachable construction to it. Since step (ii) is a standard construction, this greatly simplifies the 
correctness proofs. Only in [BS] are these two steps also separated. Most computations are done in 
terms of regular expressions and languages. Algebras of automata, as in [WaL or derivatives of regular 
expressions, as in [BS], are not used. 
Finally we remark that the condition C(e) in theorem 19 is too strong. For instance for e = (a I a.b), 
the condition does not hold, but still K(e) = C(e). 
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