UNIVERSITY OF CALIFORNIA

Los Angeles

On the Correctness of Transactional Memory Algorithms

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science
by

Mohsen Lesani

Copyright by Mohsen Lesani 2014

ABSTRACT OF THE DISSERTATION

On the Correctness of Transactional Memory Algorithms
by
Mohsen Lesani
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2014
Professor Jens Palsberg, Chair

Transactional Memory (TM) provides programmers with a high-level and composable concurrency control abstraction. The correct execution of client programs using TM is directly dependent on the correctness of the TM algorithms. In return for the simpler programming model, designing a correct TM algorithm is an art. This dissertation contributes to the specification, safety criterion, testing and verification of TM algorithms. In particular, it presents techniques to prove the correctness or incorrectness of TM algorithms.

We introduce a language for architecture-independent specification of synchronization algorithms. An algorithm specification captures two abstract properties of the algorithm namely the type of the used synchronization objects and the pairs of method calls that should preserve their program order in the relaxed execution.

Decomposition of the correctness condition supports modular and scalable verification. We introduce the markability correctness condition as the conjunction of three intuitive invariants: writeobservation, read-preservation and real-time-preservation. We prove the equivalence of markability and opacity correctness conditions.

We identify two pitfalls that lead to violation of opacity: the write-skew and write-exposure anomalies. We present a constraint-based testing technique and an automatic tool called Samand that finds traces of such bug patterns. Using Samand, we show that the DSTM and McRT algorithms suffer from the write-skew and write-exposure anomalies.

We present a sound program logic called synchronization object logic (SOL) that supports reasoning about the execution order and linearization order. It provides inference rules that axiomatize the properties and the interdependence of these orders and also the properties of common synchronization object types. We show that derivation of markability in SOL is a sound syntactic proof technique for opacity. We use SOL to prove the markability and hence opacity of the TL2 algorithm in PVS.

The dissertation of Mohsen Lesani is approved.

Todd Millstein
Glenn Reinman
Hans Boehm
Edward Effros
Jens Palsberg, Committee Chair

University of California, Los Angeles
2014

To Niloufar, Shahnaz and Mehdi

Contents

List of Figures vii
1 Introduction 1
2 Synchronization Object Language 4
2.1 Introduction 4
2.2 Syntax 6
2.2.1 Specification 6
2.2.2 TM Algorithm Specification 9
2.2.3 Extended Syntax 10
2.2.4 Example Specifications 13
2.3 Semantics 29
2.3.1 Execution History 29
2.3.2 Synchronization Object Types 31
2.3.3 History Semantics 44
3 TM Correctness 48
3.1 Introduction 48
3.2 Opacity 49
3.3 Markability 51
3.3.1 Write-observation and Read-preservation 51
3.3.2 Marking TL2 53
3.3.3 The Marking Theorem 54
4 Testing TM Algorithms 58
4.1 Introduction 58
4.2 Opacity Bug Patterns 59
4.3 Automatic Bug Finding 60
4.4 Experiments 65
5 Synchronization Object Program Logic 67
5.1 Introduction 67
5.2 Simple Example 68
5.2.1 Algorithm Specification 68
5.2.2 Program Logic 69
5.2.3 Deduction 72
5.3 Assertion Language 76
5.4 Assertion Semantics 77
5.5 Inference Rules 78
5.5.1 Classical First-order Logic Inference Rules 78
5.5.2 Structure Inference Rules 81
5.5.3 Basic Inference Rules 83
5.5.4 Synchronization Object Inference Rules 85
5.6 Soundness 96
5.7 Dekker Mutual Exclusion 97
6 Syntactic TM Correctness 102
6.1 Client Transactions 103
6.2 Markability 104
7 Verification of TM Algorithms 106
7.1 Marking TL2 106
7.2 Marking DSTM (visible reads) 107
7.3 Marking NORec 109
8 Related Works 110
8.1 Verification of Transactional Memory 110
8.2 Concurrent Program Logics 113
9 Conclusions and Future Works 116
10 Appendix 117
10.1 Synchronization Object Language 117
10.1.1 Specification 117
10.1.2 Semantics 118
10.2 TM Correctness 123
10.2.1 The Marking Theorem 123
10.2.2 Marking TL2 138
10.3 Testing TM Algorithms 157
10.3.1 Example: Dekker Mutual Exclusion 157
10.3.2 Language 159
10.3.3 TM Algorithms in Samand 161
10.4 Synchronization Object Program Logic 170
10.4.1 Soundness 170
10.4.2 Derived Rules 186
10.5 Syntactic TM Correctness 188
10.5.1 Transactions 188
10.5.2 Markability 190
10.6 Related Works 192
11 Bibliography 193

List of Figures

$2.1 \pi_{\text {Dekker }}$ Dekker Algorithm Specification 13
2.2 $\pi_{T L 2}$ TL2 Algorithm Specification 15
$2.3 \pi_{\text {TL2Variant }}$ TL2 Variant Algorithm Specification 17
$2.4 \pi_{D S T M}$ DSTM Algorithm Specification 19
$2.5 \pi_{D S T M V i s}$ DSTM (visible reads) Algorithm Specification 21
$2.6 \pi_{M c R T}$ McRT Algorithm Specification 23
2.7 NORec NORec Algorithm Specification 24
2.8 TLRW Algorithm (objects) 25
2.9 TLRW Algorithm (read) 26
2.10 TLRW Algorithm (write) 27
2.11 TLRW Algorithm (abort and commit) 28
$\underline{\text { 2.12 History Semantics } \mathbb{H}(\pi) \text { of a specification } \pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})}$ 45
3.1 FinalStateOpaque 50
3.2 Illustrations of Write-observation and Read-preservation 51
3.3 TL2 Read-Preservation Example 53
3.4 The set of local and global reads and writes 55
3.5 FinalStateMarkable 56
4.1 Counterexamples 66
5.1 Example Specification π 68
5.2 Structure Inference Rules. 69
5.3 Basic inference rules. 70
5.4 Synchronization Object Inference Rules. 71
5.5 Classical Inference Rules 79
5.6 Derived Classical Inference Rules 79
5.7 Equivalence and Arithmetic Rules 80
5.8 Derived Equivalence and Arithmetic Rules 80
5.9 Structure Inference Rules. All of the rules have the side condition $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$ 82
5.10 Derived Structure Inference Rules 83
5.11 Basic Inference Rules 84
5.12 Derived Basic Inference Rules 84
5.13 Register Inference Rules. 86
5.14 Derived Register Inference Rules 87
5.15 CAS Register Inference Rules. 89
5.16 Derived CAS Register Inference Rules 89
5.17 Preliminary definitions for Lock and TryLock Inference Rules. 90
5.18 Lock and TryLock Inference Rules. 91
5.19 SCounter Rules 92
5.20 Derived SCounter Rules 92
5.21 Set and Map Inference Rules 94
5.22 Derived Set and Map Inference Rules 95
6.1 Reads and Writes 104
6.2 isMarking Assertions 105
7.1 DSTM (visible reads) Preserving Reads 109
10.1 Case $T \in \operatorname{Aborted}(H) \wedge R \sqsubset T^{\prime} \sqsubset T$ 139
10.2 Case $T \in \operatorname{Aborted}(H) \wedge T \sqsubset T^{\prime} \sqsubset R$ 141
10.3 Case $T \in \operatorname{Committed}(H) \wedge R \sqsubset T^{\prime} \sqsubset T$ 143
10.4 Case $T \in \operatorname{Committed}(H) \wedge T \sqsubset T^{\prime} \sqsubset R$ 145
10.5 Updating Version Registers 147
$10.6 R 04$ is race-free 150
$10.7 \mathrm{reg}[i]$ is sequentially-written 151
10.8 Effect-order of pre-accessors 153
10.9 Dekker Algorithm Specification 157
10.10Bug Trace for Incorrect If Condition 158
10.11Bug Trace for Removed Program Order 159
10.12Dekker Random Execution 159
10.13Specification of DSTM 192
10.14Specification of TL2 192

List of Theorems

Theorem 1, Page 57 (Marking): Opacity is equivalent to Markability.
Theorem 2, Page $5 \underline{9}$ (Bug Patterns): Write-skew and write-exposure anomalies violate opacity.
Theorem 3, Page 96 (SOL Soundness): The synchronization object program logic derives valid conclusions from valid premises.

Theorem 4, Page 97 (Dekker Mutual exclusion): The Dekker algorithm provides mutual exclusion.
Theorem 5, Page 104 (Markability Soundness): A TM algorithm is opaque if the markability assertion is derivable for its specification.

Theorem 6, Page $\underline{107}$ (Opacity of TL2): The TL2 algorithm is opaque.

Publications during the PhD studies:

- Automatic Atomicity Verification for Clients of Concurrent Data Structures

Mohsen Lesani, Todd Millstein, Jens Palsberg
CAV'14 (Computer Aided Verification Conference 2014)

- Semantics-preserving Sharing Actors

Mohsen Lesani, Antonio Lain
AGERE'13 (Actors, Agents, and Decentralized Control Workshop 2013)

- Specifying Transactional Memories with Nontransactional Operations

Mohsen Lesani, Victor Luchangco, Mark Moir
WTTM'13 (Theory of Transactional Memory Workshop 2013)

- Write-observation and Read-preservation TM Correctness Invariants Mohsen Lesani, Jens Palsberg
WTTM'13 (Theory of Transactional Memory Workshop 2013)
- MrCrypt: Static Analysis for Secure Cloud Computations

Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, Todd Millstein
OOPSLA'13 (Object-Oriented Programming, Systems, Languages \& Applications Conference 2013)

- Proving Non-opacity

Mohsen Lesani, Jens Palsberg
DISC'13 (DIStributed Computing Conference 2013 - LNCS 8205, Transact'13 (Transactional Computing 2013)

- A Framework for Formally Verifying Software Transactional Memory Algorithms

Mohsen Lesani, Victor Luchangco, Mark Moir
CONCUR'12 (Concurrency Theory Conference 2013)

- Putting Opacity in its Place

Mohsen Lesani, Victor Luchangco and Mark Moir
WTTM'12 (Theory of Transactional Memory Workshop 2012)

- Communicating Memory Transactions

Mohsen Lesani, Jens Palsberg
PPoPP11 (Principles and Practice of Parallel Programming Conference 2011)

Chapter 1

Introduction

Transactional Memory (TM) [41, 70] provides programmers with a high level concurrency control abstraction. Programmers can simply declare certain blocks of code as transactions and the TM runtime guarantees that transactions execute in isolation. The use of TM provides atomicity, deadlock freedom, and composability [35], and increases programmer productivity compared to use of locks [64, 67]. Researchers have developed formal semantics $[1,57, \underline{47}]$ and a wide variety of implementations of the TM interface in software [39, $38,18,68,19$], hardware [32, 3], and software/hardware hybrids [5 , 55, 15]. Recently, industry is adopting TM. IBM supports TM in its Blue Gene/Q processor [33], and Intel supports transactional synchronization primitives in its new processor microarchitecture Haswell [14]. The C++ transactional memory study group (SG5) is introducing transactional constructs to the $\mathrm{C}++$ language.

The TM runtime takes the responsibility of managing the consistency of the shared state. Therefore, the correct execution of client programs using the TM interface is dependent on the correctness of TM algorithms. In return for the simpler programming model, designing a correct TM algorithm is an art. Algorithm designers employ different techniques to provide the TM interface efficiently. They interleave transactions as much as possible, while guaranteeing non-interleaving semantics. Thus, subtle but fast algorithms are favored over simpler ones. The subtlety of the algorithms makes them prone to intricate bugs. Thus, the correctness of TM algorithms is both a central and a formidable problem. This dissertation presents techniques to prove the correctness or incorrectness of TM algorithms. In particular, it contributes to the specification, safety condition, testing and verification of TM algorithms.

Specification. Precise specification of algorithms is the first step towards testing and verification of them. The current literature on synchronization and particularly TM algorithms usually presents algorithms in prose or architecture-dependent code. The effect can be unfortunate: under- and overspecification of the algorithm and therefore misunderstanding, irreproducibility and unportability.

We introduce a language for architecture-independent specification of synchronization algorithms. An algorithm specification captures two abstract properties of the algorithm namely the type of the used synchronization objects and the required program orders. The language supports the following common synchronization object types: basic register, atomic register, atomic cas register, lock, trylock, strong counter, basic set and basic map. Each method definition involves the declaration of the pairs of method calls whose order in the program should be preserved in the relaxed execution. The specifications can be studied, and verified once and for all, independently of the implementation of the synchronization objects and the memory models of the compiler and the architecture. Compilers
can optimize implementations of the synchronization object types and also the number, type and position of memory fences. We specify several well-known TM algorithms in the language.

We define the semantics of specifications as a set of execution histories. We define the denotational semantics of a specification as a set of constraints that enforce both the structure of the program and the safety of the used objects. The semantics is compositional, models true concurrency and allows relaxed execution.

Safety. A TM algorithm should guarantee that every concurrent execution of an arbitrary set of client transactions is indistinguishable from a sequential execution of them. Safety conditions for TM such as opacity [28], VWC [44], TMS1 and TMS2 [22] define the indistinguishably criterion and the set of correct histories. Lesani et al. [51] proved that opacity is stronger than TMS1 and weaker than TMS2. Verification of TM algorithms is a formidable problem in part because the target correctness criterion is a monolithic complicated condition. Is there an intuitive decomposition of TM correctness conditions? What are the separate invariants that the TM designers should maintain? Decomposition of the correctness condition informs designers by showcasing different aspects of correctness and helps them concentrate on maintaining one aspect at a time. In addition, separation has obvious benefits of modularity and scalability for verification. In an early work, Tasiran [73] presented a decomposition of the correctness condition for a specific class of algorithms.

We present intuitive invariants for the correctness of TM algorithms. We say that a history is markable if there is a specific ordering relation called marking such that certain invariants are satisfied. We prove the equivalence of markability and opacity. At a high level, the first invariant called write-observation requires that each read operation returns the most current value and the second invariant called read-preservation requires that the location which is read is not overwritten in a certain interval.

Testing. Algorithm design is an iterative process of trying alternatives, fixing issues and improving the performance. A testing tool can assist algorithm designers during both the design and the maintenance of the algorithm. Manovit et al. [53] and Lourenco et al. [52] applied random testing to TM algorithms.

We identify the write-skew and write-exposure anomalies as two pitfalls that lead to non-opacity. We present a tool called Samand that automatically finds traces of such bug patterns. The tool inputs a TM algorithm, a program and a test assertion. The test assertion can be a partial correctness condition such as negation of a bug pattern. If there is an execution of the test program that violates the test assertion, Samand outputs the trace of a violating execution. Samand translates concurrent execution to constraints and employs Z3 SMT solver [17] to solve the constraints. Using Samand, we show that DSTM [39] suffers from the write-skew anomaly and McRT [68] suffers from the writeexposure anomaly. These results may be surprising because previous work [31, 30, 24] considered abstract version of DSTM and McRT and proved their correctness.

Verification. Verification of TM algorithms has been a topic of recent attention. Researchers have employed model checking, automatic invariant generation and theorem proving to verify the correctness of TM algorithms. Model checkers from Cohen et al. [11, 12], and Guerraoui et al. $[29,31,30]$ were the pioneering approach to verification of TM. Subsequently, the same approach was taken by O'Leary et al. [61] and Baek et al. [4]. Model checking can automate the verification process but is either based on assumed properties about the TM algorithm or only scalable to a finite number of threads and locations or simplified algorithms. Later, Emmi et al. [24] tried to automatically infer invariants that are strong enough to entail the correctness criterion. Compliance of the algorithms with the specification can be easily checked if the proper invariants can be automatically generated.

On the other hand, this work reported resorting to simplified algorithms due to scalability issues. Later, Lesani et al. [50] presented a machine checked theorem proving framework based on I/Oautomata and proved the correctness of NORec TM algorithm [16]. The framework can be employed to verify realistic algorithms but requires translation of the algorithm to a transition system and more importantly, the process involves coming up with non-trivial invariants.

Aside from modeling simplified algorithms and limited scalability, all previous works on verification of TM algorithms work with semantic models. We believe that studying TM algorithms can benefit from focusing on the syntactic specification of an algorithm, syntactic description of correct algorithm, and a deduction mechanism to reason about algorithm correctness using the structure of the algorithm and the properties of used synchronization objects.

As we review in the related works chapter, the previous works on concurrent program logics support several forms of local reasoning but do not support assertions for the execution order or the linearization order of method calls across threads. These assertions are particularly essential for reasoning about TM algorithms. A concurrent execution of a set of transactions is correct if there is an indistinguishable sequential order of the transactions. The sequential order is determined by the execution order or the linearization order of certain method calls in the transactions. We present a program logic called synchronization object logic (SOL) that supports reasoning about the execution overlap, execution order and linearization orders of method calls. It provides inference rules that axiomatize the properties and the interdependence of these orders and also axiomatize the properties of common synchronization object types. We prove the soundness of the logic. SOL derives valid conclusions from valid premises.

We define the markability assertions in SOL and prove that a TM algorithm is opaque if markability can be derived for its specification. Therefore, deriving the markability is a sound syntactic proof technique for opacity of TM algorithm specifications.

We formalize SOL in PVS [63] and use it to machine-check the markability of the well-known TM algorithm TL2 [18]. SOL is applicable beyond TM, particularly to algorithms for mutual exclusion. As evidence, we prove the mutual exclusion property of the Dekker algorithm.

In the following chapters, we first define the specification language. Then, we consider safety conditions and introduce markability. Then, we present our testing approach based on bug patterns. Finally, we introduce our logic, present the markability proof technique and use the logic to prove the markability of TM algorithms.

Chapter 2

Synchronization Object Language

2.1 Introduction

Precise specification of algorithms is an important prerequisite to understanding, testing and verification of them. The current literature on synchronization algorithms and particularly TM algorithms usually presents algorithms in architecture-dependent code or prose. The effect can be unfortunate: under- and over-specification of the algorithm and therefore misunderstanding, irreproducibility and unportability. We present some instances at the end of this subsection. Separation of specification and implementation is a classical design principle. In this chapter, we introduce a language for architecture-independent specification of synchronization algorithms. The language supports the common synchronization object types, and allows relaxed execution. We present the syntax and then the semantic of the language.

Syntax. We introduce a language for the specification of synchronization algorithms. A specification is comprised of three sections: the typing section, the definitions section, and the program section. The typing section is the type declarations of the synchronization objects that the algorithm uses. The definitions section is the definitions of the methods of the algorithm. Each method definition involves the declaration of pair of method calls whose order in the program should be preserved in the relaxed execution. The program section defines the parallel program or programs that call the defined methods.

In particular, the specification captures two abstract properties of the algorithm namely the type of the base objects and the required orders. A synchronization object type such as atomic register declares the safety and liveness properties that the objects of the type guarantee. Our language supports the following synchronization object types: basic register, atomic register, atomic cas register, lock, try-lock, strong counter, basic set and basic map. The type and its properties are abstract from the implementations of the type. Similarly, the required program order is abstract from the memory model or the fences needed to satisfy it. The specifications can be studied, and verified once and for all, independently of the implementation of the base objects and the memory models of the compiler and the architecture. Compilers can benefit from optimized implementations of synchronization object types and optimize the memory layout of the base objects. They can also optimize the number, type and position of fences to satisfy the program order.

A TM algorithm specification should define the four methods of the TM interface: init, read, write and commit that initialize the transaction, read from a location, write to a location and attempt to
commit the transaction. We consider an arbitrary set of transactions as the client parallel program. We specify several well-known TM algorithms in the language.

Semantics. We adopt the notion of execution history [40, 28] as the representation of a concurrent execution. First, we remind execution histories and their operations and relations.

Then, we define synchronization object types. We present the semantics of linearizable and basic objects as sets of execution histories. We define abstract object types and concrete synchronization objects. We present the interface and the sequential specification of each abstract object type. For each synchronization object type, we present lemmas that characterize the properties of its execution histories.

Based on the above definitions, we define the semantics of specifications as a set of execution histories. We define the denotational semantics of a specification as a set of constraints that enforce both the structure of the program and the guarantees of the base objects. The semantics is compositional i.e. it is abstract from and can be modularly augmented with new object types. It models true concurrency i.e. it considers a pair of invocation and response events for each method call. It allows relaxed execution i.e. it supports out-of-order execution of method calls that are not specified to be ordered.

TM Algorithm Specification Pitfalls. Now, we present some instance of pitfalls in the specification of TM algorithms that we have encountered in the literature.

The algorithms that are tailored for specific architectures and memory models [18, 68, 19] can under- and over-specify the algorithm. Some orders of execution that are implicitly provided by one memory model may need explicit fences in other memory models. Thus, some important orders may be left unspecified. For example a subtle required order is unspecified in TL2 [18] as noted later [31]. Therefore, porting algorithms can introduce bugs. Similarly, some orders that needed fences in one memory model may be implicitly provided by another. Extra fences hinder performance.

Striving for efficiency, several objects are packed to or share the same memory location. To avoid false sharing phenomenon, objects are explicitly padded. The details of object layout can obfuscate the algorithm intents. As observed by previous work, in the original TL2 paper, "the authors maintain the version number and the lock bit of every variable in the same memory word" [31], thus, the order of checking the lock and the version of read locations is ambiguous in the commit procedure. In our specification, we treat the lock and the version as separate registers and make the orders explicit.

Imprecise specifications lead to irreproducibility. TL2 algorithm [18] and DSTM algorithm [39] are explained in prose. Therefore, rewritten specifications of it in the literature are inaccurate or incorrect. For example, there are no visible reads in the DSTM algorithm but the specifications in [31] and [24] abort the visible readers during the validate command. In [30], DSTM is specified with no dynamic object allocation while the original algorithm [39] is fundamentally based on the indirection that is obtained from dynamic creation of locator objects. In addition, there is no distinction between read and write operations in the specification. The read operation simply calls the write operation, thus a read acquires the location similar to a write. This is while readers do not acquire the location in the original algorithm. In the specification, the commit operation writes to every location that is written to during the transaction. This is while commitment is done by a single compare-and-swap in the original algorithm. As another example, TL2 algorithm [18] is based on version numbers while the specifications of TL2 in [31] and [24] replace the version number concept with the unprecedented notion of modified sets. Furthermore, there has been a typo of writing os instead of $l s$ in the TL2 transition system in [31]. The follow up work [24] that rewrites this specification, incorrectly fixed os to $w s$ and thus verified a different algorithm. In [30], the check that the version of the read location
is less than the read version is replaced with an equality check. This restricts the concurrency of the algorithm. A local array lver is introduced that is written during the read operations and checked during the commit procedure. This local array does not exist in the original algorithm.

2.2 Syntax

Now, we introduce the syntax of the language. We define the structure of a specification and then define a TM algorithm specification as a specific specification. To have more concise specifications, we extend the syntax with syntactic sugar. We present the specifications of Dekker mutual exclusion algorithm and TL2, TL2 variant, DSTM, DSTM (visible reads), and McRT TM algorithms.

2.2.1 Specification

A specification π is a triple $(\mathcal{T}, \mathcal{D}, \mathcal{P})$ where \mathcal{T} is the typing of base objects, \mathcal{D} is the method definitions, and \mathcal{P} is the parallel program calling the defined methods. Let Π denote the set of specifications. We will define each of the components in turn.

Typing. We define the set of object types, as follows. An object type is either a scalar or an array type. In an array type $s t[]$, st is the scalar type of elements. A scalar type is either a basic, sequentially-consistent or linearizable type.

Let Φ denote the set of base object names ϕ.

$$
\phi \in \Phi::=\{l o c k, r e g, \ldots\} \quad \text { Base Object Name }
$$

The typing \mathcal{T} is a mapping from base object names to object types. A comma-separated list of elements e is denoted as e^{*}.

$$
\mathcal{T}::=(\phi: o t)^{*} \quad \text { Typing }
$$

A thread-local object is an array that is indexed by the current thread identifier. A thread-local type is of the form ThreadLocal st and is a syntactic sugar for $s t[]$.

Definitions and Program. We define the set of definitions \mathcal{D} and programs \mathcal{P}. Let us define the set of values and variables first.

$$
\begin{array}{rll}
i, v \in \operatorname{Val} & ::=\{1,2, \ldots\} \cup\{\text { true, false }\} & \text { Value } \\
x \in \text { ProgVar } & ::=\{i, r, \ldots\} & \text { Variable } \\
u \in U & ::=x \mid v & \text { Variable or Value } \\
T \in \text { Thread } & ::=\{1,2, \ldots\} & \text { Thread Value } \\
t \in \text { ThreadVar } & ::=\left\{t_{1}, t_{2}, \ldots\right\} & \text { Thread Variable } \\
\tau & ::=t \mid T & \text { Thread Variable or Value } \\
n \in N & ::=\{\text { read, unlock }, \ldots\} & \text { Method Name }
\end{array}
$$

The set of objects are defined as follows.

$$
\begin{array}{lll|ll}
o \in O & ::=\phi & \phi[u] & \text { Shared Object } \\
\theta \in \Theta & ::=o & \text { this } & \text { Object }
\end{array}
$$

$\phi[u]$ denotes u th element of array ϕ.
Let Label denote the set of labels c.

$$
c \in \text { Label }::=\text { \{doRead,doUnlock,...\} Label }
$$

The set of definitions and programs are defined as follows:

$$
\begin{array}{rlll}
\mathcal{D} \in \text { Defs } & ::=d^{*} & \text { Definitions } \\
d \in \text { Def } & ::=\text { def } n_{t}\left(x^{*}\right) s, r & & \text { Method Definition } \\
s \in \text { Stmt } & ::=s, s \mid \text { if } b s \text { else } s|q| x=u+u & \text { Statement } \\
b \in \text { BCond } & ::=u=u|u=u+u| u<u|\neg b| b \wedge b & \text { Condition } \\
q \in \text { Call } & ::=c \triangleright x=o . n_{\tau}\left(u^{*}\right) \mid c \triangleright \text { return } u & \text { Call } \\
r \in \text { Order } & ::=‘\left\{(c \rightarrow c)^{*} ‘\right\} & & \text { Order } \\
\mathcal{P} \in \operatorname{Prog} & ::=p_{0},\left(p_{1}\left\|p_{2}\right\| \ldots \| p_{n}\right) & \text { Parallel Program } \\
p \in \text { TProg } & ::=p ; p \mid \text { if } b p \text { else } p \mid c \triangleright x=n_{\tau}\left(u^{*}\right) & \text { Sequential Program }
\end{array}
$$

The definition section \mathcal{D} is a sequence of method definitions d. The method definition def $n_{t}\left(x^{*}\right) s, r$ defines a method named n with parameters t and x^{*} with the body s and the declared order r. The parameter t is the current thread identifier. It is written as a subscript as it is sometimes elided when it is not needed or is evident from the context. A statement s is either a sequence, a conditional, a base object method call, a return statement or a math operation. The statements s_{1}, s_{2} and if $b s$ else s are sequencing and conditional statements. A condition b is a boolean expression on variables and values. In a method call $c \triangleright x=o . n_{\tau}\left(u^{*}\right), c$ is the label, n is the method name, o is the receiving object, τ the thread argument, u^{*} are the data arguments and x is the return variable. In a return statement $c \triangleright$ return u, c is the label and u is the returned value or variable. The semantics of the language will allow out-of-order execution of method calls. Any two labels that are left unordered by the specification may be reordered in the execution. Data and control dependencies in s impose execution order between statements. (Data and control dependencies are standard and defined more precisely in section 10.1.1.) The programmer can explicitly require additional orders for the body s of a defined method as the declared order r. The declared program order r is a binary relation on the set of labels of s. The orders imposed by locks can be declared in r.

The program section \mathcal{P} is of the form $p_{0},\left(p_{1}\left\|p_{2}\right\| \ldots \| p_{n}\right)$ where p_{0} is the initialization program, and $p_{1}, p_{2}, \ldots p_{n}$ are the parallel programs. A sequential program p is either a sequence, a conditional or
a method call. In a method call $c \triangleright x=n_{\tau}\left(u^{*}\right), c$ is the label, n is the method name (that is defined in the method definitions), τ is the current thread argument, u^{*} are the data arguments and x is the return variable. The object this is the object of the current specification, is the default receiver object and so is elided.

Well-formedness. Consider a specification $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$ where $\mathcal{D}=d^{*}$ and $\mathcal{P}=p_{0},\left(p_{1}\left\|p_{2}\right\| \ldots \| p_{n}\right)$. The specification satisfies the following well-formedness conditions that can be statically enforced. (0) The base name of every object o in \mathcal{P} is typed in \mathcal{T}. (1) Every object is initialized in the execution of p_{0}. (2) Every branch of every method definition ends in a return statement. (3) The thread argument of each method call is the identifier of the thread in which it is called. (4) The array access index of every thread-local object is the current thread identifier. (5) Labels are unique. The names of the defined methods are unique. (6) Every variable is (statically) bound only once in the program. (7) For each method definition, the transitive closure of its data and control dependencies and the declared orders is acyclic.

Derived Specification. We define the function basetype : $O T \mapsto S T$ that maps a type to its base scalar type as follows: basetype $(s t)=s t$, and basetype $(s t[])=s t$. We define the function base name basename : $\Theta \mapsto \Phi$ that maps an object name to its base name as follows: basename (this) = this, basename $(\phi)=\phi$, basename $(\phi[u])=\phi$. Similarly, we define the function index index : $\Theta \mapsto U$ that maps an object name to its index as follows: $\operatorname{index}($ this $)=0, \operatorname{index}(\phi)=0$, index $(\phi[u])=u$.

Consider a specification $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$ where $\mathcal{D}=d^{*}$ and $\mathcal{P}=p_{0},\left(p_{1}\left\|p_{2}\right\| \ldots \| p_{n}\right)$. We define the function $\mathcal{T}_{\text {base }}$ as follows: $\mathcal{T}_{\text {base }}(o)=$ basetype $(\mathcal{T}($ basename $(o)))$. The names of methods defined in a program are unique. Thus, we define par $1_{\pi}: N \mapsto$ ProgVar that maps method names to their first parameter. Similarly, param 2_{π} and $t p a r_{\pi}$ are defined that map method names to their second parameter and current thread parameter. As the labels of a program are unique, we define the function $o b j_{\pi}$: Label $\mapsto \Theta$ that maps the label of a method call to it receiver object. Similarly, the functions index $_{\pi}$, name $_{\pi}$, thread $_{\pi}, \arg 1_{\pi}, \arg 2_{\pi}$ and retv v_{π} map the label of a method call to the array index of the receiver object, the name of the method, the current thread argument, the first and second argument and the return variable of the method call. Let the execution condition of a statement be the conjunction of all of its enclosing if or else conditions. Let the function cond $_{\pi}$: Label \mapsto BCond map the label of method calls to their execution condition. For conciseness, we treat return statements with the same notation as method calls. For a return statement, we let $n a m e_{\pi}$ and $\arg 1_{\pi}$ map to return and the argument of the return statement respectively. For example, consider the following method definition.

$$
\begin{aligned}
& \text { def } n_{t}(i, x) \\
& \text { if }(i>1) \\
& \quad \text { if }(x<2) \\
& \quad c_{1} \triangleright y=r[i] . \text { write }_{t}(x), \\
& c_{2} \triangleright \text { return } 1
\end{aligned}
$$

An if-then statement is a syntactic sugar for an if-then-else statement where the else branch is a call on a dummy object. For example above, we have $\operatorname{tpar}(n)=t, \operatorname{par} 1_{\pi}(n)=i, \operatorname{param} 2_{\pi}(n)=x$, $\operatorname{obj}_{\pi}\left(c_{1}\right)=r[i]$, index $_{\pi}\left(c_{1}\right)=i$, name $_{\pi}\left(c_{1}\right)=$ write, thread ${ }_{\pi}\left(c_{1}\right)=t, \arg 1_{\pi}\left(c_{1}\right)=x, \operatorname{retv}_{\pi}\left(c_{1}\right)=y$, $\operatorname{cond}_{\pi}\left(c_{1}\right)=(i>1) \wedge(x<2)$, name $_{\pi}\left(c_{2}\right)=$ return and $\arg 1_{\pi}\left(c_{2}\right)=1$.

Let Labels(s) denote the set of labels in s. Let $\operatorname{Labels}_{\pi}(n)$ denote the set of labels in the body of n. Let $\operatorname{Returns}_{\pi}(n)$ denote the set of labels of return statements in the body of n. Let $\operatorname{Labels}(\mathcal{P})$ denote the set of labels in \mathcal{P}. Let Labels (π) denote the set of labels in π. Let $\operatorname{Calls}_{\pi}(\phi, n)$ denote the set of labels of call statements where the method name n is called on the base object name ϕ. Let $\operatorname{PreReturns}_{\pi}(c)$ denote the set of labels of the return statements before the statement labeled c in π. (The sets $\operatorname{Calls}_{\pi}(\phi, n)$ and $\operatorname{PreReturns}_{\pi}(c)$ are more precisely defined in section 10.1.1.)

Let \rightarrow_{n} denote the irreflexive transitive closure of the data and control dependencies and the declared order of n. Let the program order \rightarrow_{π} be the irreflexive partial order on Labels (π) defined as the union of the following (1) the initialization order (that orders labels of p_{0} before labels of parallel programs), (2) the sequential order of the sequential programs $p_{i}(3)$ For each method definition n, the order \rightarrow_{n}.

2.2.2 TM Algorithm Specification

A transactional memory specification is $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$ where

$$
\begin{align*}
\mathcal{D}= & \operatorname{def} \operatorname{init}_{t}() s_{0}, r_{0}, \tag{2.1}\\
& \operatorname{def} \operatorname{read}_{t}(i) s_{1}, r_{1}, \\
& \operatorname{def} \operatorname{write}_{t}(i, v) s_{2}, r_{2} \\
& \operatorname{def} \operatorname{commit}_{t}() s_{3}, r_{3} \\
& d^{*} \\
\mathcal{P}= & \operatorname{tran}_{0},\left(\operatorname{tran}_{1}\left\|\operatorname{tran}_{2}\right\| \ldots \| \operatorname{tran}_{n}\right) \tag{2.2}
\end{align*}
$$

Transactional memory is an object that encapsulates a set of locations. Each location i stores a value v. It has four methods init $_{t}(), \operatorname{read}_{t}(i), \operatorname{write}_{t}(i, v)$ and $\operatorname{commit}_{t}()$. The method call init $_{t}()$ initializes the transaction t. The method call $\operatorname{read}_{t}(i)$ returns the value of location i or \mathbb{A} (if the transaction is aborted). The method write (i, v) writes v to location i and returns $o k$ (if the operation is completed successfully) or returns \mathbb{A} (if the transaction is aborted). The method $\operatorname{commit}_{t}()$ tries to commit transaction t and returns \mathbb{C} (if the transaction is successfully committed) or returns \mathbb{A} (if it is aborted). The three specific symbols \mathbb{C}, \mathbb{A} and $o k$ are returned in specification of transactional memory algorithms to denote commitment or abortion of the transaction and normal completion of a write operation respectively. These values are set aside to represent how the operation is completed and are not used as values of locations.

The initializing transaction $\operatorname{trans} s_{0}$ that initializes every location to zero is defined as follows:

$$
\begin{align*}
\operatorname{trans}_{0}:= & I L_{0} \triangleright \text { init }_{0}() ; \tag{2.3}\\
& c_{00} \triangleright \operatorname{write}_{0}(0,0) ; \\
& c_{01} \triangleright \operatorname{write}_{0}(1,0) ; \\
& \ldots \\
& c_{0 m} \triangleright \operatorname{write}_{0}(m, 0) ; \\
& C L_{0} \triangleright \operatorname{commit}_{0}()
\end{align*}
$$

Each transaction trans $_{j} 1 \leq j \leq n$ is defined as follows:

$$
\begin{align*}
\text { trans }_{j}:= & I L_{j} \triangleright \text { init }_{j}() ; \tag{2.4}\\
& o p_{j} \\
o p_{j}:= & c \triangleright x=\operatorname{read}_{j}\left(v_{1}, v_{2}\right) ; \\
& \text { if }(\neg(x=\mathbb{A})) \\
& \quad o p_{j} \\
\mid \quad & c \triangleright x=\operatorname{write}_{j}(v) ; \\
& \text { if }(\neg(x=\mathbb{A})) \\
& \quad o p_{j} \\
\mid & C L_{j} \triangleright \operatorname{commit}_{j}()
\end{align*}
$$

Note that this dissertation does not consider non-transactional accesses and publication/privatization safety.

Well-formedness. The init method returns ok. The read method does not return ok or \mathbb{C}. The write method does not return \mathbb{C}. The commit method either returns \mathbb{C} or \mathbb{A}.
$\forall c \in \operatorname{Returns}_{\pi}($ init $): \arg 1_{\pi}(c)=o k$
$\forall c \in \operatorname{Returns}_{\pi}($ read $): \arg 1_{\pi}(c) \neq \operatorname{ok} \wedge \arg 1_{\pi}(c) \neq \mathbb{C}$
$\forall c \in$ Returns $_{\pi}($ write $): \arg 1_{\pi}(c) \neq \mathbb{C}$
$\forall c \in \operatorname{Returns}_{\pi}(c o m m i t): \arg 1_{\pi}(c)=\mathbb{C} \vee \arg 1_{\pi}(c)=\mathbb{A}$
In addition, it is assumed that in every execution of the transaction trans_{0}, all the write method calls return $o k$.

Let $\Pi_{T M}$ denote the set of transactional memory specifications.
We define two functions initOf and commitOf that map a thread value to its initialization and commitment labels.

$$
\begin{align*}
\operatorname{initOf}(T) & =I L_{T} \tag{2.5}\\
\operatorname{commitOf}(T) & =C L_{T} \tag{2.6}
\end{align*}
$$

2.2.3 Extended Syntax

The core syntax can be used to define expressive syntactic sugar.
As defined above, A thread-local type ThreadLocal st is a syntactic sugar for $s t[]$.
The boolean expression $u \neq u^{\prime}$ is a syntactic sugar for $\neg\left(u=u^{\prime}\right)$. The boolean expression b is a syntactic sugar for $b=$ true. The statement return $\left(u=u^{\prime}\right)$ is a syntactic sugar for if $\left(u=u^{\prime}\right)$ return true else return false.

A return statement without the return argument is used as a syntactic sugar for a return statement that returns a dummy value. An if-then statement is a syntactic sugar for an if-then-else statement where the else branch is a call on a dummy object.

As a convenience, the definition of methods may non-recursively call other defined methods. Note that these calls can always be inlined.

We now define foreach statement as a syntactic sugar. The foreach statement iterates over sets and maps.

Consider a bounded set of type set. The following foreach statement executes the statement s for each member i of set.

$$
\begin{align*}
& c \triangleright \text { foreach }(i \in s e t) \tag{2.7}\\
& s
\end{align*}
$$

Let b be a fresh variable name. We define $\operatorname{sIter}(s, i)$, the i th iteration, as follows:

$$
\begin{align*}
\operatorname{sIter}(s, i)= & c_{i} \triangleright b_{i}=\operatorname{set.contains}(i), \tag{2.8}\\
& \text { if }\left(b_{i}\right) \\
& \operatorname{sIndexed}(s, i)
\end{align*}
$$

where $\operatorname{sIndexed}(s, i)$ denotes a transformation of s where every label c is replaced by c_{i} and every variable x that is assigned in s is replaced by x_{i}. The foreach statement is a syntactic sugar for $\operatorname{sIters}(s, 0)$ that is

$$
\begin{align*}
& \operatorname{sIter}(s, 0), \tag{2.9}\\
& \operatorname{sIter}(s, 1), \\
& \operatorname{sIter}(s, 2), \\
& \ldots \\
& \operatorname{sIter}(s, \text { max })
\end{align*}
$$

(where max is the maximum value) with the following declared order

$$
\begin{equation*}
\forall c \in \operatorname{Labels}(\operatorname{sIter}(s, i)), c^{\prime} \in \operatorname{Labels}(\operatorname{sIter}(s, i+1)): c \rightarrow c^{\prime} \tag{2.10}
\end{equation*}
$$

Similarly, consider a bounded map of type map. The following foreach statement executes the statement s for each mapping i to v in map.

$$
\begin{equation*}
c \triangleright \text { foreach }((i, v) \in \text { map }) \tag{2.11}
\end{equation*}
$$

s
We define $m \operatorname{Iter}(s, i)$, the i the iteration, as follows:

$$
\begin{align*}
\operatorname{mIter}(s, i)= & c_{i} \triangleright v_{i}=\operatorname{map} . g e t(i) \tag{2.12}\\
& \text { if }\left(v_{i} \neq \perp\right) \\
& \quad \operatorname{mindexed}(s, i)
\end{align*}
$$

where mIndexed (s, i) denotes a transformation of s where every label c is replaced by c_{i}, v is replaced with v_{i}, and every variable x that is assigned in s is replaced by x_{i}. We define mIters (s, i), the sequence of iterations starting from iteration i, as follows:

$$
\begin{align*}
\operatorname{mIter} s(s, i)::= & m \operatorname{Iter}(s, i) \tag{2.13}\\
& m \operatorname{Iters}(s, i+1)
\end{align*}
$$

The foreach statement is a syntactic sugar for mIters (0) that is

$$
\begin{align*}
& m \operatorname{Iter}(s, 0), \tag{2.14}\\
& \operatorname{mIter}(s, 1), \\
& \operatorname{mIter}(s, 2), \\
& \ldots \\
& \operatorname{mIter}(s, \max)
\end{align*}
$$

(where max is the maximum value) with the following declared order

$$
\begin{equation*}
\forall c \in \operatorname{Labels}(m \operatorname{Iter}(s, i)), c^{\prime} \in \operatorname{Labels}(m \operatorname{Iter}(s, i+1)): c \rightarrow c^{\prime} \tag{2.15}
\end{equation*}
$$

Now, we extend the syntax with records. A record type definition $r t$ is defined as follows:

$$
\begin{array}{rll}
r e c \in R e c & ::=\{\text { Node, Locator, } \ldots\}, & \text { Record Type name } \\
r t \in R T & ::=\text { rec }^{\prime}\left\{'\left(\phi_{i}: o t_{i}\right)^{*} '\right\} ' & \text { Record Type }
\end{array}
$$

The record type named rec is defined as a collection of fields ϕ_{i} of type $o t_{i}$. The set of statements is extended with the new and clone statements.

$$
\begin{array}{rlrl}
s::= & \ldots & \\
& c \triangleright x=\text { new } r e c & ('(') & \\
& & & \text { New Statement } \\
& c \triangleright x=\text { clone }\left({ }^{\prime} x^{\iota}\right)^{\prime} & & \text { Clone Statement }
\end{array}
$$

The new statement creates an instance of the record type and returns a reference to it. The clone statement creates a clone of the record referenced by the argument and returns a reference to it. The set of objects is extended as follows

$$
\begin{array}{rl|l|l|l}
o \in O: & \phi & \phi[u] \mid & \text { Shared Object } \\
& x . \phi & x . \phi[u]
\end{array}
$$

$x \cdot \phi$ denotes the field named ϕ of the record that the variable x references.

2.2.4 Example Specifications

As example specifications, we present Dekker algorithm and TL2, a variant of TL2, visible and invisible reads versions of DSTM and McRT TM algorithms.

Dekker Algorithm Specification.

Dekker algorithm specified in Figure 2.1 provides mutual exclusion for two threads. It uses two atomic registers as flags. Using basic registers can lead to a race and violation of mutual exclusion. Each thread first sets its own flag and then reads the flag of the other thread. The order of writing the flag of the current thread and then reading the flag of the other thread is crucial to the correctness. Reordering these two accesses can violate mutual exclusion. A thread enters its critical region only if it finds the flag of the other thread unset. The type of the flags and the order of accesses to them are explicitly captured in the specification.

f_{1} : AtomicRegister f_{2} : AtomicRegister			
D :			
def $\operatorname{init}()$ $W_{01} \triangleright f_{1}$.write(0), $W_{02} \triangleright f_{2}$.write(0),	$\begin{array}{ll} \text { def } \text { tryLock } 1() \\ W_{1} \triangleright & f_{1} \cdot \text { write }(1), \\ R_{2} \triangleright & x_{2}=f_{2} \cdot \text { read }(), \\ & \text { if }\left(x_{2}=0\right), \\ C_{1 t} \triangleright & \text { return true } \\ & \text { else } \\ C_{1 f} \triangleright & \text { return } \text { false, } \end{array}$	$\begin{array}{ll} \text { def } \text { tryLock } 2() \\ W_{2} \triangleright & f_{2} \cdot w r i t e(1), \\ R_{1} \triangleright & x_{1}=f_{1} \cdot \text { read }(), \\ & \text { if }\left(x_{1}=0\right) \\ C_{2 t} \triangleright & \text { return true } \\ & \text { else } \\ C_{2 f} \triangleright & \text { return false, } \end{array}$	
	$W_{1} \rightarrow R_{2}$,	$W_{2} \rightarrow R_{1} ;$	
$\begin{aligned} & \hline \mathcal{P}= \\ & L_{0} \triangleright \quad \text { init }(), \\ & L_{1} \triangleright \quad l_{1}=\operatorname{try} \operatorname{Lock} 1() \quad \\| \quad L_{2} \triangleright \quad l_{2}=\operatorname{try} \operatorname{Lock} 2() \\ & \hline \end{aligned}$			

Figure 2.1: $\pi_{\text {Dekker }}$ Dekker Algorithm Specification

TL2 Algorithm.

We specify TL2 algorithm [18] in Figure 2.2. Algorithm such as SwissTM [23] are optimizations of TL2.

Synchronization objects. TL2 algorithm uses the following synchronization objects: Value registers reg: an array of type basic register of size equal to the number of locations. Version registers ver: an array of type atomic register of size equal to the number of locations with the initial value 0 . Locks lock: an array of type try-lock of size equal to the number of locations that are initially released. Global version clock clock: a strong counter with the initial value 0 . Read version rver: a thread-local basic register. Read set rset: a thread-local basic set that is initially \emptyset. Write set wset: a thread-local basic map that is initially \emptyset. Lock set lset: a thread-local basic set that is initially \emptyset.

As observed by previous work, in the original paper, "the authors maintain the version number and the lock bit of every variable in the same memory word" [31], thus, the order of reading the lock and the version of read locations in the commit procedure is ambiguous. In our specification, we treat the lock and the version as separate registers and make the orders explicit.

Algorithm. TL2 is a deferred-update TM algorithm. A value that a transaction t writes to a location is buffered in the write set wset $[t]$ at $W 01$ and is written back to register reg $[i]$ at $C 16$ while t is committing. TL2 records a version in the register ver $[i]$ for the value stored in the register reg $[i]$. The version register ver $[i]$ is updated to ascending numbers at $C 17$ after a new value is written back to reg[i] at $C 16$. The try-lock lock $[i]$ is used for exclusive access to location i. At commit, the lock lock $[i]$ of each location i in the write set $w s e t[t]$ is acquired at $C 01$ to $C 06$. (If a lock cannot be acquired, the previously acquired locks are released at $C 05$ and the transaction is aborted.) Then, a new snapshot is read from clock at $C 07$. Then, for each location in the read set rset $[t]$, first lock $[i]$ and then $\operatorname{ver}[i]$ are read at $C 10$ and $C 11$ and the read is validated. (If a read is not validated, the acquired locks are released at $C 12$ and the transaction is aborted.) Finally, the values buffered in $w s e t[t]$ are written back at $C 15$ to $C 18$. For each pair in the write set wset $[t]$, the following three operations execute in order. First, the buffered value is written back to reg[i], then ver $[i]$ is updated, and then lock $[i]$ is released. In the init method, each transaction t reads the current snapshot version from clock at $I 01$ and writes it to the read version register rver $[t]$ at $I 02$. The read version is read at $R 07$ and $C 08$ to validate the read values. To read a location i, a transaction reads ver $[i]$, reg $[i]$, lock $[i]$ and again ver $[i]$ in order at $R 03-R 06$ and then validates the read. (If the validation fails, the transaction is aborted.) Finally, i is added to the read set r set $[t]$ and the read value is returned.

Note that although reg[i] may be read and written by different transactions, it is declared as a basic register. The objects lock $[i]$ and ver $[i]$ rule out racy accesses to reg[i]. The lock lock $[i]$ prevents concurrent writes to reg[i]. If a read from reg[i] executes concurrently with a write to it, reads from ver $[i]$ and the subsequent checks abort the read.

Figure 2.2: $\pi_{T L 2}$ TL2 Algorithm Specification

TL2 Variant Algorithm.

Based on the insight we obtained from studying TL2, we could come up with a variant of TL2 that by swapping two instructions in the commit procedure, removes reading a version and a conjunct from the validation check in the read method. The removal of some operations in our TL2 variant raises the question of whether the TL2 variant can outperform TL2 which can be a thread of future work.

TL2 variant algorithm is specified in Figure 2.3. Compared to the TL2 algorithm, the TL2 variant removes the first read of ver $[i]$, moves reading lock $[i]$ before reading reg $[i]$, removes the conjunct $s_{1}=s_{2}$ from the validation in the read method and swaps the order of writes to reg[i] and ver $[i]$ in the commit method.

```T : reg: BasicRegister[], ver: AtomicRegister[], lock: TryLock[], clock:SCounter,```	```rver: ThreadLocal BasicRegister, rset: ThreadLocal BasicSet, wset: ThreadLocal BasicMap, lset: ThreadLocal BasicSet```
D :	
def $\mathrm{init}_{t}()$	def commit $_{t}()$
I01 $\triangleright$ snap = clock.read (),	$C 01 \triangleright$ foreach $(i \in w \operatorname{set}[t])$
$I 02 \triangleright \quad \text { rver }[t] \cdot \text { write }(\text { snap }),$	$C 02 \triangleright \quad$ locked $=\operatorname{lock}[i] \cdot \operatorname{trylock}()$,
def read ${ }_{t}(i)$	lset.add(i)
$\begin{aligned} R 01 \triangleright & p v=w \operatorname{set}[t] \cdot \operatorname{get}(i) \\ & \text { if }(p v \neq \perp) \end{aligned}$	$C 04 \triangleright \quad \text { else } \quad \text { foreach }(i \in l \text { set })$
$R 02 \triangleright$ return $p v$,	C05 $\quad$ lock $[i]$.unlock ( $)$,
$\begin{array}{ll} R 03 \triangleright & l=\operatorname{lock}[i] \cdot \operatorname{read}(), \\ R 04 \triangleright & v=\operatorname{reg}[i] \cdot \operatorname{read}(), \\ R 05 \triangleright & s=\operatorname{ver}[i] \cdot \operatorname{read}(), \end{array}$	$C 07 \triangleright$ wver $=$ clock.iaf (),
$\begin{aligned} R 06 \triangleright & \text { sver }=\text { rver }[t] \cdot \operatorname{read}(), \\ & \text { if }(\neg(\neg l \wedge s \leq \text { sver })) \end{aligned}$	$\begin{aligned} C 08 \triangleright & \text { sver }=\text { rver }[t] \cdot \operatorname{read}(), \\ & \text { if }(\text { wver } \neq \operatorname{sver}+1) \end{aligned}$
$R 07 \triangleright$ return $\mathbb{A}$,	$C 09 \triangleright$ foreach $(i \in \operatorname{rset}[t])$
	$C 10 \triangleright \quad l=\operatorname{lock}[i] \cdot \operatorname{read}()$,
$\begin{array}{ll} R 08 \triangleright & \text { rver }[t] . a d d(i), \\ R 09 \triangleright & \text { return } v, \end{array}$	$\begin{array}{ll} C 11 \triangleright & s=\operatorname{ver}[i] \cdot \operatorname{read}(), \\ & \text { if }(\neg(\neg l \wedge s \leq s \end{array}$
$\{R 03 \rightarrow R 04, R 04 \rightarrow R 05\}$,	$C 12 \triangleright$ foreach $(i \in l$ set $)$   $C 13 \triangleright$ $\operatorname{lock}[i] . \operatorname{unlock}()$,
def write $_{t}(i, v)$	
W01 $\triangleright \quad$ wset $[t] . p u t(i, v)$,   $W 02 \triangleright$ return $o k$,	$C 14 \triangleright$ return $\mathbb{A}$,
	```C15\triangleright foreach ((i,v) & wset[t]) C16\triangleright ver[i].write(wver), C17\triangleright reg[i].write(v), C18\triangleright lock[i].unlock(),```
	$\begin{aligned} & C 19 \triangleright \text { return } \mathbb{C}, \\ & \{C 01 \rightarrow C 07, C 10 \rightarrow C 11, C 09 \rightarrow C 15, \\ & C 16 \rightarrow C 17, C 17 \rightarrow C 18\}, \end{aligned}$

Figure 2.3: $\pi_{\text {TL2Variant }}$ TL2 Variant Algorithm Specification

DSTM Algorithm.

Figure 2.4 shows the DSTM algorithm [39].
Synchronization objects. DSTM algorithm uses the following shared objects. state is an array of atomic cas registers of size equal to the number of threads. For each transaction t, state $[t]$ represents the state of t that is $\{\mathbb{R}, \mathbb{A}, \mathbb{C}\}$ (running, aborted or committed) with the default value \mathbb{R}. start is an array of atomic cas registers of size equal to the number of memory locations. For each memory location i, start $[i]$ stores a reference to an object of type Loc that represents the current state of location i. Let Loc be the class of objects with three fields: writer, oldVal and newVal. The field writer is a basic register that stores transaction identifiers. The two fields oldVal and newVal are basic registers that store values. DSTM allows only one writer to a location at a time. Therefore, two fields oldVal and newVal of Loc are sufficient to represent the values of a location. While the current writer transaction is writing to newVal, oldVal stores the stable value. The default value is a reference to a locator with writer set to T_{0}. The read set r set is a thread-local (transaction-local) basic set that stores pairs of index and value of read locations, and is \emptyset initially.

Algorithm. DSTM is a deferred-update TM algorithm (The updates are delayed until the transaction commits [34]). Each location is represented as a reference to a record that stores the last and tentative states of the location. The current value of a location is decided according to the state of the last writer transaction to the location. Thus, a committing transaction updates the value of the locations that it has written to with a single cas on its own state.

Committing a transaction t takes effect by a cas on state $[t]$. During the commit, a transaction does not update the oldVal of the locations it has written to. Whether oldVal or newVal is the stable value is decided according to whether the state of the writer of the location is \mathbb{C} or \mathbb{A}. To decide the stable value, if the state of the current writer is Active, it is cased to \mathbb{A}. Then, if the state of writer is \mathbb{C}, newVal is the stable value; if it is \mathbb{A}, oldVal is the stable value. A new writer transaction of a location needs to set itself as the writer and also before overwriting newVal, if the state of the previous writer is \mathbb{C}, the new writer needs to copy newVal (that is the stable value) to oldVal. As writer and oldVal may be concurrently read by readers of the location, the new writer need to update them in isolation. Thus, the first write of a writer transaction instantiates a new Loc object with the current transaction as the writer, the stable value of the location as OldVal and the value that it wants to write as newVal. Then, the new Loc object is installed in isolation by a cas on start $[i]$. On a global read, the pair of the read index and the read value is added to the read set r set $[t]$ that is validated before returning from a read or commit method call. Validation checks the equality of the logged value in $r \operatorname{set}[t]$ to the last committed value of the location and that the transaction is not aborted by others.

DSTM is obstruction-free. A TM algorithm is obstruction-free if every transaction that runs without interleaving by other transactions makes progress. Obstruction-freedom precludes the use of locks. It is noticeable how DSTM avoids using locks in the following two parts of the algorithm. First, a committing transaction does not lock written locations. This is because a later read decides the stable value of a location according to the state of its last writer; therefore, the committing transaction does not need to lock the written locations to update their values but only updates its own state. Second, to write a new value to a location, the writer and newVal of the location are updated in isolation without acquiring locks. This is because DSTM employs a level of indirection. The two fields are updated atomically with a single cas on a reference.

\mathcal{T}	
```Loc { writer: BasicRegister, oldVal: BasicRegister, newVal: BasicRegister }```	state: AtomicCASRegister start: AtomicCASRegister[ rset: ThreadLocal BasicSet
D:	
def	de
$I 01 \triangleright \quad$ state $[t]$. write $(\mathbb{R})$,   I02 $\triangleright$ return $o k$,	$\begin{aligned} I 01 \triangleright & s=\text { state }[t] \cdot \operatorname{read}() \\ & \text { if }(s=\mathbb{A}) \end{aligned}$
def read ${ }_{t}(i)$	
$R 01 \triangleright s=$ state $[t] \cdot \operatorname{read}()$,	$I 03 \triangleright$ st $=$ start $[i] \cdot \operatorname{read}()$,
$R 02 \triangleright \quad \text { if }(s=\mathbb{A})$	$\begin{aligned} I 04 \triangleright & w r=\text { st.writer.read }() \\ & \text { if }(w r=t) \end{aligned}$
$R 03 \triangleright$ st $=\operatorname{start}[i] \cdot \operatorname{read}()$,	$I 05 \triangleright \quad$ st.newVal.write (v),
$R 04 \triangleright \quad v=s t a b l e V a l u e t ~_{\text {( }}($ st) ,	I06 $\triangleright$ return $o k$,
$\begin{aligned} R 05 \triangleright & w r=\text { st.writer.read }(), \\ & \text { if }(w r \neq t) \end{aligned}$	$I 07 \triangleright \quad v^{\prime}=\operatorname{stableValue}_{t}(s t),$
$R 06 \triangleright \quad r s e t[t] \cdot a d d(i, v)$,	$I 09 \triangleright$ st'.writer.write(t),
$R 07 \triangleright$ valid $=$ validate () ,	$I 10 \triangleright$ st'.oldVal.write(v'),
if ( $\neg$ valid)	$I 11 \triangleright$ st'.newVal.write(v),
$R 08 \triangleright \quad$ return $\mathbb{A}$,	$I 12 \triangleright \quad b=\operatorname{start}[i] \cdot \operatorname{cas}\left(s t, s t^{\prime}\right)$   if $(b)$
$\begin{aligned} & R 09 \triangleright \text { return } v, \\ & \{R 03 \rightarrow R 07\} \end{aligned}$	if (b)   $I 13 \triangleright$ return $o k$,
def commit $_{\text {( }}()$	$\begin{aligned} & I 13 \triangleright \quad \begin{array}{l} \text { return } o k, \\ \text { else } \end{array} \end{aligned}$
$C 01 \triangleright$ valid $=$ validate $\left.^{( }\right)$,	$I 14 \triangleright \quad \operatorname{return} \mathbb{A}$
if ( $\neg$ valid)	def validate $_{t}()$
$C 02 \triangleright$ return $\mathbb{A}$,	$V 01 \triangleright$ foreach $((i, v) \in \operatorname{rset}[t])$
$\begin{aligned} C 03 \triangleright & b=\operatorname{state}[t] \cdot \operatorname{cas}(\mathbb{R}, \mathbb{C}) \\ & \text { if }(b) \end{aligned}$	$V 02 \triangleright \quad s t=s t a r t[i] \cdot \operatorname{read}()$,
$\begin{array}{ll}  & \text { if }(b) \\ C 04 \triangleright & \text { return } \mathbb{C} \\ \text { else } \end{array}$	$\begin{array}{ll} V 04 \triangleright & s^{\prime}=\text { state }\left[t^{\prime}\right] \cdot \operatorname{read}(), \\ & \text { if }\left(s^{\prime}=\mathbb{C}\right) \end{array}$
$\begin{aligned} & C 05 \triangleright \quad \text { return } \mathbb{A}, \\ & \{C 01 \rightarrow C 03\} \end{aligned}$	05 $\triangleright \quad \begin{gathered}v^{\prime} \\ \text { else }\end{gathered}=$ loc.newVal.read()
def stableValue ${ }_{\text {( }}$ st)	$\triangleright \quad v^{\prime}=$ loc.oldVal.read (),
S01 $\triangleright t^{\prime}=$ st.writer.read (),	$\begin{array}{ll}  & \text { if }\left(v \neq v^{\prime}\right) \\ V 07 \triangleright \quad \text { return false } \end{array}$
$\begin{array}{ll} S 02 \triangleright & s^{\prime}=\text { state }\left[t^{\prime}\right] \cdot \operatorname{read}(), \\ & \text { if }\left(t^{\prime} \neq t \wedge s^{\prime}=\mathbb{R}\right) \end{array}$	$V 08 \triangleright s=\text { state }[t] \cdot \operatorname{read}(),$
$S 03 \triangleright \quad$ state $\left[t^{\prime}\right] \cdot \operatorname{cas}(\mathbb{R}, \mathbb{A})$,	$V 09 \triangleright \operatorname{return}(s=\mathbb{R})$
$\begin{aligned} S 04 \triangleright & s^{\prime \prime}=\text { state }\left[t^{\prime}\right] \cdot \operatorname{read}() \\ & \text { if }\left(s^{\prime \prime}=\mathbb{A}\right) \end{aligned}$	
$\begin{gathered} S 05 \triangleright \quad \begin{array}{c} v=\text { loc.oldVal.read }() \\ \text { else } \end{array} \end{gathered}$	
$\begin{aligned} & S 06 \triangleright \quad v=\text { loc.newVal.read }(), \\ & S 07 \triangleright \text { return } v, \end{aligned}$	

Figure 2.4: $\pi_{D S T M}$ DSTA Algorithm Specification

## DSTM (visible reads) Algorithm.

Figure 2.5 presents DSTM (visible reads) algorithm [38].
Synchronization objects. DSTM (visible reads) algorithm uses the following shared objects. state is an array of atomic cas registers of size equal to the number of threads. For each transaction $t$, state $[t]$ represents the state of $t$ that is $\{\mathbb{R}, \mathbb{A}, \mathbb{C}\}$ (running, aborted or committed) with the default value $\mathbb{R}$. start is an array of atomic cas registers of size equal to the number of memory locations. For each memory location $i$, start $[i]$ stores a reference to an object of type Loc that represents the current state of location $i$. Let Loc be the class of objects with four fields: writer, rset, oldVal and newVal. The field writer is a basic register that stores transaction identifiers. The field rset is a basic set that stores transaction identifiers. The two fields oldVal and newVal are basic registers that store values.

Algorithm. For each location, in addition to the two values newVal and oldVal, the last writer transaction and the set rset of transactions that have read the location are recorded in the locator object. The read method reads the current locator, decides the stable value of the location according to the state of the latest writer of the location, creates a clone of the locator object, adds the current transaction to rset of the new locator and installs the new locator with a cas. The write method reads the current locator. If the current transaction is the current writer of the location, the new value is written to the newVal field of the locator. Otherwise, a new locator object is created with the current value of the location as oldVal, the new value as newVal and the current transaction as the writer and then the new locator is installed by a cas. Committing a transaction is done by as cas on its state.

The reader set of a location may be concurrently written by the readers of the location and read by the writers of the location. Therefore, readers and writers need to access the reader set in isolation. A reader-writer lock could be employed but would forfeit the obstruction-freedom property of the algorithm. The original algorithm, as specified here, uses the indirection mechanism. It stores the reader set in the locator object and achieves isolation by a cas on the reference. RSTM [54], an optimization to DSTM, proposes a more efficient implementation for the reader set by a clever double-check in the reader transactions.


Figure 2.5: $\pi_{D S T M V i s}$ DSTM (visible reads) Algorithm Specification

## McRT Algorithm.

Figure 2.6 shows the Core McRT algorithm.
Synchronization Objects. McRT uses the following synchronization objects. Value registers $r$ : an array of basic registers of size equal to the number of memory locations. For each location $i$, $r[i]$ stores the value of location $i$. Version registers ver: an array of atomic registers of size equal to the number of memory locations. For each location $i$, ver $[i]$ stores the version for location $i$ that is initially 0 . Locks $l$ : an array of try-locks of size equal to the number of memory locations. For each location $i, l[i]$ is initially released. The read set $r$ set: a thread-local basic map from location indices to versions which is $\emptyset$ initially, and the undo set uset a thread-local basic map from location indices to overwritten values which is $\emptyset$ initially.

In the original implementation, ver $[i]$ and $l[i]$ are stored in a single word. In our specification, we make the distinction explicit and specify the order of accesses to these registers. In addition, the original implementation overwrites the version bits with the transaction descriptor during the lock acquisition. Therefore, the versions had to be cached not only during the read method call but also during the write method call. Our specification stores only versions in the version registers and avoids caching of those registers during the write method call.

Algorithm. The first write to location $i$, tries to acquire $l[i]$ at $W 02$ before writing to $r[i]$ at $W 06$. McRT is a direct-update algorithm. It directly writes to $r[i]$ during the write method call before the commit method is invoked. Therefore, the old value of $r[i]$ is read and cached in the undo set uset $[t]$ at $W 04-W 05$ and restored to $r[i]$ while the transaction is aborting at $A 02-A 04$. A non-local read method call reads ver $[i]$ and then $l[i]$ at $R 02-R 03$. If $l[i]$ is locked, the transaction is aborted at $R 04$. The first non-local read method call from a location caches the version in the read set $r$ set $[t]$ at $R 06$ which is used during the validation at $C 01-C 04$. For each read location $i$, the validation checks that the lock $l[i]$ is unlocked and the version ver $[i]$ is unchanged since it is read at $R 02$. This ensures that $r[i]$ is unchanged since it is read at $R 07$. For each written location, the version $\operatorname{ver}[i]$ is incremented at $C 08$ and the lock $l[i]$ is released at $C 09$.

$\mathcal{T}$ :   $r$ : BasicRegister [],   ver: AtomicRegister[],   $l$ : TryLock[],   rset: ThreadLocal BasicMap   uset: ThreadLocal BasicM	
D :	
def init $_{( }()$	def $\mathrm{commit}_{t}()$
$I 01 \triangleright$ return $o k$,	$\left.\begin{array}{l}C 01 \triangleright \\ C 02 \triangleright \\ \text { foreach }((i, \text { rver }) \in \operatorname{rset}[t]) \\ \text { locked }=l[i] . r e a d\end{array}\right)$,
def $\mathrm{read}_{t}(i)$	
$\begin{aligned} R 01 \triangleright & b=\text { uset }[t] \cdot \operatorname{contains}(i) \\ & \text { if }(\neg b) \end{aligned}$	$C 03 \triangleright \quad$ cver $=\operatorname{ver}[i] \cdot \operatorname{read}()$,   if (locked $\vee$ rver $\neq$ cver $)$
$R 02 \triangleright \quad r v e r=\operatorname{ver}[i] \cdot \operatorname{read}()$,	$C 04 \triangleright$ return abort $_{t}()$,
$\begin{array}{ll} R 03 \triangleright \quad & \text { locked }=l[i] \cdot \operatorname{read}(), \\ & \text { if }(\text { locked }) \end{array}$	$C 05 \triangleright$ foreach $(i \in \operatorname{uset}[t]))$
$R 04 \triangleright$ return abort $_{t}()$,	$C 06 \triangleright \quad \operatorname{cver}=\operatorname{ver}[i] \cdot \mathrm{read}()$,
$\begin{array}{ll} R 05 \triangleright & \text { pver }=r \operatorname{set}[t] \cdot \operatorname{get}(i) \\ & \text { if }(p v e r=\perp) \end{array}$	$C 07 \triangleright \quad$ cver $^{\prime}=$ cver +1 ,   C08 $\triangleright \quad$ ver $[i] . w r i t e(c v e r ')$,
$R 06 \triangleright \quad r s e t[t] \cdot p u t(i, r v e r)$,	$C 09 \triangleright \quad l[i] . u n l o c k()$,
$R 07 \triangleright \quad v=r[i] \cdot \operatorname{read}()$   $R 08 \triangleright$ return $v$	$C 10 \triangleright$ return $\mathbb{C}$   $\{C 02 \rightarrow C 03, C 08 \rightarrow C 09\}$
$\begin{aligned} & R 08 \triangleright \text { return } v \\ & \{R 02 \rightarrow R 03\} \end{aligned}$	$\{C 02 \rightarrow C 03, C 08 \rightarrow C 09\}$ def bort $_{t}()$
def write $_{t}(i, v)$	$A 01 \triangleright$ foreach $((i, v) \in u s e t[t])$
$\begin{aligned} W 01 \triangleright & \text { pval }=\text { uset }[t] \cdot g e t(i) \\ & \text { if }(\text { pval }=\perp) \end{aligned}$	$\begin{array}{ll} A 02 \triangleright & r[i] \cdot \operatorname{write}(v), \\ A 03 \triangleright & l[i] \cdot \operatorname{unlock}(), \end{array}$
$\begin{array}{ll} W 02 \triangleright & \text { locked }=l[i] \cdot \operatorname{try} \operatorname{Lock}(), \\ & \text { if }(\neg l o c k e d) \end{array}$	$\begin{aligned} & A 04 \triangleright \text { return } \mathbb{A} \\ & \{A 02 \rightarrow A 03\} \end{aligned}$
$W 03 \triangleright \quad$ return abort $_{t}()$,	
$W 04 \triangleright \quad v^{\prime}=r[i] \cdot \operatorname{read}()$,	
$W 05 \triangleright \quad u s e t[t] . p u t\left(i, v^{\prime}\right)$,	
$W 06 \triangleright \quad r[i] . w r i t e(v),$	

Figure 2.6: $\pi_{M c R T}$ McRT Algorithm Specification

NORec Algorithm.


Figure 2.7: NORec NORec Algorithm Specification

TLRW Algorithm. The TLRW algorithm [19] is represented in Figure 2.8.
Shared objects:
For each $i \in I$ : owner $[i]$ : AtomicReg[Trans], initially $\perp$
For each $t \in$ Trans, $i \in I: r$ Flag $[t, i]:$ AtomicReg[Bool $]$, initially false
For each $t \in$ Trans, $i \in I: w F l a g[t, i]:$ AtomicReg[Bool], initially false
For each $i \in I:$ uwFlag $[i]$ : AtomicReg[Bool], initially $\perp$
For each $i \in I: \operatorname{rcount}[i]:$ AtomicReg[Int $]$, initially 0
Thread-local objects:
For each $t \in \operatorname{Trans}: \operatorname{rset}[t]: \operatorname{Set}[I]$, initially $\emptyset$
For each $t \in$ Trans: uset $[t]: M a p[I \rightarrow V]$, initially $\emptyset$
Figure 2.8: TLRW Algorithm (objects)

$R 01$ : def $\operatorname{read}_{t}(i)$	
$R 02$	$o=o w n e r[i] \cdot r e a d()$
$R 03$	if $(t \in S)$
$R 04$	$f=r F l a g[t, i]$
$R 05$	if $\neg(o=t \vee f)$
$R 06$	while (true)
$R 07$	rFlag $[t, i]$. write(true)
$R 08$	$o=o w n e r[i] \cdot r e a d()$
$R 09$	if ( $o=\perp$ )
R10	break
$R 11$	else
R12	if (timeout)
R13	abort $_{t}()$
R14	else
$R 15$	rFlag $[t, i]$. write(false)
R16	continue
$R 17$	else
R18	if $\neg(o=t \vee i \in r s e t[t])$
R19	while (true)
R20	while (true)
R21	$r=r$ count $[i] . r e a d()$
$R 22$	$b=r \operatorname{count}[i] . C A S(r, r+1)$
R23	if $(b)$
R24	break
R25	$o=o w n e r[i] \cdot r e a d()$
R26	if ( $o=\perp$ )
R27	break
R28	else
R29	while (true)
R30	$r=r c o u n t[i] . r e a d() ~$
R31	$b=r c o u n t[i] . C A S(r, r-1)$
R32	if (b)
R33	break
R34:	
R35	$v=r[i] . \operatorname{read}()$
R36	return $v$
$\{R 07 \rightarrow R 8, R 22 \rightarrow R 25\}$	

Figure 2.9: TLRW Algorithm (read)


A01	def abort $_{t}()$
A02	foreach $(i \mapsto v) \in u \operatorname{set}[t])$
A03	$r[i]$. write (v)
A04	owner [i].write ( $\perp$ )
A05	if $(t \in S)$
A06	$w F l a g[t, i] . w r i t e(f a l s e)$
A07	else
A08	uwFlag[i].write(false)
A09	foreach ( $i \in \operatorname{rset}[t]$ )
A10	if $(t \in S)$
A11	rFlag t , i].write(false)
A12	else
A13	while (true)
A14	$r=\operatorname{rcount}[i] . r e a d()$
A15	$b=r \operatorname{count}[i] . C A S(r, r-1)$
A16	if (b)
A17	break
A18	return $\mathbb{A}$
\{ A03	$\rightarrow A 04, A 04 \rightarrow A 06, A 04 \rightarrow A 08\}$
C01	def commit $_{\text {t }}$
C02	foreach ( $i \in \operatorname{dom}(u s e t[t])$ )
C03	owner [i].write( $\perp$ )
C04	if $(t \in S)$
C05	wFlag[t, i].write(false)
C06	else
C07	uwFlag[i].write(false)
C08	foreach $(i \in \operatorname{rset}[t])$
C09	if $(t \in S)$
C10	rFlag $\mathrm{t}, \mathrm{i}]$.write(false)
C11	else
C12	while (true)
C13	$r=r c o u n t[i] . r e a d() ~$
C14	$b=r \operatorname{count}[i] . C A S(r, r-1)$
C15	if $(b)$
C16	break
C17	return $\mathbb{C}$
\{C0	$\rightarrow C 05, C 03 \rightarrow C 07\}$

Figure 2.11: TLRW Algorithm (abort and commit)

### 2.3 Semantics

In this subsection, we define the semantics of specifications. We first define execution histories. Then, we define the semantics of base objects. Finally, we define the semantics of specifications as a set of execution histories.

### 2.3.1 Execution History

Now, we define execution histories and operations and relations on them.
Strings. We use $\|s\|$ to denote the size of the string $s$. If $s_{1}$ and $s_{2}$ are strings, we write $s_{1} \Subset s_{2}$ iff $s_{1}$ is a subsequence of $s_{2}$. For example, $b d \Subset a b c d e$. Let $s$ be an isogram (i.e. contains no repeating occurrence of the alphabet.) For any $s_{1}, s_{2} \in s$, we write $s_{1} \triangleleft_{s} s_{2}$ iff the last element of $s_{1}$ occurs before the first element of $s_{2}$ in $s$. For example $a b \triangleleft_{a b c d e} d e$. We use $s(i)$ to denote the $i^{\text {th }}$ element of $s$. We use $s \cdot s^{\prime}$ to denote the concatenation of $s$ and $s^{\prime}$. For a set of strings $\left\{s_{1} \ldots s_{n}\right\}$, let Interleave $\left(s_{1}, \ldots, s_{n}\right)$ denote the set of merges of $s_{1}, \ldots, s_{n}$.

Method calls and events. Let LabelConst denote the set of labels $l$. The set of invocation events is Inv $=\left\{\operatorname{inv}\left(l \triangleright o . n_{T}(u)\right) \mid l \in\right.$ LabelConst, $o \in O, n \in N, T \in$ Thread, $\left.u \in U\right\}$. The set of response events is Res $=\{\operatorname{ret}(l \triangleright u) \mid l \in$ LabelConst, $u \in U\}$. The set of events is Ev=Inv $\cup$ Res. We will use the term completed method call to denote a sequence of an invocation event followed by the matching response event (with the same label). We use $l \triangleright v^{\prime}=o . n_{T}(v)$ to denote the completed method call $\operatorname{inv}\left(l \triangleright\right.$ o. $\left.n_{T}(v)\right) \cdot \operatorname{ret}\left(l \triangleright v^{\prime}\right)$.

Operations on event sequences. Let $E$ and $E^{\prime}$ be event sequences. For a thread $T$, we use $E \mid T$ to denote the subsequence of all events of $T$ in $E$. For an object $o$, we use $E \mid o$ to denote the subsequence of all events of $o$ in $E$. Sequential is the set of sequences of completed method calls. ${ }_{-}^{1}$

Execution history. An execution history $X$ is a sequence of events where each invocation event has a unique label and every thread $T$ is sequential (i.e. $X \mid T \in$ Sequential). Let History denote the set of execution histories. We say label $l$ is in $X$ and write $l \in X$ if there is an invocation event with label $l$ in $X$. Let Labels $(X)$ denote the set of labels in $X$. Let Threads $(X)$ denote the set of threads in $X$. As the labels are unique in a history, the following functions on Labels $(X)$ are defined. The functions $o b j_{X}, ~ n a m e_{X}, t h r e a d_{X}, \arg 1_{X}, \arg 2_{X}, \operatorname{retv} v_{X}$ map labels to the receiving object, the method name, the thread identifier, the first and the second argument, and the return value associated with the labels. Similary, $i E v$ and $r E v$ functions on Labels $(X)$ map labels to the invocation and the response events associated with the labels.

A history $X$ is equivalent to or indistinguishable from a history $X^{\prime}, X \equiv X^{\prime}$, if one is a permutation of the other one that is only the events are reordered but the components of the events (including the argument and return values) are preserved.

Real-time relations. For an execution history $X$, we define the real-time relations $\prec_{X}, \preceq_{X}$, $\sim_{X}$, $x_{X}$ on Labels $(X)$ as follows: First, $l_{1} \prec_{X} l_{2}$ iff $r E v\left(l_{1}\right) \triangleleft_{X} i E v\left(l_{2}\right) . l_{1} \preceq_{X} l_{2}$ iff $l_{1} \prec_{X} l_{2} \vee l_{1}=l_{2}$. Second, $l_{1} \sim_{X} l_{2}$ iff $l_{1} \prec_{X} l_{2} \wedge l_{2} \prec_{X} l_{1}$. Third, $l_{1} \precsim l_{X}$ iff $l_{1} \prec_{X} l_{2} \vee l_{1} \sim_{X} l_{2}$.

From the definition of Sequential, we have that $X \in$ Sequential iff $\forall l, l^{\prime} \in X: l \preceq_{X} l^{\prime} \vee l^{\prime} \prec_{X} l$. For an execution history $X$, we define the thread real-time relations $\preccurlyeq_{x}$ and $\preccurlyeq_{x}$ as follows. First, $T \preccurlyeq_{X} T^{\prime}$ iff $X\left|T \triangleleft_{X} X\right| T^{\prime}$. Second, $T \preccurlyeq_{X} T^{\prime}$ iff $T \preccurlyeq_{X} T^{\prime} \vee T=T^{\prime}$.

[^0]Now, we present a set of basic lemmas about execution orders. Please see the appendix Section 10.1.2.1 for proofs.

Lemma 1 (XASYM). For every execution history $X$ and method calls $l$ and $l^{\prime}$, if $l \prec_{X} l^{\prime}$ then $\neg\left(l^{\prime} \prec_{X} l\right) \wedge \neg\left(l^{\prime} \sim_{X} l\right) \wedge \neg\left(l^{\prime}=l\right)$

Lemma 2 (XTrans). For every execution history $X$ and method calls $l$, $l$. and $l^{\prime \prime}$, if $l \prec_{X} l^{\prime}$ and $l^{\prime} \prec l^{\prime \prime}$ then $l \prec_{X} l^{\prime \prime}$

Lemma 3 (XXTrans). For every execution history $X$ and method calls $l_{1}, l_{2}, l_{3}$, and $l_{4}$, if $l_{1} \prec_{X} l_{2}$, $l_{2} \precsim X l_{3}$, and $l_{3} \prec_{X} l_{4}$ then $l_{1} \prec_{X} l_{4}$

Lemma 4 (XTotal). For every execution history $X$ and method calls $l$ and $l^{\prime}$, if $l \in X$, and $l^{\prime} \in X$, then $\left(l \prec_{X} l^{\prime}\right) \vee\left(l^{\prime} \prec_{X} l\right) \vee\left(l \sim_{X} l^{\prime}\right) \vee\left(l=l^{\prime}\right)$

Lemma 5 (X2X). For every execution history $X$ and method calls $l$ and $l^{\prime}$, if $l \prec_{X} l^{\prime}$ then $l \in X$, and $l^{\prime} \in X$.

Lemma 6 (XI2X). For every execution history $X$ and method calls $l$, $l^{\prime}$, and $l^{\prime \prime}$ if $l \prec_{X} l^{\prime}$ and $\operatorname{inv}\left(l^{\prime}\right) \triangleleft_{X} \operatorname{inv}\left(l^{\prime \prime}\right)$ then $l \prec_{X} l^{\prime \prime}$.

Lemma 7 (RX2X). For every execution history $X$ and method calls $l$, $l^{\prime}$, and $l^{\prime \prime}$ if ret $(l) \triangleleft_{X}$ ret $\left(l^{\prime}\right)$ and $l^{\prime} \prec_{X} l^{\prime \prime}$ then $l \prec_{X} l^{\prime \prime}$.

### 2.3.2 Synchronization Object Types

In this subsection, we first define the semantics of basic and linearizable objects. Then, we define the interface and the sequential specifications of the following abstract object types: register, lock, try-lock, counter, set and map. For each abstract object type, we define concrete synchronization object types. We define the following synchronization object types: basic register, atomic register, atomic cas register, lock, try-lock, strong counter, basic set and basic map. For each synchronization object type, we present lemmas that characterize the properties of its execution histories. Please see Section 10.1.2.2 for notes on the proof of the lemmas that we present in this subsection. ${ }^{2}$

## Basic, Sequentially-consistent and Linearizable Object Types

The abstract type of each object $o$ specifies the sequential specification of $o$, denoted by $\operatorname{Seq} \operatorname{Spec}(o)$, that is the prefix-closed set of correct sequential histories of $o$. In the following subsections, we will consider several synchronization object types and define their sequential specifications.

We consider three concurrent types: basic, sequentially-consistent and linearizable. Sequentiallyconsistent and linearizable objects comply with their sequential specification in every concurrent execution. Basic objects, on the other hand, comply with their sequential specification if they are accessed sequentially.

Definition 1 (Basic Object Semantics). Every sequential execution on a basic object is an execution in its sequential specification. The semantics of a basic object o, $\mathbb{H}_{B}(o)$, is a set of histories that is constrained as follows:

$$
\begin{equation*}
\mathbb{H}_{B}(o) \cap \text { Sequential } \subseteq \operatorname{SeqSpec}(o) \tag{2.16}
\end{equation*}
$$

Definition 2 (Sequentially-consistent Object Semantics). An execution history $X$ is sequentiallyconsistent for an object o iff there is an indistinguishable sequential history $L$ that is in the sequential specification of o. $L$ is a sequentialization and $\prec_{L}$ is a sequentialization order of $X$. The semantics of a sequentially-consistent object $o, \mathbb{H}_{L}(o)$, is defined as the following set of execution and sequentialization pairs.

$$
\begin{equation*}
\mathbb{H}_{L}(o)=\left\{(X, L) \mid X \equiv L \wedge L \in \operatorname{SeqSpec}(o) \wedge \forall T \in X: \prec_{X \mid T} \subseteq \prec_{L}\right\} \tag{2.17}
\end{equation*}
$$

Note that the notion of sequential consistency defined above is for operations on a single object in contrast to sequential consistency for operations on multiple objects. The notion defined above is also called cache coherence.

Definition 3 (Linearizable Object Semantics). An execution history $X$ is linearizable for an object $o$ iff there is an indistinguishable sequential history $L$ that is in the sequential specification of o and is real-time-preserving. $L$ is a linearization and $\prec_{L}$ is a linearization order of $X$. The semantics of a linearizable object o, $\mathbb{H}_{L}(o)$, is defined as the following set of execution and linearization pairs.

$$
\begin{equation*}
\mathbb{H}_{L}(o)=\left\{(X, L) \mid X \equiv L \wedge L \in S e q S p e c(o) \wedge \prec_{X} \subseteq \prec_{L}\right\} \tag{2.18}
\end{equation*}
$$

Note that sequentially-consistent objects preserve execution order of method calls in the justifying sequential order only within threads while linearizable objects preserve it even across threads.

We now present lemmas for serialization and linearization orders.

[^1]Lemma 8 (X2L). For every linearization $L$ of an execution history $X$ on object o and method calls $l$ and $l^{\prime}$, if $l \prec_{X} l^{\prime}$ then $l \prec_{L} l^{\prime}$.

Lemma 9 (X2L'). For every linearization $L$ of an execution history $X$ on object o and method calls $l$ and $l^{\prime}$, if $l \prec_{L} l^{\prime}$ then $l \precsim X l^{\prime}$.

Lemma 10 (LASym). For every sequentialization or linearization $L$ of an execution history $X$ on object $o$ and method calls $l$ and $l^{\prime}$, if $l \prec_{L} l^{\prime}$ then $\neg\left(l^{\prime} \prec_{L} l\right) \wedge \neg\left(l=l^{\prime}\right)$

Lemma 11 (LTRANs). For every sequentialization or linearization $L$ of an execution history $X$ on object o and method calls $l$, $l^{\prime}$, and $l^{\prime \prime}$, if $l \prec_{L} l^{\prime}$ and $l^{\prime} \prec_{L} l^{\prime \prime}$ then $l \prec_{L} l^{\prime \prime}$.

Lemma 12 (LTotal). For every sequentialization or linearization $L$ of an execution history $X$ on object $o$ and method calls $l$ and $l^{\prime}$, if $l \in X$ and $l^{\prime} \in X$ then $\left(l \prec_{L} l^{\prime}\right) \vee\left(l^{\prime} \prec_{L} l\right) \vee\left(l=l^{\prime}\right)$

Lemma 13 (L2X). For every sequentialization or linearization $L$ of an execution history $X$ on object $o$ and method calls $l$ and $l^{\prime}$, if $\left(l \prec_{L} l^{\prime}\right)$ then $l \in X, l^{\prime} \in X$, and $l$ and $l^{\prime}$ are both on o.

Lemma 14 (XLTrans). For every linearization $L$ of an execution history $X$ on object o and method calls $l_{1}, l_{2}, l_{3}$, and $l_{4}$, if $l_{1} \prec_{X} l_{2}, l_{2} \prec_{L} l_{3}, l_{3} \prec_{X} l_{4}$, then $l_{1} \prec_{X} l_{4}$

See section 10.1.2.2 for proofs.

### 2.3.2.1 Register

Register. A register reg is an object that encapsulates a value and supports read and write methods. The method call reg.read() returns the current encapsulated value of reg. The method call reg.write $(v)$ overwrites the encapsulated value of reg with $v$.

Definition 4. The sequential specification of register reg is the set of sequential histories of read and write method calls on reg where every read returns the argument of the latest preceding write (regardless of thread identifiers). (Note that it is assumed that a write method call initializes the register before other methods are invoked.) The sequential specification of a register r, $\operatorname{Seq} \operatorname{Spec}(r)$, is defined as follows:

$$
\begin{align*}
& i s X R e a d_{X, r}\left(l_{R}\right)=l_{R} \in X \wedge \operatorname{obj}_{X}\left(l_{R}\right)=r \wedge \operatorname{name}_{X}\left(l_{R}\right)=\text { read }  \tag{2.19}\\
& \text { isXWrite }_{X, r}\left(l_{W}\right)=l_{W} \in X \wedge \operatorname{obj}_{X}\left(l_{W}\right)=r \wedge \text { name }_{X}\left(l_{W}\right)=\text { write }  \tag{2.20}\\
& \text { NoWriteBetween }{ }_{X, r}\left(l_{W}, l_{R}\right)=\forall l_{W}^{\prime}: \text { isXWrite }_{X, r}\left(l_{W}^{\prime}\right) \Rightarrow\left(l_{W}^{\prime} \preceq_{X} l_{W} \vee l_{R} \prec_{X} l_{W}^{\prime}\right)  \tag{2.21}\\
& \text { isXWriter }_{X, r}\left(l_{W}, l_{R}\right)=\text { isXWrite }_{X, r}\left(l_{W}\right) \wedge  \tag{2.22}\\
& l_{W} \prec_{X} l_{R} \wedge \\
& \text { NoWriteBetween }_{X, r}\left(l_{W}, l_{R}\right) \\
& \operatorname{Legal}(r)=\left\{S \mid \forall l_{R}: \text { isXRead }_{S, r}\left(l_{R}\right) \Rightarrow\right.  \tag{2.23}\\
& \exists l_{W}: \text { isXWriter }_{S, r}\left(l_{W}, l_{R}\right) \wedge \\
& \left.\operatorname{retv}_{S}\left(l_{R}\right)=\arg 1_{S}\left(l_{W}\right)\right\} \\
& \operatorname{SeqSpec}(r)=\{S|S| r=S \wedge S \in \operatorname{Sequential} \cap \operatorname{Legal}(r)\} \tag{2.24}
\end{align*}
$$

Basic Register. A basic register is a basic instance of the register type.
Let BasicRegister denote the type of basic registers.
Lemma 15. In every sequential execution on a basic register, every read reads the value that the latest preceding write writes. Formally,

$$
\begin{align*}
& \forall r e g \in \text { BasicRegister }: \forall X \in \mathbb{H}_{B}(\text { reg }): X \in \text { Sequential } \Rightarrow  \tag{2.25}\\
& \forall l_{R}: \text { is } X \text { Read }_{X, \text { reg }}\left(l_{R}\right) \Rightarrow \\
& \exists l_{W}: \operatorname{isXWriter~}_{X, \text { reg }}\left(l_{W}, l_{R}\right) \wedge \\
& \quad \operatorname{retv}_{X}\left(l_{R}\right)=\arg _{X}\left(l_{W}\right)
\end{align*}
$$

Two concurrent read method calls on a register do not conflict. Thus, basic registers can maintain consistency even when the execution involves concurrent read method calls. Let us define

$$
\begin{align*}
\text { isX RaceFree }_{X, r}(l) & =\forall l_{w}: \text { isXWrite }_{X, r}\left(l_{w}\right) \Rightarrow l_{w} \preceq_{X} l \vee l \prec_{X} l_{w}  \tag{2.26}\\
\text { isXSequentiallyWritten }_{r}(X) & =\forall l \in X: \text { isXWrite }_{X, r}(l) \Rightarrow \text { isRaceFree }_{X, r}(l) \tag{2.27}
\end{align*}
$$

A method call is race-free if an only if there is no write method call that executes concurrent to it. An execution is sequentially-written if and only if every pair of write method calls on it are ordered in the execution order or in other words, every write method call on it is race-free.

Definition 5 (Basic Register Semantics). An execution history on a basic register is in the semantics of the basic register if and only if it is not sequentially-written or it is sequentially-written and every race-free read reads the value that the latest preceding write writes. The semantics of a basic register $r, \mathbb{H}_{B}(r)$, is defined as follows.

$$
\begin{gather*}
\mathbb{H}_{B}(r)=\{X|X| o=X \wedge  \tag{2.28}\\
\\
\text { isXSequentiallyWritten } n_{r}(X) \Rightarrow \\
\forall l_{r}: \\
\exists{\text { is } X \text { Read }_{X, r}\left(l_{r}\right) \wedge \text { isX RaceFree }}_{X, r}\left(l_{r}\right) \Rightarrow \\
\exists l_{w}: \\
: \text { isXWriter }_{X, r}\left(l_{w}, l_{r}\right) \wedge \\
\left.\operatorname{retv}_{X}\left(l_{r}\right)=\arg _{X}\left(l_{w}\right)\right\}
\end{gather*}
$$

Note that if an execution is not sequentially-written, reads may return arbitrary values. Similarly, racy reads may return arbitrary values.

Note that this definition satisfies the constraint of Definition 1.
Note that basic register models Lamport's notion of safe register [48].
Lemma 16 (BREG). In every sequentially-written execution on a basic register, every race-free read reads the value that the latest preceding write writes. Formally,

$$
\begin{align*}
& \forall r e g \in \text { BasicRegister }:_{\forall X \in \mathbb{H}_{B}(\text { reg }): \text { isXSequentiallyWritten }}^{r}(X) \Rightarrow  \tag{2.29}\\
& \forall l_{R}: i s X \text { Read }_{X, \text { reg }}\left(l_{R}\right) \wedge \text { isX RaceFree } X, r\left(l_{R}\right) \Rightarrow \\
& \exists l_{W}: \text { isXWriter }_{X, \text { reg }}\left(l_{W}, l_{R}\right) \wedge \\
& \quad \operatorname{retv}_{X}\left(l_{R}\right)=\arg 1_{X}\left(l_{W}\right)
\end{align*}
$$

Atomic Register. An atomic register is a linearizable instance of the register type.
Let AtomicRegister denote the type of atomic registers.
Let us define

$$
\begin{align*}
& \text { LNoWriteBetween }_{X, L, r}\left(l_{W}, l_{R}\right)= \forall l_{W}^{\prime}: \text { isXWrite }_{X, r}\left(l_{W}^{\prime}\right) \Rightarrow\left(l_{W}^{\prime} \preceq_{L} l_{W} \vee l_{R} \prec_{L} l_{W}^{\prime}\right)  \tag{2.30}\\
& \text { isLWriter }_{X, L, r}\left(l_{W}, l_{R}\right)= \text { sXWrite }_{X, r}\left(l_{W}\right) \wedge  \tag{2.31}\\
& l_{W} \prec_{L} l_{R} \wedge \\
& \text { LNoWriteBetween } \\
& X, L, r
\end{align*}\left(l_{W}, l_{R}\right) \text {. }
$$

Lemma 17 (AREG). In every execution on an atomic register, every read reads the value written by the last write linearized before it. Formally,

$$
\begin{align*}
& \forall r \in \text { AtomicRegister }:(X, L) \in \mathbb{H}_{L}(r):  \tag{2.32}\\
& \forall l_{R}: \\
& \exists \text { is }^{(R e a d} \operatorname{Red}_{X, r}\left(l_{R}\right) \Rightarrow \\
& \exists l_{W}: \text { isLWriter }_{X, L, r}\left(l_{W}, l_{R}\right) \wedge \\
& \quad \operatorname{retv}_{X}\left(l_{R}\right)=\arg _{X}\left(l_{W}\right)
\end{align*}
$$

Sequentially-consistent Register. A sequentially-consistent register is a sequentially-consistent instance of the register type.

Let SCRegister denote the type of sequentially-consistent registers.
Consider the following four concurrent threads.

$$
\begin{aligned}
& L_{32} \triangleright y_{1}=r_{2} \cdot \operatorname{read}() \quad L_{42} \triangleright x_{2}=r_{1} \cdot \operatorname{read}() \\
& \left\{L_{31} \rightarrow L_{32}\right\} \quad\left\{L_{41} \rightarrow L_{42}\right\}
\end{aligned}
$$

If $r_{1}$ and $r_{2}$ are sequentially-consistent registers, there is an execution that results in the following values for the variables:
$x_{1}=1, y_{1}=0, y_{2}=1$ and $x_{2}=0$.
These values can be justified by the sequentialization order
(1) $L_{r_{1}}=L_{42} \triangleright x_{2}=r_{1} \cdot \operatorname{read}() \cdot L_{11} \triangleright r_{1} \cdot w r i t e(1) \cdot L_{31} \triangleright x_{1}=r_{1} \cdot \operatorname{read}()$
for $r_{1}$ and the sequentialization order
(2) $L_{r_{2}}=L_{32} \triangleright y_{1}=r_{2} \cdot \operatorname{read}() \cdot L_{21} \triangleright r_{2} \cdot w r i t e(1) \cdot L_{41} \triangleright y_{2}=r_{2} \cdot \operatorname{read}()$
for $r_{2}$.
If $r_{1}$ and $r_{2}$ are atomic registers, there is no execution that results in the values above for the variables. The real-time-preservation property precludes these executions. We assume that there is such an execution and show a contradiction. To have the above values for the variables, the linearization order of $r_{1}$ and $r_{2}$ should be as above in 1 and 2. By the program orders above, we have (3) $L_{31} \prec_{X} L_{32}$ (4) $L_{41} \prec_{X} L_{42}$. By X2L' on 2 , we have (5) $L_{32} \precsim x L_{41}$. By XXTrans on 3,5 and 4, we have (6) $L_{31} \prec_{x} L_{42}$. By X2L on 6, we have $L_{31} \prec_{r_{1}} L_{42}$ that contradicts 1.

### 2.3.2.2 CAS (Compare-And-Swap) Register

A CAS register is an object that encapsulates a value and supports the cas method in addition to read and write methods. The method call $\operatorname{r} \cdot \operatorname{cas}\left(v_{1}, v_{2}\right)$ updates the value of the register to $v_{2}$ and returns true if the current value of the register is $v_{1}$. It returns false otherwise.

A successful write is either a write method call or a successful cas method call. The written value of a successful write is its first argument, if it is a write method call or is its second argument, if it is a cas method call.

Definition 6. The sequential specification of cas register reg is the set of sequential histories of read, write and cas method calls on reg with the following two conditions. Every read returns the written value of the latest preceding successful write (regardless of thread identifiers). (Note that it is assumed that a write method call initializes the register before other methods are invoked.) Every cas with the first argument $v_{1}$ returns true if the written value of the latest preceding successful write is $v_{1}$ and returns false otherwise.

Atomic CAS Register. An atomic CAS register is a linearizable instance of CAS register type.
Let AtomicCASRegister denote the type of Atomic CAS registers.
Let us define

$$
\begin{align*}
& i s X C A S_{X, r}\left(l_{W}\right)=l_{W} \in X \wedge \operatorname{obj}_{X}\left(l_{W}\right)=r \wedge \operatorname{name}_{X}\left(l_{W}\right)=c a s \tag{2.33}
\end{align*}
$$

$$
\begin{align*}
& \text { writtenValue }_{X}\left(l_{W}\right)= \begin{cases}\arg 1_{X}\left(l_{W}\right) & \text { if } \text { name }_{X}\left(l_{W}\right)=\text { write } \\
\arg 2_{X}\left(l_{W}\right) & \text { if name } \\
X & \left(l_{W}\right)=\text { cas }\end{cases}  \tag{2.35}\\
& L N o W \text { riteBetween }{ }_{X, L, r}\left(l_{W}, l_{R}\right)=\forall l_{W}^{\prime}: \text { isXCWrite }_{X, r}\left(l_{W}^{\prime}\right) \Rightarrow\left(l_{W}^{\prime} \preceq_{L} l_{W} \vee l_{R} \prec_{L} l_{W}^{\prime}\right)  \tag{2.36}\\
& \text { isLCWriter }_{X, L, r}\left(l_{W}, l_{R}\right)=\text { isXCWrite }_{X, r}\left(l_{W}\right) \wedge  \tag{2.37}\\
& l_{W} \prec_{L} l_{R} \wedge \\
& \text { LNoWriteBetween }{ }_{X, L, r}\left(l_{W}, l_{R}\right)
\end{align*}
$$

Lemma 18 (CASREGREAD). In every execution on an atomic cas register, every read returns the value the last successful write linearized before it writes. Formally,

$$
\begin{align*}
& \forall r \in \text { AtomicCASRegister }: \forall(X, L) \in \mathbb{H}_{L}(r):  \tag{2.38}\\
& \forall l_{R}:{\text { is } X \operatorname{Read}_{X, r}\left(l_{R}\right) \Rightarrow}_{\exists l_{W}:} \text { isLCWriter }_{X, L, r}\left(l_{W}, l_{R}\right) \wedge \\
& \quad \operatorname{retv}_{X}\left(l_{R}\right)=\arg _{X}\left(l_{W}\right)
\end{align*}
$$

Lemma 19 (CASREGCAS). In every execution on an atomic cas register, every cas returns true if its first argument is equal to the argument of the last successful write linearized before it and returns false otherwise. Formally,

$$
\begin{align*}
& \forall r e g \in \text { AtomicCASRegister }: \forall(X, \text { Reg }) \in \mathbb{H}_{L}(\text { reg }):  \tag{2.39}\\
& \forall l_{C}, l_{W}: \\
& \quad \text { isXCAS } S_{X, \text { reg }}\left(l_{C}\right) \wedge \\
& \Rightarrow \\
& \quad \text { isLCWriter }_{X, \text { Reg,reg }}\left(l_{W}, l_{R}\right) \\
& \quad\left(\text { writtenValue }_{X}\left(l_{W}\right)=\arg _{X}\left(l_{C}\right) \Rightarrow \operatorname{retv}_{X}\left(l_{C}\right)=\text { true }\right) \wedge \\
& \quad\left(\neg\left(\text { writtenValue }_{X}\left(l_{W}\right)=\arg _{X}\left(l_{C}\right)\right) \Rightarrow \operatorname{retv}_{X}\left(l_{C}\right)=\text { false }\right)
\end{align*}
$$

### 2.3.2.3 Lock

Abstract lock. An abstract lock $l$ is an object that encapsulates a state, acquired $\mathbb{A}$ or released $\mathbb{R}$, and supports the following methods: lock: The method call l.lock () changes the state from $\mathbb{R}$ to $\mathbb{A}$. unlock: The method call l.unlock () changes the state from $\mathbb{A}$ to $\mathbb{R}$. read: The method call l.read () returns true if the state of lock is $\mathbb{A}$ and false otherwise. The method calls lock and unlock are mutating method calls. The method call read is an accessor method call.

Definition 7. The sequential specification of a lock $l$ is the set of sequential histories $L$ of lock, unlock, and read method calls on $l$ where the sub-history of $L$ for mutating methods is an alternating sequence of lock and unlock methods and every read method call in $L$ returns true if the last mutating method call before it in $L$ is a lock and returns false otherwise.

Lock. A lock is a linearizable instance of the abstract lock type.
Let Lock denote the type of locks.
Now, we present some preliminary definitions and then lemmas about locks.

$$
\begin{align*}
& i s X^{\operatorname{Lock}_{X, l o}(l)=}  \tag{2.40}\\
& \quad l \in X \wedge \operatorname{obj}_{X}(l)=l o \wedge \operatorname{name}_{X}(l)=\text { lock } \\
& i s X U n l o c k_{X, l o}(l)=  \tag{2.41}\\
& \quad l \in X \wedge \operatorname{obj}_{X}(l)=l o \wedge \operatorname{name}_{X}(l)=\text { unlock } \\
& i s X \operatorname{Read}_{X, l o}(l)=  \tag{2.42}\\
& \quad l \in X \wedge \operatorname{obj}_{X}(l)=l o \wedge \operatorname{name}_{X}(l)=\text { read }
\end{align*}
$$

The common usage protocol for locks is that a thread unlocks a lock only if it has already acquired it. Many languages including Java enforce this property of programs by runtime checks. We capture this property as follows.

Definition 8. A history is owner-respecting for a lock if every thread in the history releases the lock only after it has already acquired it.

$$
\begin{align*}
& \text { isXOwnerRespecting }_{l o}(X)=  \tag{2.43}\\
& \forall l: \text { isXUnlock }_{X, l o}(l) \Rightarrow \\
& \exists l^{\prime}: \text { isX }^{\operatorname{Lock}} k_{X, l o}\left(l^{\prime}\right) \wedge \\
& \quad \text { thread }_{X}\left(l^{\prime}\right)=\text { thread }_{X}(l) \wedge \\
& l^{\prime} \prec_{X} l \wedge \\
& \forall l^{\prime \prime}:\left(\text { isXUnLock }_{X, l o}\left(l^{\prime \prime}\right) \wedge \operatorname{thread}_{X}\left(l^{\prime \prime}\right)=\operatorname{thread}_{X}(l)\right) \Rightarrow\left(l^{\prime \prime} \prec_{X} l^{\prime} \vee l \preceq_{X} l^{\prime \prime}\right)
\end{align*}
$$

Lemma 20. If $l$ is a lock, $X$ is an owner-respecting history of $l$ and $L$ is the linearization of $X$, then the sub-history of $L$ for mutating method calls is a sequence of pairs of lock and unlock method calls by the same thread (possibly followed by a lock method call).

Lemma 21 (Lock). In an owner-respecting execution for a lock l, if a lock method call by a thread $T_{1}$ is linearized before an unlock method call by a thread $T_{2}$, then an unlock method call by $T_{1}$ is
linearized before a lock method call by $T_{2}$. Formally,

$$
\begin{align*}
& \forall o \in \operatorname{Lock}: \forall(X, L) \in \mathbb{H}_{L}(o): \forall l_{l 1}, l_{u 2}:  \tag{2.44}\\
& \text { (isXOwner Respecting }{ }_{o}(X) \wedge \\
& i s X^{L^{\prime}}{ }_{X, o}\left(l_{l 1}\right) \wedge \\
& \text { isXUnlock }_{X, o}\left(l_{u 2}\right) \wedge \\
& \left.l_{l 1} \prec_{L} l_{u 2}\right) \Rightarrow \\
& \exists l_{u 1}, l_{l 2} \text { : } \\
& \text { isXUnlock }_{X, o}\left(l_{u 1}\right) \wedge \text { thread }_{X}\left(l_{l 1}\right)=\text { thread }_{X}\left(l_{u 1}\right) \wedge \\
& \text { isX }_{\text {Lock }}^{X, o}\left(l_{l 2}\right) \wedge \text { thread }_{X}\left(l_{l 2}\right)=\text { thread }_{X}\left(l_{u 2}\right) \wedge \\
& l_{u 1} \prec_{L} l_{l 2}
\end{align*}
$$

Lemma 22 (LockReadL). In an owner-respecting execution for a lock l, if a read method call that returns false is linearized before an unlock method call by a thread $T$, then the read method call is linearized before a lock method call by T. Formally,

$$
\begin{align*}
& \forall o \in \operatorname{Lock}: \forall(X, L) \in \mathbb{H}_{L}(o): \forall l_{u 1}, l_{r 2}:  \tag{2.45}\\
& \text { (isXOwnerRespecting }{ }_{o}(X) \wedge \\
& i s X^{\operatorname{Read}}{ }_{X, o}\left(l_{r 2}\right) \wedge \operatorname{retv}_{X}\left(l_{r 2}\right)=\text { false } \\
& i s X U n l o c k_{X, o}\left(l_{u 1}\right) \wedge \\
& \left.l_{r 2} \prec_{L} l_{u 1}\right) \Rightarrow \\
& \exists l_{l 1} \text { : } \\
& \operatorname{isX}^{\operatorname{Lock}_{X, o}\left(l_{l 1}\right)} \operatorname{thread}_{X}\left(l_{l 1}\right)=\text { thread }_{X}\left(l_{u 1}\right) \wedge \\
& l_{r 2} \prec_{L} l_{l 1}
\end{align*}
$$

Lemma 23 (LockReadR). In an owner-respecting execution for a lock l, if a lock method call by a thread $T$ is linearized before a read method call that returns false, then an unlock method call by $T$ is linearized before the read method call. Formally,

$$
\begin{align*}
& \forall o \in \text { Lock: } \forall(X, L) \in \mathbb{H}_{L}(o): \forall l_{l 1}, l_{r 2}:  \tag{2.46}\\
&\left(\text { isXOwner Respecting }_{o}(X) \wedge\right. \\
& \text { isXLock }{ }_{X, o}\left(l_{l 1}\right) \wedge \\
& \text { isX } \operatorname{Read}_{X, o}\left(l_{r 2}\right) \wedge \operatorname{retv}_{X}\left(l_{r 2}\right)=\text { false } \\
&\left.l_{l 1} \prec_{L} l_{r 2}\right) \Rightarrow \\
& \exists l_{u 1}: \\
& i s X U n l o c k_{X, o}\left(l_{u 1}\right) \wedge \text { thread }_{X}\left(l_{l 1}\right)=\text { thread }_{X}\left(l_{u 1}\right) \wedge \\
& l_{u 1} \prec_{L} l_{r 2}
\end{align*}
$$

Lemma 24 (LockReadM). In an owner-respecting execution for a lock l, every read method call
that is linearized between a pair of matching lock and unlock method calls returns true. Formally,

$$
\begin{aligned}
& \forall o \in \text { Lock }: \forall(X, L) \in \mathbb{H}_{L}(o): \forall l_{l 1}, l_{u 1}, l_{r 2}: \\
&(\text { isXOwnerRespecting }(X) \wedge \\
& \text { isX } \operatorname{Lock}_{X, o}\left(l_{l 1}\right) \wedge \\
& \text { isXUnlock }{ }_{X, o}\left(l_{u 1}\right) \wedge \\
& \text { thread }_{X}\left(l_{l 1}\right)=\text { thread }_{X}\left(l_{u 1}\right) \wedge \\
& \forall l_{u 1}^{\prime}:\left(\text { isXUnlock }_{X, o}\left(l_{u 1}^{\prime}\right) \wedge \text { thread }_{X}\left(l_{l 1}\right)=\text { thread }_{X}\left(l_{u 1}^{\prime}\right)\right) \Rightarrow\left(l_{u 1}^{\prime} \prec_{X} l_{l 1} \vee l_{u 1} \preceq_{X} l_{u 1}^{\prime}\right) \\
& \text { isX Read }_{X, o}\left(l_{r 2}\right) \wedge \\
&\left.l_{l 1} \prec_{L} l_{r 2} \wedge l_{r 2} \prec_{L} l_{u 1}\right) \\
& \Rightarrow \operatorname{retv}_{X}\left(l_{r 2}\right)=\text { true }
\end{aligned}
$$

### 2.3.2.4 Try-lock

Abstract Try-lock. A try-lock $l$ is an object that encapsulates an abstract state, acquired $\mathbb{A}$ or released $\mathbb{R}$, and in addition to lock, unlock and read methods, it supports the trylock method. If the state of the lock is $\mathbb{R}$, l.trylock () changes it to $\mathbb{A}$ and returns true. Otherwise, it returns false.

We call a lock method call or a successful tryLock method call, a successful lock method call. We call a lock method call, successful tryLock method call or unlock method call, a mutating method call.

Definition 9. The sequential specification of a try-lock l is the set of sequential histories $L$ of lock, unlock, read and tryLock method calls on l with the following conditions: The last mutating method call before a successful lock method call is an unlock method call. Similarly, the last mutating method call before an unlock method call is a successful lock method call. A tryLock method call returns true if the latest preceding mutating method call is an unlock and returns false otherwise. Similarly, $A$ read method call returns true if the latest preceding mutating method call is a successful lock and returns false otherwise.

Try-Lock. A try-lock is a linearizable instance of the abstract try-lock type.
Let TryLock denote the type of try-locks.
Similar to the Lock type, after some preliminary definitions, we define the owner-respecting histories and state the TryLock type lemmas.

$$
\begin{align*}
& \text { isXTryLock }_{X, o}(l)=  \tag{2.48}\\
& \quad l \in X \wedge \operatorname{obj}_{X}(l)=o \wedge \text { name }_{X}(l)=\text { tryLock } \\
& \text { isXTLock }_{X, o}(l)=  \tag{2.49}\\
& \quad \text { isXLock }_{X, o}(l) \vee\left(i s X T r y \operatorname{Lock}_{X, o}(l) \wedge \operatorname{retv}_{X}(l)=\text { true }\right)
\end{align*}
$$

The intuition for owner-respecting histories remains the same. A history is owner-respecting for a try-lock if every thread in the history releases the lock only after it has already acquired it. The
minor difference from the prior definition for locks is that the acquisition of a try-lock is either by a lock method call or a successful tryLock method call.

$$
\begin{align*}
& \text { is } X T O w n e r R e s p e c t i n g ~_{o}(X)=  \tag{2.50}\\
& \forall l: \text { isXUnlock }_{X, o}(l) \Rightarrow \\
& \exists l^{\prime}: \text { isXTLock }_{X, o}\left(l^{\prime}\right) \wedge \\
& \quad \text { thread }_{X}\left(l^{\prime}\right)=\text { thread }_{X}(l) \wedge \\
& l^{\prime} \prec_{X} l \wedge \\
& \quad \forall l^{\prime \prime}:\left(\text { isXUnLock }_{X, o}\left(l^{\prime \prime}\right) \wedge \text { thread }_{X}\left(l^{\prime \prime}\right)=\operatorname{thread}_{X}(l)\right) \Rightarrow l^{\prime \prime} \prec_{X} l^{\prime} \vee l \preceq_{X} l^{\prime \prime}
\end{align*}
$$

Lemma 25. If $l$ is a try-lock, $X$ is an owner-respecting history of $l$ and $L$ is the linearization of $X$, then the sub-history of $L$ for mutating method calls is a sequence of pairs of successful lock and unlock method calls by the same thread (possibly followed by a successful lock method call).

Lemma 26 (TryLock). In an owner-respecting execution for a try-lock l, if a successful lock method call by a thread $T_{1}$ is linearized before an unlock method call by a thread $T_{2}$, then an unlock method call by $T_{1}$ is linearized before a successful lock method call by $T_{2}$. Formally,

$$
\begin{align*}
& \forall o \in \text { TryLock: } \forall(X, L) \in \mathbb{H}_{L}(o): \forall l_{l 1}, l_{u 2}:  \tag{2.51}\\
&(\text { isXTOwnerRespecting }(X) \wedge \\
& i s X T \operatorname{Lock}_{X, o}\left(l_{l 1}\right) \wedge \\
& i s X U n l o c k_{X, o}\left(l_{u 2}\right) \wedge \\
&\left.l_{l 1} \prec_{L} l_{u 2}\right) \Rightarrow \\
& \exists l_{u 1}, l_{l 2}: \\
& \text { isXUnlock }{ }_{X, o}\left(l_{u 1}\right) \wedge \text { thread }_{X}\left(l_{l 1}\right)=\text { thread }_{X}\left(l_{u 1}\right) \wedge \\
& i s X T L o c k_{X, o}\left(l_{l 2}\right) \wedge \operatorname{thread}_{X}\left(l_{l 2}\right)=\text { thread }_{X}\left(l_{u 2}\right) \wedge \\
& l_{u 1} \prec_{L} l_{l 2}
\end{align*}
$$

Lemma 27 (TryLockReadL). In an owner-respecting execution for a try-lock $l$, a read method call that returns false is linearized before if an unlock method call by a thread $T$ then the read method call is linearized before a successful lock method call by T. Formally,

$$
\begin{align*}
& \forall o \in \text { TryLock }: \forall(X, L) \in \mathbb{H}_{L}(o): \forall l_{u 1}, l_{r 2}:  \tag{2.52}\\
&\left(\text { isXTOwner Respecting }_{o}(X) \wedge\right. \\
& \text { isXRead } \\
& i s X U n{ }_{X, o}\left(l_{r 2}\right) \wedge \operatorname{retv}_{X}\left(l_{r 2}\right)=\text { false } \\
&\left.l_{r 2} \prec_{L} l_{u 1}\right) \Rightarrow \\
& \exists l_{l 1}: \\
& \text { isXTLock } l_{X, o}\left(l_{l 1}\right) \wedge \\
& l_{r 2} \prec_{L} l_{l 1}
\end{align*}
$$

Lemma 28 (TryLockReadR). In an owner-respecting execution for a try-lock $l$, if a successful lock method call by a thread $T$ is linearized before a read method call that returns false, then an unlock method call by $T$ is linearized before the read method call. Formally,

$$
\begin{align*}
& \forall o \in \text { TryLock }: \forall(X, L) \in \mathbb{H}_{L}(o): \forall l_{l 1}, l_{r 2}:  \tag{2.53}\\
&\left(\text { isXTOwnerRespecting }_{o}(X) \wedge\right. \\
& \text { isXTLock } \\
& i s X \operatorname{Read}_{X, o}\left(l_{l 1}\right) \wedge \\
&\left.l_{l 1} \prec_{L} l_{r 2}\right) \wedge \\
& \exists l_{u 1}: \\
& \text { isXUV }_{X}\left(l_{r 2}\right)=\text { false } \\
& l_{u 1} \prec_{L} l_{r 2}
\end{align*}
$$

Lemma 29 (TryLockReadM). In an owner-respecting execution for a try-lock $l$, every read method call that is linearized between a pair of matching successful and unlock method calls returns true. Formally,

$$
\begin{aligned}
\forall o \in & \text { TryLock }: \forall(X, L) \in \mathbb{H}_{L}(o): \forall l_{l 1}, l_{u 1}, l_{r 2}: \\
& \left(\text { isXOwnerRespecting }_{o}(X) \wedge\right. \\
& \text { isXTLock }{ }_{X, o}\left(l_{l 1}\right) \wedge \\
& \text { isXUnlock }{ }_{X, o}\left(l_{u 1}\right) \wedge \\
& \text { thread }_{X}\left(l_{l 1}\right)=\text { thread }_{X}\left(l_{u 1}\right) \wedge \\
& \forall l_{u 1}^{\prime}:\left(\text { isXUnlock }_{X, o}\left(l_{u 1}^{\prime}\right) \wedge \text { thread }_{X}\left(l_{l 1}\right)=\text { thread }_{X}\left(l_{u 1}^{\prime}\right)\right) \Rightarrow\left(l_{u 1}^{\prime} \prec_{X} l_{l 1} \vee l_{u 1} \preceq_{X} l_{u 1}^{\prime}\right) \\
& \text { isXRead } \\
& \left.l_{l 1, o} \prec_{L} l_{r 2}\right) \wedge \\
\Rightarrow & \left.l_{r 2} \wedge l_{r 2} \prec_{L} l_{u 1}\right) \\
& \text { retv }_{X}\left(l_{r 2}\right)=\text { true }
\end{aligned}
$$

### 2.3.2.5 Sequence-lock

Abstract seq-lock. A seq-lock $l$ is an object that encapsulates a number and an abstract state, acquired $\mathbb{A}$ or released $\mathbb{R}$. It supports the read, compare AndLock and incAndUnlock methods. The method call l.read() returns the pair of the encapsulated number and true if the state of lock is $\mathbb{A}$ and false otherwise. The method call l.compareAndLock $(n)$ compares the encapsulated number with $n$ and if they are equal, changes the state from $\mathbb{R}$ to $\mathbb{A}$ and returns true. Otherwise, it does not change the state of the seq-lock and returns false. The method call l.incAndUnlock() increments the encapsulated number and changes the state from $\mathbb{A}$ to $\mathbb{R}$.

A successful compare AndLock and incAndUnlock are mutating method calls. The method call read is an accessor method call.

Definition 10. The sequential specification of a seq-lock $l$ is the set of sequential histories $L$ of read, compareAndLock, and incAndUnlock method calls on l with the following conditions:

Every read method call returns the pair of the number of incAndUnlock method calls before it and true if the last mutating method call before it is a successful compareAndLock and false otherwise.

A compareAndLock method call returns true if the last mutating method call before it is an incAndUnlock method call and the number of incAndUnlock method calls before it is equal to its argument. It returns false otherwise.

The last mutating method call before an incAndUnlock method call is a successful compareAndLock method call.

Seq-Lock. A seq-lock is a linearizable instance of the abstract seq-lock type.
Let SeqLock denote the type of seq-locks.

### 2.3.2.6 Counter

Abstract Counter: A counter $c$ is an object that encapsulates a number and supports the following two methods: The method call c.read () returns the current value of $c$. The method call c.iaf() increments the value of $c$ and returns the incremented value.

Definition 11. The sequential specification of a counter $c$ is the set of sequential histories of read and iaf method calls on $c$ where every method call returns the number of iaf method calls before it (including the method call itself). Note that it is assumed that the initial value of the counter is zero.

Strong Counter. A strong counter is a linearizable instance of abstract counter type.
Let SCounter denote the type of strong counters.
Lemma 30 (SCOUNTER). The return value of every method call that is linearized before an iaf method call is smaller than the return value of the iaf method call. Formally,

$$
\begin{align*}
& \forall c \in S C o u n t e r: \forall(X, C) \in \mathbb{H}_{L}(c): \forall l, l^{\prime}:  \tag{2.55}\\
& \quad l \in X \wedge l^{\prime} \in X \wedge \operatorname{name}_{X}\left(l^{\prime}\right)=i a f \wedge l \prec_{C} l^{\prime} \\
& \Rightarrow \quad \operatorname{retv}_{X}(l)<\operatorname{retv}_{X}\left(l^{\prime}\right)
\end{align*}
$$

### 2.3.2.7 Set

A set $s$ is an object that represents a set of values and supports the following methods: add: The method call $s . a d d(v)$ adds value $v$ to set $s$. contains: The method call s.containts $(v)$ returns true if $v$ is a member of $s$ and false otherwise.

Definition 12. The sequential specification of a set $s$ is the set of sequential histories of add and contains method calls on s where every contains method call returns true if there is a preceding add method call with the same argument, and returns false otherwise. Note that it is assumed that the set is initially empty.

Basic Set. A basic set is a basic instance of set type.

Let BasicSet denote the type of basic sets.
Let us define

$$
\begin{align*}
& \text { isXContains }_{X, s}(l)=  \tag{2.56}\\
& \quad l \in X \wedge \operatorname{obj}_{X}(l)=s \wedge \operatorname{name}_{X}(l)=\text { contains } \\
& {\text { is } X A d d_{X, s}(l)=}_{\quad l \in X \wedge \operatorname{obj}_{X}(l)=s \wedge \operatorname{name}_{X}(l)=a d d} \tag{2.57}
\end{align*}
$$

Lemma 31 (BasicSetContains). In every sequential execution on a basic set, for every contains method call that returns true, there is a preceding add method call with the same argument. Formally,

$$
\begin{align*}
& \forall s \in \text { BasicSet }: \forall X \in \mathbb{H}_{B}(s): X \in \text { Sequential } \Rightarrow  \tag{2.58}\\
& \forall l_{c}: \text { isXContains } s_{X, s}\left(l_{c}\right) \wedge \operatorname{retv}_{X}\left(l_{c}\right)=\text { true } \Rightarrow \\
& \exists l_{a}: \quad \text { isXAdd } \\
& \quad \arg 1\left(l_{X, s}\right)=\arg 1\left(l_{c}\right) \wedge \\
& \left.l_{a}\right) \wedge l_{a} l_{c}
\end{align*}
$$

Lemma 32 (BasicSetADd). In every sequential execution on a basic set, every contains method call that succeeds an add method call with the same argument returns true. Formally,

$$
\begin{align*}
& \forall s \in \text { BasicSet }: \forall X \in \mathbb{H}_{B}(s): X \in \text { Sequential } \Rightarrow  \tag{2.59}\\
& \forall l_{c}, l_{a}: \\
& \quad i s X C o n t a i n s^{X}, s\left(l_{c}\right) \wedge \\
& \quad \\
& \quad i s X A d d_{X, s}\left(l_{a}\right) \wedge \\
& \\
& \Rightarrow \\
& \quad \arg 1\left(l_{a}\right)=\arg 1\left(l_{c}\right) \wedge l_{a} \prec_{X} l_{c} \\
& \\
& \quad \operatorname{retv}_{X}\left(l_{c}\right)=\text { true }
\end{align*}
$$

### 2.3.2.8 Map

A map $m$ is an object that represents a mapping from a set of keys to a set of values and supports the following methods: put: The method call m.put $(k, v)$ adds or updates the mapping of the key $k$ to the value $v(v \neq \perp)$ in the map $m$. get: The method call m.get $(k)$ returns the value that the map $m$ associates with the key $k$. It returns $\perp$ if $m$ does not map $k$.

Definition 13. The sequential specification of a map $m$ is the set of sequential histories of put and get method calls on $m$ where every get method call returns $\perp$ if there is no preceding put method call with the same key argument; otherwise it returns the second argument of the latest preceding put method call with the same key argument. Note that it is assumed that the map is initially empty.

Basic Map. A basic set is a basic instance of map type.
Let BasicMap denote the type of basic maps.

Let us define

$$
\begin{align*}
& \text { isXGet }_{X, m}(l)=  \tag{2.60}\\
& \quad l \in X \wedge \operatorname{obj}_{X}(l)=m \wedge \operatorname{name}_{X}(l)=\text { get } \\
& \text { isXPut }_{X, m}(l)=  \tag{2.61}\\
& \quad l \in X \wedge \text { obj }_{X}(l)=m \wedge \operatorname{name}_{X}(l)=\text { put } \\
& \text { isXPutter }_{X, m}\left(l_{p}, l_{g}\right) \Leftrightarrow  \tag{2.62}\\
& \quad \text { isXPut }_{X, m}\left(l_{p}\right) \wedge \arg 1_{X}\left(l_{p}\right)=\arg 1_{X}\left(l_{g}\right) \wedge l_{p} \prec_{X} l_{g} \wedge  \tag{2.63}\\
& \quad \forall l_{p}^{\prime}: \text { isXPut }  \tag{2.64}\\
& X, m \\
& \left(l_{p}^{\prime}\right) \wedge \arg _{X}\left(l_{p}^{\prime}\right)=\arg 1_{X}\left(l_{g}\right) \Rightarrow\left(l_{p}^{\prime} \preceq_{X} l_{p} \vee l_{g} \prec_{X} l_{p}^{\prime}\right)
\end{align*}
$$

Lemma 33 (BasicMapGET). In every sequential execution on a basic map, the return value of every get method call that does not return $\perp$ is equal to the value argument of the latest preceding put method call with the same key argument. Formally,

$$
\begin{align*}
& \forall m \in \text { BasicMap }: \forall X \in \mathbb{H}_{B}(m): X \in \text { Sequential } \Rightarrow  \tag{2.65}\\
& \forall l_{g}: \\
& \exists \operatorname{isXCt}_{X, m}\left(l_{g}\right) \wedge \neg\left(\operatorname{retv}_{X}\left(l_{g}\right)=\perp\right) \Rightarrow \\
& \quad \arg _{2} 2_{X}\left(l_{p}\right)=\operatorname{retv}_{X}\left(l_{g}\right)
\end{align*}
$$

Lemma 34 (BasicmapPut). In every sequential execution on a basic map, for every get method call $g$, if $p$ is the latest preceding put method call with the same key argument then the return value of $g$ is equal to the value argument of $p$. Formally,

$$
\begin{align*}
& \forall m \in{\text { BasicMap }: \forall X \in \mathbb{H}_{B}(m): X \in \text { Sequential } \Rightarrow}_{\forall l_{g}, l_{p}:} \quad \text { isXGet }_{X, m}\left(l_{g}\right) \wedge  \tag{2.66}\\
& \quad \text { isPutter }_{X, m}\left(l_{p}, l_{g}\right) \wedge \\
& \Rightarrow \\
& \\
& \quad \operatorname{retv}_{X}\left(l_{g}\right)=\arg _{X}\left(l_{p}\right)
\end{align*}
$$

### 2.3.3 History Semantics

In this subsection, we define the history semantics of specifications. It is a denotational semantics that defines the set of histories of a specification with a set of constraints enforcing the structure of the program and the guarantees of the base objects. Based on this denotational semantics, later chapters present a technique that can find bugs by constraint solving. The history semantics has the following three properties

- The semantics is compositional for base objects. It is defined abstractly from specific base object types. The semantics can be modularly augmented with new object types. The semantics of basic and linearizable objects are separately defined.
- The semantics models true concurrency. In contrast to interleaving semantics where method calls are the elements of histories, true concurrency considers a pair of invocation and response events for each method call. Therefore, concurrent execution of method calls is modeled.
- The semantics models relaxed execution. Methods that are not required to be ordered by the specification are allowed to execute out of order.
First, we present some preliminary definitions. The prefixing operator ' prefixes a program label before another program label or a program variable. The identity element for the prefixing operator is $\epsilon$, thus $c=\epsilon^{\prime} c ; x=\epsilon^{\prime} x ; t=\epsilon^{\prime} t$. We define the set of labels as follows:

$$
\begin{array}{rlll}
\varsigma & :=c \mid \epsilon & \text { Prelabel } \\
l \in \text { LabelConst } & ::=\varsigma^{\prime} c & \text { Constant Label }
\end{array}
$$

Each label $l$ is of the form $\varsigma^{\prime} c$. $\varsigma$ is called the pre-label and $c$ is called the leading label of $l$. A label $c_{1}{ }^{\prime} c_{2}$ is a call string that denotes a method call labeled $c_{2}$ in a this method called from a call site labeled $c_{1}$. On the other hand, the label $c_{1}$ denotes a this method call labeled $c_{1}$ in the concurrent program part. We extend the grammar of variables with labeled variables as follows.

$$
\begin{array}{rll}
x \in \text { ProgVar } & ::=\{i, r, \ldots\} \mid \varsigma^{\prime} x & \text { Variable } \\
t \in \text { ThreadVar } & ::=\left\{t_{1}, t_{2}, \ldots\right\} \mid \varsigma^{\prime} t & \text { Thread Variable }
\end{array}
$$

Labeled variables are used to denote local variables of this method calls. For example, $c^{\prime} x$ denotes the local variable $x$ insider a this method call labeled $c$. Similarly, the prefixing operator is lifted to expressions such that every label and variable in the expression is prefixed. For example $c^{\prime}\left(x_{1}>\right.$ $\left.x_{2}\right)=\left(c^{\prime} x_{1}>c^{\prime} x_{2}\right)$.

Let $\sigma$ denote a mapping from variables to concrete values. The history $\sigma(X)$ is the history that is obtained from the history $X$ by substituting every variable $x$ and $t$ in $X$ with $\sigma(x)$ and $\sigma(t)$ respectively. Similarly, the condition $\sigma(b)$ is the condition that is obtained by substituting every variable $x$ and $t$ of $b$ with $\sigma(x)$ and $\sigma(t)$ respectively. Similar is the definition of $\sigma(o), \sigma(u)$ and $\sigma(\tau)$.

Consider a specification $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$. The history semantics of $\pi, \mathbb{H}(\pi)$, is defined in Figure 2.12. We illustrate the definitions in the following paragraphs.

The semantics of a this method call is defined in Equation 2.67. Consider a method call

$$
c \triangleright x^{\prime}=n_{\tau}(u)
$$

Every execution history $X$ of a this method call starts with the invocation of $n$ and finishes with a response from $n$. The enclosed history $X^{\prime}$ is an execution history of the body of $n$.

$$
X=\operatorname{inv}\left(c \triangleright n_{\tau}(u)\right) \cdot X^{\prime} \cdot \operatorname{ret}\left(c \triangleright x^{\prime}\right)
$$

Let Labels $_{\pi}(n)=\left\{\overline{c_{i}}\right\}$, Returns $_{\pi}(n)=\left\{\overline{c_{r}}\right\}$.
$\llbracket c \triangleright x^{\prime}=n_{\tau}(u) \rrbracket=\{(X, \sigma) \mid$
$X=\operatorname{inv}\left(c \triangleright n_{\tau}(u)\right) \cdot X^{\prime} \cdot \operatorname{ret}\left(c \triangleright x^{\prime}\right) \wedge$
$X^{\prime} \in$ Sequential $\wedge$
$\sigma\left(c^{\prime} \operatorname{tpar}_{\pi}(n)\right)=\sigma(\tau) \wedge \sigma\left(c^{\prime} \operatorname{par} 1_{\pi}(n)\right)=\sigma(u) \wedge$
Labels $\left(X^{\prime}\right) \subseteq\left\{\overline{c^{\prime} c_{i}}\right\} \wedge$
$\forall c^{\prime} c_{i} \in X^{\prime}$ :
obj $_{X^{\prime}}\left(c^{\prime} c_{i}\right)=c^{\prime}$ obj $j_{\pi}\left(c_{i}\right) \wedge$ thread $_{X^{\prime}}\left(c^{\prime} c_{i}\right)=c^{\prime}$ thread ${ }_{\pi}\left(c_{i}\right) \wedge$
$\operatorname{name}_{X^{\prime}}\left(c^{\prime} c_{i}\right)=\operatorname{name}_{\pi}\left(c_{i}\right) \wedge \arg _{X^{\prime}}\left(c^{\prime} c_{i}\right)=c^{\prime} \arg 1_{\pi}\left(c_{i}\right) \wedge$
$\operatorname{retv}_{X^{\prime}}\left(c^{\prime} c_{i}\right)=c^{\prime} \operatorname{retv}_{\pi}\left(c_{i}\right) \wedge$
$\forall c_{i} \in\left\{\overline{c_{i}}\right\}: c^{\prime} c_{i} \in X^{\prime} \Leftrightarrow$
$\left(\sigma\left(c^{\prime} \operatorname{cond}_{\pi}\left(c_{i}\right)\right) \wedge \forall c_{j} \in \operatorname{PreReturns}_{\pi}\left(c_{i}\right) \Rightarrow \neg c^{\prime} c_{j} \in X^{\prime}\right) \wedge$
$\forall c_{i}, c_{j} \in\left\{\overline{c_{i}}\right\}:\left(\left(c_{i} \rightarrow_{n} c_{j}\right) \wedge c^{\prime} c_{i} \in X^{\prime} \wedge c^{\prime} c_{j} \in X^{\prime}\right) \Rightarrow c^{\prime} c_{i} \preceq X^{\prime} c^{\prime} c_{j} \wedge$
$\left.\forall c_{r} \in\left\{\overline{c_{r}}\right\}: c^{\prime} c_{r} \in X^{\prime} \Rightarrow \sigma\left(x^{\prime}\right)=\sigma\left(c^{\prime} \arg 1_{\pi}\left(c_{r}\right)\right)\right\}$
$\llbracket p_{1} ; p_{2} \rrbracket=\left\{(X, \sigma) \mid \exists X_{1}, X_{2}:\left(X_{1}, \sigma\right) \in \llbracket p_{1} \rrbracket \wedge\left(X_{2}, \sigma\right) \in \llbracket p_{2} \rrbracket \wedge X=X_{1} \cdot X_{2}\right\}$
$\llbracket$ if $b p_{1}$ else $p_{2} \rrbracket=\left\{(X, \sigma) \mid\left((X, \sigma) \in \llbracket p_{1} \rrbracket \wedge \sigma(b)\right) \vee\left((X, \sigma) \in \llbracket p_{2} \rrbracket \wedge \neg \sigma(b)\right)\right\}$

Let $\mathcal{P}=p_{0},\left(p_{1}\left\|p_{2}\right\| \ldots \| p_{n}\right)$.

$$
\begin{equation*}
\llbracket \pi \rrbracket=\{(X, \sigma, \mathcal{L}) \mid \tag{2.70}
\end{equation*}
$$

$\forall i \in\{0 . . n\}: \exists X_{i}:\left(X_{i}, \sigma\right) \in \llbracket p_{i} \rrbracket \wedge X^{\prime} \in \operatorname{Interleave}\left(X_{1}, \ldots, X_{n}\right) \wedge X=X_{0} \cdot X^{\prime} \wedge$ $X^{\prime \prime}=\sigma(X) \wedge$
$\forall o: \mathcal{T}_{\text {base }}(o) \in L T \cup S C T \Rightarrow\left(X^{\prime \prime} \mid o, \mathcal{L}(o)\right) \in \mathbb{H}_{L}(o) \wedge$
$\left.\forall o: \mathcal{T}_{\text {base }}(o) \in B T \Rightarrow X^{\prime \prime} \mid o \in \mathbb{H}_{B}(o)\right\}$
$\mathbb{H}(\pi)=\left\{X^{\prime} \mid \exists(X, \sigma, \mathcal{L}) \in \llbracket \pi \rrbracket \wedge X^{\prime}=\sigma(X)\right\}$

Figure 2.12: History Semantics $\mathbb{H}(\pi)$ of a specification $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$

Every thread is sequential. Thus, the execution history $X^{\prime}$ of the body of $n$ is a sequential execution history.

$$
X^{\prime} \in \text { Sequential }
$$

A method can be called several time in the program. To have unique variable names, every variable (including the parameters) of the method is prefixed by the caller label. For example, c'x represents the variable $x$ inside the method call labeled $c$. The function $\sigma$ represents the mapping from variables to values at the end of the execution.

As defined before, $\operatorname{tpar}_{\pi}(n)$ and $\operatorname{par} 1_{\pi}(n)$ are the thread parameter and the first parameter of the method $n$ respectively. In the method call $c$ defined above, $\tau$ and $u$ are the thread argument and the first argument respectively. In every method call, the parameters are equal to the arguments.

$$
\sigma\left(c^{\prime} t p a r_{\pi}(n)\right)=\sigma(\tau) \wedge \sigma\left(c^{\prime} \operatorname{par} 1_{\pi}(n)\right)=\sigma(u)
$$

Let the set of labels of method $n$, Labels $(n)$, be $\left\{\overline{c_{i}}\right\}$. Obviously, an execution of the body involves only the labels that are in the body itself. Note that to have unique labels, the labels $c_{i}$ are prefixed by the caller label $c$.

$$
\operatorname{Labels}\left(X^{\prime}\right) \subseteq\left\{\overline{c^{\prime} c_{i}}\right\}
$$

If a method call labeled $c_{i}$ is executed inside a this call labeled $c$, every variable in it is prefixed by $c$ in the execution history. For example, a method call

$$
c_{i} \triangleright y=\phi[i] \cdot n_{t}(x)
$$

executed inside a this method call labeled $c$ appears as follows in the execution history.

$$
\operatorname{inv}\left(c^{\prime} c_{i} \triangleright \phi\left[c^{\prime} i\right] \cdot n_{c^{\prime} t}\left(c^{\prime} x\right)\right) \cdot \operatorname{ret}\left(c^{\prime} c_{i} \triangleright c^{\prime} y\right)
$$

Thus, the components of every executed label $c^{\prime} c_{i}$ are the components of $c_{i}$ in the program prefixed with $c$.

$$
\begin{aligned}
& \forall c^{\prime} c_{i} \in X^{\prime}: \\
& \quad \operatorname{obj}_{X^{\prime}}\left(c^{\prime} c_{i}\right)=c^{\prime} \operatorname{obj}_{\pi}\left(c_{i}\right) \wedge \operatorname{thread}_{X^{\prime}}\left(c^{\prime} c_{i}\right)=c^{\prime} \operatorname{thread} \\
& \quad\left(c_{i}\right) \wedge \\
& \operatorname{name}_{X^{\prime}}\left(c^{\prime} c_{i}\right)=\operatorname{name}_{\pi}\left(c_{i}\right) \wedge \arg _{X^{\prime}}\left(c^{\prime} c_{i}\right)=c^{\prime} \arg 1_{\pi}\left(c_{i}\right) \wedge \\
& \operatorname{retv}_{X^{\prime}}\left(c^{\prime} c_{i}\right)=c^{\prime} \operatorname{retv}_{\pi}\left(c_{i}\right) \wedge
\end{aligned}
$$

A labeled statement $c_{i}$ is executed if and only if its condition $\operatorname{cond}_{\pi}\left(c_{i}\right)$ is satisfied and no return statement before it is already executed.

$$
\begin{aligned}
& \forall c_{i} \in\left\{\overline{c_{i}}\right\}: \\
& \quad c^{\prime} c_{i} \in X^{\prime} \Leftrightarrow \\
& \qquad\left(\sigma\left(c^{\prime} \operatorname{cond}_{\pi}\left(c_{i}\right)\right) \wedge \forall c_{j} \in \operatorname{PreReturns}_{\pi}\left(c_{i}\right) \Rightarrow \neg c^{\prime} c_{j} \in X^{\prime}\right)
\end{aligned}
$$

The execution order preserves the program order. If two labels are required to be ordered by the specification, they are ordered in the execution.

$$
\forall c_{i}, c_{j} \in\left\{\overline{c_{i}}\right\}:\left(\left(c_{i} \rightarrow_{n} c_{j}\right) \wedge c^{\prime} c_{i} \in X^{\prime} \wedge c^{\prime} c_{j} \in X^{\prime}\right) \Rightarrow c^{\prime} c_{i} \preceq_{X^{\prime}} c^{\prime} c_{j}
$$

Every execution of the body executes a return statement and the argument of the return statement is equal to the return value of the this method call. Let the set of return statements of the method $n, \operatorname{Returns}_{\pi}(n)$, be $\left\{\overline{c_{r}}\right\}$.

$$
\exists c_{r} \in\left\{\overline{c_{r}}\right\}: c^{\prime} c_{r} \in X^{\prime} \wedge \sigma\left(x^{\prime}\right)=\sigma\left(c^{\prime} \arg 1_{\pi}\left(c_{r}\right)\right)
$$

Equation 2.68 defines that an execution history $X$ of the sequence of two sequential programs $p_{1}$ and $p_{2}$ is the concatenation of an execution history $X_{1}$ of $p_{1}$ and an execution history $X_{2}$ of $p_{2}$.

Equation 2.69 defines that the execution histories of the if-then-else statement are the execution histories of the if statement when the condition is true and the execution histories of the else statement when the condition is false.

The semantics of basic, sequentially-consistent and linearizable objects are already defined in the previous subsection (Definitions 1, 3 and 2). The semantics of a basic object is the set of execution histories that it allows. The semantics of a sequentially-consistent and linearizable object is the set of pairs of execution and linearization histories that it allows.

Equations 2.70 and 2.71 define the execution histories of a specification. An execution history of $\pi=(\mathcal{P}, \mathcal{D}, \overline{\mathcal{T}})$ is a history that meets the semantics of the definitions $\mathcal{D}$ and the program $\mathcal{P}$ and also the semantics of the base objects in $\mathcal{T}$. An execution history of the parallel programs is an interleaving of execution histories of the programs. The history of the initialization program precedes the history of the parallel programs. The sub-history for each object complies with the semantics of the object.

Consider an execution triple $(X, \sigma, \mathcal{L})$ in $\llbracket \pi \rrbracket . X$ is a symbolic execution history of $\pi$ where variables are not yet substituted with their values. $\sigma$ is the mapping from variables to values at the end of the execution. Applying $\sigma$ to $X, \sigma(X)$, yields a concrete execution history of $\pi$. $\mathbb{H}(\pi)$ is the set of concrete execution histories of $\pi . \mathcal{L}$ is the mapping from objects to their linearization in the execution.

As the focus of the semantics is modeling the concurrency aspects of the specification, it does not model index range of arrays and value range of base objects. These issues are orthogonal to the focus of this semantics and can be studied independently.

## Chapter 3

## TM Correctness

### 3.1 Introduction

A transactional memory (TM) is a concurrent object with the four init, read, write and commit methods. The clients of a TM are transactions, a sequence of init and then read and write invocations that are possibly succeeded by a commit invocation. A transactional processing system is the composition of a TM and as set of clients. The clients issue the invocation events and the TM issues the response events. TM should guarantee that every concurrent execution of an arbitrary set of client transactions is indistinguishable from a sequential execution of them. Correctness conditions for TM such as opacity [28], VWC [44], and TMS1 and TMS2 [22] define the indistinguishably criterion and the set of correct histories. In this chapter, we present a formal definition of opacity.

Design and verification of TM algorithms has been a topic of recent attention and has proved to be formidable. TM algorithms are subtle and prone to bugs. Verification of TM algorithms is a hard in part because the target correctness criterion is a monolithic complicated condition. Can the correctness of TM be stated as a conjunction of simpler meaningful conditions? In other words, is there an intuitive functional decomposition of TM correctness conditions? What are the separate invariants that the TM designers should maintain? In an early work, Tasiran [73] presented a decomposition of the correctness condition for a specific class of algorithms.

We present intuitive invariants for the correctness of TM algorithms. We say that a history is markable if there is a specific ordering relation called marking such that three invariants are satisfied. These invariants are not only sufficient but also required for opacity. We prove the equivalence of markability and opacity. Roughly speaking, the first invariant called write-observation requires that each read operation returns the most current value and the second invariant called read-preservation requires that the location which is read is not overwritten in a certain interval and the third invariant is the well-known real-time-preservation property.

Separation of concerns brings modularity in understanding, design and verification. Decomposition of the correctness condition informs designers by showcasing different aspects of correctness and helps them concentrate on maintaining one aspect at a time. It also allows studying the effect of separate aspects of correctness on performance. In addition, separation has obvious benefits of modularity and scalability for verification. The marking relation can be defined using the execution order or the linearization order of method calls on the used synchronization objects. Thus, proofs of markability can be aided by and mirror design intuitions. Markability can be proved using the
program logic that we will present in the following chapters.
In this section, we first formalize opacity. Then, we introduce the notion of markability and prove the equivalence of opacity and markability.

### 3.2 Opacity

In this section, we present a formal definition of opacity. Opacity of a TM algorithm is defined in two steps. First, it is defined what it means for a transaction history to be opaque which is called final-state-opacity. Then, a TM algorithm is defined to be opaque if every transaction history of every source program running on top of that TM algorithm is final-state-opaque.

A transaction history $H$ is an execution history such that $H \mid m e m=H_{\text {Init }} \cdot H^{\prime}$ with the following conditions. $H_{\text {Init }}$ is the following history that initializes every location to $v_{0} . H_{\text {Init }}=l_{0 i} \triangleright i n i t_{T_{0}}()$. $l_{00} \triangleright$ write $_{T_{0}}\left(1, v_{0}\right): o k \cdot \ldots \cdot l_{0 m} \triangleright$ write $_{T_{0}}\left(m, v_{0}\right): o k \cdot l_{0 c} \triangleright$ commit $_{T_{0}}: \mathbb{C}$. For every $T \in H^{\prime}$, the history $H^{\prime} \mid T$ is a prefix of $e . e^{\prime}$. The event sequence $e$ is the initialization method call $l \triangleright i n i t_{T}()$ (for some $l$ ), and then a sequence of reads $l \triangleright \operatorname{read}_{T}(i): v$ and writes $l \triangleright$ write $_{T}(i, v)$ (for some $l, i$, and $v$ ). The event sequence $e^{\prime}$ is one of the following sequences (for some $l, i$, and $\left.v\right):(1) \operatorname{inv}\left(l \triangleright \operatorname{read}_{T}(i)\right), \operatorname{ret}(l \triangleright \mathbb{A}),(2)$ $\operatorname{inv}\left(l \triangleright \operatorname{write}_{T}(i, v)\right), \operatorname{ret}(l \triangleright \mathbb{A}),(3) \operatorname{inv}\left(l \triangleright \operatorname{commit}_{T}()\right), \operatorname{ret}(l \triangleright \mathbb{C}),(4) \operatorname{inv}\left(l \triangleright \operatorname{commit}_{T}()\right), \operatorname{ret}(l \triangleright \mathbb{A})$, or (5) $\operatorname{inv}\left(l \triangleright \operatorname{abort}_{T}()\right), \operatorname{ret}(l \triangleright \mathbb{A})$. Let THistory denote the set of transaction histories. Let Trans $(H)$ denote the set of transactions of $H$. The projection of $H$ on $i$, written $H \mid i$, denotes the subsequence of history $H$ that contains exactly the events on location $i$. For a TM algorithm specification $\pi$, let $\mathbb{H}(\pi)$ denote the set of complete transaction histories that $\pi$ results.

FinalStateOpaque is defined in Figure 3.1. First, we present some preliminary definitions. We use $T$ prefix before some of the terms for transactions to avoid confusion with the terms for concurrent objects. We say that a transaction history is transaction sequential if it is a sequence of transactions. A transaction $T$ is committed or aborted in a transaction history $H$ if there is respectively a commit or abort response event for $T$ in $H$. A completed transaction is either committed or aborted. A live transaction is a transaction that is not completed. A transaction history is complete if all its transactions are completed. A pending transaction has a pending event and a commit-pending transaction has a commit pending event. An extension of a history is obtained by committing or aborting its commit-pending transactions and aborting the other live transactions.

If $H$ is a transaction history and $p$ is a predicate on transaction identifiers, we define filter $(H, p)$ to be the subsequence of $H$ that contains the events of transactions $T$ for which $p(T)$ is true. The visible history for a transaction $T$ in a sequential transaction history $S$, $\operatorname{Visible}(S, T)$, is the sequence of committed transactions before $T$ in $S$ and $T$ itself. The sequential specification of a location $i$, $\operatorname{Seq} \operatorname{Spec}(i)$, is the set of sequential histories of read and write method calls on location $i$ where every read returns the value given as the argument to the latest preceding write (regardless of transaction identifiers). It is essentially the sequential specification of a register. Transactional sequential specification is the set of complete sequential transaction histories $S$ that for every transaction $T$ and location $i, \operatorname{Visible}(S, T) \mid i$ is a member of the sequential specification of $i$. A transaction history $H$ is final-state-opaque if there is an equivalent sequential transaction history $S$ for an extension of $H$ such that $S$ is real-time-preserving and a member of transactional sequential specification. The sequential history $S$ is called the justifying history. In other words, every correct concurrent execution is indistinguishable from a correct sequential execution.

$$
\begin{align*}
& \operatorname{TReads}(H)=\left\{R \mid R \in H \wedge \operatorname{obj}_{H}(R)=\text { this } \wedge\right. \\
& \left.\operatorname{name}_{H}(R)=\operatorname{read} \wedge \operatorname{retv}_{H}(R) \neq \mathbb{A}\right\} \\
& T W \operatorname{rites}(H)=\left\{W \mid W \in H \wedge \operatorname{obj}_{H}(W)=\text { this } \wedge\right. \\
& \left.\operatorname{name}_{H}(W)=\text { write } \wedge \operatorname{retv}_{H}(W) \neq \mathbb{A}\right\} \\
& \operatorname{Commits}(H)=\left\{C \mid C \in H \wedge \operatorname{obj}_{H}(C)=\text { this } \wedge \text { name }_{H}(C)=\text { commit }\right\} \\
& \operatorname{Trans}(H)=\left\{T \mid \exists l \in H: \operatorname{thread}_{H}(l)=T\right\} \\
& \text { TSequential }=\left\{S \in \text { THistory } \mid \varliminf_{S} \text { is a total order of } \operatorname{Trans}(S)\right\} \\
& \operatorname{Committed}(H)=\left\{T \mid \exists l \in \operatorname{Commits}(H) \wedge \operatorname{retv}_{H}(l)=\mathbb{C}\right\} \\
& \operatorname{Aborted}(H)=\left\{T \mid \exists l \in H: \operatorname{obj}_{H}(l)=\text { this } \wedge \operatorname{thread}_{H}(l)=T \wedge \operatorname{retv}_{H}(l)=(\mathbb{\&} .\} 7\right) \\
& \text { Completed }(H)=\operatorname{Committed}(H) \cup \operatorname{Aborted}(H) \\
& \operatorname{Live}(H)=\operatorname{Trans}(H) \backslash \text { Completed }(H) \\
& \text { TComplete }=\{H \in \text { THistory } \mid \forall T \in \operatorname{Trans}(H): T \in \operatorname{Completed}(H)\} \\
& \operatorname{CommitPending}(H)=\{T \in \operatorname{Live}(H) \mid \exists l \in H: \\
& \text { obj } \left._{H}(l)=\text { this } \wedge \text { thread }_{H}(l)=T \wedge \text { name }_{H}(l)=\text { commit }\right\} \\
& \text { TExtension }(H)=\left\{H^{\prime} \in \text { THistory } \mid \exists H^{\prime \prime}: H^{\prime}=H \cdot H^{\prime \prime}\right. \\
& \operatorname{Trans}\left(H^{\prime \prime}\right) \subseteq \operatorname{Trans}(H) \wedge \forall T:\left\|H^{\prime \prime} \mid T\right\| \leq 1 \wedge \\
& \operatorname{Live}(H) \backslash \text { CommitPending }(H) \subseteq \operatorname{Aborted}\left(H^{\prime}\right) \wedge \\
& \text { CommitPending } \left.(H) \subseteq \text { Completed }\left(H^{\prime}\right)\right\} \\
& \operatorname{Visible}(S, T)=\text { filter }\left(S, \lambda T^{\prime} .\left(T^{\prime}=T\right) \vee\left(\left(T^{\prime}<_{S} T\right) \wedge T^{\prime} \in \operatorname{Committed}(S)\right)\right)(3.13) \\
& \text { NoWriteBetween }{ }_{S}(W, R)=\forall W^{\prime} \in T W r i t e s(S): W^{\prime} \preceq_{S} W \vee R \prec_{S} W^{\prime}  \tag{3.14}\\
& \operatorname{SeqSpec}(i)=\{S \in \text { Sequential } \mid \forall R \in \operatorname{TReads}(S): \exists W \in \operatorname{TWrites}(S):  \tag{3.15}\\
& W \prec_{S} R \wedge N_{o W r i t e B e t w e e n ~}^{S}(W, R) \wedge \\
& \left.\operatorname{retv}_{S}(R)=\arg 2_{S}(W)\right\} \\
& \text { TSeqSpec }=\{S \in \text { TSequential } \cap \text { TComplete } \mid \forall T \in S: \forall i \in I:  \tag{3.16}\\
& (\operatorname{Visible}(S, T) \mid i) \in \operatorname{SeqSpec}(i)\} \\
& \text { FinalStateOpaque }=\left\{H \in \text { THistory } \mid \exists H^{\prime} \in \text { TExtension }(H): \exists S \in\right. \text { TSequentia }  \tag{3.17}\\
& \left.H^{\prime} \equiv S \wedge \preccurlyeq_{H^{\prime}} \subseteq \preccurlyeq_{S} \wedge S \in T S e q S p e c\right\}
\end{align*}
$$

Figure 3.1: FinalStateOpaque


Figure 3.2: Illustrations of Write-observation and Read-preservation

Definition 14 (Opaque TM Algorithm). A TM algorithm is opaque if and only if every execution history of it is final-state-opaque.
Opaque $=\{\pi \mid \mathbb{H}(\pi) \subseteq$ FinalStateOpaque $\}$

### 3.3 Markability

### 3.3.1 Write-observation and Read-preservation

In this section, we explain the main ideas behind markability by focusing on complete histories with only global reads and writes. A history is complete if every transaction in it is either aborted or committed. A read $R$ by a transaction $T$ is global if $T$ has no write to the same location before $R$. A write $W$ by a transaction $T$ is global if $T$ has no write to the same location after $W$.

A transaction history is markable if and only if there exists a marking of it that is write-observant, read-preserving, and real-time-preserving. We explain each term in turn.

A marking of a transaction history is a relation on the union of the transactions and the read operations in the history. We can think of the marking as the union of a collection of orders:

- The effect order: The effect order is a total order of the transactions.
- The access orders: Consider an unaborted read operation $R$ that reads from a location $i$. Let writers of $i$ be the committed transactions that have write operation(s) to location $i$. For each such $R$, the access order is an antisymmetric relation that orders $R$ and every writer of $i$.
The effect order represents the order in which the transactions appear to take effect. The access order represents where the read operation's access to the location has happened between the accesses by the writers of that location.

Note that marking not only recognizes the points where transactions take effect but also the points where reads take place. The effect point of a transaction captures the point where the whole transaction takes effect. But a transaction is split into multiple operations. Particularly, read operations observe values before the commit is even invoked. Any value that the TM algorithm returns in response to a read invocation should be justified at the point where the transaction takes effect. There is a point where each writer transaction writes the new value to the shared objects. Every read operation reads the value that it returns at a certain point between the write points of the writer transactions. The access order makes this design decision explicit. The access order makes it possible to decompose the consistency condition into two orthogonal invariants. Particularly, the read-preservation invariant makes sure that the read value is not overwritten in the interval between the point where a read happens and the point where the transaction takes effect. Next, we will explain write-observation and read-preservation.

At a high level, write-observation means that each read operation should read the most current value. Let us explain this idea in more detail. Consider an unaborted read operation $R$ from the location $i$. Let pre-accessors be the writers of $i$ that come before $R$ in the access order for $R$. We can use the effect order to determine the last pre-accessor that is, the pre-accessor that is greatest in the effect order. Write-observation requires that the value that $R$ reads be the same as the value written by the last pre-accessor.

Figure 3.2 illustrates the write-observation and read-preservation invariants. Each sub-figure shows a marking relation $\sqsubseteq$. In every sub-figure, the effect order is $T_{1} \sqsubseteq T_{2} \sqsubseteq T_{3} \sqsubseteq T_{4}$ and the transaction $T_{3}$ performs the read operation $R$. In Figure 3.2(a), $T_{1}$ and $T 4$ are writers of $i$ and the access order is $\left\{T_{1} \sqsubseteq R, R \sqsubseteq T_{4}\right\}$. $T_{1}$ is the last pre-accessor for $R$. Thus, by write-observation, $R$ is expected to return the value that $T_{1}$ writes to $i$.

At a high level, read-preservation means that the location read by a read operation is not overwritten between the points that the read takes place and the transaction takes effect. Let us explain this idea in more detail. Consider an unaborted read operation $R$ by transaction $T$ from the location $i$. Intuitively, read-preservation requires that no writer of $i$ comes between $R$ and $T$ in the marking relation. More precisely, read-preservation requires that there is no writer $T^{\prime}$ of $i$ that accesses $i$ after $R$ and takes effect before $T$ and there is no writer $T^{\prime}$ of $i$ that takes effect after $T$ and accesses $i$ before $R$. (Note that depending on whether a transaction takes effect earlier or later in its lifetime, one of these two conditions is usually trivially true.) In other words, read-preservation requires the writers to both access $i$ and take effect on the same "side" of $R$ and $T$. More precisely, if a writer $T^{\prime}$ accesses $i$ before $R\left(T^{\prime}\right.$ is marked before $R$ in the access order), then $T^{\prime}$ takes effect before $T\left(T^{\prime}\right.$ is marked before $T$ in the effect order) too. Similarly, read-preservation requires that if $T^{\prime}$ accesses $i$ after $R$, it takes effect after $T$ too.

The marking relation in Figure 3.2(a) satisfies read-preservation as there is no writer between $R$ and $T_{2}$. The transaction $T_{1}$ accesses $i$ before $R$ and takes effect before $T_{3}$ too. The transaction $T_{4}$ accesses $i$ after $R$ and takes effect after $T_{3}$ too. Figures $3.2(\mathrm{~b})$ and $3.2(\mathrm{c})$ show markings that are not read-preserving. In Figure $3.2(\mathrm{~b}), T_{1}, T_{2}$ and $T 4$ are writers of $i$ and the access order is $\left\{T_{1} \sqsubseteq R, R \sqsubseteq T_{2}, R \sqsubseteq T_{4}\right\}$. The transaction $T_{2}$ is between $R$ and $T_{3}$. Therefore, the marking is not read-preserving. In Figure $3.2(\mathrm{c}), T_{1}$ and $T 4$ are writers of $i$ and the access order is $\left\{T_{1} \sqsubseteq R, T_{4} \sqsubseteq R\right\}$. The transaction $T 4$ is between $T_{3}$ and $R$. Therefore, the marking is not read-preserving.

The real-time-preservation condition requires that if all the events of a transaction $T$ happen before all the events of another transaction $T^{\prime}$, then $T$ is less than $T^{\prime}$ in the effect order.

Our marking theorem says that a history is opaque if and only if it is markable. So, to prove opacity, we can focus on proving markability. The algorithm designer can usually define the marking relation readily from the guarantees (such as linearization orders) of the used shared objects.

If a transaction history $H$ is markable, we can show that $H$ is opaque. We construct a justifying history by ordering the transactions in the effect order. Consider an arbitrary read $R$ from $i$ by $T$. We call the writers of $i$ that take effect before $T$, pre-effectors. Let the last pre-effector be the pre-effector that is the greatest in the effect order. We need to show that the value that $R$ returns is the value that the last pre-effector writes. We recall that we call the writers that access $i$ before $R$, pre-accessors. First, we argue that pre-accessors are exactly pre-effectors. If a writer accesses before $R$, by read-preservation, it does not take effect after $T$. Thus, by totality of effect order, it takes effect before $T$. If a writer takes effect before $T$, by read-preservation, it does not access after $R$. Thus, as the access order orders $R$ and every writer of $i, T$ accesses before $R$. Second, from write-observation, we have that $R$ returns the value written by the last pre-accessor in the effect order. Thus from the

$T$	$T^{\prime}$	
I01■ snap = clock.read ()	$C 02{ }_{\text {i }}$ ®	lock[i].trylock()
I02 $\triangleright$ rver $[t]$. write(snap)		...
	$C 07 \triangleright$	wver $=$ clock.iaf ()
...		...
	$C 16_{i}$ ®	reg[i].write(v)
$R 04 \triangleright \quad v=r e g[i] \cdot \operatorname{read}()$	$C 17_{i} \triangleright$	ver[i].write(wver)
$R 05 \triangleright \quad l=\operatorname{lock}[i] \cdot \operatorname{read}()$	$C 18_{i} \triangleright$	lock[i].unlock()
$R 06 \triangleright \quad s_{2}=\operatorname{ver}[i] \cdot \mathrm{read}()$		
$R 07 \triangleright \quad$ sver $=\operatorname{rver}[t] \cdot \operatorname{read}()$		
$\begin{aligned} & \text { if }\left(\neg\left(\neg l \wedge s_{1}=s_{2} \wedge s_{2} \leq s v e r\right)\right) \\ & \quad \text { return } \mathbb{A} \end{aligned}$		

Figure 3.3: TL2 Read-Preservation Example
two above statements, we have that $R$ returns the value written by the last pre-effector (in the effect order). This is the essence of the condition needed to prove opacity.

### 3.3.2 Marking TL2

Let us look at marking of TL2 algorithm [18] as an example. TL2 is specified in Figure 2.2.
Let us describe the marking relation for TL2. The clock object numbers the snapshots. Every transaction reads an initial snapshot number at $I 01$. A committing transaction makes a new snapshot at $C 07$. The effect point of a TL2 transaction is $I 01$, if it is live or aborted and, is $C 07$, if it is committed. The effect order of transactions is the linearization order of clock for their effect points. The access point of a read operation is at $R 04$ where reg[i] is read and the access point of a writer of $i$ is $C 16_{i}$ where $\operatorname{reg}[i]$ is written. Consider a read $R$ from $i$ and a writers $T^{\prime}$ to $i$. If the access point of $T^{\prime}$ is executed before the access point of $R$, then $T^{\prime}$ is ordered before $R$ in the access order of $R$. Otherwise, $T^{\prime}$ is ordered after $R$ in the access order of $R$.

One of the two conjuncts of the read-preservation property requires that for every transaction $T$ with an unaborted read operation $R$ from a location $i$, there is no writer $T^{\prime}$ of $i$ such that $T^{\prime}$ takes effect after $T$ and accesses $i$ before $R$. Let us see how TL2 preserves this property. We assume that there exists such a writer $T^{\prime}$ and show that the validation checks embodied in TL2 detect the existence of $T^{\prime}$ and abort $R$. We consider a transaction $T$ with a read operation $R$ from a location $i$ and a writer $T^{\prime}$ of $i$. We assume that $T^{\prime}$ takes effect after $T$ and $T^{\prime}$ accesses $i$ before $R$. For brevity, we consider only the case that $T$ is a live or aborted (not a committed) transaction. Figure 3.3 depicts the two transactions. We use the binary operators $\prec_{X}$ to denote execution precedence, $\overline{\sim_{X}}$ to denote concurrent execution and $\precsim_{x}$ to denote precedence or concurrent execution of method calls. We use the binary operators $\prec_{\text {clock }}, \prec_{v e r[i]}$ and $\prec_{\text {lock }[i]}$ to denote the linearization order of clock, $\operatorname{ver}[i]$ and lock $[i]$ respectively. ${ }_{-}^{1}$ We remind that the real-time-preservation property of a linearizable

[^2]object $o$ states that if a method call $m_{1}$ on $o$ is executed before another method call $m_{2}$ on $o$, then $m_{1}$ is linearized before $m_{2}$. Equivalently, if $m_{1}$ is linearized before $m_{2}$, then $m_{1}$ is executed before or concurrent to $m_{2}$. By the marking relation defined above, from the premise that $T^{\prime}$ takes effect after $T$, we have (1) $I 01 \prec_{\text {clock }} C 07$ and from the premise that $T^{\prime}$ accesses $i$ before $R$, we have (2) $C 16_{i} \prec_{\text {reg[i] }} R 04$. The method calls $R 05$ and $C 18_{i}$ are on the object lock[i]. We consider two cases for the linearization order of them and show that $R$ returns $\mathbb{A}$ in both cases.

- Case 1: (3) $R 05 \prec_{\text {lock }[i]} C 18_{i}$. From the execution, we have (4) $C 02_{i} \prec_{X} C 16_{i}$ and (5) $R 04 \prec_{X}$ $R 05$. By the real-time-preservation property for $\operatorname{ver}[i]$ on 2 , we have (6) $C 16_{i} \precsim x R 04$. By the transitivity of the execution order on 4,6 and 5 , we have $C 02_{i} \prec_{X} R 05$; thus, by the real-time-preservation property for lock[i], we have (7) $C 02_{i} \prec_{\text {lock[i] }} R 05$. From 7 and 3, we have that $R 05$ is executed when lock $[i]$ is acquired. Therefore, $R 05$ returns true i.e. $l=$ true. Thus, the validation check fails and $R$ returns $\mathbb{A}$.
- Case 2: (8) $C 18_{i} \prec_{l o c k[i]} R 05$. By the real-time-preservation property for lock[i], from 8, we have (9) $C 18_{i} \precsim x R 05$. From the execution, we have (10) $C 17_{i} \prec_{X} C 18_{i}$ and (11) $R 05 \prec_{X} R 06$. By the transitivity of the execution order on 10,9 and 11 , we have (12) $C 17_{i} \prec_{X} R 06$. By the real-time-preservation property for $\operatorname{ver}[i]$, from 12 , we have (13) $C 17_{i} \prec_{v e r[i]} R 06$. It is straightforward to separately prove that (14) The register ver $[i]$ is updated only to ascending numbers. From 14 and 13 , we have that $R 06$ reads a value that is greater than or equal to the value that $C 17_{i}$ writes i.e. (15) $s_{2} \geq$ wver. From 1, and that iaf returns the incremented value, we have (16) snap < wver. The value of sver is read at $R 07$ from rver. The thread-local register rver is only assigned at $I 02$ to snap. Thus, we have (17) snap $=$ sver. From 15, 16 and 17, we have $s_{2}>$ sver. Thus, the validation check fails and $R$ returns $\mathbb{A}$ in this case too.
Please see section $\underline{10.2 .2}$ for more details about the proof of markability of TL2.


### 3.3.3 The Marking Theorem

In this section, we define markability for general histories and present the marking theorem that states the equivalence of opacity and markability.

First, we present some preliminary definitions in Figure 3.4. (We use the prefix $T$ before some of the terms for transactions to avoid confusion with similar terms that are usually used for general concurrent objects.) A transaction $T$ is committed or aborted in a transaction history $H$ if there is respectively a commit or abort response event for $T$ in $H$. A completed transaction is either committed or aborted. A live transaction is a transaction that is not completed. A pending transaction has a pending event and a commit-pending transaction has a commit pending event. An extension of a history is obtained by committing or aborting its commit-pending transactions and aborting the other live transactions.

A local read is a read that is preceded by a write by the same transaction to the same location. Intuitively, a local read should read a value that is previously written by the same transaction and hence the name. A global read is a read that is not local. A local write is a write that precedes a write by the same transaction to the same location. A local write is overwritten by the same transaction and hence the name. A global write is a write that is not local. The writers of $i$ are the committed transactions that write to location $i$.

Markability is defined in Figure 3.5. A marking $\sqsubseteq$ of a transaction history is the union of the following relations on the set of transactions and the global reads.

```
 Committed (H) = {T | \existsl\inH:obj
 Aborted(H)}={T|\existsl\inH:\mp@subsup{\mathrm{ obj}}{H}{}(l)=mem ^trans (l) =T ^ retv ((l)=\mathbb{A}
 Completed (H) = Committed (H)\cupAborted (H)
 Live}(H)=Trans(H)\Completed (H
CommitPending(H)={T\inLive(H)|\existsl\inH:
 obj}\mp@subsup{H}{}{(l)}=\mathrm{ this }\wedge\mp@subsup{\mathrm{ thread }}{H}{}(l)=T\wedge \mp@subsup{\mathrm{ name }}{H}{}(l)=\mathrm{ commit }
 TExtension (H) = {H'\inTHistory | \existsH'|}:\mp@subsup{H}{}{\prime}=H\cdot\mp@subsup{H}{}{\prime\prime
 Trans}(\mp@subsup{H}{}{\prime\prime})\subseteq\operatorname{Trans}(H)\wedge\forallT:|\mp@subsup{H}{}{\prime\prime}|T|\leq1
 Live}(H)\CommitPending(H)\subseteqAborted (H')^
 CommitPending}(H)\subseteqCompleted (H')
 TReads(H)={R|R\inH\wedge obj
```



```
 LocalTReads(H)={R|R\inTReads(H)\wedge\existsW\inTWrites (H):
 trans}\mp@subsup{H}{}{(R)= trans
GlobalTReads(H)=TReads(H)\LocalTReads(H)
LocalTWrites (H) = {W|W\inTWrites (H)^\exists\mp@subsup{W}{}{\prime}\inTWrites (H):
 trans
GlobalTWrites (H) = TWrites(H)\LocalTWrites(H)
 Writers}\mp@subsup{H}{(}{(i)}={T\in\operatorname{Trans}(H)|\existsl\inTWrites(H):\operatorname{arg}\mp@subsup{1}{H}{}(l)=i
 trans}\mp@subsup{H}{H}{(l)}=T\wedgeT\inCommitted(H)
```

Figure 3.4: The set of local and global reads and writes

```
\(\operatorname{Marking}(H)=\{\sqsubseteq \mid\)
 \(\forall T 1, T 2, T 3 \in \operatorname{Trans}(H):\)
 \((T 1 \sqsubseteq T 2 \vee T 2 \sqsubseteq T 1) \wedge\)
 \((T 1 \sqsubseteq T 2 \wedge T 2 \sqsubseteq T 1) \Rightarrow(T 1=T 2) \wedge\)
 \((T 1 \sqsubseteq T 2) \wedge(T 2 \sqsubseteq T 3) \Rightarrow(T 1 \sqsubseteq T 3) \wedge\)
 \(\forall R, T:\) Let \(i=\arg _{H}(R):\left(R \in \operatorname{GlobalTRead}(H) \wedge T \in \operatorname{Writers}_{H}(i)\right) \Rightarrow\)
 \((R \sqsubseteq T \vee T \sqsubseteq R) \wedge\)
 \((R \sqsubseteq T \Rightarrow \neg T \sqsubseteq R) \wedge(T \sqsubseteq R \Rightarrow \neg R \sqsubseteq T)\}\)
NoWriteBetween \(_{H}(W, R) \Leftrightarrow\)
 \(\forall W^{\prime} \in T W \operatorname{rites}(H): W^{\prime} \preceq_{H} W \vee R \prec_{H} W^{\prime}\)
LocalWriteObs \((H) \Leftrightarrow\)
 \(\forall R \in \operatorname{LocalTReads}(H):\) Let \(T=\operatorname{trans}_{H}(R), i=\arg 1_{H}(R), H^{\prime}=H|T| i\) :
 \(\exists W \in T W r i t e s\left(H^{\prime}\right): W \prec_{H^{\prime}} R \wedge N_{\text {oWriteBetween }}^{H^{\prime}}(W, R) \wedge \operatorname{retv}_{H^{\prime}}(R)=\arg _{H^{\prime}}(W)\)
NoWriter Between \(_{H, i}\left(x, \sqsubseteq, x^{\prime}\right) \Leftrightarrow\)
 \(\forall T \in \operatorname{Writers}_{H}(i): T \sqsubseteq x \vee x^{\prime} \sqsubseteq T\)
LastPreAccessor \({ }_{H, \sqsubseteq}\left(T^{\prime}, R\right) \Leftrightarrow\) Let \(i=\arg _{H}(R), T=\operatorname{trans}_{H}(R)\) :
 \(T^{\prime} \in\) Writers \(_{H}(i) \wedge T^{\prime} \neq T \wedge T^{\prime} \sqsubset R \wedge\) NoWriterBetween \(_{H, i}\left(T^{\prime}, \sqsubseteq, R\right)\)
GlobalWriteObs \((H, \sqsubseteq) \Leftrightarrow\)
 \(\forall R \in \operatorname{GlobalTReads}(H): \exists W \in \operatorname{GlobalTWrites}(H): \operatorname{Let}^{\prime}=\operatorname{trans}_{H}(W):\)
 LastPreAccessor \(_{H, \sqsubseteq}\left(T^{\prime}, R\right) \wedge \arg _{H}(R)=\arg _{H}(W) \wedge \operatorname{retv}_{H}(R)=\arg 2_{H}(W)\)
\(W \operatorname{riteObs}(H, \sqsubseteq) \Leftrightarrow\)
 LocalWriteObs \((H) \wedge\) GlobalWriteObs \((H, \sqsubseteq)\)
ReadPres \((H, \sqsubseteq) \Leftrightarrow\)
 \(\forall R \in \operatorname{GlobalTReads}(H):\) Let \(i=\arg _{H}(R), T=\operatorname{trans}_{H}(R):\)
 \(N_{o W r i t e r B e t w e e n ~}^{H, i}(R, \sqsubseteq, T) \wedge\) NoWriter Between \(_{H, i}(T, \sqsubseteq, R)\)
RealTimePres \((H, \sqsubseteq) \Leftrightarrow\)
 \(\preccurlyeq_{H} \subseteq \sqsubseteq\)
FinalStateMarkable \(=\left\{H \in\right.\) THistory \(\mid \exists H^{\prime} \in \operatorname{TExtension}(H): \exists \sqsubseteq \in \operatorname{Marking}\left(H^{\prime}\right):\)
 \(\left.\operatorname{ReadPres}\left(H^{\prime}, \sqsubseteq\right) \wedge W \operatorname{WriteObs}\left(H^{\prime}, \sqsubseteq\right) \wedge \operatorname{RealTimePres}\left(H^{\prime}, \sqsubseteq\right)\right\}\)
```

        Figure 3.5: FinalStateMarkable
    - The effect order: The set of transactions is totally ordered by the marking relation $\sqsubseteq$. In other words, the marking relation $\sqsubseteq$ is total, antisymmetric and transitive on the set of transactions.
- The access orders: For each global read $R$ from a location $i, R$ and every writer of $i$ are ordered by the marking relation $\sqsubseteq$. In other words, the marking relation $\sqsubseteq$ totally orders every global read $R$ from a location $i$ with respect to writers of $i$ and is antisymmetric.
The write-observation property is comprised of the two properties: local write-observation and global write-observation. Local write-observation requires that every local read $R$ from a location $i$ returns the value written by the last write to $i$ that is executed before $R$ by the same transaction. We remind that pre-accessors of $R$ are the writers of $i$ that are ordered before $R$ in the access order and the last pre-accessor is the one that is greatest in the effect order. Global write-observation requires that the value that every global read $R$ from a location $i$ returns is the value written by the global write to $i$ by the last pre-accessor transaction of $R$.

The Read-preservation property requires that for every global read $R$ from location $i$ by transaction $T$, there is no writer transaction $T^{\prime}$ of $i$ such that $T^{\prime}$ is marked between $R$ and $T$ (i.e. $T^{\prime}$ accesses $i$ after $R$ and takes effect before $T$ ), or similarly, $T^{\prime}$ is marked between $T$ and $R$ (i.e. $T^{\prime}$ takes effect after $T$ and accesses $i$ before $R$ ).

The real-time-preservation property requires that if $T$ is before $T^{\prime}$ in the real-time order, then $T$ takes effect before $T^{\prime}$ as well.

A transaction history is final-state-markable if and only if there exists a marking for an extension of it that is write-observant, read-preserving, and real-time-preserving.

The marking theorem states that a transaction history is final-state-opaque if and only if it is final-state-markable.

Theorem 1. (Marking) FinalStateOpaque $=$ FinalStateMarkable.
Please see the appendix section $\underline{10.2 .1}$ for the proofs.

## Chapter 4

## Testing TM Algorithms

### 4.1 Introduction

Considering the correctness conditions of transactional memory, designing correct transactional memory algorithms is a formidable task. Algorithm design is an iterative process of trying alternatives, fixing issues and improving the performance. An update to the algorithm makes the algorithm work for a specific new scenario but should preserve the correctness of the algorithm on the existing scenarios as well. A tool that tests for specific scenarios can assist algorithm designers during both the design and the maintenance of the algorithm. The tool can be used for regression testing of known scenarios. In this chapter, we identify specific pitfalls that lead to non-opacity and show how a tool can automatically find such pitfalls in the algorithms.

We identify two problems that lead to non-opacity: the write-skew anomaly and the writeexposure anomaly. The write-skew anomaly is an incorrectness pattern that is known in the setting of databases [6]. The write-exposure anomaly happens when a TM algorithm exposes written values to other transactions before the transaction commits.

We present a tool called Samand that automatically finds such problems. The tool inputs a TM algorithm, a program and a test assertion. The test assertion can be a partial correctness condition such as negation of a bug pattern. If an execution of the test program can violate the test assertion, Samand outputs a violating trace. Samand translates the specification into constraints and feeds them to Z3 SMT solver [17]. If the constraints are satisfiable, the tool reconstructs and outputs a violating program trace.

We show that the well-known TM algorithms DSTM and McRT don't satisfy opacity. DSTM suffers from the write-skew anomaly, while McRT suffers from the write-exposure anomaly. These results may be surprising because previous work has proved that DSTM and McRT satisfy opacity [31, 30]. However, there is no conflict and no mystery: the previous work focused on abstractions of DSTM and McRT, while we work with specifications that are much closer to original formulations of DSTM and McRT. Thus, we experience a common phenomenon: once we refine a specification, we may lose some properties. We present fixes to both DSTM and McRT that we conjecture make the fixed algorithms satisfy opacity.

In the following subsections, we first introduce bug patterns that violate opacity. Then, we introduce our tool and the set of constraints that it generates. Finally, we present the result of applying our tool to DSTM and McRT algorithms.

### 4.2 Opacity Bug Patterns

Consider the following transaction histories:

$$
\begin{aligned}
& H_{W S}=\text { Init } \cdot \operatorname{read}_{T_{1}}(1): v_{0} \cdot \operatorname{read}_{T_{2}}(1): v_{0} \cdot \operatorname{read}_{T_{1}}(2): v_{0} \cdot \operatorname{read}_{T_{2}}(2): v_{0} \cdot \\
& \text { write }_{T_{1}}\left(1,-v_{0}\right) \cdot \text { write }_{T_{2}}\left(2,-v_{0}\right) \text {. } \\
& \operatorname{inv}_{T_{1}}\left(\operatorname{commit}_{T_{1}}\right) \cdot \operatorname{inv}_{T_{2}}\left(\operatorname{commit}_{T_{2}}\right) \cdot \operatorname{ret}_{T_{1}}(\mathbb{C}) \cdot \operatorname{ret}_{T_{2}}(\mathbb{C}) \\
& H_{W E}=\text { Init } \cdot \text { inv }_{T_{1}}\left(\text { read }_{T_{1}}(2)\right) \cdot \text { write }_{T_{2}}\left(2, v_{1}\right) \cdot \operatorname{ret}_{T_{1}}\left(v_{1}\right) \cdot \\
& \operatorname{inv}_{T_{2}}\left(\operatorname{read}_{T_{2}}(1)\right) \cdot \text { write }_{T_{1}}\left(1, v_{1}\right) \cdot \operatorname{ret}_{T_{2}}\left(v_{1}\right) \cdot \\
& \operatorname{inv}_{T_{1}}\left(\operatorname{commit}_{T_{1}}\right) \cdot \operatorname{inv}_{T_{2}}\left(\operatorname{commit}_{T_{2}}\right) \cdot \operatorname{ret}_{T_{1}}(\mathbb{A}) \cdot \operatorname{ret}_{T_{2}}(\mathbb{A}) \\
& H_{W E 2}=\text { Init } \cdot \operatorname{inv}_{T_{1}}\left(\left(\text { write }_{T_{1}}\left(1, v_{1}\right)\right) \cdot \operatorname{read}_{T_{2}}(1): v_{1} \cdot \operatorname{ret}_{T_{1}}(o k)\right. \text {. } \\
& \text { write }_{T_{1}}\left(1, v_{2}\right) \cdot \text { commit }_{T_{1}}(): \mathbb{C} \cdot \text { commit }_{T_{2}}(): \mathbb{A}
\end{aligned}
$$

where Init is described below and $H_{0}$ is a transaction history that does not contain a write operation that writes value $j$.

In Appendix, we prove that none of the transaction histories $H_{W S}, H_{W E}, H_{W E 2}$ are opaque.
Theorem 2. $\left\{H_{W S}, H_{W E}, H_{W E 2}\right\} \cap$ FinalStateOpaque $=\emptyset$.
We say that $H_{W S}, H_{W E}$ are bug patterns, because if a TM can produce any of them, then the TM violates opacity. Let us now focus on $H_{W S}, H_{W E}$ and later turn to $H_{W E 2}$.

Write-skew anomaly. The transaction history $H_{W S}$ is evidence of the write-skew anomaly. Let us illustrate the write-skew anomaly with the following narrative.

Assume that a person has two bank accounts that are stored at locations $i_{1}$ and $i_{2}$ and that have the initial balances $v_{0}$ and $v_{0}$, where $v_{0}>0$. Assume also that the regulations of the bank require the sum of a person's accounts to be positive or zero. Thus, the bank will authorize a transaction that withdraws the sum of the two accounts from one of them i.e. updates the value of one of the accounts with the previous value of the account minus the sum of the two accounts.

Now we interpret the narrative in the context of $H_{W S}$, which is a record of the execution of two "bank-authorized" transactions. In $H_{W S}$ the transaction $T_{1}$ reads the values of both accounts and updates $i_{1}$ with $v_{0}-\left(v_{0}+v_{0}\right)=-v_{0}$. Similarly, the transaction $T_{2}$ reads the values of both accounts and updates $i_{2}$ with $-v_{0}$. But in $H_{W S}$ both transactions commit, which results in a state that violates the regulations of the bank: $-v_{0}$ is the balance of both accounts.

The problem with $H_{W S}$ stems from that the TM that produced $H_{W S}$ doesn't guarantee noninterleaving semantics of the transactions. In a noninterleaving semantics, either $T_{1}$ appears to execute before $T_{2}$, or $T_{2}$ appears to execute before $T_{1}$. However, if we order $T_{1}$ before $T_{2}$, then the values read by $T_{2}$ violate correctness; and if we order $T_{2}$ before $T_{1}$, then the values read by $T_{1}$ violate correctness.

The reader may notice that since $H_{W S}$ is not opaque and all the transactions in $H_{W S}$ are committed, $H_{W S}$ is not even serializable. However, $H_{W S}$ does satisfy snapshot isolation, which is a necessary, though not a sufficient, condition for serializability. A history satisfies snapshot isolation if its reads observe a consistent snapshot. Snapshot isolation prevents observing some of the updates of a committing transaction before the commit and some of the rest of the updates after the commit. Algorithms that support only snapshot isolation are known to be prone to the write-skew anomaly, as shown by Berenson et al. [6].

Write-exposure anomaly. The transaction history $H_{W E}$ is evidence of the write-exposure anomaly. The two locations $i_{1}$ and $i_{2}$ each has initial value $v_{0}$ and no committed transaction writes a different value to them, and yet the two read operations return the value $v_{1}$. Write-exposure happens when a transaction that eventually fails to commit writes to a location $i$ and exposes the written value to other transactions that read from $i$. Thus, active or aborting transactions can read inconsistent values. This violates opacity even if these transactions are eventually prevented from committing.

### 4.3 Automatic Bug Finding

We present a tool called Samand in which inputs a specification consisting of a TM algorithm, a user program, and a test assertion. A input specification is correct if every execution of the user program satisfies the test assertion. Our tool solves constraints to decide whether a input specification is correct.

Our language. We present Samand via two examples. We will use a sugared notation, for simplicity. We explain the actual language and code for both examples in the appendix 10.3. The first example is

$$
\left(\pi_{D S T M}, P_{W S}, \neg W S\right)
$$

where $\pi_{D S T M}$ (see Figure 2.4) is a core version of the TM algorithm DSTM, and the user program and the test assertion are:

$$
\begin{aligned}
P_{W S}= & \left\{r_{11}=\operatorname{read}_{T_{1}}(1) ; r_{12}=\operatorname{read}_{T_{1}}(2) ; \text { write }_{T_{1}}\left(1, v_{1}\right) ; c_{1}=\text { commit }_{T_{1}}()\right\} \| \\
& \left\{r_{21}=\operatorname{read}_{T_{2}}(1) ; r_{22}=\operatorname{read}_{T_{2}}(2) ; \text { write }_{T_{2}}\left(2, v_{1}\right) ; c_{2}=\operatorname{commit}_{T_{2}}()\right\} \\
W S= & \left(r_{11}=v_{0} \wedge r_{12}=v_{0} \wedge r_{21}=v_{0} \wedge r_{22}=v_{0} \wedge c_{1}=\mathbb{C} \wedge c_{2}=\mathbb{C}\right)
\end{aligned}
$$

Note that the assertion $W S$ specifies a set of buggy histories of the user program; the history $H_{W S}$ is a member of that set.

The second example is

$$
\left(\pi_{M c R T}, P_{W E}, \neg W E\right)
$$

where $\pi_{M c R T}$ (see Figure 2.6) is a core version of the TM algorithm McRT, and the user program and the test assertion are:

$$
\begin{aligned}
P_{W E}= & \left\{r_{1}=\operatorname{read}_{T_{1}}(2) ; \text { write }_{T_{1}}\left(1, v_{1}\right) ; c_{1}=\text { commit }_{T_{1}}()\right\} \| \\
& \left\{\text { write }_{T_{2}}\left(2, v_{1}\right) ; r_{2}=\operatorname{read}_{T_{2}}(1) ; c_{2}=\text { commit }_{T_{2}}()\right\} \\
W E= & \left(r_{1}=v_{1} \wedge r_{2}=v_{1} \wedge c_{1}=\mathbb{A} \wedge c_{2}=\mathbb{A}\right)
\end{aligned}
$$

Similar to the first example, the assertion $W E$ specifies a set of buggy histories of the user program; the history $H_{W E}$ is a member of that set.

Samand enables specification of loop-free user programs. Every user program has a finite number of possible executions and those executions all terminate.

Constraints. Samand uses the following notion of constraints to decide whether the input specification is correct. Let $l, x, v$ range over finite sets of labels, variables, and values, respectively.

A constraint is an assertion about histories $X$ and is generated by the following grammar:

$$
\begin{array}{rlrlr}
a: & := & \operatorname{obj}_{X}(l)=o\left|\operatorname{name}_{X}(l)=n\right| \operatorname{thread}_{X}(l)=T \mid & & \text { Assertion } \\
& \arg 1_{X}(l)=u\left|\arg 2_{X}(l)=u\right| \operatorname{retv}_{X}(l)=x \mid & & \\
& l \in X\left|l \prec_{X} l\right| e_{1} \triangleleft_{X} e_{2} & & \\
& \neg a \mid a \wedge a & & & \text { Event } \\
e: & & i E v(l) \mid r E v(l) & & \text { Variable or Value }
\end{array}
$$

The events $i E v(l)$ and $r E v(l)$ are the invocation and response events of $l$ respectively. The assertions $\operatorname{obj}_{X}(l)=o, \operatorname{name}_{X}(l)=n$, thread $_{X}(l)=T, \arg 1_{X}(l)=u, \arg 2_{X}(l)=u$, and $\operatorname{retv}(l)=x$ respectively assert that the receiver object of $l$ is $o$, the method name of $l$ is $n$, the calling thread of $l$ is $T$, the first argument of $l$ is $u$, the second argument of $l$ is $u$, and the return value of $l$ is $x$. The assertion $l \in X$ asserts that $l$ is in the history $X$. The assertion $l \prec_{X} l^{\prime}$ asserts that $l$ is executed before $l^{\prime}$. The assertion $e_{1} \triangleleft_{X} e_{2}$ asserts that the event $e_{1}$ is before the event $e_{2}$ in the history $X$. The satisfiability problem is to decide, for a given constraint, whether there exists histories that satisfy the constraint.

From programs to constraints. Samand maps the input specification to a set of constraints such that the input specification is correct if and only if the constraints are unsatisfiable.

We defined run-time labels and labeled variables in section 2.3.3. A label $c_{1}{ }^{\prime} c_{2}$ denotes a method call annotated with $c_{2}$ that is executed inside the body of a this method call annotated with $c_{1}$. On the other hand, the label $c_{1}$ denotes a this method call in the top-level statements of the program annotated with $c_{1}$. For each runtime label $l$, we consider the pair of invocation event $i E v(l)$ and response event $r E v(l)$. The variable $c^{\prime} x$ denotes the local variable $x$ insider a this method call labeled $c$.

The relation $\triangleleft_{X}$ is a total order on events. We assert that the $\triangleleft_{X}$ is an anti-symmetric, transitive and total relation on events. For each pair of events $e_{1}$ and $e_{2}$, we generate the following constraints.

$$
\begin{align*}
& e_{1} \triangleleft_{X} e_{2} \Rightarrow \neg\left(e_{2} \triangleleft_{X} e_{1}\right)  \tag{4.1}\\
& \left(e_{1} \triangleleft_{X} e_{2}\right) \wedge\left(e_{2} \triangleleft_{X} e_{3}\right) \Rightarrow\left(e_{1} \triangleleft_{X} e_{3}\right)  \tag{4.2}\\
& \left(e_{1} \triangleleft_{X} e_{2}\right) \vee\left(e_{2} \triangleleft_{X} e_{1}\right) \tag{4.3}
\end{align*}
$$

The invocation event is before its response event. For every label $l$, we generate the following constraint.

$$
\begin{equation*}
i E v(l) \triangleleft_{X} r E v(l) \tag{4.4}
\end{equation*}
$$

Every method call inside a this method call is before the invocation and after the response event of the this method call. Consider a this method call labeled $c$ that calls the method $n$. Let $\overline{c_{i}}$ be the set of labels of the body of $n$. For each $c_{i}$, we generate the following constraint.

$$
\begin{equation*}
i E v(c) \triangleleft_{X} i E v\left(c^{\prime} c_{i}\right) \wedge r E v\left(c^{\prime} c_{i}\right) \triangleleft_{X} r E v(c) \tag{4.5}
\end{equation*}
$$

A method call is executed before another method call if the response event of the former is before the invocation event of the latter.

$$
\begin{align*}
& l_{1} \prec_{X} l_{2} \Leftrightarrow r E v\left(l_{1}\right) \triangleleft_{X} i E v\left(l_{2}\right)  \tag{4.6}\\
& l_{1} \preceq_{X} l_{2} \Leftrightarrow\left(l_{1} \prec_{X} l_{2} \vee l_{1}=l_{2}\right) \tag{4.7}
\end{align*}
$$

For each method call, we generate constraints that assert the components of the method call. For a this method call

$$
c \triangleright x=n_{\tau}(u)
$$

we generate the following constraints.

$$
\begin{align*}
& \operatorname{obj}_{X}(c)=\text { this } \wedge \operatorname{thread}_{X}(c)=\tau \wedge  \tag{4.8}\\
& \operatorname{name}_{X}(c)=n \wedge \arg 1_{X}(c)=u \wedge \\
& \operatorname{retv}_{X}(c)=x
\end{align*}
$$

For every method call

$$
c_{i} \triangleright x=\phi[i] \cdot n_{\tau}(u)
$$

inside a this method call labeled $c$, we generate the following constraints.

$$
\begin{align*}
& \operatorname{obj}_{X}\left(c^{\prime} c_{i}\right)=\phi\left[c^{\prime} i\right] \wedge \operatorname{thread}_{X}\left(c^{\prime} c_{i}\right)=c^{\prime} \tau \wedge  \tag{4.9}\\
& \operatorname{name}_{X}\left(c^{\prime} c_{i}\right)=n \wedge \arg _{X}\left(c^{\prime} c_{i}\right)=c^{\prime} u \wedge \\
& \operatorname{retv}_{X}\left(c^{\prime} c_{i}\right)=c^{\prime} x
\end{align*}
$$

Thus, the components of $c^{\prime} c_{i}$ are the components of $c_{i}$ in the program prefixed with $c$.
For each this method call, the arguments and the parameters are equal. For every method call

$$
c \triangleright x=n_{\tau}(u)
$$

we generate the following constraint. Let $t$ and $x$ be the thread parameter and the first parameter of the method $n$ respectively.

$$
\begin{equation*}
c^{\prime} t=\tau \wedge c^{\prime} x=u \tag{4.10}
\end{equation*}
$$

If a return statement inside a this method call is executed, the argument of the return statement is equal to the returned variable of the this method call. For every this method call labeled $c$ that calls the method $n$, we generate the following constraint. Let $\left\{\overline{c_{r}}\right\}$ be the set of return statements of the method $n, \operatorname{Returns}_{\pi}(n)$. Let $u_{r}$ be the argument of $c_{r}, \arg 1_{\pi}\left(c_{r}\right)$.

$$
\begin{equation*}
\bigwedge_{c_{r} \in\left\{\overline{c_{r}}\right\}}\left(c^{\prime} c_{r} \in X\right) \Rightarrow\left(c^{\prime} u_{r}=x\right) \tag{4.11}
\end{equation*}
$$

In section 2.2.1, we defined the execution condition and the prior returns of a label in a specification. The execution condition $\operatorname{cond}_{\pi}(c)$ of a label $c$ is the conjunction of all of the enclosing if or else conditions of $c$ in $\pi$. The prior returns $\operatorname{PreReturns} s_{\pi}(c)$ of a label $c$ are the set of labels of the return statements before $c$ in $\pi$. A this method call is executed if and only if its execution condition is satisfied and no prior return statement is executed. For every label $c$, we generate the following constraint.

$$
\begin{equation*}
l \in X \Leftrightarrow\left(\operatorname{cond}_{\pi}(c) \wedge \bigwedge_{c \in \operatorname{PreReturn}_{\pi}(c)} \neg\left(c^{\prime} \in X\right)\right) \tag{4.12}
\end{equation*}
$$

Consider a method call labeled $c^{\prime}$ inside a this method call labeled $c$. The run-time label of the method is $c^{\prime} c^{\prime}$. The method call $c^{\prime} c^{\prime}$ is executed if and only if the method call $c$ is executed, its
execution condition is satisfied and no prior return statement is executed. For every label $c^{\prime} c^{\prime}$, we generate the following constraint.

$$
\begin{equation*}
c^{\prime} c^{\prime} \in X \Leftrightarrow\left(c \in X \wedge c^{\prime} \operatorname{cond}_{\pi}(c) \wedge \bigwedge_{c^{\prime \prime} \in \operatorname{PreReturns}_{\pi}\left(c^{\prime}\right)} \neg\left(c^{\prime} c^{\prime \prime} \in X\right)\right) \tag{4.13}
\end{equation*}
$$

Note that the execution condition is prefixed with $c$.
In section 2.2.1, we defined the program order $\rightarrow_{\pi}$. The execution order preserves the program order. For every pair of two this method calls labeled $c_{1}$ and $c_{2}$, if $c_{1} \rightarrow_{\pi} c_{2}$, we generate the following constraint.

$$
\begin{equation*}
\left(c_{1} \in X \wedge c_{2} \in X\right) \Rightarrow c_{1} \prec_{X} c_{2} \tag{4.14}
\end{equation*}
$$

For every this method call labeled $c$ that calls the method $n$, for every pair of labels $c_{1}$ and $c_{2}$ in $n$, if $c_{1} \rightarrow_{\pi} c_{2}$, we generate the following constraint.

$$
\begin{equation*}
\left(c^{\prime} c_{1} \in X \wedge c^{\prime} c_{2} \in X\right) \Rightarrow c^{\prime} c_{1} \prec_{X} c^{\prime} c_{2} \tag{4.15}
\end{equation*}
$$

We generate constraints that assert the safety properties of the base objects. For example, for a basic register $r$, we generate the following definitions according to the semantics of basic register in Definition $\underline{5}$

$$
\begin{align*}
& i s X R E a d_{X, r}\left(l_{R}\right)=l_{R} \in X \wedge \operatorname{obj}_{X}\left(l_{R}\right)=r \wedge \operatorname{name}_{X}\left(l_{R}\right)=\text { read }  \tag{4.16}\\
& \text { isXWrite }_{X, r}\left(l_{W}\right)=l_{W} \in X \wedge \operatorname{obj}_{X}\left(l_{W}\right)=r \wedge \text { name }_{X}\left(l_{W}\right)=\text { write }  \tag{4.17}\\
& \text { NoWriteBetween }{ }_{X, r}\left(l_{W}, l_{R}\right)=\forall l_{W}^{\prime}: \text { isXWrite }_{X, r}\left(l_{W}^{\prime}\right) \Rightarrow\left(l_{W}^{\prime} \preceq_{X} l_{W} \vee l_{R} \prec_{X} l_{W}^{\prime}\right)  \tag{4.18}\\
& \text { isXWriter }_{X, r}\left(l_{W}, l_{R}\right)=\text { isXWrite }_{X, r}\left(l_{W}\right) \wedge  \tag{4.19}\\
& l_{W} \prec_{X} l_{R} \wedge \\
& \text { NoWriteBetween }{ }_{X, r}\left(l_{W}, l_{R}\right) \\
& \text { isXRaceFree } X_{X, r}(l)=\forall l_{W}: \text { isXWrite }_{X, r}\left(l_{W}\right) \Rightarrow l_{W} \preceq_{X} l \vee l \prec_{X} l_{W}  \tag{4.20}\\
& \text { isXSequentiallyWritten }_{r}(X)=\forall l \in X: \text { isXWrite }_{X, r}(l) \Rightarrow \text { isRaceFree }_{X, r}(l) \tag{4.21}
\end{align*}
$$

and we generate the following constraint

$$
\begin{align*}
& \text { isXSequentiallyWritten }_{r}(X) \Rightarrow  \tag{4.22}\\
& \forall l_{R}: \text { isXRead }_{X, r}\left(l_{R}\right) \wedge \text { isX }_{\text {RaceFree }}^{X, r} \\
& \left(l_{R}\right) \Rightarrow \\
& \exists l_{W}: \text { isXWriter }_{X, r}\left(l_{W}, l_{R}\right) \wedge \\
& \operatorname{retv}_{X}\left(l_{R}\right)=\arg _{X}\left(l_{W}\right)
\end{align*}
$$

Note that as the set of labels is finite, $\forall$ and $\exists$ can be replaced with $\wedge$ and $\vee$ over all labels.
For each linearizable object $o$, there should be a linearization $L$ that is equivalent to the executed method calls on $o$ in $X$, is real-time-preserving and is a member of the sequential specification of $o$. The linearization order $\prec_{L}$ is a total order. For every pair of labels $l_{1}$ and $l_{2}$, we generate the following constraints that assert that $\prec_{L}$ is irreflexive, transitive and total.

$$
\begin{align*}
& l_{1} \prec_{L} l_{2} \Rightarrow \neg\left(l_{2} \prec_{L} l_{1}\right)  \tag{4.23}\\
& \left(l_{1} \prec_{L} l_{2}\right) \wedge\left(l_{2} \prec_{L} l_{3}\right) \Rightarrow\left(l_{1} \prec_{L} l_{3}\right)  \tag{4.24}\\
& \left(l_{1} \prec_{L} l_{2}\right) \vee\left(l_{2} \prec_{L} l_{1}\right) \tag{4.25}
\end{align*}
$$

The linearization $L$ is equivalent to the executed method calls on $o$ in $X$. A method call is in $L$ if and only if it is in $X$ and is called on $o$. For every label $l$, we generate the following constraint.

$$
\begin{align*}
& l \in L \Leftrightarrow\left(l \in X \wedge \operatorname{obj}_{X}(l)=o\right)  \tag{4.26}\\
& \operatorname{obj}_{L}(l)=\operatorname{obj}_{X}(l) \wedge \operatorname{thread}_{L}(l)=\operatorname{thread}_{X}(l) \wedge \operatorname{name}_{L}(l)=\operatorname{name}_{X}(l) \wedge  \tag{4.27}\\
& \arg _{L}(l)=\arg _{X}(l) \wedge \arg _{L}(l)=\arg _{X}(l) \wedge \operatorname{retv}_{L}(l)=\operatorname{ret}_{X}(l) \tag{4.28}
\end{align*}
$$

The linearization order $\prec_{L}$ is real-time-preserving. For every pair of labels $l_{1}$ and $l_{2}$, we generate the following constraint.

$$
\begin{equation*}
l_{1} \prec_{X} l_{2} \Rightarrow l_{1} \prec_{L} l_{2} \tag{4.29}
\end{equation*}
$$

The linearization $L$ is a member of the sequential specification of $o$. For an atomic register $r$, we generate the following constraint according to the sequential specification of register (Definition 4).

$$
\begin{align*}
& \forall l_{R}:{\text { isX } \operatorname{Read}_{L, r}\left(l_{R}\right) \Rightarrow}_{\exists l_{W}:} \operatorname{isXWriter}_{L, r}\left(l_{W}, l_{R}\right) \wedge  \tag{4.30}\\
& \quad \operatorname{retv}_{L}\left(l_{R}\right)=\arg _{L}\left(l_{W}\right)
\end{align*}
$$

Similarly, we can generate constraints for atomic cas register, lock, try-lock and counter types according to their sequential specifications (Definitions $\underline{6}, \underline{7}, \underline{9}, \underline{11}$ ).

Finally, we map the test assertion in the input specification to the negation of that assertion. As a result, we can use a constraint solver to search for a history that violates the test assertion. If there exists a solution for the constraints, we can construct a bug history as follows. The executed labels is the set of labels $l$ such that $l \in X$. The bug history is the sequence of events of executed labels ordered by the relation $\triangleleft_{X}$.

In practice, we apply several optimizations to the constraints presented above. For example, we do not consider invocation and response events for linearizable objects. Thus, we define the execution order on the set of events of the basic objects and the labels of the linearizable objects. Furthermore, we define the linearization history as a sub-history of the execution history. Thus, we restate the constraints that involve the linearization order in terms of the execution order. We can simplify the assertions for the safety of the basic register follows:

$$
\begin{align*}
& \text { is } X \text { SequentiallyWritten }(X) \Rightarrow  \tag{4.31}\\
& \forall l_{R}, l_{W}: \text { isXRead }_{X, r}\left(l_{R}\right) \wedge \text { isXRaceFree }_{X, r}\left(l_{R}\right) \wedge \text { isXWriter }_{X, r}\left(l_{w}, l_{r}\right) \Rightarrow \\
& \quad \operatorname{retv}_{X}\left(l_{R}\right)=\arg _{X}\left(l_{W}\right)
\end{align*}
$$

Similarly, we can simplify the assertions for the safety of the atomic register follows:

$$
\begin{align*}
& \forall l_{R}, l_{W}: \operatorname{isX}^{\operatorname{Read}_{L, r}\left(l_{R}\right) \wedge i s X W r i t e r}  \tag{4.32}\\
& L, r
\end{align*}\left(l_{W}, l_{R}\right) \Rightarrow
$$

Our tool. Samand analyzes the input specification and builds a skeleton execution graph. The execution graph is an inlined representation of the concurrent program. Each method call on a linearizable object or return statement is represented as a node in the graph. Each method call on a basic object or on the this object is represented as two invocation and response nodes in the graph.

There is a node for every if and also every else statement. There is an edge to the if and else nodes from the nodes that they are data-dependent on. There is an edge from if and else nodes to any statement in their scope. The tool generates the above constraints in SMT2 format and then uses the Z3 SMT solver [17] to solve the constraints. If the constraints are unsatisfiable, then the specification is correct. If the constraints are satisfiable, then the specification is incorrect and the constraint solver will find a model for transaction history that violates the test assertion. The model represents the set of executed events and method calls and their execution order. This information is extracted from the model and added to the execution graph. The resulting graph is topologically sorted and the resulting trace is shown to the user in a graphical user interface. Our tool and some examples are available at [49].

### 4.4 Experiments

We will now report on running our tool on the two example algorithm specifications. Our first example concerns DSTM.

The context. We believe that DSTM matches the paper on DSTM [39]. While we prove that DSTM doesn't satisfy opacity, we have learned from personal communication with Victor Luchangco, one of the DSTM authors, that the implementation of DSTM implements more than what was said in the paper and most likely satisfies opacity.

The bug. DSTM provides snapshot isolation by validating the read set (at $R 07$ ) before the read method returns but fails to prevent write skew anomaly. When we run our tool on ( $D S T M, P_{W S}, \neg W S$ ), we get an execution trace that matches $H_{W S}$. Figure 4.1(a) presents an illustration of the set of DSTM executions that exhibit the bug. Note that this set is a subset of the set of executions that the bug pattern describes. In Figure 4.1(a), each transaction executes from top to bottom and the horizontal lines denote "barriers", that is, the operations above the line are finished before the operations below the line are started and otherwise the operations may arbitrarily interleave. For example, $\operatorname{read}_{T_{1}}(2): v_{0}$ should finish execution before write $_{T_{2}}\left(2,-v_{0}\right)$ but $\operatorname{read}_{T_{1}}(1): v_{0}$ and $\operatorname{read}_{T_{2}}(1): v_{0}$ can arbitrarily interleave. In Figure 4.1(a), $T_{1}$ writes to location 1 after $T_{2}$ reads from it so $T_{2}$ does not abort $T_{1}$. $T_{1}$ invokes commit and finishes the validation phase ( $C 01-C 02$ ) before $T_{2}$ effectively commits (executes the cas method call at $C 03$ ). The situation is symmetric for transaction $T_{2}$. During the validation, the two transactions still see $v_{0}$ as the stable value of the two locations; thus, both of them can pass the validation phase. Finally, both of them succeed at cas. Note that the counterexample happens when the two commit method calls interleave between $C 02$ and $C 03$.

The fix. We learned from Victor Luchangco that the implementation of DSTM aborts the writer transactions of the locations in the read set $r \operatorname{set}[T]$ during validation of the commit method call. We model this fix by adding the following lines before $C 01$ in DSTM:

```
foreach \((i \in \operatorname{dom}(r s e t[t]))\{\)
 st \(:=\operatorname{start}[i] \cdot \operatorname{read}()\);
 \(t^{\prime}:=\) st.writer.read () ;
 if \(\left(t \neq t^{\prime}\right)\)
 state \(\left[t^{\prime}\right] \cdot \operatorname{cas}(\mathbb{R}, \mathbb{A})\)
\}
```

$T_{1}$	$T_{2}$
init $_{T_{1}}()$	init $_{T_{2}}()$
read $_{T_{1}}(1): v_{0}$	read $_{T_{2}}(1): v_{0}$
read $_{T_{1}}(2): v_{0}$	read $_{T_{2}}(2): v_{0}$
write $_{T_{1}}\left(1,-v_{0}\right)$	write $_{T_{2}}\left(2,-v_{0}\right)$
commit $_{T_{1}} \cdot C 01-C 02$	commit $_{T_{2}} \cdot C 01-C 02$
commit $_{T_{1}} \cdot C 03-C 05$	commit $_{T_{2}} \cdot C 03-C 05$

(a) DSTM counterexamples

$T_{1}$	$T_{2}$
init $_{T_{1}}()$   read $_{T_{1}}(2) \cdot R 01-R 03$	init $_{T_{2}}()$
	write $_{T_{2}}\left(2, v_{1}\right)$
read $_{T_{1}}(2) \cdot R 04-R 08$	read $_{T_{2}}(1) \cdot R 01-R 03$
write $_{T_{1}}\left(1, v_{1}\right)$	
	$\operatorname{read}_{T_{2}}(1) \cdot R 04-R 08$
commit $_{T_{1}} \cdot C 01-C 03$	commit $_{T_{2}} \cdot C 01-C 03$
commit $_{T_{1}} \cdot C 04$	commit $_{T_{2}} \cdot C 04$

(b) McRT counterexamples

Figure 4.1: Counterexamples

Those lines prevent $H_{W S}$ because each transaction will abort the other transaction and thus both of them abort.

Our second example concerns McRT.
The context. McRT [68] predates the definition of opacity [28] and wasn't intended to satisfy such a property, as far as we know. Rather, McRT is serializable by design. Still, we prove that McRT doesn't satisfy opacity.

The bug. When we run our tool on $\left(M c R T, P_{W E}, \neg W E\right)$, we get an execution trace that matches $H_{W E}$ in about 20 minutes. Figure $4.1(\mathrm{~b})$ presents an illustration of the set of executions that exhibit the bug. Like above, this set is a subset of the set of executions that the bug pattern describes. Figure 4.1(b) uses the same conventions as Figure 4.1(a). The execution interleaves write $e_{T_{2}}\left(2, v_{1}\right)$ between statements $\operatorname{read}_{T_{1}}(2) . R 01-R 03$ and $\operatorname{read}_{T_{1}}(2) . R 04-R 08$ such that the old value of $l[2]$ (unlocked) and the new value of $r[2]$ (the value $v_{1}$ ) are read. Also, commit $T_{2} . C 01-C 03$ are executed before commit $_{T_{1}}$. $C 04$ such that $T_{2}$ finds $l[1]$ locked and aborts. The situation is symmetric for transaction $T_{1}$.

The fix. The validation in the commit method ensures that only transactions that have read consistent values can commit; this is the key to why McRT is serializable. Our fix to McRT is to let the read method do validation, that is, to insert a copy of lines $C 02-C 04$ between line $R 07$ and line $R 08$ in McRT.

Let us use Fixed McRT to denote McRT with the above fix. When we run our tool on (FixedMcRT, $P_{W E}, \neg W E$ ), our tool determines that the algorithm satisfies the assertion, that is, Fixed McRT doesn't have the write-exposure anomaly. The run takes about 10 minutes.

Note though that in the fixed algorithm, a sequence of writer transactions can make a reader transaction abort an arbitrary number of times. This observation motivated our study of progress for direct-update TM algorithms such as McRT.

## Chapter 5

## Synchronization Object Program Logic

### 5.1 Introduction

As we review in section 8.2 , the previous works on concurrent program logics support several forms of local reasoning. The reasoning about a thread is done locally on the thread itself and is separate from the reasoning on other threads. For example, the rely/guarantee technique supports local reasoning on a thread when the interference from other threads is known. These logics do not support assertions for the execution order or the linearization order of two method calls in two different threads. These assertions are particularly essential for reasoning about TM algorithms. As we presented in section 3, a concurrent execution of a set of transactions is correct if there is an indistinguishable sequential order of the transactions. The sequential order is determined by the execution order or the linearization order of certain method calls in the transactions. We present a program logic called synchronization object logic (SOL) for reasoning about the behavior of an algorithm based on its syntactic specification. The assertion language of SOL supports execution overlap, execution order and linearization orders of method calls.

SOL provides inference rules that can be conceptually divided into four groups: (1) the standard first-order logic rules, (2) the structure rules that axiomatize the relation of the program structure and the execution, (3) the basic rules that axiomatize the properties of the execution and linearization orders and their interdependence and (4) the synchronization object rules that axiomatize the properties of common synchronization object types.

We define the semantics of the assertion language i.e. we define whether a history models an assertion. Based on the semantics of specifications and the semantics of assertions, we prove the soundness of the logic. SOL derives valid conclusions from valid premises.

In the following chapters, we prove the correctness of the well-known TM algorithm TL2 [18] using SOL. SOL is applicable beyond TM, particularly to algorithms for mutual exclusion. As evidence, we prove the mutual exclusion property of the Dekker algorithm in this chapter.

In the first section of this chapter, we showcase the logic with a simple example. We present a simple specification, a simple lemma about the specification and simplified versions of the inference rules. We illustrate the proof of the lemma using the inference rules. In the next subsections, we consider the full logic. We define the assertion language and the semantics of assertions. Then, we define the four groups of inference rules. Then, we formalize and prove the soundness of the logic. Finally, we present the proof the correctness of the Dekker algorithm using the inference rules.

$\mathcal{T}$ :   lock: Lock   clock: SCounter   ver: BasicRegister		
$\mathcal{P}$ :		
$L_{1} \triangleright$ lock.lock ${ }_{T_{1}}()$	$L_{2} \triangleright$ lock.lock ${ }_{T_{2}}()$	
$C_{1} \triangleright \quad v_{1}=$ clock.iaf ${ }_{T_{1}}() \quad \\|$	$C_{2} \triangleright v_{2}=$ clock.iaf ${ }_{T_{2}}()$	
$R_{1} \triangleright$ ver.write ${ }_{T_{1}}\left(v_{1}\right)$	$R_{2} \triangleright$ ver.write ${ }_{T_{2}}\left(v_{2}\right)$	
$U_{1} \triangleright$ lock.unlock ${ }_{T_{1}}()$	$U_{2} \triangleright$ lock.unlock ${ }_{T_{2}}()$	

Figure 5.1: Example Specification $\pi$

### 5.2 Simple Example

We introduce the program logic SOL via a simple example. In this section, we present, first, an example specification in a subset of the specification language, then, the simplified program logic and finally, the deduction of a lemma for the example specification.

### 5.2.1 Algorithm Specification

Figure 5.1 specifies a simple algorithm that updates a register to ascending version numbers. In fact, it is a miniature version of the TL2 commit procedure. This specification has two sections: the type declaration section at the top and the concurrent program section at the bottom. In general, a specification can have a procedure definition section and call procedures that we postpone to the next section.

The type declaration section declares the type of each synchronization object used by the concurrent program. Three object types are used in this program: lock Lock, strong counter SCounter and basic register BasicRegister. Lock and strong counter are linearizable object types and basic register is a basic object type. In the general sense, linearizable objects can maintain consistency even if they are accessed concurrently while basic objects maintain consistency if they are not accessed concurrently. A register has two methods: write and read. For example, r.write (v) writes the value $v$ to $r$, while $x=\operatorname{r} \cdot \operatorname{read}()$ reads the value of $r$ and binds $x$ to that value. The language enforces unique binding for variables. A lock has two methods lock and unlock that lock and unlock it respectively. A strong counter has two methods: read and iaf (increment-and-fetch). For a strong counter $c, x=\operatorname{c.read}()$ reads the value of $c$ and binds $x$ to that value and $x=c . i a f()$ increments and then reads the value of $c$ and binds $x$ to that value. The objects lock, clock and ver are declared of Lock, SCounter, and BasicRegister types.

The second section is the concurrent program. It is the parallel composition of a set of sequential programs. In this specification, there are two sequential programs where every statement is a method call. A method call is of the form $l \triangleright x=o . n_{\tau}(u)$ where $l$ is the unique label of the method call. We define the following functions on labels that are immediately derived from the specification. $o b j_{\pi}$ maps $l$ to the receiving object $o$, name $e_{\pi}$ maps $l$ to the method name $n$, thread $d_{\pi}$ maps $l$ to the calling thread identifier $\tau, \arg 1_{\pi}$ maps $l$ to the first argument $u$ (that is either a variable $x$ or a value $v$ ), and $\operatorname{retv}_{\pi}$ maps $l$ to the return variable $x$. The function $\operatorname{cond}_{\pi}$ maps $l$ to the enclosing condition

$$
\begin{aligned}
& \text { Control } \\
& \overline{\pi, \Gamma \vdash \operatorname{exec}(l) \Leftrightarrow \operatorname{cond}_{\pi}(l)} \\
& \text { ID } \\
& o b j_{\pi}(l)=o \quad n a m e e_{\pi}(l)=n \\
& \text { thread }_{\pi}(l)=\tau \quad \arg 1_{\pi}(l)=u \quad \operatorname{retv}_{\pi}(l)=x \\
& \pi, \Gamma \vdash \operatorname{exec}(l) \\
& \pi, \Gamma \vdash \operatorname{obj}(l)=o \wedge \operatorname{name}(l)=n \wedge \\
& \operatorname{thread}(l)=\tau \wedge \arg 1(l)=u \wedge \operatorname{retv}(l)=x \\
& \text { P2X } \\
& \frac{l_{1} \rightarrow_{\pi} l_{2} \quad \pi, \Gamma \vdash \operatorname{exec}\left(l_{1}\right) \quad \pi, \Gamma \vdash \operatorname{exec}\left(l_{2}\right)}{\pi, \Gamma \vdash l_{1} \prec l_{2}} \\
& \begin{array}{l}
\begin{array}{l}
\operatorname{SRC} \\
\pi, \Gamma \vdash \operatorname{exec}(l) \\
\pi, \Gamma \vdash \operatorname{obj}(l)=o \\
\operatorname{Call} s_{\pi}(o, n)=\left\{\bar{l}_{i}\right\}
\end{array} \\
\pi, \Gamma \vdash \bigvee_{i=1 . . n} l=l_{i}
\end{array}
\end{aligned}
$$

Each rule has the side condition $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$

Figure 5.2: Structure Inference Rules.
of the method call labeled $l$. In this specification, we do not have if-then-else statements, therefore, $\operatorname{cond}_{\pi}(l)=$ true for every label $l$. Every specification $\pi$, defines a program order $\rightarrow_{\pi}$ on the labels. Intuitively, $l_{1} \rightarrow_{\pi} l_{2}$ means that the specification requires that if both $l_{1}$ and $l_{2}$ are executed, then $l_{1}$ must be executed before $l_{2}$. In this specification, we assume sequential consistency. Therefore, the program order $\rightarrow_{\pi}$ simply represents the order of labels in the program. We postpone relaxed order of method calls to next later section.

### 5.2.2 Program Logic

Consider the two method calls labeled $R_{1}$ and $R_{2}$ in the specification (Figure 5.1). We will prove the following theorem that states that if the version that $R_{1}$ writes is less than the version that $R_{2}$ writes, then $R_{1}$ is executed before $R_{2}$. Although the statement of the lemma is simple, similar to the TM correctness assertions, it involves execution order and its proof involves linearization order of synchronization objects.

Lemma 35. $\pi, \cdot \vdash\left(\arg 1\left(R_{1}\right)<\arg 1\left(R_{2}\right)\right) \Rightarrow\left(R_{1} \prec R_{2}\right)$.
Let us have an informal proof of the lemma first. We use the following five rules. First, the program-order-preservation property states that the program order is preserved in the execution order. Second, the real-time-preservation property states that the execution order is preserved in


Each rule has the side condition $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$

Figure 5.3: Basic inference rules.
the linearization order. Third, the execution-linearization-transitivity property states that if $l_{1}$ is executed before $l_{2}, l_{2}$ is linearized before $l_{3}$ and $l_{3}$ is executed before $l_{4}$, then $l_{1}$ is executed before $l_{4}$. Forth, the lock-unlock-pair property states that if ownership of a lock $l$ is respected and a lock method call on $l$ (by a thread $T_{1}$ ) is linearized before an unlock method call on $l$ (by a thread $T_{2}$ ), then an unlock method call on $l$ by $T_{1}$ is linearized before a lock method call on $l$ by $T_{2}$. Intuitively, ownership for a lock $l$ is respected, if and only if every thread unlocks $l$ only if it has already locked $l$ and has not unlocked $l$ since it has locked $l$. This specification $\pi$ trivially respects ownership for its lock object. Fifth, the count-sequence property states that for a strong counter $o$, if the return value of an iaf method call on $o$ is less than the return value of another method call on $o$, then the former is linearized before the latter.

We assume that (1) The argument of $R_{1}$ is less than the argument of $R_{2}$ and show that $R_{1}$ is executed before $R_{2}$. From the specification $\pi$, we have that (2) The argument of $R_{1}$ is the return value of $C_{1}$ and (3) the argument of $R_{2}$ is the return value of $C_{2}$. Thus, from [1], [2] and [3], we have that (4) the return value of $C_{1}$ is less than the return value of $C_{2}$. From $\pi$, we have that (5) $C_{1}$ and $C_{2}$ are iaf method calls on clock that is a strong counter. Thus, by count-sequence property on [5] and [4], we have that (6) $C_{1}$ is linearized before $C_{2}$. From $\pi$, we have (7) $L_{1}$ is before $C_{1}$ in the program and (8) $C_{1}$ is before $U_{2}$ in the program. By program-order-preservation on [7] and [8], we have that (9) $L_{1}$ is executed before $C_{1}$ and (10) $C_{2}$ is executed before $U_{2}$. By execution-linearization-transitivity property on [9], [6] and [10], we can conclude that (11) $L_{1}$ is executed before $U_{2}$. From $\pi$, we have (12) $L_{1}$ and $U_{2}$ are respectively lock and unlock method calls by threads $T_{1}$ and $T_{2}$ on the object lock that is of the linearizable type Lock. By the real-time-preservation property on [11], we have that (13) $L_{1}$ is linearized before $U_{2}$. By the lock-unlock-pair property on [12] and [13], we have that (14) an unlock method call by $T_{1}$ is linearized before a lock method call by $T_{2}$. From $\pi$, we have that (15) The unlock method call by $T_{1}$ is $U_{1}$ and (16) The lock method call by $T_{2}$ is $L_{2}$. Thus, from [14], [15] and [16], we have that (17) $U_{1}$ is linearized before $L_{2}$. From $\pi$, we have (18) $R_{1}$ is before $U_{1}$ in the program and (19) $L_{1}$ is before $R_{2}$ in the program. From the program-order-preservation property on [18] and [19], we have that (20) $R_{1}$ is executed before $U_{1}$ and (21) $L_{2}$ is executed before $R_{2}$. By the transitivity property on [20], [17] and [21], we have that $R_{1}$ is executed before $R_{2}$.

Now, let us introduce our synchronization object logic (SOL) and formalize the proof. The judgments of SOL are of the form $\pi, \Gamma \vdash \mathcal{A}$, where $\pi$ is a specification, $\Gamma$ is a list of assertions and $\mathcal{A}$ is an assertion. We use $\cdot$ to denote the empty list of assertions. Intuitively, a judgment $\pi, \Gamma \vdash \mathcal{A}$ states

CountSEQ

$$
\begin{aligned}
& \mathcal{T}(o)=\text { SCounter } \\
& \pi, \Gamma \vdash \operatorname{exec}\left(l_{1}\right) \wedge \operatorname{obj}\left(l_{1}\right)=o \wedge \operatorname{name}\left(l_{1}\right)=i a f \\
& \pi, \Gamma \vdash \operatorname{exec}\left(l_{2}\right) \wedge \operatorname{obj}\left(l_{2}\right)=o \\
& \pi, \Gamma \vdash \operatorname{retv}\left(l_{1}\right)<\operatorname{retv}\left(l_{2}\right) \\
& \pi, \Gamma \vdash l_{1} \prec_{o} l_{2} \\
& \text { LockUnlockPair } \\
& \mathcal{T}(o)=\text { Lock } \\
& \pi, \Gamma \vdash \text { isOwner Respect }(o) \\
& \pi, \Gamma \vdash \operatorname{isLock}_{o}\left(l_{l_{1}}\right) \quad \pi, \Gamma \vdash i s U n l o c k_{o}\left(l_{u_{2}}\right) \\
& \pi, \Gamma \vdash l_{l_{1}} \prec_{0} l_{u_{2}} \\
& \pi, \Gamma \vdash \exists \ell_{u_{1}}, \ell_{l_{2}}: \\
& \text { isUnlock } \text { lo }\left(\ell_{u_{1}}\right) \wedge \operatorname{thread}\left(\ell_{u_{1}}\right)=\operatorname{thread}\left(l_{l_{1}}\right) \wedge \\
& \operatorname{isLock}_{l_{o}}\left(\ell_{l_{2}}\right) \wedge \operatorname{thread}\left(\ell_{l_{2}}\right)=\operatorname{thread}\left(l_{u_{2}}\right) \wedge \\
& \ell_{u_{1}} \prec_{0} \ell_{l_{2}} \\
& {i s L_{o c k}^{o}}_{o}(l) \Leftrightarrow \\
& \operatorname{exec}(l) \wedge \operatorname{obj}(l)=o \wedge \operatorname{name}(l)=\text { lock } \\
& \text { isUnlock }{ }_{o}(l) \Leftrightarrow \\
& \operatorname{exec}(l) \wedge \operatorname{obj}(l)=o \wedge \text { name }(l)=\text { unlock } \\
& \text { isOwner Respect }(o) \Leftrightarrow \\
& \forall \ell: i s U n l o c k_{o}(\ell) \Rightarrow \exists \ell^{\prime}: \\
& i s L o c k_{o}\left(\ell^{\prime}\right) \wedge \\
& \operatorname{thread}\left(\ell^{\prime}\right)=\operatorname{thread}(\ell) \wedge \ell^{\prime} \prec \ell \wedge \\
& \forall \ell^{\prime \prime} \text { : } \\
& \text { (isUnLocko }\left(\ell^{\prime \prime}\right) \wedge \\
& \left.\operatorname{thread}\left(\ell^{\prime \prime}\right)=\operatorname{thread}(\ell)\right) \\
& \Rightarrow \\
& \ell^{\prime \prime} \prec \ell^{\prime} \vee \ell \preceq \ell^{\prime \prime}
\end{aligned}
$$

Each rule has the side condition $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$

Figure 5.4: Synchronization Object Inference Rules.
that in the context of the assertions $\Gamma$, the specification $\pi$ has the property $\mathcal{A}$. The assertions are first-order logic assertions that involve the unary predicate exec, the binary predicates $\prec$ (execution order) and $\prec_{0}$ (linearization order of linearizable object $o$ ) and functions obj, name, thread, arg1 and retv. The assertion $\operatorname{exec}(l)$ states that the method call labeled $l$ is executed. The assertion $l_{1} \prec l_{2}$ states that $l_{1}$ is executed before $l_{2}$. Any concurrent execution on a linearizable object is equivalent to a correct sequential execution. The total order of method calls in the equivalent sequential execution is called the linearization order. For every linearizable object $o$, the assertion $l_{1} \prec_{0} l_{2}$ states that $l_{1}$ is before $l_{2}$ in the linearization order of $o$. As $\pi$ declares lock and clock as instances of linearizable types, the linearization orders of lock and clock are denoted by $\prec_{\text {lock }}$ and $\prec_{\text {clock }}$. We also use the equivalence relation on expressions and labels. The functions $\operatorname{obj}(l)$, name ( $l$ ), thread (l), arg1(l), and $\operatorname{retv}(l)$ map a label $l$ to the receiving object, method name, calling thread identifier, the first argument and the return value of the method call labeled $l$.

Lemma 35 expresses a property of every execution of $\pi$, yet the soundness of SOL makes us able to prove it by reasoning about $\pi$ alone. We consider an arbitrary execution of the specification. Given some facts about an execution, the inference rules let us derive more facts about that execution. SOL has four sets of inference rules: classical first-order logic inference rules, structure inference rules that axiomatize the association of the specification and the assertions, basic inference rules that axiomatize the properties of the execution and linearization orders and their interdependence and synchronization object inference rules that axiomatize the properties of common synchronization object types. We showcase a subset of structure inference rules in Figure 5.2, a subset of basic inference rules in Figure 5.3, and a subset of synchronization object inference rules in Figure 5.4.

The rule Control states that a method call is executed if and only if its enclosing condition is satisfied. The introduction rule Id states that the components (object, name, etc.) of a method call in the execution originate from the components of the method call in the program. The rule P2X states the program-order-preservation property. If a method call $l_{1}$ is ordered before a method call $l_{2}$ in the program, and methods $l_{1}$ and $l_{2}$ are executed, then $l_{1}$ is executed before $l_{2}$. The rule Src intuitively states that every executed method originates from a call site in the specification. Let $\operatorname{Calls}_{\pi}(o, n)$ denote the set of labels of call sites where method name $n$ is called on the object name $o$ in the specification $\pi$. If the object and the name of an executed method call labeled $l$ are $o$ and $n$ respectively, then $l$ is equal to one of the labels in $\operatorname{Calls}_{\pi}(o, n)$. For presentation purposes, this small example does not involve procedure calls and hence the rules Control, Id, and Src are simplified.

The rule X2L states the real-time-preservation property. The execution order of two method calls on a linearizable object is preserved in the linearization order. $L T$ denotes the set of linearizable object types. The rule XLTrans states the execution-linearization-transitivity property defined above. Similarly, the rule LockUnlockPair and the rule CountSeq state the lock-unlock-pair and count-sequence properties defined above. The rule LockUnlockPair is derived from the fact that if the ownership of a lock is respected, its linearization order is a sequence of pairs of lock and unlock method calls by the same thread. The rule CountSeq is derived from the fact that the return value of method calls in the linearization order of a strong counter is non-decreasing.

### 5.2.3 Deduction

Now, let us see how the above informal reasoning can be formalized using SOL inference rules. Let

$$
\begin{equation*}
\Gamma=\arg 1\left(R_{1}\right)<\arg 1\left(R_{2}\right) \tag{5.1}
\end{equation*}
$$

Based on the classical condition introduction rule, to prove Lemma $\underline{35}$, we need to show that

$$
\begin{equation*}
\pi, \Gamma \vdash R_{1} \prec R_{2} \tag{5.2}
\end{equation*}
$$

From 5.1, we have

$$
\begin{equation*}
\pi, \Gamma \vdash \arg 1\left(R_{1}\right)<\arg 1\left(R_{2}\right) \tag{5.3}
\end{equation*}
$$

As mentioned before, there is no if-then-else in this specification; therefore, the enclosing condition of every label is trivially true. Thus, by the rule Control, we have

$$
\begin{align*}
& \pi, \Gamma \vdash \operatorname{exec}\left(L_{1}\right)  \tag{5.4}\\
& \pi, \Gamma \vdash \operatorname{exec}\left(C_{1}\right)  \tag{5.5}\\
& \pi, \Gamma \vdash \operatorname{exec}\left(R_{1}\right)  \tag{5.6}\\
& \pi, \Gamma \vdash \operatorname{exec}\left(U_{1}\right)  \tag{5.7}\\
& \pi, \Gamma \vdash \operatorname{exec}\left(L_{2}\right)  \tag{5.8}\\
& \pi, \Gamma \vdash \operatorname{exec}\left(C_{2}\right)  \tag{5.9}\\
& \pi, \Gamma \vdash \operatorname{exec}\left(R_{2}\right)  \tag{5.10}\\
& \pi, \Gamma \vdash \operatorname{exec}\left(U_{2}\right) \tag{5.11}
\end{align*}
$$

From the rule ID on $5.6, \underline{5.10}, \underline{5.5}, 5.9$, and the specification $\pi$, we have

$$
\begin{align*}
& \pi, \Gamma \vdash \arg 1\left(R_{1}\right)=v_{1}  \tag{5.12}\\
& \pi, \Gamma \vdash \arg 1\left(R_{2}\right)=v_{2}  \tag{5.13}\\
& \pi, \Gamma \vdash \operatorname{retv}\left(C_{1}\right)=v_{1}  \tag{5.14}\\
& \pi, \Gamma \vdash \operatorname{retv}\left(C_{2}\right)=v_{2} \tag{5.15}
\end{align*}
$$

From the symmetry and transitivity of equivalence on [5.12], [5.13], [5.14], [5.15], we have

$$
\begin{align*}
& \pi, \Gamma \vdash \arg 1\left(R_{1}\right)=\operatorname{retv}\left(C_{1}\right)  \tag{5.16}\\
& \pi, \Gamma \vdash \arg 1\left(R_{2}\right)=\operatorname{retv}\left(C_{2}\right) \tag{5.17}
\end{align*}
$$

By substitution of $\underline{5.16}$ and 5.17 on [5.3], we have

$$
\begin{equation*}
\pi, \Gamma \vdash \operatorname{retv}\left(C_{1}\right)<\operatorname{retv}\left(C_{2}\right) \tag{5.18}
\end{equation*}
$$

By the rule ID on $\underline{5.5}$, and the specification $\pi$, we have

$$
\begin{align*}
& \pi, \Gamma \vdash \operatorname{obj}\left(C_{1}\right)=\text { clock }  \tag{5.19}\\
& \pi, \Gamma \vdash \operatorname{name}\left(C_{1}\right)=i a f \tag{5.20}
\end{align*}
$$

By the rule ID on 5.9, and the specification $\pi$, we have

$$
\begin{equation*}
\pi, \Gamma \vdash \operatorname{obj}\left(C_{2}\right)=c l o c k \tag{5.21}
\end{equation*}
$$

From rule CountSEQ on 5.5, 5.19, 5.20, 5.9, 5.21, 5.18, we have

$$
\begin{equation*}
\pi, \Gamma \vdash C_{1} \prec_{\text {clock }} C_{2} \tag{5.22}
\end{equation*}
$$

that is $C_{1}$ is linearized before $C_{2}$. The next step is to use rule P 2 X . From $\pi$, we have

$$
\begin{align*}
& L_{1} \rightarrow_{\pi} C_{1}  \tag{5.23}\\
& C_{2} \rightarrow_{\pi} U_{2} \tag{5.24}
\end{align*}
$$

By the rule P2X on $\underline{5.23, ~} 5.4$ and $\underline{5.5}$, we have

$$
\begin{equation*}
\pi, \Gamma \vdash L_{1} \prec C_{1} \tag{5.25}
\end{equation*}
$$

Similarly, by the rule P2X on 5.24, $\underline{5.9}$ and 5.11, we have

$$
\begin{equation*}
\pi, \Gamma \vdash C_{2} \prec U_{2} \tag{5.26}
\end{equation*}
$$

By the rule XLTrans on $5.25,5.22$ and 5.26 , we have

$$
\begin{equation*}
\pi, \Gamma \vdash L_{1} \prec U_{2} \tag{5.27}
\end{equation*}
$$

By the rule ID on 5.4, and the specification $\pi$, we have

$$
\begin{gather*}
\pi, \Gamma \vdash \operatorname{obj}\left(L_{1}\right)=\operatorname{lock}  \tag{5.28}\\
\pi, \Gamma \vdash \operatorname{name}\left(L_{1}\right)=\operatorname{lock}  \tag{5.29}\\
\pi, \Gamma \vdash \operatorname{thread}\left(L_{1}\right)=T_{1} \tag{5.30}
\end{gather*}
$$

Similarly, by the rule ID on 5.11, and the specification $\pi$, we have

$$
\begin{gather*}
\pi, \Gamma \vdash \operatorname{obj}\left(U_{2}\right)=l o c k  \tag{5.31}\\
\pi, \Gamma \vdash \operatorname{name}\left(U_{2}\right)=\text { unlock }  \tag{5.32}\\
\pi, \Gamma \vdash \operatorname{thread}\left(U_{2}\right)=T_{2} \tag{5.33}
\end{gather*}
$$

From rule X2L on 5.27, 5.28 and 5.31, we have

$$
\begin{equation*}
\pi, \Gamma \vdash L_{1} \prec_{\text {lock }} U_{2} \tag{5.34}
\end{equation*}
$$

Now, we use the rule LockUnlockPair. The proof of ownership respect can be done using the presented rules. For the sake of brevity, we skip the proof of ownership respect.

$$
\begin{equation*}
\pi, \Gamma \vdash \text { isOwnerRespecting }(\text { lock }) \tag{5.35}
\end{equation*}
$$

From the definition of isLock on 5.4, $\underline{5.28}$ and 5.29, we have

$$
\begin{equation*}
\pi, \Gamma \vdash i s \operatorname{Lock}_{l o c k}\left(L_{1}\right) \tag{5.36}
\end{equation*}
$$

From the definition of isUnlock on $\underline{5.11, ~} \underline{5.31}$ and $\underline{5.32}$, we have

$$
\begin{equation*}
\pi, \Gamma \vdash i s U n l o c k_{l o c k}\left(U_{2}\right) \tag{5.37}
\end{equation*}
$$

By the rule LockUnlockPair on $5.35,5.36,5.37, \underline{5.34}$, and then substitution with $\underline{5.30}$ and $\underline{5.33}$, we have

$$
\begin{gather*}
\pi, \Gamma \vdash \exists \ell_{u_{1}}, \ell_{l_{2}}: \\
\text { isUnlock }_{\text {lock }}\left(\ell_{u_{1}}\right) \wedge \operatorname{thread}\left(\ell_{u_{1}}\right)=T_{1} \wedge \\
 \tag{5.38}\\
\text { isLock }_{\text {lock }}\left(\ell_{l_{2}}\right) \wedge \operatorname{thread}\left(\ell_{l_{2}}\right)=T_{2} \wedge \\
\ell_{u_{1}} \prec_{\text {lock }} \ell_{l_{2}}
\end{gather*}
$$

After skolemization of $\ell_{u_{1}}$ and $\ell_{l_{2}}$ with $l_{u_{1}}$ and $l_{l_{2}}$, we have

$$
\begin{gather*}
\pi, \Gamma \vdash i s U n l o c k_{l o c k}\left(l_{u_{1}}\right)  \tag{5.39}\\
\pi, \Gamma \vdash \text { thread }\left(l_{u_{1}}\right)=T_{1}  \tag{5.40}\\
\pi, \Gamma \vdash i s L o c k_{l o c k}\left(l_{l_{2}}\right)  \tag{5.41}\\
\pi, \Gamma \vdash \text { thread }\left(l_{l_{2}}\right)=T_{2}  \tag{5.42}\\
\pi, \Gamma \vdash l_{u_{1}} \prec_{\text {lock }} l_{l_{2}} \tag{5.43}
\end{gather*}
$$

From the definition of $i s U n l o c k$ on 5.39 , we have

$$
\begin{gather*}
\pi, \Gamma \vdash \operatorname{exec}\left(l_{u_{1}}\right)  \tag{5.44}\\
\pi, \Gamma \vdash \operatorname{obj}\left(l_{u_{1}}\right)=\text { lock }  \tag{5.45}\\
\pi, \Gamma \vdash \operatorname{name}\left(l_{u_{1}}\right)=\text { unlock } \tag{5.46}
\end{gather*}
$$

From $\pi$, we have

$$
\begin{equation*}
\text { Calls }_{\pi}(\text { lock }, \text { unlock })=\left\{U_{1}, U_{2}\right\} \tag{5.47}
\end{equation*}
$$

By the rule SRC on $5.44,5.45,5.46$, and 5.47, we have

$$
\begin{equation*}
\pi, \Gamma \vdash l_{u_{1}}=U_{1} \vee l_{u_{1}}=U_{2} \tag{5.48}
\end{equation*}
$$

Using negation introduction, from 5.33 and 5.40 , we have

$$
\begin{equation*}
\pi, \Gamma \vdash \neg\left(l_{u_{1}}=U_{2}\right) \tag{5.49}
\end{equation*}
$$

By disjunction syllogism on 5.48 and 5.49, we have

$$
\begin{equation*}
\pi, \Gamma \vdash l_{u_{1}}=U_{1} \tag{5.50}
\end{equation*}
$$

Similarly, using the rule SRC, we can show that

$$
\begin{equation*}
\pi, \Gamma \vdash l_{l_{2}}=L_{2} \tag{5.51}
\end{equation*}
$$

By substitution of 5.50 and $\underline{5.51}$ to $\underline{5.43}$, we have

$$
\begin{equation*}
\pi, \Gamma \vdash U_{1} \prec_{\text {lock }} L_{2} \tag{5.52}
\end{equation*}
$$

From $\pi$, we have

$$
\begin{equation*}
R_{1} \rightarrow_{\pi} U_{1} \tag{5.53}
\end{equation*}
$$

$$
\begin{equation*}
L_{2} \rightarrow_{\pi} R_{2} \tag{5.54}
\end{equation*}
$$

By the rule P2X on $5.53, \underline{5.6}$ and $\underline{5.7}$, we have

$$
\begin{equation*}
\pi, \Gamma \vdash R_{1} \prec U_{1} \tag{5.55}
\end{equation*}
$$

By the rule P 2 X on $5 \underline{54}, \underline{5.8}$ and $\underline{5.10}$, we have

$$
\begin{equation*}
\pi, \Gamma \vdash L_{2} \prec R_{2} \tag{5.56}
\end{equation*}
$$

By the rule XLTrans on $5.55,5.52$, and 5.56 , we have

$$
\begin{equation*}
\pi, \Gamma \vdash R_{1} \prec R_{2} \tag{5.57}
\end{equation*}
$$

### 5.3 Assertion Language

Now, we define the assertion language of the logic. We first define label variables as follows:

$$
\begin{aligned}
\ell \in \text { LabelVar } & ::=\left\{\ell_{1}, \ell_{2}, \ldots\right\} & & \text { Variable Label } \\
t \in \text { Label } & :=l \mid \ell & & \text { Label }
\end{aligned}
$$

Consider a specification $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$ where $\mathbb{O}=\left\{o \mid \mathcal{T}_{\text {base }}(o) \in L T\right\}$.
We define the set of assertions $\mathcal{A}$ for the specification $\pi$ as follows:

$$
\begin{array}{rlrl}
e::= & \operatorname{obj}(t)|\operatorname{name}(t)| \operatorname{thread}(t) \mid & & \text { Element } \\
& \arg 1(t)|\arg (t)| \operatorname{retv}(t) \mid & \\
& \operatorname{initOf}(\tau)|\operatorname{commitOf}(\tau)| & & \\
& o|n| \varsigma^{\prime} x|v| \varsigma^{\prime} t \mid T & & \\
\mathcal{R}::= & e=e|e<e| & & \\
& t=t^{\prime}|c=c| & & \\
& \operatorname{exec}(t) \mid & & \\
& t \prec t^{\prime}\left|t \sim t^{\prime}\right| t \prec_{o} t^{\prime} \text { where } o \in \mathbb{O} \mid & & \\
& \tau \preccurlyeq \tau^{\prime} \mid & & \\
\mathcal{A}::= & \neg \mathcal{A}|\mathcal{A} \wedge \mathcal{A}| & & \\
& \forall \ell: \mathcal{A} \mid & & \\
& \forall t: \mathcal{A} \mid & \mathcal{R} &
\end{array}
$$

We consider the set of closed formulas.
The set of functions $F$ and predicates $\operatorname{Pr}$ are as follows.

$$
\begin{aligned}
f \in F & =\{o b j, \text { name, thread, arg1, arg2, retv, initOf, commitOf }\} \\
p r \in \operatorname{Pr} & =\left\{=,<, \text { exec }, \prec, \sim, \prec_{o}, \nless\right\} \text { where } o \in \mathbb{O}
\end{aligned}
$$

The functions obj, name, thread, $\arg 1, \arg 2$ and retv map a label to its object, method name, first and second argument and return value. The function initOf maps each transaction to its init
method call. The function commitOf maps each committed transaction to its commit method call. The assertion $\operatorname{exec}(t)$ asserts that $t$ is executed. The assertion $t \prec t^{\prime}$ asserts that $t$ is executed before $t^{\prime}$. The assertion $t \prec t^{\prime}$ asserts that $t$ is executed concurrent with $t^{\prime}$. The assertion $t \sim t^{\prime}$ asserts that $t$ is executed concurrent to $t^{\prime}$. The assertion $t \prec_{0} t^{\prime}$ asserts that $t$ is linearized before $t^{\prime}$ on object $o$. The assertion $\tau \nless \tau^{\prime}$ asserts that (all the labels of) thread $\tau$ is executed before (all the labels of) thread $\tau^{\prime}$.

We define the following abbreviations:

$$
\begin{aligned}
\mathcal{A} \vee \mathcal{A}^{\prime} & =\neg\left((\neg \mathcal{A}) \wedge\left(\neg \mathcal{A}^{\prime}\right)\right) \\
\exists \ell: \mathcal{A} & =\neg(\forall \ell:(\neg A)) \\
e \leq e^{\prime} & =e \leq e^{\prime} \vee e=e^{\prime} \\
t \preceq t^{\prime} & =t \prec t^{\prime} \vee t=t^{\prime} \\
\tau \preceq \tau^{\prime} & =\tau \nless \tau^{\prime} \vee \tau=\tau^{\prime}
\end{aligned}
$$

### 5.4 Assertion Semantics

Now, we define the semantics of assertions. We define the models relation $\models$ between execution histories $\mathcal{X}$ and assertions $\mathcal{A}$.
Let $\mathcal{X}=(X, \sigma, \mathcal{L})$ and $X^{\prime}=\sigma(X)$. We define the mapping function $\alpha_{\mathcal{X}}$ as follows:
$\alpha_{\mathcal{X}}=\{$
obj $\mapsto$ obj $_{X^{\prime}}$, name $\mapsto$ name $_{X^{\prime}}$, thread $\mapsto$ thread $_{X^{\prime}}$,
$\arg 1 \mapsto \arg 1_{X^{\prime}}, \arg 2 \mapsto \arg 2_{X^{\prime}}$, retv $\mapsto \operatorname{retv}_{X^{\prime}}$,
initOf $\mapsto$ initOf, commitOf $\mapsto$ commitOf,
$=\mapsto=, \quad<\mapsto<$,
exec $\mapsto \lambda x . x \in X^{\prime}, \prec \mapsto \prec_{X^{\prime}}, \quad \sim \mapsto \sim_{X^{\prime}}, \prec_{o} \mapsto \prec_{\mathcal{L}(\sigma(o)),}$ < $\mapsto<_{X^{\prime}}$,
$o \mapsto \sigma(o), n \mapsto n, u \mapsto \sigma(u), \tau \mapsto \sigma(\tau)$,
$c \mapsto c, l \mapsto l$
\}
The mapping function $\alpha_{\mathcal{X}}$ maps functions and predicates in the assertion language to concrete functions and predicates in the execution $\mathcal{X}$. For example, the function obj is mapped to the function $\operatorname{obj}_{X^{\prime}}$. The mapping function $\alpha_{\mathcal{X}}$ also maps every variable to its value in the execution $\mathcal{X}$. Thus, $x$ is mapped to $\sigma(x)$. Note that as an object $o$ can be an element of an array that is indexed by a variable, $o$ is mapped to $\sigma(o)$. The function $\alpha_{\mathcal{X}}$ is lifted to closed atomic assertions $\mathcal{R}$ by applying $\alpha_{\mathcal{X}}$ inductively to the structure of $\mathcal{R}$.

Definition 15. The model relation $\models$ is defined inductively as follows:
Base case:
$\mathcal{X} \models \mathcal{R}$ iff $\quad\left(\mathcal{R}\right.$ is closed and $\left.\alpha_{\mathcal{X}}(\mathcal{R})\right)$
Inductive case:

$$
\begin{aligned}
& \mathcal{X} \models(\neg \mathcal{A}) \text { iff } \neg(\mathcal{X} \models \mathcal{A}), \\
& \mathcal{X} \models\left(\mathcal{A}_{1} \wedge \mathcal{A}_{2}\right) \text { iff }\left(\mathcal{X} \models \mathcal{A}_{1}\right) \wedge\left(\mathcal{X} \models \mathcal{A}_{2}\right), \\
& \mathcal{X} \models(\forall \ell: \mathcal{A}) \text { iff } \bigwedge_{l \in \operatorname{Labels}\left(X^{\prime}\right)}(\mathcal{X} \models \mathcal{A}[\ell:=l]), \\
& \mathcal{X} \models(\forall t: \mathcal{A}) \text { iff } \bigwedge_{\text {TEThreads }\left(X^{\prime}\right)}(\mathcal{X} \models \mathcal{A}[t:=T]) .
\end{aligned}
$$

If $\mathcal{X} \models \mathcal{A}$, we say that $\mathcal{X}$ models $\mathcal{A}$.

### 5.5 Inference Rules

We now present the inference rules of SOL.
The judgments are of the form $\pi, \Gamma \vdash \mathcal{A}$ read assertion $\mathcal{A}$ is derived from the assumption assertions $\Gamma$ for the specification $\pi$. The context $\Gamma$ is defined as follows:

$$
\Gamma::=\cdot \mid \Gamma ; \mathcal{A} \quad \text { Context }
$$

We present the classical first-order logic rules, the structure inference rules, the basic inference rules, and the synchronization object inference rules.

### 5.5.1 Classical First-order Logic Inference Rules

The classical inference rules are presented in Figure 5.5. The derived classical inference rules are presented in Figure 5.6.

The equivalence and arithmetic Rules are presented in Figure 5.7. The derived equivalence and arithmetic Rules are presented in Figure 5.8.

$$
\begin{aligned}
& \text { NegIntro } \\
& \pi, \Gamma ; \mathcal{A} \vdash \mathcal{A}^{\prime} \\
& \frac{\pi, \Gamma ; \mathcal{A} \vdash \neg \mathcal{A}^{\prime}}{\pi, \Gamma \vdash \neg \mathcal{A}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { CONJINTRO }}{\pi, \Gamma \vdash \mathcal{A}} \pi, \Gamma \vdash \mathcal{A}^{\prime} \\
& \pi, \Gamma \vdash \mathcal{A} \wedge \mathcal{A}^{\prime}
\end{aligned}
$$

ExcMid

$$
\overline{\pi, \Gamma \vdash \mathcal{A} \vee \neg \mathcal{A}}
$$

$$
\begin{gathered}
\text { NEGElim } \\
\pi, \Gamma \vdash \mathcal{A} \\
\frac{\pi, \Gamma \vdash \neg \mathcal{A}}{\pi, \Gamma \vdash \mathcal{A}^{\prime}}
\end{gathered}
$$

UnivIntro

$$
\begin{array}{ll}
\text { ConjElimL } \\
\frac{\pi, \Gamma \vdash \mathcal{A} \wedge \mathcal{A}^{\prime}}{\pi, \Gamma \vdash \mathcal{A}} & \frac{\pi, \Gamma \vdash \mathcal{A} \wedge \mathcal{A}^{\prime}}{\pi, \Gamma \vdash \mathcal{A}^{\prime}}
\end{array}
$$

$$
\begin{aligned}
& \text { CondElim } \\
& \pi, \Gamma \vdash \mathcal{A} \Rightarrow \mathcal{A}^{\prime} \\
& \frac{\pi, \Gamma \vdash \mathcal{A}}{\pi, \Gamma \vdash \mathcal{A}^{\prime}}
\end{aligned}
$$

DisjIntroR

DisjElim
$\pi, \Gamma \vdash \mathcal{A} \vee \mathcal{A}^{\prime}$
$\pi, \Gamma ; \mathcal{A} \vdash \mathcal{A}^{\prime \prime}$
$\pi, \Gamma ; \mathcal{A}^{\prime} \vdash \mathcal{A}^{\prime \prime}$

$$
\frac{\pi, \Gamma \vdash \mathcal{A}}{\pi, \Gamma \vdash \mathcal{A} \vee \mathcal{A}^{\prime}} \quad \frac{\pi, \Gamma \vdash \mathcal{A}^{\prime}}{\pi, \Gamma \vdash \mathcal{A} \vee \mathcal{A}^{\prime}}
$$

$$
\frac{\pi, \Gamma ; \mathcal{A} \vdash \mathcal{A}^{\prime \prime}}{\pi, \Gamma \vdash \mathcal{A}^{\prime \prime}}
$$

CondIntro
$\frac{\pi, \Gamma ; \mathcal{A} \vdash \mathcal{A}^{\prime}}{\pi, \Gamma \vdash \mathcal{A} \Rightarrow \mathcal{A}^{\prime}}$
CondElim
DissIntrol

$$
\pi, \Gamma ; \mathcal{A} \vdash \mathcal{A}^{\prime \prime}
$$

$$
\pi, \Gamma \vdash \mathcal{A}[\ell:=l]
$$

$$
l \notin \Gamma
$$

$$
\pi, \Gamma \vdash \forall \ell: \mathcal{A}
$$

UnivElim

$$
\frac{\pi, \Gamma \vdash \forall \ell: \mathcal{A}}{\pi, \Gamma \vdash \mathcal{A}[\ell:=l]}
$$

ExistIntro

$$
\frac{\pi, \Gamma \vdash \mathcal{A}[\ell:=l]}{\pi, \Gamma \vdash \exists \ell: \mathcal{A}}
$$

ExistElim

$\frac{\text { LREFL }}{\pi, \Gamma \vdash l=l}$	$\frac{\text { EREFL }}{\pi, \Gamma \vdash e=e}$	
LSUBS	LSUBS	Zero
$\pi, \Gamma \vdash l=l^{\prime}$	$\pi, \Gamma \vdash e=e^{\prime}$	$\pi, \Gamma \vdash \neg(1=0)$
$\frac{\pi, \Gamma \vdash \mathcal{A}}{\pi, \Gamma \vdash \mathcal{A}\left[l:=l^{\prime}\right]}$	$\frac{\pi, \Gamma \vdash \mathcal{A}}{\pi, \Gamma \vdash \mathcal{A}\left[e:=e^{\prime}\right]}$	

Figure 5.7: Equivalence and Arithmetic Rules

$$
\begin{array}{ll}
\text { LSYM } & \text { LTRANS } \\
\pi, \Gamma \vdash l=l^{\prime} \\
\frac{\pi, \Gamma \vdash l=l^{\prime}}{\pi, \Gamma \vdash l^{\prime}=l} & \frac{\pi, \Gamma \vdash l^{\prime}=l^{\prime \prime}}{\pi, \Gamma \vdash l=l^{\prime \prime}} \\
& \\
& \text { ETRANS } \\
\text { ESYM } & \pi, \Gamma \vdash e=e^{\prime} \\
\pi, \Gamma \vdash e=e^{\prime} & \frac{\pi, \Gamma \vdash e^{\prime}=e^{\prime \prime}}{\pi, \Gamma \vdash e^{\prime}=e}
\end{array}
$$

Figure 5.8: Derived Equivalence and Arithmetic Rules

### 5.5.2 Structure Inference Rules

The structure inference rules that axiomatize the relation of the program structure and the execution. The structure inference rules are presented in Figures 5.9 The derived structure inference rules are presented in Figure 5.10. The derived inference rules can be derived from the basic rules. Please see Section 10.4.2 for notes on the derivation of the derived rules.

The rule Id states that components of method calls in the history originate from components of method calls in the program. The object, arguments and other components of an executed method call labeled $\varsigma^{\prime} c$ can be derived from prefixing the object, arguments and other components of the method call annotated with $c$ in the program with the pre-label $\varsigma$. Note that the pre-label $\varsigma$ is a constant $c^{\prime}$ when the method call $c$ is executed inside the body of a this method call annotated with $c^{\prime}$. The pre-label $\varsigma$ is $\epsilon$ when $c$ is the annotation of a this method call.

The rule SRC states that every executed method originates from a call site in the program. If a method $n$ on an object with the base name $\phi$ is executed, it is from one of the call sites where $n$ is called on $\phi$ in the program.

The rule OControl states when a this method call is executed. A this method call is executed if an only if its execution condition is satisfied.

The rule IControl states when a method call in a this method call is executed. A method call (annotated with) $c^{\prime}$ in a this method call (annotated with) $c$ is executed if and only if $c$ is executed, the execution condition of $c^{\prime}$ is satisfied and no return statement before $c^{\prime}$ is executed.

The rule P2X states that the program order is preserved in the execution order. If a method call annotated with $c_{1}$ is ordered before a method call annotated with $c_{2}$ in the program, and methods labeled $\varsigma^{\prime} c_{1}$ and $\varsigma^{\prime} c_{2}$ are executed, then $\varsigma^{\prime} c_{1}$ is executed before $\varsigma^{\prime} c_{2}$.

The rule OX2IX states that the execution order of two this method calls implies the execution order of method calls in their bodies. If a this method call $c_{1}$ is executed before another this method call $c_{2}$, then every executed method call of the body of $c_{1}$ is executed before every executed method call of the body of $c_{2}$.

The rule TSEQ states that every thread is sequential. Every two this method calls by the same thread are ordered in the execution order. Similarly, every two method calls on base objects by the same thread are ordered in the execution order.

The rule Caller states that if a this method call is executed, its parameters and arguments are equal and that one of the return statements in its body is executed and its return value is equal to the value that the executed return statement returns.

The rule Callee states that if a method call in the body of a this method call is executed, then the this method call is executed and the parameters and the arguments of the this method call are equal.

The rule RET states that if a return statement of the body of a this method call is executed, then the this method call is executed and the parameters and the arguments of the this method call are equal and the return value of the this method call is the value that the return statement returns.

The rule TLocal states that every two executed method calls on the same thread-local object are from the same thread.

The rule TREAL states that if a thread is ordered before another thread, then every method call from the former is executed before every method call from the latter.

The rule IX2OX states that if two method calls in the body of two this method calls execute in order by the same thread, then the two this method calls execute in the same order.

ID

$$
\operatorname{obj}_{\pi}(c)=\theta \quad n a m e_{\pi}(c)=n
$$

thread $_{\pi}(c)=\tau \quad \arg _{\pi}(c)=u \quad \operatorname{retv}_{\pi}(c)=x$

$$
\pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c\right)
$$

$$
\pi, \Gamma \vdash o b j\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} \theta \wedge
$$

$\operatorname{name}\left(\varsigma^{\prime} c\right)=n \wedge \operatorname{thread}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} \tau \wedge$

$$
\arg \left(\varsigma^{\prime} c\right)=\varsigma^{\prime} u \wedge \operatorname{retv}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} x
$$

Src

$$
\pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c\right)
$$

$\pi, \Gamma \vdash \operatorname{obj}\left(\varsigma^{\prime} c\right)=\theta \quad \pi, \Gamma \vdash \operatorname{name}\left(\varsigma^{\prime} c\right)=n$
Calls $_{\pi}($ basename $(\theta), n)=\left\{\overline{c_{i}}\right\}$

$$
\pi, \Gamma \vdash \bigvee_{i=1 . . n} c=c_{i}
$$

OControl
$c \in \operatorname{Labels}(\mathcal{P})$
$\overline{\pi, \Gamma \vdash \operatorname{exec}(c) \Leftrightarrow \operatorname{cond}_{\pi}(c)}$
IControl

$$
\begin{gathered}
{\operatorname{Labels}\left(\operatorname{name}_{\pi}(c)\right)=\left\{\overline{c_{i}}\right\}}^{\operatorname{PreReturns} s_{\pi}\left(c^{\prime}\right)=\left\{\overline{c_{r}}\right\}} \\
\hline \pi, \Gamma \vdash \operatorname{exec}\left(c^{\prime} c^{\prime}\right) \Leftrightarrow(\operatorname{exec}(c) \wedge \\
\left.\bigvee_{c_{i}} c^{\prime}=c_{i} \wedge c^{\prime} \operatorname{cond}_{\pi}\left(c^{\prime}\right) \wedge \bigwedge_{c_{r}} \neg \operatorname{exec}\left(c^{\prime} c_{r}\right)\right)
\end{gathered}
$$

P2X

$$
\begin{aligned}
& c_{1} \rightarrow_{\pi} c_{2} \\
& \frac{\pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c_{1}\right) \quad \pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c_{2}\right)}{\pi, \Gamma \vdash \varsigma^{\prime} c_{1} \prec \varsigma^{\prime} c_{2}}
\end{aligned}
$$

OX2IX

$$
\begin{aligned}
\pi, \Gamma \vdash c_{1} & \prec c_{2} \\
\pi, \Gamma \vdash \operatorname{exec}\left(c_{1}^{\prime} c_{3}\right) & \pi, \Gamma \vdash \operatorname{exec}\left(c_{2}{ }^{\prime} c_{4}\right) \\
\pi, \Gamma \vdash c_{1}^{\prime} c_{3} & \prec c_{2}^{\prime} c_{4}
\end{aligned}
$$

TSEQ

$$
\begin{gathered}
\pi, \Gamma \vdash \operatorname{exec}\left(l_{1}\right) \quad \pi, \Gamma \vdash \operatorname{exec}\left(l_{2}\right) \\
\pi, \Gamma \vdash \operatorname{thread}\left(l_{1}\right)=\text { thread }\left(l_{2}\right) \\
\pi, \Gamma \vdash \operatorname{obj}\left(l_{1}\right)=\operatorname{obj}\left(l_{2}\right)=\text { this } \vee \\
\left(\neg \operatorname{obj}\left(l_{1}\right)=\text { this } \wedge \neg \operatorname{obj}\left(l_{2}\right)=\text { this }\right) \\
\pi, \Gamma \vdash l_{1} \prec l_{2} \vee l_{2} \prec l_{1} \vee l_{1}=l_{2}
\end{gathered}
$$

## Caller <br> Caller

$$
\operatorname{tpar}_{\pi}(n)=t \quad \operatorname{par} 1_{\pi}(n)=x
$$

$$
\operatorname{Returns}_{\pi}(n)=\left\{\bar{c}_{i}\right\}
$$

$$
\pi, \Gamma \vdash \operatorname{exec}(c)
$$

$$
\frac{\pi, \Gamma \vdash \operatorname{obj}(c)=\operatorname{this} \wedge \operatorname{name}(c)=n}{\pi, \Gamma \vdash c^{\prime} t=\operatorname{thread}(c) \wedge c^{\prime} x=\arg (c) \wedge}
$$

$$
\bigvee_{i=1 . . n} \operatorname{exec}\left(c^{\prime} c_{i}\right) \wedge \arg 1\left(c^{\prime} c_{i}\right)=\operatorname{retv}(c)
$$

## Callee

$$
\begin{gathered}
\operatorname{tpar}_{\pi}(n)=t \quad \operatorname{par} 1_{\pi}(n)=x \\
c^{\prime} \in \operatorname{Labels}_{\pi}(n) \\
\pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c^{\prime}\right) \\
\hline \pi, \Gamma \vdash \neg(\varsigma=\epsilon) \wedge \operatorname{exec}(\varsigma) \wedge \\
\operatorname{obj}(\varsigma)=\operatorname{this} \wedge \operatorname{name}(\varsigma)=n \\
\operatorname{thread}(\varsigma)=\varsigma^{\prime} t \wedge \arg (\varsigma)=\varsigma^{\prime} x
\end{gathered}
$$

## Ret

$\operatorname{tpar}_{\pi}(n)=t \quad \operatorname{par} 1_{\pi}(n)=x$ $c^{\prime} \in \operatorname{Returns}_{\pi}(n)$ $\pi, \Gamma \vdash \operatorname{exec}\left(c^{\prime} c^{\prime}\right)$ $\pi, \Gamma \vdash \operatorname{exec}(c) \wedge$ $\operatorname{obj}(c)=$ this $\wedge \operatorname{name}(c)=n \wedge$ thread $(c)=c^{\prime} t \wedge \arg (c)=c^{\prime} x \wedge$ $\operatorname{retv}(c)=\arg 1\left(c^{\prime} c^{\prime}\right)$

TLocal
$\mathcal{T}($ basename $(o))=$ ThreadLocal st $\pi, \Gamma \vdash \operatorname{exec}\left(l_{1}\right) \wedge \operatorname{exec}\left(l_{2}\right)$ $\pi, \Gamma \vdash o b j\left(l_{1}\right)=o b j\left(l_{2}\right)=o$
$\pi, \Gamma \vdash \operatorname{thread}\left(l_{1}\right)=\operatorname{thread}\left(l_{2}\right)$
TREAL

$$
\pi, \Gamma \vdash \tau \nprec \tau^{\prime}
$$

$$
\pi, \Gamma \vdash \operatorname{exec}(l) \wedge \operatorname{thread}(l)=\tau
$$

$$
\pi, \Gamma \vdash \operatorname{exec}\left(l^{\prime}\right) \wedge \operatorname{thread}\left(l^{\prime}\right)=\tau^{\prime}
$$

$$
\pi, \Gamma \vdash l \prec l^{\prime}
$$

Figure 5.9: $\quad$ Structure Inference Rules. All of the rules have the side condition $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$

$$
\begin{aligned}
& \text { IX2OX } \\
& \pi, \Gamma \vdash c_{1}{ }^{\prime} c_{3} \prec c_{2}{ }^{\prime} c_{4} \\
& \frac{\pi, \Gamma \vdash \operatorname{thread}\left(c_{1}{ }^{\prime} c_{3}\right)=\operatorname{thread}\left(c_{2}^{\prime} c_{4}\right)}{\pi, \Gamma \vdash c_{1} \prec c_{2} \vee c_{1}=c_{2}}
\end{aligned}
$$

Figure 5.10: Derived Structure Inference Rules

### 5.5.3 Basic Inference Rules

The basic inference rules axiomatize the properties of the execution and linearization orders and their interdependence. The basic inference rules state are presented in 5.11 . The derived basic inference rules are presented in Figure 5.12. We explain each rule in turn.

The rule XASym states the asymmetry property of the execution order. If a method call is executed before another method call, then the latter is not executed before the former and they are not executed concurrently.

The rule XTrans states the transitivity property of the precedence execution order. The rule XXTrans states the transitivity of the sequence of precedence, concurrency and precedence execution relations. If $l_{1}$ is executed before $l_{2}, l_{2}$ is executed (before or) concurrent to $l_{3}$ and $l_{3}$ is executed before $l_{4}$, then $l_{1}$ is executed before $l_{4}$.

The rule XTotal states the totality property of the precedence and concurrency execution relations. Every two method calls either execute in order or concurrently.

The rule X 2 X states that if a method call is executed before another one, then obviously both are executed.

The rule X2L states the real-time-preservation property of linearization orders. The execution order of two method calls on a linearizable object is preserved in the linearization order.

The rule LASYM states the asymmetry property of linearization orders. If a method call is linearized before another one, then the latter is not linearized before the former.

The rule LTrans states the transitivity property of linearization orders.
The rule LTotal states the totality property of linearization orders.
The rule L2X states that if a method call is linearized before another one, then obviously both are executed.

The rule P2L states that the program order of two method calls on a linearizable object is preserved in the linearization order.

The rule XLTrans is a form of "transitivity" rule for judgments about the execution order $\prec$ and the linearization order $\prec_{0}$ for a linearizable object $o$. If $l_{1}$ is executed before $l_{2}, l_{2}$ is linearized before $l_{3}$ and $l_{3}$ is executed before $l_{4}$, then $l_{1}$ is executed before $l_{4}$.

The rule X2L'states the contra-positive of the rule X2L.

XASym
$\frac{\pi, \Gamma \vdash l \prec l^{\prime}}{\pi, \Gamma \vdash \neg\left(l^{\prime} \prec l\right) \wedge \neg\left(l^{\prime} \sim l\right) \wedge \neg\left(l^{\prime}=l\right)}$

## XTrans

$\frac{\pi, \Gamma \vdash l \prec l^{\prime} \quad \pi, \Gamma \vdash l^{\prime} \prec l^{\prime \prime}}{\pi, \Gamma \vdash l \prec l^{\prime \prime}}$
XXTrans

$$
\begin{gathered}
\pi, \Gamma \vdash l_{1} \prec l_{2} \quad \pi, \Gamma \vdash l_{3} \prec l_{4} \\
\pi, \Gamma \vdash l_{2} \sim l_{3} \\
\hline \pi, \Gamma \vdash l_{1} \prec l_{4}
\end{gathered}
$$

XTotal
$\frac{\pi, \Gamma \vdash \operatorname{exec}(l) \wedge \operatorname{exec}\left(l^{\prime}\right)}{\pi, \Gamma \vdash\left(l \prec l^{\prime}\right) \vee\left(l^{\prime} \prec l\right) \vee\left(l \sim l^{\prime}\right) \vee\left(l=l^{\prime}\right)}$
$\frac{\mathrm{X} 2 \mathrm{X}}{} \quad \pi, \Gamma \vdash l \prec l^{\prime} \quad\left(\pi, \Gamma \vdash \operatorname{exec}(l) \wedge \operatorname{exec}\left(l^{\prime}\right)\right.$
X2L

$$
\mathcal{T}_{\text {base }}(o) \in L T
$$

LASYM

$$
\frac{\pi, \Gamma \vdash l \prec_{o} l^{\prime}}{\pi, \Gamma \vdash \neg\left(l^{\prime} \prec_{o} l\right) \wedge \neg\left(l=l^{\prime}\right)}
$$

## LTRans

$$
\frac{\pi, \Gamma \vdash l \prec_{0} l^{\prime} \quad \pi, \Gamma \vdash l^{\prime} \prec_{0} l^{\prime \prime}}{\pi, \Gamma \vdash l \prec_{0} l^{\prime \prime}}
$$

LTotal

$$
\begin{gathered}
\mathcal{T}_{\text {base }}(o) \in L T \cup S C T \\
\pi, \Gamma \vdash \operatorname{exec}(l) \wedge \operatorname{exec}\left(l^{\prime}\right) \\
\pi, \Gamma \vdash \operatorname{obj}(l)=\operatorname{obj}\left(l^{\prime}\right)=o \\
\pi, \Gamma \vdash\left(l \prec_{o} l^{\prime}\right) \vee\left(l^{\prime} \prec_{o} l\right) \vee\left(l=l^{\prime}\right)
\end{gathered}
$$

L2X

$$
\begin{gathered}
\mathcal{T}_{\text {base }}(o) \in L T \cup S C T \\
\frac{\pi, \Gamma \vdash l \prec_{o} l^{\prime}}{\pi, \Gamma \vdash \operatorname{exec}(l) \wedge \operatorname{exec}\left(l^{\prime}\right) \wedge}
\end{gathered}
$$

$$
\operatorname{obj}(l)=\operatorname{obj}\left(l^{\prime}\right)=o
$$

$$
\frac{\pi, \Gamma \vdash \operatorname{obj}(l)=o b j\left(l^{\prime}\right)=o \quad \pi, \Gamma \vdash l \prec l^{\prime}}{\pi, \Gamma \vdash l \prec_{o} l^{\prime}}
$$

All of the rules have the side condition $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$

Figure 5.11: Basic Inference Rules

P2L

$$
\begin{gathered}
c_{1} \rightarrow_{\pi} c_{2} \\
\pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c_{1}\right) \quad \pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c_{2}\right) \\
\frac{\mathcal{T}_{\text {base }}(o) \in L T \quad \pi, \Gamma \vdash \operatorname{obj}\left(\varsigma^{\prime} c_{1}\right)=\operatorname{obj}\left(\varsigma^{\prime} c_{2}\right)=o}{\pi, \Gamma \vdash \varsigma^{\prime} c_{1} \prec_{o} \varsigma^{\prime} c_{2}}
\end{gathered}
$$

## XLTrans

$\mathcal{T}_{\text {base }}(o) \in L T$

$$
\pi, \Gamma \vdash l_{1} \prec l_{2} \quad \pi, \Gamma \vdash l_{3} \prec l_{4}
$$

$$
\frac{\pi, \Gamma \vdash l_{2} \prec_{o} l_{3}}{\pi, \Gamma \vdash l_{1} \prec l_{4}}
$$

X2L'
$\mathcal{T}_{\text {base }}(o) \in L T$
$\frac{\pi, \Gamma \vdash l \prec_{o} l^{\prime}}{\pi, \Gamma \vdash l \precsim l^{\prime}}$

Figure 5.12: Derived Basic Inference Rules

### 5.5.4 Synchronization Object Inference Rules

The synchronization object inference rules axiomatize the properties of common synchronization object types. We consider each type in turn.

Basic and Atomic Register. The basic and atomic register inference rules are presented in Figure 5.13.

The rule AREg states that for every read method call $l_{R}$ on an atomic register, there is a write method call $\ell_{W}$ on it that writes the same value that $l_{R}$ returns and $\ell_{W}$ is the last write method call that is linearized before $l_{R}$.
 executes concurrent to it. A register reg is sequentially-written isSequentiallyWritten(reg) if and only if every pair of write method calls on it are ordered in the execution order or in other words, every write method call on it is race-free.

The rule BREG states that if a basic register reg is sequentially-written, for every race-free read method call $l_{R}$ on reg, there is a write method call $\ell_{W}$ on reg that writes the same value that $l_{R}$ returns and $\ell_{W}$ is the last write method call that is executed before $l_{R}$. Note that this models Lamport's notion of safe registers [48].

The derived register inference rules are presented in Figure 5.14.
The rule AREG' states that for every read method call $l_{R}$ on an atomic register, if $l_{W}$ is the last write method call that is linearized before $l_{R}$, then $l_{W}$ writes the same value that $l_{R}$ returns.

An object $o$ is accessed sequentially $i s S e q u e n t i a l(o)$ if and only if every pair of method calls on it are ordered in the execution order.

The rule BREG' states that if a basic register reg is accessed sequentially, for every read method call $l_{R}$ on reg, there is a write method call $\ell_{W}$ on reg that writes the same value that $l_{R}$ returns and $\ell_{W}$ is the last write method call that is executed before $l_{R}$.

The rule TREg states that for every read method call $l_{R}$ on a thread-local register reg, there is a write method call $\ell_{W}$ on reg that writes the same value that $l_{R}$ returns and $\ell_{W}$ is the last write method call that is executed before $l_{R}$.

```
BREG
AREg
 \mp@subsup{\mathcal{T}}{\mathrm{ base }}{}(\mathrm{ reg) = AtomicRegister}
 \pi,\Gamma\vdash\mp@subsup{isRead}{reg}{}(\mp@subsup{l}{R}{})
\pi,\Gamma\vdash\exists\mp@subsup{\ell}{W}{}:\mp@subsup{\mathrm{ isWriter reg }}{(}{}(\mp@subsup{\ell}{W}{},\mp@subsup{l}{R}{})\wedge
 retv(l}\mp@subsup{l}{R}{})=\operatorname{arg1(\ellW}
 \mathcal{Tase}}\mathrm{ (reg) = BasicRegister
 \pi,\Gamma\vdashisSequentiallyWritten(reg)
 \pi,\Gamma\vdash isRead}\mp@subsup{|}{reg}{}(\mp@subsup{l}{R}{}
\pi,\Gamma\vdashisRaceFree
\pi,\Gamma\vdash\exists\mp@subsup{\ell}{W}{}:\mp@subsup{isEWriter reg}{}{(}\mp@subsup{\ell}{W}{},\mp@subsup{l}{R}{})\wedge
 retv(l}\mp@subsup{l}{R}{})=\operatorname{arg1(\ellW)
 isRead
 exec(t (t) ^obj(t (t) =r ^ name (t t
 isWrite
 exec}(\mp@subsup{t}{W}{})\wedge\operatorname{obj}(\mp@subsup{t}{W}{})=r\wedgename(\mp@subsup{t}{W}{})=writ
 isWriter
 isWrite
 \forall\ell⿱W
 isEWriter ((t
 isWritere}(\mp@subsup{t}{W}{})\wedge\mp@subsup{t}{W}{}\prec\mp@subsup{t}{R}{}
 \forall\ell \
 isSequential(o) \Leftrightarrow
 \forall\ell,\mp@subsup{\ell}{}{\prime}:(\operatorname{exec}(\ell)\wedge\operatorname{exec}(\mp@subsup{\ell}{}{\prime})\wedge\operatorname{obj}(\ell)=o\wedgeobj(\mp@subsup{\ell}{}{\prime})=o)=>
 (\ell\preceq貌}\vee\mp@subsup{\ell}{}{\prime}\prec\ell
 isRaceFree
 \forall\ell : isWrite }(\mp@subsup{\ell}{W}{})=>(\mp@subsup{\ell}{W}{}\prect\veet\prec\mp@subsup{\ell}{W}{}
 isSequentiallyWritten(r)\Leftrightarrow
 \forall\ell : isWrite
```

Figure 5.13: Register Inference Rules.

$$
\begin{aligned}
& \begin{array}{l}
\text { BREG' }^{\prime} \\
\mathcal{T}_{\text {base }}(\text { reg })=\text { BasicRegister }
\end{array} \\
& \begin{array}{l}
\text { BREG' }^{\mathcal{T}_{\text {base }}}(\text { reg })=\text { BasicRegister }
\end{array} \\
& \pi, \Gamma \vdash \text { isRead }_{\text {reg }}\left(l_{R}\right) \\
& \frac{\pi, \Gamma \vdash \text { isSequential }(\text { reg })}{\pi, \Gamma \vdash \exists \ell_{W}: \text { isEWriter }_{\text {reg }}\left(\ell_{W}, l_{R}\right) \wedge} \\
& \operatorname{retv}\left(l_{R}\right)=\arg 1\left(\ell_{W}\right) \\
& \begin{array}{l}
\text { AREG }^{\prime} \\
\mathcal{T}_{\text {base }}(\text { reg })=\text { AtomicRegister }
\end{array} \\
& \pi, \Gamma \vdash \text { isRead }_{\text {reg }}\left(l_{R}\right) \\
& \frac{\pi, \Gamma \vdash i s W \operatorname{riter}_{r e g}\left(l_{W}, l_{R}\right)}{\pi, \Gamma \vdash \arg 1\left(l_{W}\right)=\operatorname{retv}\left(l_{R}\right)} \\
& \begin{array}{l}
\text { AREG' }^{\mathcal{T}_{\text {base }}(\text { reg })=\text { AtomicRegister }} \\
\pi, \Gamma \vdash \text { isRead }_{\text {reg }}\left(l_{R}\right) \\
\pi, \Gamma \vdash \text { isWriter }_{\text {reg }}\left(l_{W}, l_{R}\right) \\
\pi, \Gamma \vdash \arg 1\left(l_{W}\right)=\operatorname{retv}\left(l_{R}\right)
\end{array} \\
& \text { TREG } \\
& \mathcal{T}(\text { reg })=\text { ThreadLocal BasicRegister } \\
& \pi, \Gamma \vdash i s \operatorname{Read}_{r e g[\tau]}\left(l_{R}\right) \\
& \overline{\pi, \Gamma \vdash \exists \ell_{W}: \text { isEWriter }_{\text {reg }[\tau]}\left(\ell_{W}, l_{R}\right) \wedge} \\
& \operatorname{retv}\left(l_{R}\right)=\arg 1\left(\ell_{W}\right) \wedge \\
& \operatorname{thread}\left(\ell_{W}\right)=\tau
\end{aligned}
$$

Figure 5.14: Derived Register Inference Rules

CAS Atomic Register. The cas register inference rules are presented in Figure 5.15.
A method call $t_{W}$ on an atomic cas register $r$ is a successful write $i s C W r i t e_{r}\left(t_{W}\right)$, if and only if it is a write method call or a successful cas method call. The written value writtenValue $(t)$ of a successful write method call $t$ is its first argument if it is a write method call and its second argument if it a successful cas method call.

The rule CASREGREAD states that for every read method call $l_{R}$ on an atomic cas register, there is a successful write $\ell_{W}$ that writes the same value that $l_{R}$ has returned and $\ell_{W}$ is the last successful write that is linearized before $l_{R}$.

The rule CASREgCAST and the rule CASREGCASF state that a cas method call $l_{C}$ on an atomic cas register returns true if the written value of the last successful write linearized before $l_{C}$ is equal to the first argument of $l_{C}$, and returns false otherwise.

The derived cas register inference rules are presented in Figure 5.16.
The rule CASREGREAD' states that for every read method call $l_{R}$ on an atomic cas register, the last successful write that is linearized before $l_{R}$ writes the same value that $l_{R}$ returns.

$$
\mathcal{T}_{\text {base }}(\text { reg })=\text { AtomicCASRegister }
$$

$$
\frac{\pi, \Gamma \vdash i s R e a d_{r e g}\left(l_{R}\right)}{\pi, \Gamma \vdash \exists \ell_{W}: \text { is }^{2} \text { riter }_{\text {reg }}\left(\ell_{W}, l_{R}\right) \wedge}
$$

$$
\operatorname{retv}\left(l_{R}\right)=\text { writtenValue }\left(\ell_{W}\right)
$$

$$
\begin{gathered}
\text { CASREGCAST } \\
\mathcal{T}_{\text {base }}(\text { reg })=\text { AtomicCASRegister } \\
\pi, \Gamma \vdash \text { isCAS }_{\text {reg }}\left(l_{C}\right) \\
\pi, \Gamma \vdash \text { isCWriter reg }\left(l_{W}, l_{R}\right) \\
\frac{\pi, \Gamma \vdash \arg 1\left(l_{C}\right)=w r i t t e n V a l u e ~^{2}\left(l_{W}\right)}{\pi, \Gamma \vdash \operatorname{retv}\left(l_{C}\right)=\text { true }} \\
\\
\text { CASREGCASF } \\
\mathcal{T}_{\text {base }}(\text { reg })=\text { AtomicCASRegister } \\
\pi, \Gamma \vdash \text { isCAS }_{\text {reg }}\left(l_{C}\right) \\
\pi, \Gamma \vdash \text { isCWriter } \\
\pi, \Gamma \vdash \neg\left(\arg 1\left(l_{C}\right)=\text { writtenValue }\left(l_{W}\right)\right) \\
\pi, \Gamma \vdash \operatorname{retv}\left(l_{C}\right)=\text { false }
\end{gathered}
$$

```
\(i s \operatorname{Read}_{r}\left(t_{R}\right) \Leftrightarrow\)
 \(\operatorname{exec}\left(t_{R}\right) \wedge \operatorname{obj}\left(t_{R}\right)=r \wedge \operatorname{name}\left(t_{R}\right)=\operatorname{read}\)
isWrite \(_{r}\left(t_{R}\right) \Leftrightarrow\)
 \(\operatorname{exec}\left(t_{R}\right) \wedge \operatorname{obj}\left(t_{R}\right)=r \wedge \operatorname{name}\left(t_{R}\right)=\) write
\(i s C A S_{r}\left(t_{R}\right) \Leftrightarrow\)
 \(\operatorname{exec}\left(t_{R}\right) \wedge \operatorname{obj}\left(t_{R}\right)=r \wedge \operatorname{name}\left(t_{R}\right)=\operatorname{cas}\)
\(i s C W r i t e_{r}\left(t_{W}\right) \Leftrightarrow\)
 \(i s W \operatorname{rite}_{r}\left(t_{W}\right) \vee\left(i s C A S_{r}\left(t_{W}\right) \wedge \operatorname{retv}\left(t_{W}\right)=\operatorname{true}\right)\)
\(\operatorname{isCWriter}_{r}\left(t_{W}, t_{R}\right) \Leftrightarrow\)
 isCWrite \(_{r}\left(t_{W}\right) \wedge t_{W} \prec_{r} t_{R} \wedge\)
 \(\forall \ell_{W}^{\prime}:\) isCWrite \(_{r}\left(t_{W}^{\prime}\right) \Rightarrow\left(\ell_{W}^{\prime} \preceq_{r} t_{W} \vee t_{R} \prec_{r} \ell_{W}^{\prime}\right)\)
 writtenValue \((t)=\)
 \(\begin{cases}\arg 1(t) & \text { if } \operatorname{obj}(t)=\text { write } \\ \arg 2(t) & \text { if } \operatorname{obj}(t)=\text { cas }\end{cases}\)
```

Figure 5.15: CAS Register Inference Rules.

CASRegRead'

$$
\begin{gathered}
\mathcal{T}_{\text {base }}(\text { reg })=\text { CASAtomicRegister } \\
\pi, \Gamma \vdash \text { isRead }_{\text {reg }}\left(l_{R}\right) \\
\frac{\pi, \Gamma \vdash \text { isCWriter }_{\text {reg }}\left(l_{W}, l_{R}\right)}{\left.\pi, \Gamma \vdash \operatorname{retv}\left(l_{R}\right)={\text { writtenValue }\left(l_{W}\right)}^{2}\right)}
\end{gathered}
$$

Figure 5.16: Derived CAS Register Inference Rules

Lock and Try-Lock. The preliminary definitions are presented in Figure 5.17 and the lock and try-lock inference rules are presented in Figure 5.18.

Ownership for a lock $l$ is respected, isOwnerRespecting $(l)$ if and only if every thread unlocks $l$ only if it has already locked $l$ and has not unlocked it since then.

The rule Lock states that if ownership is respected for a lock $l$ and a lock method call on $l$ (by a thread $t_{1}$ ) is linearized before an unlock method call on $l$ (by a thread $t_{2}$ ), then an unlock method call on $l$ by $t_{1}$ is linearized before a lock method call on $l$ by $t_{2}$.

The rule LockReadL states that if ownership is respected for a lock $l$ and an unlock method call on $l$ (by a thread $t$ ) is linearized after a read method call on $l$ that returns false, then a lock method call on $l$ by $t$ is linearized after the read method call.

The rule LockREadR states that if ownership is respected for a lock $l$ and a lock method call on $l$ (by a thread $t$ ) is linearized before a read method call on $l$ that returns false, then an unlock method call on $l$ by $t$ is linearized before the read method call.

The rule LockREADM states that if ownership is respected for a lock $l$ and a read method call on $l$ (by a thread $t$ ) is linearized between a pair of matching lock and unlock method call on $l$, then the read method call returns true.

There are four similar rules for try-locks. Instead of lock method calls, these rules concern successful lock method calls that are lock and successful tryLock method calls.

$$
\begin{aligned}
& i s L o c k_{o}(t) \Leftrightarrow \\
& \operatorname{exec}(t) \wedge \operatorname{obj}(t)=o \wedge \operatorname{name}(t)=\text { lock } \\
& \text { isUnlock }{ }_{o}(t) \Leftrightarrow \\
& \operatorname{exec}(t) \wedge \operatorname{obj}(t)=o \wedge \text { name }(t)=\text { unlock } \\
& i s R e a d_{o}(t) \Leftrightarrow \\
& \operatorname{exec}(t) \wedge \operatorname{obj}(t)=o \wedge \operatorname{name}(t)=\operatorname{read} \\
& i s T r y \operatorname{Lock}_{o}(t) \Leftrightarrow \\
& \operatorname{exec}(t) \wedge \operatorname{obj}(t)=o \wedge \operatorname{name}(t)=\text { tryLock } \\
& i s T \operatorname{Lock}_{o}(t) \Leftrightarrow \\
& i s \operatorname{Lock}_{o}(t) \vee\left(i s \operatorname{Try} \operatorname{Lock}_{o}(t) \wedge \operatorname{retv}(t)=\operatorname{true}\right) \\
& \text { noUnlockBetween } n_{o}\left(t_{l}, t_{u}\right) \Leftrightarrow \\
& \forall \ell_{u}^{\prime} \text { : } \\
& \text { (isXUnlock }{ }_{X, o}\left(\ell_{u}^{\prime}\right) \wedge \\
& \text { thread } \left._{X}\left(t_{l}\right)=\text { thread }_{X}\left(\ell_{u}^{\prime}\right)\right) \Rightarrow \\
& \left(\ell_{u}^{\prime} \prec t_{l} \vee t_{u} \preceq \ell_{u}^{\prime}\right)
\end{aligned}
$$

Figure 5.17: Preliminary definitions for Lock and TryLock Inference Rules.

LOCK

$$
\begin{gathered}
\mathcal{T}_{\text {base }}(o)=\text { Lock } \\
\pi, \Gamma \vdash \text { isOwnerRespecting }(o) \\
\pi, \Gamma \vdash \operatorname{isLock}_{o}\left(l_{l_{1}}\right) \quad \pi, \Gamma \vdash \operatorname{isUnlock}_{o}\left(l_{u_{2}}\right) \\
\pi, \Gamma \vdash l_{l_{1}} \prec_{o} l_{u_{2}} \\
\pi, \Gamma \vdash \exists \ell_{u_{1}}, \ell_{l_{2}}: \\
\text { isUnlock }_{o}\left(\ell_{u_{1}}\right) \wedge \text { thread }\left(\ell_{u_{1}}\right)=\operatorname{thread}\left(l_{l_{1}}\right) \wedge \\
\left.i s L o c k_{o}\left(\ell_{l_{2}}\right) \wedge{\operatorname{thread}\left(\ell_{l_{2}}\right)}\right)=\operatorname{thread}\left(l_{u_{2}}\right) \wedge \\
\ell_{u_{1}} \prec_{o} \ell_{l_{2}}
\end{gathered}
$$

LockReadL

$$
\mathcal{T}_{\text {base }}(o)=\text { Lock }
$$

$\pi, \Gamma \vdash i s O w n e r$ Respecting $(o)$
$\pi, \Gamma \vdash i s U n l o c k{ }_{o}\left(l_{u_{1}}\right)$
$\pi, \Gamma \vdash \operatorname{isRead}\left(l_{r_{2}}\right) \wedge \operatorname{retv}\left(l_{r_{2}}\right)=$ false

$$
\frac{\pi, \Gamma \vdash l_{r_{2}} \prec_{o} l_{u_{1}}}{\pi, \Gamma \vdash \exists \ell_{l_{1}}:}
$$

$\operatorname{isLock}_{o}\left(\ell_{l_{1}}\right) \wedge \operatorname{thread}\left(\ell_{l_{1}}\right)=\operatorname{thread}\left(l_{u_{1}}\right) \wedge$

$$
l_{r_{2}} \prec_{0} \ell_{l_{1}}
$$

LockReadR


TryLock

$$
\begin{gathered}
\mathcal{T}_{\text {base }}(o)=\text { TryLock } \\
\pi, \Gamma \vdash \text { isOwnerRespecting }(o) \\
\pi, \Gamma \vdash i s T \operatorname{Lock}_{o}\left(l_{l_{1}}\right) \quad \pi, \Gamma \vdash \operatorname{isUnlock}_{o}\left(l_{u_{2}}\right) \\
\pi, \Gamma \vdash l_{l_{1}} \prec_{o} l_{u_{2}} \\
\pi, \Gamma \vdash \exists \ell_{u_{1}}, \ell_{l_{2}}: \\
\text { isUnlock }_{o}\left(\ell_{u_{1}}\right) \wedge \operatorname{thread}\left(\ell_{u_{1}}\right)=\operatorname{thread}\left(l_{l_{1}}\right) \wedge \\
\text { isTLock }_{o}\left(\ell_{l_{2}}\right) \wedge \operatorname{thread}\left(\ell_{l_{2}}\right)=\operatorname{thread}\left(l_{u_{2}}\right) \wedge \\
\ell_{u_{1}} \prec_{o} \ell_{l_{2}}
\end{gathered}
$$

TryLockReadL

```
 \(\mathcal{T}_{\text {base }}(o)=\) TryLock
 \(\pi, \Gamma \vdash i s O w n e r R e s p e c t i n g(o)\)
 \(\pi, \Gamma \vdash i s U n l o c k_{o}\left(l_{u_{1}}\right)\)
 \(\pi, \Gamma \vdash \operatorname{isRead}\left(l_{r_{2}}\right) \wedge \operatorname{retv}\left(l_{r_{2}}\right)=\) false
 \(\pi, \Gamma \vdash l_{r_{2}} \prec_{o} l_{u_{1}}\)
 \(\pi, \Gamma \vdash \exists \ell_{l_{1}}\) :
\(i s T \operatorname{Lock}_{o}\left(\ell_{l_{1}}\right) \wedge \operatorname{thread}\left(\ell_{l_{1}}\right)=\operatorname{thread}\left(l_{u_{1}}\right) \wedge\)
 \(l_{r_{2}} \prec_{0} \ell_{l_{1}}\)
```

TryLockReadR

```
 \(\mathcal{T}_{\text {base }}(o)=\) TryLock
 \(\pi, \Gamma \vdash i s O w n e r\) Respecting \((o)\)
 \(\pi, \Gamma \vdash i s T \operatorname{Lock}_{o}\left(l_{l_{1}}\right)\)
 \(\pi, \Gamma \vdash \operatorname{isRead}\left(l_{r_{2}}\right) \wedge \operatorname{retv}\left(l_{r_{2}}\right)=\) false
 \(\pi, \Gamma \vdash l_{l_{1}} \prec_{o} l_{r_{2}}\)
 \(\pi, \Gamma \vdash \exists \ell_{u_{1}}\) :
isUnlock \(\left(\ell_{u_{1}}\right) \wedge \operatorname{thread}\left(\ell_{u_{1}}\right)=\operatorname{thread}\left(l_{l_{1}}\right) \wedge\)
 \(\ell_{u_{1}} \prec_{o} l_{r_{2}}\)
```

TryLockReadM
$\mathcal{T}_{\text {base }}(o)=$ TryLock
$\pi, \Gamma \vdash$ isOwnerRespecting $(o)$
$\pi, \Gamma \vdash i s T \operatorname{Lock}_{o}\left(l_{l_{1}}\right) \quad \pi, \Gamma \vdash$ isUnlock $_{o}\left(l_{u_{1}}\right)$
$\pi, \Gamma \vdash \operatorname{thread}\left(l_{u_{1}}\right)=\operatorname{thread}\left(l_{l_{1}}\right)$
$\pi, \Gamma \vdash$ noUnlockBetweeno $\left(l_{l_{1}}, l_{u_{1}}\right)$
$\pi, \Gamma \vdash \operatorname{isRead}\left(l_{r_{2}}\right)$
$\frac{\pi, \Gamma \vdash l_{l_{1}} \prec_{o} l_{r_{2}} \quad \pi, \Gamma \vdash l_{r_{2}} \prec_{o} l_{u_{1}}}{\pi, \Gamma \vdash \operatorname{retv}\left(l_{r_{2}}\right)=\text { true }}$

Figure 5.18: Lock and TryLock Inference Rules.

Strong Counter. The strong counter inference rules are presented in Figures 5.19 and 5.20.
The rule SCounter states that the return value of every method call that is linearized before an iaf method call is smaller than the return value of the iaf method call.

The rule SCounter' states that if the return value of a method call is greater than the return value of an iaf method call, then it is linearized after the iaf method call.

$$
\begin{gathered}
\text { SCounter } \\
\mathcal{T}_{\text {base }}(o)=\text { SCounter } \\
\pi, \Gamma \vdash \operatorname{obj}\left(l_{1}\right)=o \\
\pi, \Gamma \vdash \operatorname{obj}\left(l_{2}\right)=o \wedge \operatorname{name}\left(l_{2}\right)=\operatorname{iaf} \\
\pi, \Gamma \vdash l_{1} \prec_{o} l_{2} \\
\hline \pi, \Gamma \vdash \operatorname{retv}\left(l_{1}\right)<\operatorname{retv}\left(l_{2}\right)
\end{gathered}
$$

Figure 5.19: SCounter Rules

$$
\begin{gathered}
\text { SCounter' }^{\mathcal{T}_{\text {base }}(o)=\text { SCounter }} \\
\pi, \Gamma \vdash \operatorname{exec}\left(l_{1}\right) \wedge \operatorname{obj}\left(l_{1}\right)=o \\
\pi, \Gamma \vdash \operatorname{exec}\left(l_{2}\right) \wedge \operatorname{obj}\left(l_{2}\right)=o \wedge \operatorname{name}\left(l_{2}\right)=\operatorname{iaf} \\
\pi, \Gamma \vdash \operatorname{retv}\left(l_{1}\right)>\operatorname{retv}\left(l_{2}\right) \\
\pi, \Gamma \vdash l_{2} \prec_{o} l_{1}
\end{gathered}
$$

Figure 5.20: Derived SCounter Rules

Basic Set and Basic Map. The Set and Map inference rules are presented in Figure 5.21.
An object $o$ is accessed sequentially isSequential $(o)$ if and only if every pair of method calls on it are ordered in the execution order.

The rule BasicSetContains states that if a basic set $s$ is accessed sequentially, for every contains method call on $s$ that returns true, there is a preceding add method call on $s$ with the same argument.

The rule BasicSetAdD states that if a basic set $s$ is accessed sequentially, every contains method call on $s$ that succeeds an $a d d$ method call on $s$ with the same argument returns true.

The rule BasicmapGet states that if a basic map $m$ is accessed sequentially, for every get method call $l_{g}$ on $m$ that does not return $\perp$, there exists a put method call $\ell_{p}$ on $m$ with the same key argument such that the value argument of $p$ is equal to the return value of $l_{g}$ and $\ell_{p}$ is the latest preceding put method call on $m$ with the same key argument.

The rule BasicMapPut states that if a basic map $m$ is accessed sequentially, for every get method call $l_{g}$ on $m$, if $l_{p}$ is the latest preceding put method call on $m$ with the same key argument then the value argument of $l_{p}$ is equal to the return value of $l_{g}$.

The derived Set and Map inference rules are presented in Figure 5.22.
The rule BasicmapGet' states that if a basic map $m$ is accessed sequentially, for every get method call $l_{g}$ on $m$, if no put method call with the same key argument as $l_{g}$ precedes $l_{g}$, then $l_{g}$ returns $\perp$.

The rule BasicMapPut' states that if a basic map $m$ is accessed sequentially and no put method call puts $\perp$ in $m$, every get method call that succeeds a put method call with the same key argument does not return $\perp$.

## BasicSetContains

$\mathcal{T}_{\text {base }}(s)=$ BasicSet
$\pi, \Gamma \vdash$ isSequential $(s)$
$\pi, \Gamma \vdash \operatorname{isContains}_{s}\left(l_{c}\right) \wedge \operatorname{retv}\left(l_{c}\right)=\operatorname{true}$
$\pi, \Gamma \vdash \exists \ell_{a}: \operatorname{isAdd}_{s}\left(\ell_{a}\right) \wedge$
$\arg 1\left(\ell_{a}\right)=\arg 1\left(l_{c}\right) \wedge \ell_{a} \prec l_{c}$
BasicMapGet

$$
\begin{aligned}
& \mathcal{T}_{\text {base }}(m)=\text { BasicMap } \\
& \pi, \Gamma \vdash \text { isSequential }(m) \\
& \frac{\pi, \Gamma \vdash i s G e t_{m}\left(l_{g}\right) \wedge \operatorname{retv}\left(l_{g}\right) \neq \perp}{\pi, \Gamma \vdash \exists \ell_{p}: \text { isPutter }_{m}\left(\ell_{p}, l_{g}\right) \wedge} \\
& \arg 2\left(\ell_{p}\right)=\operatorname{retv}\left(l_{g}\right)
\end{aligned}
$$

BasicSetAdd

$$
\mathcal{T}_{\text {base }}(s)=\text { BasicSet }
$$

$\pi, \Gamma \vdash$ isSequential(s)
$\pi, \Gamma \vdash i s A d d_{s}\left(l_{a}\right)$
$\pi, \Gamma \vdash i s C o n t a i n s ~_{s}\left(l_{c}\right)$
$\frac{\pi, \Gamma \vdash l_{a} \prec l_{c} \wedge \arg 1\left(l_{a}\right)=\arg 1\left(l_{c}\right)}{\pi, \Gamma \vdash \operatorname{retv}\left(l_{c}\right)=\text { true }}$

BasicmapPut

$$
\mathcal{T}_{\text {base }}(m)=\text { BasicMap }
$$

$$
\pi, \Gamma \vdash i s S e q u e n t i a l(m)
$$

$$
\pi, \Gamma \vdash i s G e t_{m}\left(l_{g}\right)
$$

$\frac{\pi, \Gamma \vdash i s \text { Putter }_{m}\left(l_{p}, l_{g}\right)}{\pi, \Gamma \vdash \arg 2\left(l_{p}\right)=\operatorname{retv}\left(l_{g}\right)}$
isContains $_{o}(t) \Leftrightarrow$
$\operatorname{exec}(t) \wedge \operatorname{obj}(t)=o \wedge$ name $(t)=$ contains
$i s \operatorname{Add}_{o}(t) \Leftrightarrow$
$\operatorname{exec}(t) \wedge \operatorname{obj}(t)=o \wedge \operatorname{name}(t)=a d d$
$\operatorname{isPut}_{o}(t) \Leftrightarrow$
$\operatorname{exec}(t) \wedge \operatorname{obj}(t)=o \wedge \operatorname{name}(t)=p u t$
$i s G e t_{o}(t) \Leftrightarrow$
$\operatorname{exec}(t) \wedge \operatorname{obj}(t)=o \wedge \operatorname{name}(t)=\operatorname{get}$
isPutter $_{m}\left(t_{p}, t_{g}\right) \Leftrightarrow$
$\operatorname{isPut}_{m}\left(t_{p}\right) \wedge \arg 1\left(t_{p}\right)=\arg 1\left(t_{g}\right) \wedge t_{p} \prec t_{g} \wedge$
$\forall \ell_{p}^{\prime}: \operatorname{isPut}_{m}\left(\ell_{p}^{\prime}\right) \wedge \arg 1\left(\ell_{p}^{\prime}\right)=\arg 1\left(t_{g}\right) \Rightarrow\left(\ell_{p}^{\prime} \preceq t_{p} \vee t_{g} \prec \ell_{p}^{\prime}\right)$
isSequential $(o) \Leftrightarrow$
$\forall \ell, \ell^{\prime}:\left(\operatorname{exec}(\ell) \wedge \operatorname{exec}\left(\ell^{\prime}\right) \wedge \operatorname{obj}(\ell)=o \wedge \operatorname{obj}\left(\ell^{\prime}\right)=o\right) \Rightarrow$
$\left(\ell \preceq \ell^{\prime} \vee \ell^{\prime} \prec \ell\right)$

Figure 5.21: Set and Map Inference Rules

BasicMapGet'
$\mathcal{T}_{\text {base }}(m)=$ BasicMap
$\pi, \Gamma \vdash$ isSequential $(m)$ $\pi, \Gamma \vdash i s G e t_{m}\left(l_{g}\right)$
$\pi, \Gamma \vdash \neg \exists \ell_{p}: i s P u t_{m}\left(\ell_{p}\right) \wedge$ $\underline{\arg 1\left(\ell_{p}\right)=\arg 1\left(l_{g}\right) \wedge \ell_{p} \prec l_{g}}$ $\pi, \Gamma \vdash \operatorname{retv}\left(l_{g}\right)=\perp$
BasicMapPut

$$
\begin{gathered}
\mathcal{T}_{\text {base }}(m)=\text { BasicMap } \\
\pi, \Gamma \vdash \text { isSequential }(m) \\
\pi, \Gamma \vdash \text { isGet }_{m}\left(l_{g}\right) \\
\pi, \Gamma \vdash \text { isPut }_{m}\left(l_{p}\right) \\
\pi, \Gamma \vdash \arg 1\left(l_{p}\right)=\arg 1\left(l_{g}\right) \wedge l_{p} \prec l_{g} \\
\pi, \Gamma \vdash \forall \ell_{p}: \operatorname{isPut_{m}}\left(\ell_{p}\right) \Rightarrow \arg 2\left(\ell_{p}\right) \neq \perp \\
\pi, \Gamma \vdash \operatorname{retv}\left(l_{g}\right) \neq \perp
\end{gathered}
$$

Figure 5.22: Derived Set and Map Inference Rules

### 5.6 Soundness

In this section, we present the soundness, exchange, and weakening lemmas for SOL.

The semantics satisfies the classical exchange and weakening lemmas.
Lemma 36 (Exchange).
$\forall \pi, \Gamma, \Gamma^{\prime}, \mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}:$
$\left(\pi, \Gamma ; \mathcal{A} ; \mathcal{A}^{\prime} ; \Gamma^{\prime} \vdash \mathcal{A}^{\prime \prime}\right) \Rightarrow\left(\pi, \Gamma ; \mathcal{A}^{\prime} ; \mathcal{A} ; \Gamma^{\prime} \vdash \mathcal{A}^{\prime \prime}\right)$
Lemma 37 (Weakening).
$\forall \pi, \Gamma, \mathcal{A}, \mathcal{A}^{\prime}:$
$(\pi, \Gamma \vdash \mathcal{A}) \Rightarrow\left(\pi, \Gamma ; \mathcal{A}^{\prime} \vdash \mathcal{A}\right)$

To define the soundness, we first define the models relation between specifications and assertions.
Definition 16. A specification $\pi$ models an assertion $\mathcal{A}$ if and only if every execution of $\pi$ models $\mathcal{A}$.
$\pi \models \mathcal{A} \quad$ iff $\forall \mathcal{X} \in \llbracket \pi \rrbracket: \mathcal{X} \models \mathcal{A}$
The logic is sound. The following theorem states that the logic derives valid conclusions from valid premises.

Theorem 3 (Soundness).
$\forall \pi, \mathcal{A}:((\pi, \Gamma \vdash \mathcal{A}) \wedge(\pi \models \Gamma)) \Rightarrow(\pi \models \mathcal{A})$.
See the appendix section 10.4 for the proof.

### 5.7 Dekker Mutual Exclusion

In this section, we prove the mutual exclusion guarantee of the Dekker algorithm using SOL. We presented the Dekker algorithm, $\pi_{\text {Dekker }}$, in Figure 2.1.

Theorem 4 (Mutual Exclusion).
In every execution of the Dekker specification, at most one thread acquires the lock.
$\forall X \in \mathbb{H}\left(\pi_{\text {Dekker }}\right):\left(\operatorname{retv}_{X}\left(L_{2}\right)=\operatorname{true}\right) \Rightarrow\left(\operatorname{retv}_{X}\left(L_{1}\right)=\right.$ false $)$.
Proof.
(4) $X^{\prime}=\sigma(X)$

By Lemma 38, we have
We show that
(1) $X^{\prime} \in \mathbb{H}\left(\pi_{\text {Dekker }}\right)$

We show that

$$
\begin{gathered}
\left(\underline{2)} \quad\left(\operatorname{retv}_{X^{\prime}}\left(L_{2}\right)=\text { true }\right) \Rightarrow\right. \\
\left(\operatorname{retv}_{X^{\prime}}\left(L_{1}\right)=\text { false }\right)
\end{gathered}
$$

(5) $\pi_{\text {Dekker }}, \cdot \vdash\left(\operatorname{retv}\left(L_{2}\right)=\operatorname{true}\right) \Rightarrow$ $\left(\operatorname{retv}\left(L_{1}\right)=\right.$ false $)$.
By the soundness theorem, Theorem 3, and Definition [16] on [5] and [3], we have
(6) $\overline{\mathcal{X}} \models\left(\overline{\operatorname{retv}}\left(L_{2}\right)=\right.$ true $) \Rightarrow$ $\left(\operatorname{retv}\left(L_{1}\right)=\right.$ false $)$
By Definition 2.71 on [1], we have that there ex- By Definition [15] on [6], [3] and [4], we have ists $\mathcal{X}, X, \sigma, \mathcal{L}$ such that
(7) $\quad\left(\operatorname{retv}_{X^{\prime}}\left(L_{2}\right)=\overline{t r u e}\right) \Rightarrow$
(3) $\mathcal{X}=(X, \sigma, \mathcal{L}) \in \llbracket \pi \rrbracket$

$$
\left(\operatorname{retv}_{X^{\prime}}\left(L_{1}\right)=\text { false }\right)
$$

Lemma 38.
$\pi_{\text {Dekker }}, \cdot \vdash\left(\operatorname{retv}\left(L_{2}\right)=\operatorname{true}\right) \Rightarrow\left(\operatorname{retv}\left(L_{1}\right)=\right.$ false $)$.

Proof.

Let

$$
\pi=\pi_{D e k k e r}
$$

We show that

$$
\begin{gathered}
\pi, \cdot \vdash\left(\operatorname{retv}\left(L_{2}\right)=\text { true }\right) \Rightarrow \\
\left(\operatorname{retv}\left(L_{1}\right)=\text { false }\right)
\end{gathered}
$$

Let
(8) $\Gamma=\left(\operatorname{retv}\left(L_{2}\right)=t r u e\right)$

By rule Condintro, we have to show that
$\pi, \Gamma \vdash \operatorname{retv}\left(L_{1}\right)=$ false
By rule Premise on [8], we have
(9) $\pi, \Gamma \vdash \operatorname{retv}\left(L_{2}\right)=$ true

From $\pi$, we have
$\operatorname{cond}_{\pi}\left(L_{2}\right)=$ true
Thus,

$$
\text { (10) } \pi, \Gamma \vdash \operatorname{cond}_{\pi}\left(L_{2}\right)=\text { true }
$$

By rule OControl on [10], we have

$$
\text { (11) } \pi, \Gamma \vdash \operatorname{exec}\left(L_{2}\right)
$$

From $\bar{\pi}$, we have
(12) name $_{\pi}\left(L_{2}\right)=$ tryLock 2
(13) $\quad R_{1} \in$ Labels(tryLock2)

From $\bar{\pi}$, we have

$$
\operatorname{cond}_{\pi}\left(R_{1}\right)=\text { true }
$$

Thus,
(14) $\pi, \Gamma \vdash L_{2}{ }^{\prime} \operatorname{cond}_{\pi}\left(R_{1}\right)=$ true

From $\bar{\pi}$, we have
(15) $\operatorname{PreReturns}_{\pi}\left(R_{1}\right)=\emptyset$

By rule IControl on [11]-[15], we have
(16) $\pi, \Gamma \vdash \operatorname{exec}\left(L_{2}{ }^{\prime} R_{1}\right)$

By rule Id on [16], we have
(17) $\pi, \Gamma \vdash \overline{o b j}\left(L_{2}{ }^{\prime} R_{1}\right)=f_{1}$
(18) $\pi, \Gamma \vdash \operatorname{name}\left(L_{2}{ }^{\prime} R_{1}\right)=$ read
(19) $\pi, \Gamma \vdash \operatorname{retv}\left(L_{2}{ }^{\prime} R_{1}\right)=L_{2}{ }^{\prime} x_{1}$

Similarly, we have
(20) $\pi, \Gamma \vdash \operatorname{exec}\left(L_{2}{ }^{\prime} W_{2}\right)$
(21) $\pi, \Gamma \vdash o b j\left(L_{2}{ }^{\prime} W_{2}\right)=f_{2}$
(22) $\pi, \Gamma \vdash \operatorname{name}\left(L_{2}{ }^{\prime} W_{2}\right)=$ write
(23) $\pi, \Gamma \vdash \arg 1\left(L_{2}{ }^{\prime} W_{2}\right)=1$

From the definition of isRead on [16], [17] and [18] and rule ConjIntro, we have
(24) $\pi, \Gamma \vdash$ isRead $_{f_{1}}\left(L_{2}{ }^{\prime} R_{1}\right)$

From rule AREG on [24], we have
(25) $\pi, \Gamma \vdash \exists \ell_{W}$ :
isWriter $_{f_{1}}\left(\ell_{W}, L_{2}{ }^{\prime} R_{1}\right) \wedge$
$\operatorname{retv}\left(L_{2}{ }^{\prime} R_{1}\right)=\arg 1\left(\ell_{W}\right)$
Let
(26) $\Gamma^{\prime}=\Gamma$;
isWriter $_{f_{1}}\left(l_{W}, L_{2}{ }^{\prime} R_{1}\right) \wedge$
$\arg 1\left(l_{W}\right)=\operatorname{retv}\left(L_{2}{ }^{\prime} R_{1}\right)$
where $l_{W}$ is fresh.
By rule Premise on [26], we have
(27) $\pi, \Gamma^{\prime} \vdash$ isWriter $_{f_{1}}\left(l_{W}, L_{2}{ }^{\prime} R_{1}\right)$
(28) $\pi, \Gamma^{\prime} \vdash \arg 1\left(l_{W}\right)=\operatorname{retv}\left(L_{2}{ }^{\prime} R_{1}\right)$

By rule Id on [11], we have
(29) $\pi, \Gamma \vdash \overline{o b} j\left(L_{2}\right)=$ this
(30) $\pi, \Gamma \vdash \operatorname{name}\left(L_{2}\right)=\operatorname{tryLock} 2$

From $\bar{\pi}$, we have
(31) Returns $s_{\pi}($ tryLock 2$)=\left\{C_{2 t}, C_{2 f}\right\}$

By rule Caller on [31], [11], [30], [31], we have
(32) $\pi, \Gamma \vdash$
$\left(\operatorname{exec}\left(L_{2}{ }^{\prime} C_{2 t}\right) \wedge \arg 1\left(L_{2}{ }^{\prime} C_{2 t}\right)=\operatorname{retv}\left(L_{2}\right)\right) \vee$
$\left(\operatorname{exec}\left(L_{2}{ }^{\prime} C_{2 f}\right) \wedge \arg 1\left(L_{2}{ }^{\prime} C_{2 f}\right)=\operatorname{retv}\left(L_{2}\right)\right)$
We apply rule DisjElim to [32]:
Right:
Let
(33) $\Gamma^{\prime}=\Gamma$;
$\left(\operatorname{exec}\left(L_{2}{ }^{\prime} C_{2 f}\right) \wedge \arg 1\left(L_{2}{ }^{\prime} C_{2 f}\right)=\operatorname{retv}\left(L_{2}\right)\right)$
By rule Premise on [33], we have
(34) $\pi, \Gamma^{\prime} \vdash \operatorname{exec}\left(\overline{L_{2}}{ }^{\prime} C_{2 f}\right)$
(35) $\pi, \Gamma^{\prime} \vdash \arg 1\left(L_{2}{ }^{\prime} C_{2 f}\right)=\operatorname{retv}\left(L_{2}\right)$

From $\bar{\pi}$, we have
(36) $\arg 1\left(C_{2 f}\right)=$ false

By rule ID on [34], [36], we have
(37) $\pi, \Gamma^{\prime} \vdash \arg \overline{1}\left(L_{2}{ }^{\prime} C_{2 f}\right)=$ false

From rule ETrans and rule ESym on [35], and [37], we have
(38) $\pi, \Gamma^{\prime} \vdash \operatorname{retv}\left(L_{2}\right)=$ false

By weakening (Lemma 37) on [33] [9], we have
(39) $\pi, \Gamma^{\prime} \vdash \operatorname{retv}\left(L_{2}\right)=$ true

By rule NegElim on [38] and [39], we have
(40) $\pi, \Gamma^{\prime} \vdash \operatorname{retv}\left(L_{1}\right)=$ false

Left:
Let
(41) $\Gamma^{\prime}=\Gamma$;

$$
\left(\operatorname{exec}\left(L_{2}{ }^{\prime} C_{2 t}\right) \wedge \arg 1\left(L_{2}{ }^{\prime} C_{2 t}\right)=\operatorname{retv}\left(L_{2}\right)\right)
$$

By rule Premise on [41], we have
(42) $\pi, \Gamma^{\prime} \vdash \operatorname{exec}\left(\overline{L_{2}}, C_{2 t}\right)$
(43) $\pi, \Gamma^{\prime} \vdash \arg 1\left(L_{2}{ }^{\prime} C_{2 t}\right)=\operatorname{retv}\left(L_{2}\right)$

From $\bar{\pi}$, we have
(44) $\operatorname{cond}_{\pi}\left(C_{2 t}\right)=\left(x_{1}=0\right)$

By rule IControl on [42] and [44] we have
(45) $\pi, \Gamma^{\prime} \vdash\left(L_{2}{ }^{\prime} x_{1}=0\right)$

From [28], [19], [45], weakening (Lemma 37) and rule ETrans, we have
(46) $\pi, \Gamma^{\prime} \vdash \arg 1\left(l_{W}\right)=0$

From the definition of isWriter on [27] and rule ConjElimL and rule ConjElimR, we have
(47) $\pi, \Gamma^{\prime} \vdash \operatorname{obj}\left(l_{W}\right)=f_{1}$
(48) $\pi, \Gamma^{\prime} \vdash \operatorname{name}\left(l_{W}\right)=$ write
(49) $\pi, \Gamma^{\prime} \vdash \operatorname{exec}\left(l_{W}\right)$
(50) $\pi, \Gamma^{\prime} \vdash l_{W} \prec_{f_{1}} L_{2}{ }^{\prime} R_{1}$
(51) $\pi, \Gamma^{\prime} \vdash \forall \ell_{W^{\prime}}:$ isWrite $_{f_{1}}\left(\ell_{W^{\prime}}\right) \Rightarrow$ $\ell_{W^{\prime}} \preceq_{f_{1}} l_{W} \vee L_{2}{ }^{\prime} R_{1} \prec_{f_{1}} \ell_{W^{\prime}}$
From the definition of $\pi$, we have
(52) calls ${ }_{\pi}\left(f_{1}\right.$, write $)=\left\{W_{1}, W_{01}\right\}$

From rule Src on [47], [48], [49] and [52], we have that for some fresh $\varsigma$
(53) $\pi, \Gamma^{\prime} \vdash l_{W}=\varsigma^{\prime} W_{1} \vee l_{W}=\varsigma^{\prime} W_{01}$

We apply rule DisjElim to [53]:
Left:
(54) $\Gamma^{\prime \prime}=\Gamma^{\prime}$;
$l_{W}=\varsigma^{\prime} W_{1}$
From [49], [54], weakening (Lemma 37), we have (55) $\pi, \overline{\Gamma^{\prime \prime}} \vdash \operatorname{exec}\left(\varsigma^{\prime} W_{1}\right)$

From $\bar{\pi}$, we have
(56) $\arg 1_{\pi}\left(W_{1}\right)=1$

By rule Id on [54], [56], we have
(58) $\pi, \Gamma^{\prime \prime} \vdash \arg 1\left(\varsigma^{\prime} W_{1}\right)=1$

From [54], [58], we have
(58) $\pi \overline{\Gamma^{\prime \prime}} \vdash \arg 1\left(l_{W}\right)=1$

By weakening (Lemma 37) on [46], we have
(59) $\pi, \Gamma^{\prime \prime} \vdash \arg 1\left(l_{W}\right)=0$

By rule ETrans and rule ESYm on [58], [59], we have

$$
\text { (60) } \pi, \Gamma^{\prime \prime} \vdash 0=1
$$

By rūe NegElim on rule ZERo and [60], we have
(61) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{retv}\left(L_{1}\right)=$ false

Right:
(62) $\Gamma^{\prime \prime}=\Gamma^{\prime}$;

$$
l_{W}=\varsigma^{\prime} W_{01}
$$

By rule Premise on [62], we have

$$
\text { (63) } \pi, \Gamma^{\prime \prime} \vdash l_{W}=\overline{\varsigma^{\prime}} W_{01}
$$

From $\bar{\pi}$, we have
(64) $W_{01} \in$ Labels $_{\pi}($ init $)$

By rule Callee on [63] and [64] we have
(65) $\pi, \Gamma^{\prime \prime} \vdash \neg(\varsigma=\epsilon)$
(66) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{exec}(\varsigma)$
(67) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{obj}(\varsigma)=$ this
(68) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{name}(\varsigma)=$ init

From $\bar{\pi}$, we have
(69) Calls $_{\pi}($ this, init $)=\left\{L_{0}\right\}$

By rule Src on [65]-[69] we have
(70) $\pi, \Gamma^{\prime \prime} \vdash \bar{\varsigma}=\overline{L_{0}}$

From [63] and [70], we have
(7ㄷ) $\pi, \Gamma^{\prime \prime} \overline{\vdash l}_{W}=L_{0}{ }^{\prime} W_{01}$
From $\bar{\pi}$, we have
$\operatorname{cond}_{\pi}\left(L_{1}\right)=$ true
Thus,
(72) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{cond}_{\pi}\left(L_{1}\right)=$ true

By rule OControl on [72], we have
(73) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{exec}\left(L_{1}\right)$

From $\pi$, we have
(74) name $_{\pi}\left(L_{1}\right)=$ tryLock 1
(75) $R_{2} \in$ Labels(tryLock1)

From $\pi$, we have
$\operatorname{cond}_{\pi}\left(R_{2}\right)=$ true
Thus,
(76) $\pi, \Gamma^{\prime \prime} \vdash L_{1}{ }^{\prime} \operatorname{cond}_{\pi}\left(R_{2}\right)=$ true

From $\bar{\pi}$, we have
(77) $\operatorname{PreReturns}_{\pi}\left(R_{2}\right)=\emptyset$

By rule ICONTROL on [73]-[77], we have
(78) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{exec}\left(L_{1}{ }^{\prime} R_{2}\right)$

From $\bar{\pi}$ we have
(79) $\quad o b j_{\pi}\left(R_{2}\right)=f_{2}$
(80) $\operatorname{name}_{\pi}\left(R_{2}\right)=$ read
(81) $\operatorname{retv}_{\pi}\left(R_{2}\right)=x_{2}$

By rule ID on [78] and [79]-[81], and then rule ConjElimL and rule ConjElimR, we have
(82) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{obj}\left(L_{1}{ }^{\prime} R_{2}\right)=f_{2}$
(83) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{name}\left(L_{1}{ }^{\prime} R_{2}\right)=$ read
(84) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{retv}\left(L_{1}{ }^{\prime} R_{2}\right)=L_{1}{ }^{\prime} x_{2}$

From the definition of isRead on [78], [82], [83] and rule ConjIntro, we have
(85) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{isRead}_{f_{2}}\left(L_{1}{ }^{\prime} R_{2}\right)$

Similarly, we have that
(86) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{exec}\left(L_{1}{ }^{\prime} W_{1}\right)$
(87) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{obj}\left(L_{1}{ }^{\prime} W_{1}\right)=f_{1}$
(88) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{name}\left(L_{1}{ }^{\prime} W_{1}\right)=$ write
(89) $\pi, \Gamma^{\prime \prime} \vdash \arg 1\left(L_{1}{ }^{\prime} W_{1}\right)=1$
(90) $\pi, \Gamma^{\prime \prime} \vdash$ isWrite $_{f_{1}}\left(L_{1}{ }^{\prime} W_{1}\right)$

By rule UnivElim on [51], and [90], we have
(91) $\pi, \Gamma^{\prime \prime} \vdash L_{1}{ }^{\prime} \overline{W_{1}} \preceq_{f_{1}} l_{W} \vee \quad L_{2}{ }^{\prime} R_{1} \prec_{f_{1}}$ $L_{1}{ }^{\prime} \overline{W_{1}}$
By rule LSUBS on [91] and [71], we have
(92) $\pi, \Gamma^{\prime \prime} \vdash$

$$
\begin{aligned}
& L_{1}{ }^{\prime} W_{1} \preceq_{f_{1}} L_{0}{ }^{\prime} ' W_{01} \vee \\
& L_{2}{ }^{\prime} R_{1} \prec_{f_{1}} L_{1}{ }^{\prime} W_{1}
\end{aligned}
$$

From $\pi$, we have
(93) $L_{0} \rightarrow_{\pi} L_{1}$

By rule LSUBS on [66] and [70], we have
(94) $\pi, \Gamma^{\prime \prime} \vdash \operatorname{exec}\left(L_{0}\right)$

By rule P2X on [93], [94] and [73], we have
(95) $\pi, \Gamma^{\prime \prime} \vdash \overline{L_{0}} \prec \overline{L_{1}}$

By rule LSUBS on [49] and [71], we have
(96) $\pi, \Gamma^{\prime \prime} \operatorname{exec}\left(\overline{L_{0}}{ }^{\prime} W_{01}\right)$

By rule OX2IX on [95], and [96], and [86], we have
(97) $\pi, \Gamma^{\prime \prime} \vdash L_{0}{ }^{\prime}{ }^{\prime} W_{01} \prec L_{1}{ }^{\prime} W_{1}$

By rule Id on [96], we have
(98) $\pi, \Gamma^{\prime \prime} \vdash o b j\left(L_{0}{ }^{\prime} W_{01}\right)=f_{1}$

By rule X2L on [97], [98] and [87], we have
(99) $\pi, \Gamma^{\prime \prime} \vdash \overline{L_{0}{ }^{\prime}} W_{01} \prec_{f_{1}} L_{1}{ }^{7}{ }^{\prime}{ }_{1}$

By rule LASym on [99], and rule ConjElimL, we have
(100) $\pi, \Gamma^{\prime \prime} \vdash \neg\left(L_{1}{ }^{\prime} W_{1} \prec_{f_{1}} L_{0}{ }^{\prime} W_{01}\right)$

By rule DisjSyllL on [92], [100], we have
(101) $\pi, \Gamma^{\prime \prime} \vdash L_{2}{ }^{\prime} R_{1} \prec_{f_{1}}{\overline{L_{1}{ }^{\prime} W_{1}}}_{1}$

From $\pi$, we have
(102) $W_{2} \rightarrow_{\pi} R_{1}$

From rule P2X on [102], [20], [16], and weakening (Lemma 37), we have
$(103) \pi, \Gamma^{\prime \prime} \vdash L_{2}{ }^{\prime} W_{2} \prec L_{2}{ }^{\prime} R_{1}$
From $\pi$, we have
(104) $W_{1} \rightarrow_{\pi} R_{2}$

From rule P2X on [104], [86] and [78], we have
(105) $\pi, \Gamma^{\prime \prime} \vdash L_{1}{ }^{\prime} W_{1} \prec \bar{L}_{1}{ }^{\prime} R_{2}$

From rule XLTrans on [103], [101] and [105], we have

$$
(106) \pi, \Gamma^{\prime \prime} \vdash L_{2}{ }^{\prime} W_{2} \prec L_{1}{ }^{\prime} R_{2}
$$

From rule X2L on [106], [21] and [82], we have (107) $\pi, \Gamma^{\prime \prime} \vdash L_{2}^{\prime} W_{2} \prec_{f_{2}} L_{1}{ }^{\prime} R_{2}$

We show that

$$
\begin{aligned}
& \underline{(108)} \pi, \\
& \quad \Gamma^{\prime \prime} \vdash \forall \ell_{W}: \\
& \\
& \text { isWrite }_{f_{2}}\left(\ell_{W}\right) \Rightarrow \\
& \ell_{W} \preceq_{f_{2}} L_{2}{ }^{\prime} W_{2} \vee L_{1}^{\prime}{ }^{\prime} R_{2} \prec_{f_{2}} \ell_{W}
\end{aligned}
$$

Let
(109) $\Gamma^{\prime \prime \prime}=\Gamma^{\prime \prime} ;$ isWrite $_{f_{2}}\left(l_{W}^{\prime}\right)$

By rule UnivIntro and rule Condintro, we have to show that
$\pi, \Gamma^{\prime \prime \prime} \vdash l_{W}^{\prime} \preceq_{f_{2}} L_{2}{ }^{\prime} W_{2} \vee L_{1}{ }^{\prime} R_{2} \prec_{f_{2}} l_{W}^{\prime}$
By rule Premise on [109], we have
(110) $\pi, \Gamma^{\prime \prime \prime} \vdash i s W$ rite $_{f_{2}}\left(l_{W}^{\prime}\right)$

From definition of $i s W$ rite on [110], we have
(111) $\pi, \Gamma^{\prime \prime \prime} \vdash$

$$
\begin{aligned}
& \operatorname{obj}\left(l_{W}^{\prime}\right)=f_{2} \wedge \\
& \operatorname{name}\left(l_{W}^{\prime}\right)=\text { write } \wedge \\
& \operatorname{exec}\left(l_{W}^{\prime}\right)
\end{aligned}
$$

From the definition of $\pi$, we have
(112) calls $\left(f_{2}\right.$, write $)=\left\{W_{02}, W_{2}\right\}$

By rule SRc on [111] and [112], we have that for some fresh $\varsigma$,
(113) $\pi, \Gamma^{\prime \prime \prime} \vdash l_{W}^{\prime}=\varsigma^{\prime} W_{02} \vee l_{W}^{\prime}=\varsigma^{\prime} W_{2}$

We apply rule DisjElim on [113]:
Left:
(114) $\Gamma^{\prime \prime \prime \prime}=\Gamma^{\prime \prime \prime} ;\left(l_{W}^{\prime}=\varsigma^{\prime} W_{02}\right)$

By rule Premise on [114], we have
(115) $\pi, \Gamma^{\prime \prime \prime \prime} \vdash l_{W}^{\prime}=\varsigma^{\prime} W_{02}$

By rule LSUBS on [111], [115] and weakening (Lemma 37), we have

$$
\underline{(116)} \pi, \Gamma^{\prime \prime \prime \prime} \vdash \operatorname{exec}\left(\varsigma^{\prime} W_{02}\right)
$$

From $\pi$, we have
(117) $W_{02} \in$ Labels $_{\pi}$ (init)

By rule Callee on [116] and [117], we have
(118) $\pi, \Gamma^{\prime \prime \prime \prime} \vdash \neg(\overline{\varsigma=\epsilon})$
(119) $\pi, \Gamma^{\prime \prime \prime \prime \prime} \vdash \operatorname{exec}(\varsigma)$
(120) $\pi, \Gamma^{\prime \prime \prime \prime} \vdash \operatorname{obj}(\varsigma)=$ this
(121) $\pi, \Gamma^{\prime \prime \prime \prime} \vdash \operatorname{name}(\varsigma)=$ init

From $\pi$, we have
(122) calls $\sin _{\pi}($ this, init $)=\left\{L_{0}\right\}$

By rule Src on [118]-[122], we have
(123) $\pi, \Gamma^{\prime \prime \prime \prime} \vdash \varsigma=\overline{L_{0}}$

By rule LSUBS on [115], [123], we have
(124) $\pi, \Gamma^{\prime \prime \prime \prime} \vdash l_{W}^{\prime}=L_{0}{ }^{\prime} W_{02}$

By rule LSUBS on [111], [124], we have
(125) $\pi, \Gamma^{\prime \prime \prime} \vdash o b \overline{j\left(L_{0}\right.}, \overline{\left.W_{02}\right)}=f_{2}$
(126) $\pi, \Gamma^{\prime \prime \prime} \vdash \operatorname{exec}\left(L_{0}{ }^{\prime} W_{02}\right)$

From $\pi$, we have
(127) $L_{0} \rightarrow_{\pi} L_{2}$

By rule P2X on [127], [94] and [11], weakening (Lemma 37), we have

$$
\text { (128) } \pi, \Gamma^{\prime \prime \prime \prime \prime} \vdash L_{0} \prec L_{2}
$$

By rule OX2IX on [128], and [126], and [20], we have

$$
\left(\underline{(129)} \pi, \Gamma^{\prime \prime \prime \prime} \vdash L_{0}{ }^{\prime} W_{02} \prec L_{2}{ }^{\prime} W_{2}\right.
$$

By rule X2L on [129], and [125], and [21], we have

$$
\underline{(130)} \pi, \Gamma^{\prime \prime \prime \prime} \vdash L_{0}{ }^{\prime} W_{02} \prec_{f_{2}} L_{2}{ }^{\prime} W_{2}
$$

By rule DisjIntroL on [130], we have (131) $\pi, \Gamma^{\prime \prime \prime} \vdash$

$$
\begin{aligned}
& L_{0}{ }^{\prime} W_{02} \preceq_{f_{2}} L_{2}{ }^{\prime} W_{2} \vee \\
& L_{1}{ }^{\prime} R_{2} \prec_{f_{2}} L_{0}{ }^{\prime} W_{02}
\end{aligned}
$$

By rule LSUBS on [131] and [124], we have

$$
\begin{gathered}
\pi, \Gamma^{\prime \prime \prime} \vdash \\
l_{W}^{\prime} \npreceq_{f_{2}} L_{2}{ }^{\prime} W_{2} \vee \\
L_{1}, R_{2} \prec_{f_{2}} l_{W}^{\prime}
\end{gathered}
$$

Right:

$$
\text { (133) } \Gamma^{\prime \prime \prime \prime}=\Gamma^{\prime \prime \prime} ;\left(l_{W}^{\prime}=\varsigma^{\prime} W_{2}\right)
$$

By rule Premise on [133], we have
(134) $\pi, \Gamma^{\prime \prime \prime \prime} \vdash l_{W}^{\prime}=\varsigma^{\prime} W_{2}$

Similar to the previous part, we can show that

$$
\underline{(135)} \pi, \Gamma^{\prime \prime \prime \prime} \vdash \varsigma=L_{2}
$$

By rule LSUBS on [134] and [135], we have (136) $\pi, \Gamma^{\prime \prime \prime \prime} \vdash l_{W}^{\prime}=L_{2}{ }^{\prime} W_{2}$

By rule DisjIntroR on [136], we have (137) $\pi, \Gamma^{\prime \prime \prime} \vdash l_{W}^{\prime} \preceq_{f_{2}}{\overline{L_{2}}{ }^{\prime} W_{2}}^{\prime}$

Thus, by rule DisjIntroL on [137], we have

$$
\begin{aligned}
& \pi, \Gamma^{\prime \prime \prime} \vdash \\
& \quad l_{W}^{\prime}, \preceq_{f_{2}} L_{2}{ }^{\prime} W_{2} \vee \\
& L_{1}, R_{2} \prec_{f_{2}} l_{W}^{\prime}
\end{aligned}
$$

By rule ConjIntro and the definition of $i s W r i t e$ on [20]-[22] and weakening (Lemma 37), we have (138) $\pi, \Gamma^{\prime \prime} \vdash$ isWrite $_{f_{2}}\left(L_{2}{ }^{\prime} W_{2}\right)$

By rule ConjIntro and the definition of isWriter on [138], [107], and [108], we have (139) $\pi, \overline{\Gamma^{\prime \prime} \vdash} i^{s / \overline{W r} \text { iter }_{f_{2}}\left(\bar{L}_{2}{ }^{\prime} W_{2}, L_{1}{ }^{\prime} R_{2}\right) ~}$

By rule ConjIntro and the definition of isRead on [78], [82] and [83], we have
$(140) \pi, \Gamma^{\prime \prime} \vdash$ is $^{-2} \operatorname{Read}_{f_{2}}\left(L_{1}{ }^{\prime} R_{2}\right)$
From rule AREG' on [140] and [139], we have
(141) $\left.\pi, \Gamma^{\prime \prime} \vdash \operatorname{retv} \overline{\left(L_{1}{ }^{\prime}\right.} R_{2}\right)=\overline{\arg } 1\left(L_{2}{ }^{\prime} W_{2}\right)$

By rule ETrans and rule ESYM on [141], [84] and [23], we have
(142) $\pi, \Gamma^{\prime \prime} \vdash L_{1}^{\prime} x_{2}=1$

By rule Zero and rule ESUBS on [142], we have

$$
\left(\underline{143)} \pi, \Gamma^{\prime \prime} \vdash \neg\left(L_{1}^{\prime} x_{2}=0\right)\right.
$$

From $\pi$, we have that
(144) $\operatorname{cond}_{\pi}\left(C_{1 f}\right)=\neg\left(x_{2}=0\right)$
(145) name $_{\pi}\left(L_{1}\right)=$ tryLock1
(146) $C_{1 f} \in$ Labels $_{\pi}($ tryLock 1$)$
(147) $\operatorname{PreReturns}_{\pi}\left(C_{1 f}\right)=\emptyset$

From [144], we have
$(148) \quad L_{1}{ }^{\prime} \operatorname{cond}_{\pi}\left(C_{1 f}\right)=\neg\left(L_{1}{ }^{\prime} x_{2}=0\right)$
From [143] and [148], we have
$\left(\underline{149)} \pi, \Gamma^{\prime \prime} \vdash L_{1}{ }^{\prime} \operatorname{cond}_{\pi}\left(C_{1 f}\right)\right.$
By rule ICONTROL on [73], [146], [145], [149], [147] we have

$$
\underline{(150)} \pi, \Gamma^{\prime \prime} \vdash \operatorname{exec}\left(L_{1}{ }^{\prime} C_{1 f}\right)
$$

From $\pi$, we have that

$$
\begin{aligned}
& (151) \\
& (\overline{152}) \\
& C_{1 f} \in \text { Returns }_{\pi}(\text { try Lock } 1) \\
& \underline{\pi}\left(C_{1 f}\right)=\text { false }
\end{aligned}
$$

By rule Id on [150] and [152], we have

$$
\text { (153) } \pi, \Gamma^{\prime \prime} \vdash \arg 1\left(L_{1}{ }^{\prime} C_{1 f}\right)=\text { false }
$$

By rule Ret on [150], [151], we have

$$
\left(\underline{154)} \pi, \Gamma^{\prime \prime} \vdash \operatorname{retv}\left(\overline{\left.L_{1}\right)}=\arg 1\left(L_{1}{ }^{\prime} C_{1 f}\right)\right.\right.
$$

By rule ETrans and rule ESYM on [153], [154], we have

$$
\pi, \Gamma^{\prime \prime} \vdash \operatorname{retv}\left(L_{1}\right)=\text { false }
$$

## Chapter 6

## Syntactic TM Correctness

We define the correctness of TM algorithms as a syntactic property of them. The syntactic statement of the correctness condition in the program logic makes it possible to verify a TM algorithm specification by syntactic deductions instead of model checking all execution histories of the specification.

In this chapter, we first axiomatize the properties of the client transactions and prove that they are valid for every TM algorithm specification.

Then, we define the markability assertions as the correctness condition of TM algorithm specifications. The markability assertions are parametrized with the marking relation. The effect and access orders of a TM algorithm specification should be captured as its marking relation. We say that a TM algorithm specification is markable if there is a marking of it such that assuming the client transaction axioms, the markability assertions can be derived. We prove that a TM algorithm specification is opaque if it is markable. Therefore, defining the marking relation and then deriving the markability assertions is a sound proof technique for opacity of TM algorithm specifications.

### 6.1 Client Transactions

In the subsection 2.2.2, we defined client transactions. In this subsection, we axiomatize the properties of the client transactions as a set of assertions and prove their validity for every TM algorithm specification. These properties are later assumed to prove markability.

Let us define

$$
\begin{align*}
i \operatorname{sInit}(t) & =\operatorname{exec}(t) \wedge \operatorname{obj}(t)=\operatorname{this} \wedge \operatorname{name}(t)=\operatorname{init}  \tag{6.1}\\
i \operatorname{Read}(t) & =\operatorname{exec}(t) \wedge \operatorname{obj}(t)=\operatorname{this} \wedge \operatorname{name}(t)=\operatorname{read}  \tag{6.2}\\
\operatorname{isWrite}(t) & =\operatorname{exec}(l) \wedge \operatorname{obj}(t)=\operatorname{this} \wedge \operatorname{name}(t)=\text { write }  \tag{6.3}\\
i s \operatorname{Commit}(t) & =\operatorname{exec}(t) \wedge \operatorname{obj}(t)=\text { this } \wedge \operatorname{name}(t)=\operatorname{commit}  \tag{6.4}\\
i s \operatorname{Committed}(\tau) & =\exists \ell: \operatorname{isCommit}(\ell) \wedge \text { thread }(\ell)=\tau \wedge \operatorname{retv}(\ell)=\mathbb{C}  \tag{6.5}\\
\operatorname{isAborted}(\tau) & =\exists \ell: \operatorname{exec}(\ell) \wedge \operatorname{obj}(\ell)=\operatorname{this} \wedge \operatorname{thread}(\ell)=\tau \wedge \operatorname{retv}(\ell)=\mathbb{A} \tag{6.6}
\end{align*}
$$

Transactions have the following set of properties. $\Gamma_{1}$ : Every transaction is initialized. $\Gamma_{2}$ : Every transaction is initialized only once. $\Gamma_{3}$ : The initialization operation of each transaction is executed before its other operations. $\Gamma_{4}$ : If a transaction is committed, it executed the commit operation. $\Gamma_{5}$ : Every transaction executes the commit operation at most once. $\Gamma_{6}$ : The commit operation of each transaction is executed after its other operations. $\Gamma_{7}$ : Each transaction is either aborted or committed.

$$
\begin{align*}
& \Gamma_{0}=\Gamma_{1} \wedge \Gamma_{2} \wedge \Gamma_{3} \wedge \Gamma_{4} \wedge \Gamma_{5} \wedge \Gamma_{6} \wedge \Gamma_{7}  \tag{6.7}\\
& \Gamma_{1}=\forall t: \text { Let } l=\operatorname{initOf}(t): \operatorname{isInit}(l) \wedge \text { thread }(l)=t  \tag{6.8}\\
& \Gamma_{2}=\forall \ell, \ell^{\prime}:\left(\text { isInit }(\ell) \wedge \operatorname{isInit}\left(\ell^{\prime}\right) \wedge \operatorname{thread}(\ell)=\operatorname{thread}\left(\ell^{\prime}\right)\right) \Rightarrow \ell=\ell^{\prime}  \tag{6.9}\\
& \Gamma_{3}=\forall \ell, \ell^{\prime}:\left(\text { isInit }(\ell) \wedge \operatorname{exec}\left(\ell^{\prime}\right) \wedge \operatorname{obj}\left(\ell^{\prime}\right)=\operatorname{this} \wedge \operatorname{thread}(\ell)=\operatorname{thread}\left(\ell^{\prime}\right)\right) \Rightarrow \ell \preceq \ell^{\prime}  \tag{6.10}\\
& \Gamma_{4}=\forall t: \operatorname{Let} l=\operatorname{commitOf}(t): \operatorname{isCommitted}(t) \Rightarrow(\text { isCommit }(l) \wedge \operatorname{thread}(l)=t)  \tag{6.11}\\
& \Gamma_{5}=\forall \ell, \ell^{\prime}:\left(\text { isCommit }(\ell) \wedge \operatorname{isCommit}\left(\ell^{\prime}\right) \wedge \text { thread }(\ell)=\operatorname{thread}\left(\ell^{\prime}\right)\right) \Rightarrow \ell=\ell^{\prime}  \tag{6.12}\\
& \Gamma_{6}=\forall \ell, \ell^{\prime}:\left(\operatorname{exec}(\ell) \wedge \operatorname{obj}(\ell)=\operatorname{this} \wedge \text { isCommit }\left(\ell^{\prime}\right) \wedge \operatorname{thread}(\ell)=\operatorname{thread}\left(\ell^{\prime}\right)\right) \Rightarrow \ell \preceq\left(6^{\prime} .13\right)  \tag{z}\\
& \Gamma_{7}=\forall t:(\text { isCommitted }(t) \wedge \neg i s A b o r t e d(t)) \vee(\text { isAborted }(t) \wedge \neg i s C o m m i t t e d  \tag{6.14}\\
& (t))
\end{align*}
$$

The following lemma states that these properties of client transactions are valid for every TM algorithm specification.

Lemma 39. $\forall \pi \in \Pi_{T M}: \pi \models \Gamma_{0}$.
See the appendix section 10.5.1 for the proof.
The following lemma states that if an assertion $\mathcal{A}$ is derived for a TM specification $\pi$ assuming the properties of the client transactions, then $\mathcal{A}$ is valid for $\pi$.

Lemma 40. $\forall \pi \in \Pi_{T M}, \forall \mathcal{A}:\left(\pi, \Gamma_{0} \vdash \mathcal{A}\right) \Rightarrow(\pi \models \mathcal{A})$.
See the appendix section 10.5.1 for the proof.

$$
\begin{align*}
& i s T \operatorname{Read}\left(t_{R}\right) \Leftrightarrow  \tag{6.15}\\
& \operatorname{isRead}\left(t_{R}\right) \wedge \operatorname{retv}\left(t_{R}\right) \neq \mathbb{A} \\
& \text { isLocalTRead }\left(t_{R}\right) \Leftrightarrow  \tag{6.16}\\
& i s T \operatorname{Read}\left(t_{R}\right) \wedge \\
& \exists \ell_{W}: \operatorname{isTWrite}\left(\ell_{W}\right) \wedge \arg 1\left(t_{R}\right)=\arg 1\left(\ell_{W}\right) \wedge \operatorname{thread}\left(t_{R}\right)=\operatorname{thread}\left(\ell_{W}\right) \wedge \ell_{W} \prec t_{R} \\
& \text { isGlobalT Read }\left(t_{R}\right)=  \tag{6.17}\\
& i s T \operatorname{Read}\left(t_{R}\right) \wedge \neg i s L o c a l T \operatorname{Read}\left(t_{R}\right) \\
& \text { isTWrite }\left(t_{W}\right)=  \tag{6.18}\\
& \operatorname{isWrite}\left(t_{W}\right) \wedge \operatorname{retv}\left(t_{W}\right) \neq \mathbb{A} \\
& \text { isLocalTWrite }\left(t_{W}\right)=  \tag{6.19}\\
& \text { isTWrite }\left(t_{W}\right) \wedge \\
& \exists \ell_{W}^{\prime}: \operatorname{isTWrite}\left(\ell_{W}^{\prime}\right) \wedge \arg 1\left(t_{W}\right)=\arg 1\left(\ell_{W}^{\prime}\right) \wedge \operatorname{thread}\left(t_{W}\right)=\operatorname{thread}\left(\ell_{W}^{\prime}\right) \wedge t_{W} \prec \ell_{W}^{\prime} \\
& \text { isGlobalTWrite }\left(t_{W}\right)=  \tag{6.20}\\
& \text { isTWrite }\left(t_{W}\right) \wedge \neg i s L o c a l T W r i t e\left(t_{W}\right) \\
& \text { isCommitted }(\tau)=  \tag{6.21}\\
& \exists \ell: \operatorname{exec}(\ell) \wedge \operatorname{obj}(\ell)=\text { this } \wedge \operatorname{thread}(\ell)=\tau \wedge \operatorname{retv}(\ell)=\mathbb{C} \\
& \text { isTWriter }_{i}(\tau)=  \tag{6.22}\\
& \exists \ell_{W}: \operatorname{isTWrite}\left(\ell_{W}\right) \wedge \arg 1\left(\ell_{W}\right)=i \wedge \operatorname{thread}\left(\ell_{W}\right)=\tau \wedge \operatorname{isCommitted}(\tau)
\end{align*}
$$

Figure 6.1: Reads and Writes

### 6.2 Markability

Some preliminary definitions are presented in Figure 6.1. The marking assertions are defined in Figure 6.2. These program assertions mirror history assertions defined in Figure $\underline{3.4}$ and 3.5. We illustrated the notion of markability in the subsection 3.3.

We define the set of Markable TM algorithm as follows:
Definition 17 (Markable TM Algorithm). A TM algorithm $\pi$ is markable, if and only if there exists a marking relation $\sqsubseteq$ such that assuming $\Gamma_{0}$, isMarking $(\sqsubseteq)$ can be derived for $\pi$.
Markable $=\left\{\pi \mid \exists \sqsubseteq: \pi, \Gamma_{0} \vdash\right.$ isMarking $\left.(\sqsubseteq)\right\}$.
To prove the markability of a TM algorithm specification, its access and effect orders should be captured as the marking relation and assuming the client transaction axioms, the markability assertions should be derived for the specification. Markability is a proof technique for opacity. The following theorem states the soundness of this technique. A TM algorithm is opaque if the markability assertion is derivable for its specification.
Theorem 5 (Markability Soundness). A TM algorithm is opaque if it is markable. Markable $\subseteq$ Opaque .

See the appendix section 10.5.2 for the proof.

$$
\begin{aligned}
& \text { isMarkingRel }(\sqsubseteq) \Leftrightarrow \\
& \forall t_{1}, t_{2}, t_{3}: \\
& \quad\left(t_{1} \sqsubseteq t_{2} \vee t_{2} \sqsubseteq t_{1}\right) \wedge \\
& \left(t_{1} \sqsubseteq t_{2} \wedge t_{2} \sqsubseteq t_{1}\right) \Rightarrow\left(t_{1}=t_{2}\right) \wedge \\
& \left(t_{1} \sqsubseteq t_{2}\right) \wedge\left(t_{2} \sqsubseteq t_{3}\right) \Rightarrow\left(t_{1} \sqsubseteq t_{3}\right) \wedge \\
& \forall \ell_{R}, t: \text { Let } i=\arg 1\left(\ell_{R}\right): \\
& \quad\left(i s G l o b a l T R e a d\left(\ell_{R}\right) \wedge i s T W r i t e r s_{i}(t)\right) \Rightarrow \\
& \quad\left(\ell_{R} \sqsubseteq t \vee t \sqsubseteq \ell_{R}\right) \wedge \\
& \quad\left(\ell_{R} \sqsubseteq t \Rightarrow \neg t \sqsubseteq \ell_{R}\right) \wedge\left(t \sqsubseteq \ell_{R} \Rightarrow \neg \ell_{R} \sqsubseteq t\right)
\end{aligned}
$$

NoWriteBetween $n_{t, i}\left(t, \ell^{\prime}\right) \Leftrightarrow$
$\forall \ell:(i s T W r i t e(\ell) \wedge \operatorname{thread}(\ell)=t \wedge \arg 1(\ell)=i) \Rightarrow\left(\ell \preceq \ell \vee t^{\prime} \preceq \ell\right)$
NoWriterBetween $n_{i}\left(q_{1}, \sqsubseteq, q_{2}\right) \Leftrightarrow$
$\forall t: i s T W r i t e r_{i}(t) \Rightarrow t \sqsubseteq q_{1} \vee q_{2} \sqsubseteq t$
isLocalWriteObs $\Leftrightarrow$
$\forall \ell_{R}: \operatorname{isLocalTRead}\left(\ell_{R}\right) \Rightarrow$ Let $t=\operatorname{thread}\left(\ell_{R}\right), i=\arg 1\left(\ell_{R}\right):$
$\exists \ell_{W}: i s T W r i t e\left(\ell_{W}\right) \wedge \operatorname{thread}\left(\ell_{W}\right)=t \wedge \arg 1\left(\ell_{W}\right)=i \wedge$
$\ell_{w} \prec \ell_{R} \wedge$ NoWriteBetween $_{t, i}\left(\ell_{W}, \ell_{R}\right) \wedge$
$\operatorname{retv}\left(\ell_{R}\right)=\arg 2\left(\ell_{W}\right)$
isLastPreAccessor $\sqsubseteq\left(t^{\prime}, t_{R}\right) \Leftrightarrow$
Let $i=\arg 1\left(t_{R}\right), t=\operatorname{thread}\left(t_{R}\right):$
isTWriter $_{i}\left(t^{\prime}\right) \wedge$
$t^{\prime} \sqsubseteq t_{R} \wedge t^{\prime} \neq t \wedge$
NoWriter $^{\text {Between }}{ }_{i}\left(t^{\prime}, t_{R}\right)$
isGlobalWriteObs $(\sqsubseteq) \Leftrightarrow$
$\forall \ell_{R}: \operatorname{isGlobalTRead}\left(\ell_{R}\right) \Rightarrow \exists \ell_{W}: \operatorname{isGlobalTWrite}\left(\ell_{W}\right) \wedge$ Let $t^{\prime}=\operatorname{thread}\left(\ell_{W}\right):$
isLastPreAccessor $_{\sqsubseteq}\left(t^{\prime}, \ell_{R}\right) \wedge$
$\arg 1\left(\ell_{R}\right)=\arg 1\left(\ell_{W}\right) \wedge \operatorname{retv}\left(\ell_{R}\right)=\arg 2\left(\ell_{W}\right)$
isWriteObs(ந) $\Leftrightarrow$
isLocalWriteObs $\wedge i s G l o b a l W r i t e O b s(\sqsubseteq) ~$
isReadPres $(\sqsubseteq) \Leftrightarrow$
$\forall \ell_{R}: i s G l o b a l T R e a d ~\left(\ell_{R}\right) \Rightarrow$ Let $i=\arg 1\left(\ell_{R}\right), t=\operatorname{thread}\left(\ell_{R}\right):$
NoWriter Between $_{i}\left(\ell_{R}, \sqsubseteq, t\right) \wedge$ NoWriter Between $_{i}\left(t, \sqsubseteq, \ell_{R}\right)$
isRealTimePres $(\square) \Leftrightarrow$
$\forall t, t^{\prime}: t \preceq t^{\prime} \Rightarrow t \sqsubseteq t^{\prime}$
isMarking $(\sqsubseteq) \Leftrightarrow$
isMarkingRel $(\sqsubseteq) \wedge i s W r i t e O b s(\sqsubseteq) \wedge i s R e a d P r e s(\sqsubseteq) \wedge i s R e a l T i m e P r e s(\sqsubseteq)$
Figure 6.2: isMarking Assertions

## Chapter 7

## Verification of TM Algorithms

In the previous chapter, we presented markability as a proof technique for opacity of TM algorithm specifications. In this chapter, we prove the markability of two TM algorithms.

Given a TM algorithm specification, the access and effect orders of the algorithm can be readily captured as the execution and linearization order of specific method calls in the specification. The markability assertions can, then, be proved using the inference rules of the logic. First, we look at TL2 algorithm and then DSTM (visible reads) algorithm.

### 7.1 Marking TL2

Now, we define the marking relation for the TL2 algorithm specification that is presented in Figure 2.2.

Let us define

$$
\begin{align*}
\operatorname{Eff}(\tau) & = \begin{cases}\operatorname{initOf}(\tau)^{\prime} I 01 & \text { if } \text { isAborted }(\tau) \\
\operatorname{commitOf}(\tau)^{\prime} C 07 & \text { if } \operatorname{isCommitted}(\tau)\end{cases}  \tag{7.1}\\
\operatorname{readAcc}\left(t_{R}\right) & =t_{R}{ }^{\prime} R 04  \tag{7.2}\\
\operatorname{writeAcc}_{i}(\tau) & =\operatorname{commitOf(\tau )^{\prime }C16_{i}} \tag{7.3}
\end{align*}
$$

The marking $\sqsubseteq$ is the reflexive closure of $\sqsubset$ that is defined as follows:

$$
\begin{align*}
& \forall t, t^{\prime} \text { : } \\
& t \sqsubset t^{\prime} \Leftrightarrow E f f(t) \prec_{\text {clock }} \operatorname{Eff}\left(t^{\prime}\right) \\
& \forall \ell_{R}, t: i s T \operatorname{Read}\left(\ell_{R}\right) \wedge \text { isTWriter }_{i}(t) \Rightarrow \\
& \text { Let } i=\arg 1\left(\ell_{R}\right) \text { : }  \tag{7.4}\\
& t \sqsubset \ell_{R} \Leftrightarrow \text { write }^{\prime} \operatorname{cc}_{i}(t) \precsim \operatorname{readAcc}\left(\ell_{R}\right) \\
& \ell_{R} \sqsubset t \Leftrightarrow \operatorname{readAcc}\left(\ell_{R}\right) \prec \text { write }^{\prime} \operatorname{lcc}_{i}(t)
\end{align*}
$$

The effect order of transactions is the linearization order of their calls to the clock. The clock object numbers the snapshots. Every transaction reads an initial snapshot number at $I 01$. A committing transaction makes a new snapshot at C08. A TL2 transaction takes effect at $I 01$ if it is aborted and at $C 08$ if it is committed.

The access order of read operations and writer transactions to location $i$ is the execution order of their access to the reg $[i]$ register. The read method reads reg $[i]$ at $R 04$ and a writer transaction writes to reg $[i]$ at $C 16_{i}$.

The following lemma states that the relation $\sqsubseteq$ defined above is a marking relation for $\pi_{T L 2}$.
Lemma 41. $\pi_{T L 2}, \Gamma_{0} \vdash$ isMarking( $\left.\sqsubseteq\right)$.
This lemma is fully proved using the program logic formalized in PVS. The proof scripts are available at [49].

TL2 maintains write-observation by acquiring locks for the written locations in the commit method and also the orders $R 03 \rightarrow R 04, R 05 \rightarrow R 06, C 16 \rightarrow C 17 \rightarrow C 18$ and checking that the lock is released and that the two versions are equal in the read method.

TL2 maintains read-preservation by validations in both the read and the commit methods. The read-preservation is maintained in the read method by the orders $R 04 \rightarrow R 05 \rightarrow R 06, C 17 \rightarrow C 18$ and checking that the lock is released and the read version is no larger than the initial snapshot in the read method. The read-preservation is similarly maintained in the commit method by the orders $C 7 \rightarrow C 10 \rightarrow C 11, C 17 \rightarrow C 18$ and checking that the lock is released and the read version is no larger than the initial snapshot in the commit method. Checking that the lock is released forces concurrent writers to write their new versions so that the version check finds the violation.

Now, we can have opacity of TL2.
Theorem 6 (Opacity of TL2). $\pi_{T L 2} \in$ Opaque
Proof. Immediate from Theorem 41, Definition 17, and Theorem 5.

### 7.2 Marking DSTM (visible reads)

We now conjecture a marking relation for the DSTM algorithm (visible reads) specification presented in Figure 2.5 .

Let us have the following preliminary definitions

$$
\begin{align*}
& \text { isFirstTWrite }_{\tau}\left(t_{W}\right)={\operatorname{isTWrite}\left(t_{W}\right) \wedge \operatorname{thread}\left(t_{W}\right)=\tau \wedge}  \tag{7.5}\\
& \forall \ell_{W}^{\prime}:\left(i s T W r i t e\left(t_{W}\right) \wedge \operatorname{thread}\left(\ell_{W}^{\prime}\right)=\tau\right) \Rightarrow t_{W} \preceq \ell_{W} \\
& \operatorname{isLastTRead}_{\tau}\left(t_{R}\right)=i s T R e a d\left(t_{R}\right) \wedge \operatorname{thread}\left(t_{R}\right)=\tau \wedge  \tag{7.6}\\
& \forall \ell_{R}^{\prime}:\left(i s T \operatorname{Read}\left(t_{R}\right) \wedge \operatorname{thread}\left(\ell_{R}^{\prime}\right)=\tau\right) \Rightarrow \ell_{R} \preceq t_{R} \\
& \operatorname{isCommit}_{\tau}\left(t_{C}\right)=\operatorname{isCommit}^{\operatorname{Cl}}\left(t_{C}\right) \wedge \operatorname{thread}\left(\ell_{R}\right)=\tau  \tag{7.7}\\
& \operatorname{hasTRead}(\tau)=\exists \ell_{R}: \operatorname{isTRead}\left(\ell_{R}\right) \wedge \operatorname{thread}\left(\ell_{R}\right)=\tau  \tag{7.8}\\
& \operatorname{isEffOp}_{\tau}(t)=\left(\text { isAborted }^{(\tau)} \wedge \neg \neg \operatorname{hasRead}(\tau) \wedge \operatorname{isInit}_{\tau}(t)\right) \vee  \tag{7.9}\\
& \left(\text { isAborted }^{(\tau)} \text { ^ hasRead }(\tau) \wedge \operatorname{isLastTRead~}_{\tau}(t)\right) \vee \\
& \left(\text { isCommitted }^{(\tau)} \wedge \text { isCommit }_{\tau}(t)\right)
\end{align*}
$$

The assertion isFirstTWrite $e_{\tau}\left(t_{W}\right)$ states that $t_{W}$ is the first write method call of transaction $\tau$. The assertion $\operatorname{isLastTRead} d_{\tau}\left(t_{R}\right)$ states that $t_{R}$ is the last read method call of transaction $\tau$. The assertion $i s \mathrm{Commit}_{\tau}\left(t_{C}\right)$ states that $t_{C}$ is the commit method call of transaction $\tau$. The assertion
hasTRead $(\tau)$ states that transaction $\tau$ has a read method call. The assertion $i s E f f O p_{\tau}(t)$ states that the method call $t$ is the effect operation of transaction $\tau$.

Let us define

$$
\begin{align*}
\operatorname{Eff}(t) & = \begin{cases}t^{\prime} C 01 & \text { if } \text { isCommitted }(\tau) \\
t^{\prime} R 05 & \text { if } \operatorname{isAborted}(\tau) \wedge \operatorname{hasTRead}(\tau) \\
t^{\prime} I 01 & \text { if } \operatorname{isAborted}(\tau) \wedge \neg \operatorname{hasTRead}(\tau)\end{cases}  \tag{7.10}\\
\operatorname{readAcc}\left(t_{R}\right) & =t_{R} R 05  \tag{7.11}\\
\text { writeAcc }\left(t_{W}\right) & =t_{W} ' W 12 \tag{7.12}
\end{align*}
$$

The marking $\sqsubseteq$ is the reflexive closure of $\sqsubset$ that is defined as follows:

$$
\begin{align*}
& \forall t, t^{\prime}: \\
& \quad t \sqsubset t^{\prime} \Leftrightarrow \\
& \quad \forall \ell, \ell^{\prime}:\left(\text { isEffOp }_{t}(\ell) \wedge \operatorname{isEffOp}_{t^{\prime}}\left(\ell^{\prime}\right)\right) \Rightarrow \\
& \quad \operatorname{inv}(\operatorname{Eff}(\ell)) \triangleleft \operatorname{inv}\left(\text { Eff }^{\prime}\left(\ell^{\prime}\right)\right) \\
& \forall \ell_{R}, t: \operatorname{isTRead}\left(\ell_{R}\right) \wedge \text { isTWriter }_{i}(t) \Rightarrow \\
& t \sqsubset \ell_{R} \Leftrightarrow  \tag{7.13}\\
& \forall \ell_{W}: \text { isFirstTWrite }_{t}\left(\ell_{W}\right) \Rightarrow \\
& \quad \text { writeAcc }\left(\ell_{W}\right) \prec_{\text {start } \left.^{2}\right]} \operatorname{readAcc}\left(\ell_{R}\right) \\
& \ell_{R} \sqsubset t \Leftrightarrow \\
& \forall \ell_{W}: \operatorname{isFirstTWWrite}_{t}\left(\ell_{W}\right) \Rightarrow \\
& \quad \operatorname{readAcc}\left(\ell_{R}\right) \prec_{\text {start }[i]} \operatorname{writeAcc}\left(\ell_{W}\right)
\end{align*}
$$

A committed transactions takes effect at $C 01$ of its commit method call where its state is cased from $\mathbb{R}$ to $\mathbb{C}$. An aborted transaction that has a successful read operation takes effect at $R 05$ of its last successful read where the locator is updated. An aborted transaction that has no successful read operation takes effect at $I 01$ of its initialization operation.

The access order of read operations and writer transactions to location $i$ is the linearization order of their cas calls, $R 05$ and $W 12$, to the start $[i]$ register.

The algorithm maintains write-observation by deciding the stable value of a location based on the state of its last writer transaction.

As we illustrate with two examples in Figure 2.5 below, the algorithm maintains read-preservation by aborting the reader set when the location is being written and aborting the last writer transaction when the location is being read. Assume that the two locations $i_{1}$ and $i_{2}$ with the initial value $v_{1}$ are consistent if and only if they are equal. Transaction $T_{1}$ reads and transaction $T_{2}$ updates the values of the two locations to $v_{2}$.

While a location is being read, the algorithm aborts the last writer transaction of the location. Consider the example in Figure 7.1(a). If $T_{2}$ is allowed to commit after $\operatorname{read}_{T_{1}}\left(i_{1}\right)$ then $T_{1}$ can read new value of $i_{2}$. The old value of $i_{1}$ (the value $v_{1}$ ) and the new value of $i_{2}$ (the value $v_{2}$ ) are inconsistent with each other. To prevent $T_{1}$ from reading inconsistent data, either $T_{1}$ or $T_{2}$ should be aborted. During $\operatorname{read}_{T_{1}}\left(i_{1}\right)$, the algorithm aborts the last writer transaction that is $T_{2}$.

While a location is being written, the algorithm aborts the reader set of the location. Consider the example in Figure 7.1(b). Again, transaction $T_{1}$ can read inconsistent values. During write $T_{T_{2}}\left(i_{1}, v_{2}\right)$, the algorithm aborts the readers set of location $i_{1}$ that includes $T_{1}$. Thus, $T_{1}$ will not execute its
second read. (Note that aborting the reader set can be postponed until before committing the writer transaction $\left(T_{2}\right)$. This allows the reader transactions to have the chance of committing before the writer commits.)

$T_{1}$	$T_{2}$
	write $_{T_{2}}\left(i_{1}, v_{2}\right)$
	write $_{T_{2}}\left(i_{2}, v_{2}\right)$
$\operatorname{read}_{T_{1}}\left(i_{1}\right): v_{1}$	
	$\operatorname{commit}_{T_{2}}()$
$\operatorname{read}_{T_{1}}\left(i_{2}\right): v_{2}$	

(a) Aborting the Last Writer

$T_{1}$	$T_{2}$
read $_{T_{1}}\left(i_{1}\right): v_{1}$	
	write $_{T_{2}}\left(i_{1}, v_{2}\right)$
	write $_{T_{2}}\left(i_{2}, v_{2}\right)$
	commit $_{T_{2}}()$
read $_{T_{1}}\left(i_{2}\right): v_{2}$	

(b) Aborting the Reader Set

Figure 7.1: DSTM (visible reads) Preserving Reads

### 7.3 Marking NORec

Now, we present an informal definition of the marking relation for the NoRec algorithm specification of Figure 2.7.

Definition 18 (Marking NoRec). Consider an execution history $H \in \mathbb{H}$ (NORec). Let

$$
\begin{aligned}
\operatorname{REff}(T) & =\text { The last execution of I01 or V05 } \\
\operatorname{Eff}(T) & = \begin{cases}\operatorname{REff}(T) & \text { if } T \in \operatorname{Aborted}(H) \vee T W r i t e s \\
\operatorname{commitOf}(T)^{\prime} C 04 & \text { if } T \in \operatorname{Committed}(H) \wedge T W r i t e s \\
(H) \neq \emptyset\end{cases} \\
\operatorname{readAcc}(T, i) & = \begin{cases}R^{\prime} R 03 & \text { if } R E f f(T) \prec_{H} R^{\prime} R 03 \\
\operatorname{Let} R E f f(T)=V^{\prime} V 05 \text { in } V^{\prime} V 03_{i} & \text { if } R^{\prime} R 03 \prec_{H} R E f f(T)\end{cases} \\
\text { write } A c c(T, i) & =\operatorname{commitOf(T)^{\prime }C07_{i}}
\end{aligned}
$$

The marking $\sqsubseteq$ for $H$ is the reflexive closure of $\sqsubset$ that is defined as follows:

$$
\begin{gathered}
\left\{\left(T, T^{\prime}\right) \mid T, T^{\prime} \in \operatorname{Trans}(H) \wedge \operatorname{Eff}(T) \prec_{\text {seqLock }} \operatorname{Eff}\left(T^{\prime}\right)\right\} \cup \\
\left\{(T, R) \mid \exists i: R \in T \operatorname{Reads}(H), i=\arg 1(R), T \in \operatorname{Writers}_{H}(i) \wedge\right. \\
\left.\quad \text { writeAcc }(T, i) \prec_{H} \operatorname{readAcc}(T, i)\right\} \cup \\
\left\{(R, T) \mid \exists i: R \in T \operatorname{Reads}(H), i=\arg 1(R), T \in \operatorname{Writers}_{H}(i) \wedge\right. \\
\left.\operatorname{readAcc}(T, i) \prec_{H} \text { writeAcc }(T, i)\right\}^{\text {read }}
\end{gathered}
$$

An aborted transaction or a read-only transaction takes effect at the last execution of $I 01$ or $V 05$. This method call reads that most recent snapshot value that the transaction is still consistent for. A committed transactions that has write method calls takes effect at C04.

The access point of a read method call is at $R 03$ if the last recent snapshot is read before $R 03$; otherwise, it is at $V 03_{i}$ of the latest successful validate method call. The access point of a writer transaction to location $i$ is at $C 07_{i}$.

## Chapter 8

## Related Works

### 8.1 Verification of Transactional Memory

Researchers have proposed several correctness criteria for the correctness of TM algorithms such as opacity [28], VWC [44], and TMS1 and TMS2 [22]. Lesani et al. [51] proved that opacity is stronger than TMS1 and weaker than TMS2. Considering the promised safety properties, designing a correct TM algorithm is a formidable task. Thus, verification of TM algorithms has been a topic of recent attention.

Researchers have employed model checking, automatic invariant generation and theorem proving to verify the correctness of TM algorithms. Model checkers from Cohen et al. [11, 12], and Guerraoui et al. $[29,31,30]$ are the pioneering approach to verification of TM. Subsequently, the same approach was taken by O'Leary et al. [61] and Baek et al. [4]. Model checking can automate the verification process but is either based on assumed properties about the TM algorithm or only scalable to a finite number of threads and locations or simplified algorithms. Later, Emmi et al. [24] tried to automatically infer invariants that are strong enough to entail the correctness criterion. Compliance of the algorithms with the specification can be easily checked if the proper invariants can be automatically generated. On the other hand, this work reported resorting to simplified algorithms due to scalability issues. Later, Lesani et al. [50] presented a machine checked theorem proving framework and a full proof of NORec TM algorithm [16]. The framework can be employed to verify realistic algorithms but requires translation of the algorithm to a transition system and more importantly, the process is manual and involves coming up with non-trivial invariants. Singh [72] developed a runtime verification tool for TM algorithms. Although the tool is optimized with sound approximation techniques, the runtime overhead is still not negligible. In contrast to the previous works, we presented a program logic for static verification of TM algorithms. The logic is general and does not assume any specific property of the algorithms. The reasoning is carried out on the algorithm specification itself rather than its transition system. We applied the program logic to machine-checked verification of realistic TM algorithms.

Testing can increase the reliability of a TM algorithm. Manovit et al. [53] applied random testing to find bugs in the TCC TM system. Lourenco et al. [52] encountered several bugs during the porting of TL2 algorithm and presented traces that exhibit these bugs. They presented test programs that can produce the bug traces. Both of the above works arbitrarily execute a test program and check that the execution instance does not exhibit a bug. On the other hand, given a TM algorithm and
a bug pattern, our testing approach constructs a trace of the algorithm in the bug pattern if the algorithm is prone to the bug pattern.

Now, we consider each of the previous works in more detail.
Cohen et al. [11] verified small instances of some simple TM algorithms directly using a model checker. Inspired by the notions of conflict by Scott [69], they defined admissible interchanges of events in a history that can transform a concurrent history to a justifying sequential history. Later, the method was extended [12] to support non-transactional accesses to memory. This approach is limited to finite instances of the algorithms, especially for more complex algorithms.

Tasiran [73] presented a decomposition of serializability for a specific class of algorithms. Then, he verified that a particular algorithm refines each condition separately. Similar to our notion of marking, this approach decomposes the correctness condition but is limited to a particular class of algorithms.

Guerraoui et al. [29, 31] specified both the TM algorithm and the correctness condition as transition systems. Verifying the correctness of the TM algorithm reduces to deciding language inclusion of the former in the latter. Due to unbounded number of threads and locations, the transition systems have infinite states. They tackled the problem with a small-world theorem that states that every TM algorithm satisfying certain structural properties is correct if and only if it is correct for two threads and two memory locations. This result has an immediate practical implication: Verification of a TM transition system reduces to verification of small instances of it. To our knowledge, these structural properties have not been formally verified for any TM algorithm.

In a follow up research, Emmi et al. [24] proposed a method that in contrast to [29, 31] did not presume properties for TM algorithms. They rewrote the transition systems of the TM algorithms and strict serializability that were presented by previous work [31] as transition systems parametrized with the number of threads and locations. The product (or composition) of two parametrized systems is defined as a transition system that on each command, essentially transitions for both systems. Verification of the TM algorithm reduces to model-checking the following logical statement in the product transition system of the TM and strict serializability: for every state, for every action, if the guard of the TM transition system is satisfied then the guard of strict serializability is also satisfied. This essentially means that at each state, the TM transition system allows an action only if strict serializability allows it. To verify that a target statement is an invariant of a system, ideas from verification by invisible invariants and template-based invariant generation are adapted. The verification procedure tries to come up with inductive invariants of the system and check if those invariants entail the target statement. To find an inductive invariant, candidate invariants are generated from a template schema. Small instances of the parametrized system are thoroughly generated and the candidate invariants that are not invariants of these instances are filtered. The candidate inductive invariant is the conjunction of a subset of the remained candidate invariants that is valid in the initial state and is preserved in the transitions. If the inductive invariant does not entail the target statement, the procedure is repeated with a larger template scheme and larger instances of the system.

The above two approaches need translation of the TM algorithm specification to a transition system. Rewriting a TM algorithm to a transition system is a burden and prone to mistakes. In addition, a rigorous verification needs the proof of equivalence of the TM algorithm specification and its transition system. On the other hand, our program logic can reason on the algorithm specification itself rather than the transition system. As examples of mistakes in the translation of the algorithm specification to transition systems, the following can be noted. There is no visible reads in DSTM
algorithm [39] but the specifications of DSTM in [29, 31] and [24] abort the visible readers during the execution of the validate command. As another example, TL2 algorithm [18] is based on version numbers while the specifications of TL2 in [29, 31] and [24] replace the version numbers with the unprecedented notion of modified sets. The definition and proof of equivalence of version numbers to modified sets is missing. Furthermore, there has been a typo of writing os instead of $l s$ in the TL2 transition system in [31]. The follow up work [24] rewrote this specification and incorrectly fixed os to $w s$ and thus verified a different algorithm.

Scalability forced the above two approaches to use abstract models that assume away subtle interleavings of the practical TM algorithms. They modeled blocks of methods as state transitions. Thus, they assumed that fragments of TM methods run atomically and there is no interleaving during the execution of a fragment. The second work [24] assumed further atomicity by unifying two consecutive commands that the first work [31] considered for the commit method of TL2. The presumption that a fragment of a method executes atomically is barely valid in a TM algorithm. In fact, it is the subtle interleavings that render a TM algorithm incorrect. It is also notable that in their specifications of DSTM, aborting visible readers and committing the transaction are done in a single transition and are thus executed atomically. Therefore, the interleavings that the validation transition should prevent do not happen. Thus, the transition system is correct even without its validation transition. We rewrite the transition systems of [31] and [24] to make them more readable and present them in the appendix section 10.6. While the above two approaches worked on abstract models of TM algorithms, we presented specifications of TM algorithms that are close to their implementation.

Later, Guerraoui et al. $[30,71]$ considered the fact that fragments of methods cannot be assumed to run atomically. They presented more fine-grained versions of the algorithms in relaxed memory models. But to have the monotonicity property as one of the presumed structural properties, simplified versions of the algorithms were considered and verified. For example, DSTM is specified with no dynamic object allocation while DSTM is fundamentally based on dynamic creation of locator objects. The specification of DSMT does not have any distinction between read and write operations and the read operation simply calls the write operation. This means that similar to writes, reads acquire the location. This is while readers do not acquire the location in DSTM. In their specification, the commit operation writes to every location that is written to during the transaction. This is in contrast to the original algorithm that commits a transaction by a single cas operation. There are simplifications in TL2 as well. The check that the version of the read location is less than the read version is replaced with an equality check. This restricts the concurrency of the algorithm. A local array lver is introduced that is written during the read operations and checked during the commit procedure. This local array does not exist in the original algorithm.

After Guerraoui et al. [31, 30] model-checked abstract version of Intel's McRT STM algorithm, O'Leary et al. [61] applied Spin to model-check a more realistic specification of McRT algorithm. They verified serializability of McRT algorithm for two transactions each consisting of three read or write operations. Baek et al. [4] noted the abstract representation of TM algorithms in the previous works [31, 30]. Particularly, they noticed that the specification of TL2 in [31] does not model the version control mechanism using timestamps. They emphasized that TM algorithms should be modeled close to the implementation level so that potential bugs are not masked. They presented a model checker to check more realistic specifications of algorithms. The model checker can check TM algorithms that benefit from hardware components or support nested transactions. Using the model checker they could check programs with a small number of transactions and locations. Although they modeled
more realistic algorithms, they left relaxed execution for future work. In addition, similar to other works that apply model checking, scalability and state-state explosion is an issue. On the other hand, the semantics of our specification language allows relaxed execution and our program logic can prove the correctness of TM algorithms for arbitrary client programs.

Lesani et al. [50] presented a framework for verification of TM algorithms. Correctness conditions and algorithms are both specified using I/O automata, enabling hierarchical proofs that the algorithms implement the specifications. They used the framework to develop a machine-checked verification of the NORec TM algorithm [16]. The framework is extensible and new proofs can leverage existing ones, eliminating significant work. The framework can be employed to verify realistic algorithms but requires translation of the algorithm to a transition system and more importantly, the process involves manual specification of non-trivial invariants.

Singh [72] developed a runtime verification tool for TM algorithms. He formalizes correctness conditions as a set of conflicts on transactions. The tool builds the conflict graph at runtime and checks that the graph is acyclic. Although it combines coarse and precise runtime analyses to increase the performance of the checker, it leaves the scalability of the tool for future work. In contrast to this work, our approach is full static verification of TM algorithms.

Manovit et al. [53] applied random testing to find bugs in the TCC TM system. They used axiomatic formulation of TM semantics to check the correctness of test runs.

Lourenco et al. [52] ported TL2 from the Sun-pro C compiler, the Solaris operating system and Sparc machines to the gcc compiler, the Linux operating system and Intel x86 32 and x86 64 architectures. They encountered several bugs during the port and presented traces that exhibit these bugs. They presented test programs that can produce the bug traces. Re-executing the test programs increases the probability that they trigger the bugs.

Both of the above testing works arbitrarily execute the test programs and check if that execution instance exhibits a bug. On the other hand, given a TM algorithm and a bug pattern, our testing approach constructs a trace of the algorithm in the bug pattern if the algorithm can produce a trace in the bug pattern.

### 8.2 Concurrent Program Logics

Hoare [42] proposed the seminal deductive system to prove the (partial) correctness of sequential imperative programs. Hoare logic presents axioms and deduction rules on triples of pre-condition, statement and post-condition.

Since Hoare [42] proposed the seminal program logic to prove the (partial) correctness of sequential imperative programs, many extensions of it are proposed in attempts to reason about parallel programs.

Owicki and Gries [62] extended Hoare deductive system to reason about parallel programs. Their key idea is that the effect of executing a set of statements in parallel is the same as executing each one by itself, if they do not interfere. A statement does not interfere with another statement if and only if every intermediate assertion between atomic actions of the latter is preserved by every atomic action of the former.

The Owicki-Gries definition of interference-freedom is not compositional and therefore the proof technique is not modular. Aiming for a compositional proof technique, Jones [46] modeled interference as a binary relation on states and proposed the rely/guarantee deductive system. In this system,
each assertion about a statement not only contains a pre-condition and a post-condition but also a rely relation modeling the interference from other threads and a guarantee relation modeling the interference of this statement for other threads. Nieto [58] and Coleman and Jones [13] proved soundness of rely/guarantee reasoning. There are strongly related verification methods [56, 37, 2] collectively known as assume/guarantee.

To reason about heap-manipulating programs, Reynolds and others [66, 45] developed separation logic as an extension of Hoare logic. Heap-manipulating programs allocate, deallocate, read from and write to heap locations. Separation logic introduces assertions to describe heaps particularly the separating conjunction that asserts that the heap can be divided to two separate parts such that each part satisfies its corresponding conjunct. Separation logic supports local reasoning through the frame rule that states that the execution of a command does not change if the heap is extended with a separate part.

To enable sharing read-only locations, Boyland [8] introduced fractional permissions and later, Bornat and others [7] adapted separation logic to associate permissions with locations. A permission is a value between zero and one. New locations are allocated with the full permission. Writing to but not reading from a location needs its full permission. A location with a definite permission can be split to the separating conjunction of the location with itself such that the permission is divided between the two copies. Dually, permissions are summed when the separating conjunction of the location with itself is merged to a single location.

Separation logic does not allow sharing locations among threads. O'Hearn [59] augmented separation logic with shared resources and introduced concurrent separation logic. A resource is a set of variables and a resource invariant. Variables of a resource can be accessed only inside conditional critical regions (CCR). CCRs on the same resource execute in mutual exclusion. A CCR can rely on the resource invariant at the entry and should re-establish it at the end. A CCR can move the ownership of locations (of the resource invariant) from the resource to the calling thread and vice versa. Brooks [9], Hayman [36] and Vafeiadis [74] defined semantics for and proved the soundness of concurrent separation logic.

Separation logic does not support modular verification of modules and their clients. O'Hearn and others [60] extended separation logic to separately verify the implementations and the clients of a module. The procedures of a module have interface specifications and share a resource invariant. The resource invariant changes if the state representation of the module changes. The hypothetical frame rule, a generalization of the classical frame rule, states that if a client of a module is verified using the interface specifications of the module, then it is verified with every resource invariant for the module. Later, Parkinson and Bierman [65] extended the idea with abstract predicates to represent interface specifications. Abstract predicates can represent multiple instances of a class and can be extended to reason about class hierarchies.

Concurrent separation logic can reason about locks but it can only model a bounded number of pre-allocated and non-aliased locks and threads. To overcome these limitations, Gotsman and others [27] extended separation logic with storable locks and threads. Storable locks can be dynamically allocated, stored in the heap and deallocated. Each lock is allocated as an instance of a sort. Each sort is associated with a definite invariant. A thread that acquires a lock gets the lock invariant and should re-establish the invariant when it releases the lock. In other words, the ownership of the lock invariant is transfered between the lock itself and accessing threads. In an independent work, Hobor and others [43] extended concurrent separation logic with allocatable locks. A locks is allocated with a definite invariant. Similar to Gotsman and others' work, the ownership invariant is transfered to
the thread that locks the lock and is transfered back to the lock when it is unlocked. Later, Buisse and others [10] elaborated the semantics and soundness of these logics.

Rely/guarantee can reason about interfering threads. Separation logic, on the other hand, can separate parts of state and hence supports local reasoning. Vafeiadis and Parkinson [75] aggregated the strengths of the two logics and presented RGSep logic. RGSep splits state into shared state that is accessible by all threads and local state which is accessible by a single thread. It uses rely/guarantee to reason about the shared state and separation logic to reason about the local state. The key inference rule is for the critical region (atomic block). The intermediate states of a critical region is not interfered by and does not interfere other threads. In an independent similar work, Feng and others [26] presented SAGL as an integration of the two logics. Following these two efforts, Feng [25] incorporated separation furthermore to the rely and guarantee conditions and introduced local rely/guarantee ( $L R G$ ) logic. LRG supports local reasoning about separate parts of the shared state. Therefore, it supports modular reasoning not only for the local state but also the shared state. It also allows local sharing of state among a subset of threads.

Rely/guarantee reasoning allows reasoning about the interference of parallel composition of threads. On the other hand, threads are usually dynamically started by fork and collected by join commands. Dodds and others [21] proposed deny/guarantee reasoning that allows interference to be dynamically split to separate parts at the fork command and recombined at the join command. The idea of separation of interference is inspired by separation of state in separation logic. Interference is described using deny and guarantee permissions: a deny permission specifies that the environment does not do an action and a guarantee permission specifies that the current thread can do an action.

A data structure can be represented with a single abstract predicate [65]. However, multiple finegrained abstract predicates are often needed to refer to the same data structure. Dinsdale-Young and others [20] presented concurrent abstract predicates that allow multiple abstractions in the presence of sharing. The definition of a concurrent abstract predicate specifies both the permitted actions and the state of the shared data structure. The definition of the predicates are used to verify the implementation of the data structure. The predicates are used to separately verify clients.

## Chapter 9

## Conclusions and Future Works

We introduced an architecture-independent specification language for synchronization algorithms. We presented the specification of several TM algorithms. We hope that other researchers represent algorithms in the language. The language can serve as a shared platform for development of verification benchmark suites of synchronization algorithms. These suites can facilitate comparison of verification techniques. Compilers can be developed that optimize the translation of algorithm specifications to particular operating systems and architectures. Particularly, fence allocation is an interesting future research direction.

We introduced the markability correctness condition as the conjunction of intuitive invariants: write-observation and read-preservation. We proved the equivalence of markability and opacity correctness conditions. A future research direction is to study the inherent difficulty of each of the invariants and the interplay between the invariants and the liveness properties of transactional memory.

We have identified two bug patterns that lead to non-opacity. Samand is flexible and can accommodate a variety of bug patterns such as $H_{W E 2}$ that was suggested by a DISC reviewer. Samand outputs an execution trace of McRT that matches $H_{W E 2}$ in about 7 minutes. Our tool handles small bug patterns efficiently; scalability is left for future work. We hope that our observations and tool can help TM algorithm designers to avoid the write-skew, write-exposure, and other pitfalls. We envision a methodology in which TM algorithm designers use Samand during the design to avoid known pitfalls. Samand can be used also during maintenance of TM algorithms. For example, a set of bug patterns can serve as a regression test suite. Additionally, our tool can be used to avoid pitfalls in other synchronization algorithms.

We presented synchronization object logic (SOL) that supports reasoning about the execution order and linearization orders of method calls. We proved the soundness of the logic. Future research can study the completeness of the logic. We proved that the derivation of markability for an algorithm specification is a syntactic proof of its opacity. We used SOL to prove the markability of the TL2 algorithm in PVS. Future work can prove the markability of other TM algorithms. Furthermore, the applicability of the logic to prove the linearizability of concurrent data structures can be studied. Variants of the logic can be applied to prove liveness properties as well.

## Chapter 10

## Appendix

### 10.1 Synchronization Object Language

### 10.1.1 Specification

Let us define data and control dependency of statements. The notion of dependence that is described here is similar to the hardware notion of dependence. We define the context $\mathcal{R}$ as follows. [] denotes a hole.

$$
\begin{aligned}
\mathcal{R}::= & \text { if } b \mathcal{R} \text { else } s \mid \text { if } b s \text { else } \mathcal{R} \mid \quad \text { Context } \\
& \mathcal{R}, s|s, \mathcal{R}|
\end{aligned}
$$

A statement is data dependent to a method call if it accesses the return value of the method call. In a statement $s$, the statement $s^{\prime}$ is data-dependent on the method call labeled $c$ if there exists $x, o$, $n, \tau, u, \mathcal{R}_{1}$, and $\mathcal{R}_{2}$, such that
$s=\mathcal{R}_{1}\left[c_{1} \triangleright x=o . n_{\tau}(u)\right], \boldsymbol{R}_{2}\left[s^{\prime}\right]$
and $x$ appears in $s^{\prime}$.
Every statement in the scope of an if statement is control-dependent on the if statement. The statement $s^{\prime}$ is control-dependent on the if statement $s$ if there exists $b, \mathcal{R}$ and $s^{\prime \prime}$ such that
$s=$ if $b \mathcal{R}\left[s^{\prime}\right]$ else $s^{\prime \prime}$ or
$s=$ if $b s^{\prime \prime}$ else $\mathcal{R}\left[s^{\prime}\right]$.
Every statement before a return statement in the program is control-dependent to it. In a statement $s$, the statement $s^{\prime}$ is control-dependent on the return statement labeled $c$ if there exists $u, \mathcal{R}_{1}$, and $\mathcal{R}_{2}$, such that
$s=\mathcal{R}_{1}\left[s^{\prime}\right], \mathcal{R}_{2}[c \triangleright$ return $u]$
Let $\operatorname{Calls}_{\pi}(\phi, n)$ denote the set of labels of call statements in $\pi$ where the method name $n$ is called on the base object name $\phi$.

$$
\begin{equation*}
\left.\operatorname{Call}_{\pi}(\phi, n)=\left\{c \mid c \in \operatorname{Labels}(\pi) \wedge \operatorname{basename}^{\left(o b j_{\pi}\right.}(c)\right)=\phi \wedge \operatorname{name}_{\pi}(c)=n\right\} \tag{10.1}
\end{equation*}
$$

Consider a method definition $n$ of a specification $\pi$.

$$
\operatorname{def} n_{t}\left(x^{*}\right) s, r
$$

The set $\operatorname{PreReturns}_{\pi}(c)$ is the set of labels of the return statements before $c$ in the body of $n$.

$$
\begin{align*}
\operatorname{PreReturn}_{\pi}(c)=\left\{c^{\prime} \mid\right. & \exists \mathcal{R}_{1}, \mathcal{R}_{2}, u, q, x, o, n, \tau, u^{\prime}:  \tag{10.2}\\
s & =\mathcal{R}_{1}\left[c^{\prime} \triangleright \text { return } u\right], \mathcal{R}_{2}[q] \wedge \\
q & \left.=\left(c \triangleright x=o . n_{\tau}\left(u^{\prime}\right)\right) \vee q=\left(c \triangleright \text { return } u^{\prime}\right)\right\}
\end{align*}
$$

### 10.1.2 Semantics

### 10.1.2.1 Execution History

Lemma 1:
We Assume
(1) $l \prec_{X} l^{\prime}$

From [1] and definition of $\sim_{X}$, we have
(2) $\neg\left(l^{\prime} \sim_{X} l\right)$

From [1], we have
(3) $\bar{r} E v(l) \triangleleft_{X} i E v\left(l^{\prime}\right)$

As $\bar{X}$ is a valid history, we have
(4) $i E v(l) \triangleleft_{X} r E v(l)$
(5) $i E v\left(l^{\prime}\right) \triangleleft_{X} r E v\left(l^{\prime}\right)$

From [4], [3], and [5], we have
(6) $\bar{i} E v \overline{(l)} \triangleleft_{X} r \bar{E} v\left(l^{\prime}\right)$

From [6], we have
(7) $\neg\left(r E v\left(l^{\prime}\right) \triangleleft_{X} i E v(l)\right)$

From [7], and definition of $\prec_{X}$, we have
(9) $\neg\left(l^{\prime} \prec_{X} l\right)$

From [3] and [7], we have
(9) $\neg\left(l^{\prime}=l\right)$

Lemma 2:
Straightforward from the definition of $\prec_{X}$.
Lemma 3:
We have
(1) $l_{1} \prec_{X} l_{2}$
(2) $l_{3} \prec_{X} l_{4}$
(3) $l_{2} \sim_{X} l_{3}$

From [1], we have
(4) $\bar{r} E v\left(l_{1}\right) \triangleleft_{X} i E v\left(l_{2}\right)$

From [2], we have
(5) $\bar{r} E v\left(l_{3}\right) \triangleleft_{X} i E v\left(l_{4}\right)$

From [3], we have
(6) $\neg\left(l_{3} \prec_{X} l_{2}\right)$

From [6], we have
(7) $\neg\left(r E v\left(l_{3}\right) \triangleleft_{X} i E v\left(l_{2}\right)\right)$

From [7], we have
(8) $\bar{i} E v\left(l_{2}\right) \triangleleft_{X} r E v\left(l_{3}\right)$

From [4], [8], and [5], we have
(9) $\bar{r} E \bar{v}\left(l_{1}\right) \triangleleft_{X} \bar{i} E v\left(l_{4}\right)$

From [9], we have
$l_{1} \prec_{X} l_{4}$
Lemma 4:
Straightforward from the definition of $\prec_{X}$ and $\sim_{X}$.
Lemma 5:
Straightforward from the definition of $\prec_{X}$.
Lemma 6:
Straightforward from the definition of $\prec_{X}$ and $\triangleleft_{X}$.
Lemma 7:
Straightforward from the definition of $\prec_{X}$ and $\triangleleft_{X}$.

### 10.1.2.2 Synchronization Object Types

Lemma 8:
Straightforward from $\prec_{X} \subseteq \prec_{L}$.
Lemma 9:
Straightforward from Lemmas 13, [4], 8, and 10.
Lemma 10:
We have
(1) $l \prec_{L} l^{\prime}$

From [1], we have
(2) $\bar{r} E v(l) \triangleleft_{L} i E v\left(l^{\prime}\right)$

From the well-formedness of the history $O$, we have
(3) $i E v(l) \triangleleft_{L} r E v(l)$
(4) $i E v\left(l^{\prime}\right) \triangleleft_{L} r E v\left(l^{\prime}\right)$

From [3], [2] and [4], we have
(5) $\bar{i} E v(l) \triangleleft_{L} r \bar{E} v\left(l^{\prime}\right)$

From [5], we have
(6) $\neg\left(r E v\left(l^{\prime}\right) \triangleleft_{L} i E v(l)\right)$

From [2] and [6], we have
(7) $\neg\left(l^{\prime}=l\right)$

From the definition of $\prec_{X}$ on [6], we have
(8) $\neg\left(l^{\prime} \prec_{L} l\right)$

The conclusion is
[8] and [7]
Lemma 11:
Straightforward from the fact that $L$ is a member of sequential specification and a sequential specification is a set of sequential histories and the execution order is total in sequential histories.

Lemma 12:
Straightforward from the fact that $L$ is a member of sequential specification and a sequential specification is a set of sequential histories and the execution order is total in sequential histories.
We have
(1) $l \in X$
(2) $l^{\prime} \in X$
(3) $X \equiv L$
(4) $L \in \operatorname{SeqSpec}(o)$

From [4], we have
(5) $\bar{L} \in$ Sequential

From [3], [1] and [2], we have
(6) $\bar{l} \in \bar{L}$
(7) $l^{\prime} \in L$

From [4], [6] and [7], we have
$l \prec_{L} l^{\prime} \bar{\vee} l^{\prime} \prec_{L} \bar{l} \vee l=l^{\prime}$

Lemma 13:
Straightforward from the fact that $L$ is equivalent to $X$.
We have
(1) $X \equiv L$
(2) $L \in \operatorname{SeqSpec}(o)$
(3) $l \prec_{L} l^{\prime}$

From [3], we have
(4) $\bar{l} \in L$
(5) $l^{\prime} \in L$

From [2] on [4] and [5], we have
(6) $o b j_{L}(l)=o$
(7) $o b j_{L}\left(l^{\prime}\right)=o$

From [1] on [4] and [5], we have
$l \in \bar{X}$
$l^{\prime} \in X$
From [1] on [6] and [7], we have

$$
\operatorname{obj}_{X}(l)=o
$$

$$
\operatorname{obj}_{X}\left(l^{\prime}\right)=o
$$

Lemma 14:
Using L2X and XTotal, we have four cases:

Case: $l \prec l^{\prime}$
Straightforward from XTrans.
Case: $l \sim l^{\prime}$
Straightforward from XXTrans.
Case: $l^{\prime} \prec l$
Straightforward from X2L and LASym.
Case: $l^{\prime}=l$
Straightforward from LASym.
Lemma 15:
Derived from the semantics of basic objects (Definition 1) and the sequential specification of register (Definition 4).

Lemma 16:
Derived from the semantics of basic register (Definition 5).
Lemma 17:
This is a restatement of Theorem 3 from the original definition of linearizability []. Derivable from the semantics of linearizable objects (Definition 3) and the sequential specification of register (Definition 4).

Lemma 18:
Derivable from the semantics of linearizable objects (Definition 3) and the sequential specification of cas register (Definition 6).

Lemma 19:
Derivable from the semantics of linearizable objects (Definition 3) and the sequential specification of cas register (Definition 6).

Lemma 20:
Derivable from the semantics of linearizable objects (Definition 3), the sequential specification of the lock (Definition 7), the owner-respecting property (Definition $\overline{8}$ ), and that the sub-history for each thread is sequential (from the definition of execution histories).

Lemma 21:
Derived from Lemma 20.
Lemma 22:
Derived from Lemma 20 and the sequential specification of lock (Definition 7).
Lemma 23:
Derived from Lemma 20 and the sequential specification of lock (Definition 7).
Lemma 24:
Derived from Lemma 20 and the sequential specification of lock (Definition 7).

Lemma 25:
Derivable from the semantics of linearizable objects (Definition 3), the sequential specification of the lock (Definition 9), the owner-respecting property (Definition $2 \overline{5}$ ), and that the sub-history for each thread is sequential (from the definition of execution histories).

Lemma 26:
Derived from Lemma 25 .
Lemma 27:
Derived from Lemma $\underline{25}$ and the sequential specification of try-lock (Definition 9 ).
Lemma 28:
Derived from Lemma 25 and the sequential specification of try-lock (Definition 9).
Lemma 29:
Derived from Lemma $\underline{25}$ and the sequential specification of try-lock (Definition 9 ).
Lemma 30:
Derivable from the semantics of linearizable objects (Definition 3), the sequential specification of counter (Definition 11).

Lemma 31:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 12).

Lemma 32:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 12).

Lemma 33:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 13).

Lemma 34:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 13).

### 10.2 TM Correctness

### 10.2.1 The Marking Theorem

For the sake of brevity, we use the shorthand notation
$\exists l=o . n_{T}\left(v_{1}\right): v_{2} \in X$
for
$\exists l \in X: \operatorname{obj}_{X}(l)=o \wedge \operatorname{name}_{X}(l)=n \wedge \operatorname{thread}_{X}(l)=T \wedge \arg _{X}(l)=v_{1} \wedge \operatorname{retv}_{X}(l)=v_{2}$ and similarly for universal quantification.

We also use $W, R$ to denote labels.
Lemma 42. For all $S \in$ TSequential, $T \in S$, $S^{\prime}=\operatorname{Visible}(S, T)$, and $T^{\prime}, T^{\prime \prime} \in S^{\prime \prime}$, we have $T^{\prime} \underline{\preccurlyeq}_{S^{\prime}} T^{\prime \prime} \Leftrightarrow T^{\prime} \underline{\preccurlyeq}_{S} T^{\prime \prime}$.

Proof.

$$
\begin{aligned}
& T^{\prime} \preccurlyeq_{S^{\prime}} T^{\prime \prime} \\
\Leftrightarrow & S^{\prime}\left|T^{\prime} \triangleleft_{S^{\prime}} S^{\prime}\right| T^{\prime \prime} \vee T^{\prime}=T^{\prime \prime} \\
\Leftrightarrow & S\left|T^{\prime} \triangleleft_{S^{\prime}} S\right| T^{\prime \prime} \vee T^{\prime}=T^{\prime \prime} \\
\Leftrightarrow & S\left|T^{\prime} \triangleleft_{S} S\right| T^{\prime \prime} \vee T^{\prime}=T^{\prime \prime} \\
\Leftrightarrow & T^{\prime} \preccurlyeq_{S} T^{\prime \prime}
\end{aligned}
$$

In these four steps we apply:

1) the definition of $\varliminf_{S^{\prime}}$,
2) that the definition of Visible $(S, T)$ implies both $S^{\prime}\left|T^{\prime}=S\right| T^{\prime}$ and $S^{\prime}\left|T^{\prime \prime}=S\right| T^{\prime \prime}$,
3) $S^{\prime} \Subset S$, and
4) the definition of $\preccurlyeq_{S}$.

Lemma 43. For all $S \in T$ Sequential, $T \in S, i \in I, v, v^{\prime} \in V, R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S)$, $S^{\prime}=\operatorname{Visible}(S, T), T^{\prime} \in S^{\prime}$, and $W^{\prime}=$ write $_{T^{\prime}}\left(i, v^{\prime}\right) \in \operatorname{GlobalTWrites}(S)$, we have

$$
\text { NoWriteBetween }_{\left(S^{\prime} \mid i\right)}\left(W^{\prime}, R\right) \Leftrightarrow \text { NoWriterBetween }_{S, i}\left(T^{\prime}, \varliminf_{S}, T\right)
$$

Proof.

$$
\begin{aligned}
& \text { NoWriteBetween }_{\left(S^{\prime} \mid i\right)}\left(W^{\prime}, R\right) \\
& \Leftrightarrow \quad \forall W^{\prime \prime} \in T W \operatorname{rites}\left(S^{\prime} \mid i\right): W^{\prime \prime} \preceq_{\left(S^{\prime} \mid i\right)} W^{\prime} \vee R \preceq_{\left(S^{\prime} \mid i\right)} W^{\prime \prime} \\
& \Leftrightarrow \quad \forall T^{\prime \prime} \in S^{\prime} \mid i: \forall i^{\prime} \in I: \forall v^{\prime \prime} \in V: \forall W^{\prime \prime}=\text { write }_{T^{\prime \prime}}\left(i^{\prime}, v^{\prime \prime}\right) \in S^{\prime} \mid i: W^{\prime \prime} \preceq_{\left(S^{\prime} \mid i\right)} W^{\prime} \vee R \preceq_{\left(S^{\prime} \mid i\right)} W^{\prime \prime} \\
& \Leftrightarrow \forall T^{\prime \prime} \in S^{\prime} \mid i: \forall v^{\prime \prime} \in V: \forall W^{\prime \prime}=\text { write }_{T^{\prime \prime}}\left(i, v^{\prime \prime}\right) \in S^{\prime} \mid i: W^{\prime \prime} \preceq_{\left(S^{\prime} \mid i\right)} W^{\prime} \vee R \preceq_{\left(S^{\prime} \mid i\right)} W^{\prime \prime} \\
& \Leftrightarrow \forall T^{\prime \prime} \in S^{\prime}: \forall v^{\prime \prime} \in V: \forall W^{\prime \prime}=\text { write }_{T^{\prime \prime}}\left(i, v^{\prime \prime}\right) \in S^{\prime}: W^{\prime \prime} \preceq_{S^{\prime}} W^{\prime} \vee R \preceq_{S^{\prime}} W^{\prime \prime} \\
& \Leftrightarrow \quad \forall T^{\prime \prime} \in S^{\prime}: \forall v^{\prime \prime} \in V: \forall W^{\prime \prime}=\text { write }_{T^{\prime \prime}}\left(i, v^{\prime \prime}\right) \in S^{\prime}: T^{\prime \prime} \underline{\preccurlyeq}_{S^{\prime}} T^{\prime} \vee T \not \varliminf_{S^{\prime}} T^{\prime \prime} \\
& \Leftrightarrow \forall T^{\prime \prime} \in S^{\prime}: \forall v^{\prime \prime} \in V: \forall W^{\prime \prime}=\text { write }_{T^{\prime \prime}}\left(i, v^{\prime \prime}\right) \in S^{\prime}: T^{\prime \prime} \varliminf_{S} T^{\prime} \vee T \varliminf_{S} T^{\prime \prime} \\
& \Leftrightarrow \forall T^{\prime \prime} \in S^{\prime}: \forall v^{\prime \prime} \in V: \forall W^{\prime \prime}=\text { write }_{T^{\prime \prime}}\left(i, v^{\prime \prime}\right) \in S^{\prime}: T^{\prime \prime} \preccurlyeq_{S} T \Rightarrow T^{\prime \prime} \preccurlyeq_{S} T^{\prime} \\
& \Leftrightarrow \quad \forall T^{\prime \prime} \in S: \forall v^{\prime \prime} \in V: \forall W^{\prime \prime}=\text { write }_{T^{\prime \prime}}\left(i, v^{\prime \prime}\right) \in S: \\
& {\left[\left[\left(T^{\prime \prime}=T\right) \vee\left(T^{\prime \prime} \preccurlyeq_{S} T \wedge T^{\prime \prime} \in \operatorname{Committed}(S)\right)\right] \wedge\left[T^{\prime \prime} \preccurlyeq_{S} T\right]\right] \Rightarrow T^{\prime \prime} \preccurlyeq_{S} T^{\prime}} \\
& \Leftrightarrow \quad \forall T^{\prime \prime} \in S: \forall v^{\prime \prime} \in V: \forall W^{\prime \prime}=\text { write }_{T^{\prime \prime}}\left(i, v^{\prime \prime}\right) \in S: \\
& \left(T^{\prime \prime} \in \operatorname{Committed}(S) \wedge T^{\prime \prime}<_{S} T\right) \Rightarrow T^{\prime \prime} \preccurlyeq_{S} T^{\prime} \\
& \Leftrightarrow \forall T^{\prime \prime} \in \operatorname{Writers}_{S}(i): T^{\prime \prime} \preccurlyeq_{S} T \Rightarrow T^{\prime \prime} \underline{K}_{S} T^{\prime} \\
& \Leftrightarrow \forall T^{\prime \prime} \in \operatorname{Writers}_{S}(i): T^{\prime \prime} \underline{\preccurlyeq}_{S} T^{\prime} \vee T \varliminf_{S} T^{\prime \prime} \\
& \Leftrightarrow N_{o W r i t e r B e t w e e n ~}^{S, i}\left(T^{\prime}, \nwarrow_{S}, T\right)
\end{aligned}
$$

In these twelve steps, we apply:

1) the definition of NoWriteBetween,
2) the definition of Writes,
3) the definition of projection $S^{\prime} \mid i$,
4) $R, W^{\prime}$ and $W^{\prime \prime}$ access location $i$,
5) $S^{\prime} \in$ TSequential and $R \in \operatorname{GlobalTReads}\left(S^{\prime}\right)$ and $W^{\prime} \in \operatorname{GlobalTWrites}\left(S^{\prime}\right)$ (that are concluded from $S \in T$ Sequential, $R \in \operatorname{GlobalTReads}(S)$, $W^{\prime} \in \operatorname{GlobalTWrites}(S)$ and $S^{\prime}=\operatorname{Visible}(S, T)$.),
6) Lemma 42 ,
7) Boolean logic and that $\preccurlyeq_{S}$ is total,
8) the definition of Visible,
9) logical simplification,
10) the definition of Writers,
11) Boolean logic and that $\underline{K}_{S}$ is total, and
12) the definition of NoWriterBetween.

Lemma 44. TSequential $\subset$ Sequential
Proof. Straightforward from definitions of TSequential, THistory and Sequential.
Lemma 45. $\forall i \in I: \quad \forall v, v^{\prime} \in V: \forall T, T^{\prime} \in$ Trans: if $R=\operatorname{read}_{T}(i): v, W=$ write $_{T^{\prime}}(i, v), W^{\prime}=$ write $_{T}\left(i, v^{\prime}\right), S \in T$ Sequential, $W \prec_{S} R$, NoWriteBetween ${ }_{S}(W, R)$ and $W^{\prime} \prec_{S} R$, then $T=T^{\prime}$.

Proof. Suppose (1) $S \in T$ Sequential, (2) $W \prec_{S} R$, (3) NoWriteBetween ${ }_{S}(W, R)$ and (4) $W^{\prime} \prec_{S} R$. From [1] and Lemma 44, we have (5) $S \in$ Sequential. From [4] and [5], we have (6) $\neg\left(R \prec_{S} W^{\prime}\right)$. From [3] we have (7) $\overline{W^{\prime}} \preceq_{S} W \vee R \prec_{S} W^{\prime}$. From [6] and [7], we have (8) $W^{\prime} \preceq_{S} W$. From [2] and [8], we have (9) $W^{\prime} \preceq_{S} W \preceq_{S} R$. From [9], [1], and that $W^{\prime}$ and $R$ are by $T$ and $W$ is by $T^{\prime}$, we have $T=T^{\prime}$.

Lemma 46. Suppose $S \in T$ Sequential. We have:

$$
\begin{aligned}
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\operatorname{write}_{T^{\prime}}(i, v) \in \operatorname{Visible}(S, T): \\
& W \prec_{(\operatorname{Visible}(S, T) \mid i)} R \wedge \operatorname{NoWriteBetween}_{(\operatorname{Visible}(S, T) \mid i)}(W, R) \\
& \Leftrightarrow \quad \text { LocalWriteObs }(S)
\end{aligned}
$$

Proof. Suppose $S \in$ TSequential. Thus, from Lemma 44, we have $S \in$ Sequential. Let $S^{\prime}=$ $\operatorname{Visible}(S, T)$. From $S \in T$ Sequential and Lemma 42, we have $S^{\prime} \in T$ Sequential. Thus, from

Lemma 44, we have $S^{\prime} \in$ Sequential. From the definition of Visible, we have $S^{\prime}|T=S| T$.

$$
\begin{aligned}
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists T^{\prime} \in S^{\prime}: \exists W=\text { write }_{T^{\prime}}(i, v) \in S^{\prime}: \\
& W \prec_{\left(S^{\prime} \mid i\right)} R \wedge \text { NoWriteBetween }_{\left(S^{\prime} \mid i\right)}(W, R) \\
& \Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists v^{\prime} \in V: \exists W^{\prime}=\text { write }_{T}\left(i, v^{\prime}\right) \in S: W^{\prime} \prec_{S} R \wedge \\
& \exists T^{\prime} \in S^{\prime}: \exists W=\text { write }_{T^{\prime}}(i, v) \in S^{\prime}: \\
& W \prec_{\left(S^{\prime} \mid i\right)} R \wedge \text { NoWriteBetween }_{\left(S^{\prime} \mid i\right)}(W, R) \\
& \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists v^{\prime} \in V: \exists W^{\prime}=\text { write }_{T}\left(i, v^{\prime}\right) \in S^{\prime}: W^{\prime} \prec_{S} R \wedge \\
& \exists T^{\prime} \in S^{\prime}: \exists W=\text { write }_{T^{\prime}}(i, v) \in S^{\prime}: \\
& W \prec_{\left(S^{\prime} \mid i\right)} R \wedge \text { NoWriteBetween }_{\left(S^{\prime} \mid i\right)}(W, R) \\
& \Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists v^{\prime} \in V: \exists W^{\prime}=\text { write }_{T}\left(i, v^{\prime}\right) \in S^{\prime}: W^{\prime} \prec_{S^{\prime}} R \wedge \\
& \exists T^{\prime} \in S^{\prime}: \exists W=\text { write }_{T^{\prime}}(i, v) \in S^{\prime}: \\
& W \prec_{\left(S^{\prime} \mid i\right)} R \wedge \text { NoWriteBetween }{ }_{\left(S^{\prime} \mid i\right)}(W, R) \\
& \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists v^{\prime} \in V: \exists W^{\prime}=\text { write }_{T}\left(i, v^{\prime}\right) \in S^{\prime}: W^{\prime} \prec_{\left(S^{\prime} \mid i\right)} R \wedge \\
& \exists T^{\prime} \in S^{\prime}: \exists W=\text { write }_{T^{\prime}}(i, v) \in S^{\prime}: \\
& W \prec_{\left(S^{\prime} \mid i\right)} R \wedge \text { NoWriteBetween }_{\left(S^{\prime} \mid i\right)}(W, R) \\
& \Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists v^{\prime} \in V: \exists W^{\prime}=\text { write }_{T}\left(i, v^{\prime}\right) \in S^{\prime}: W^{\prime} \prec_{\left(S^{\prime} \mid i\right)} R \wedge \\
& \exists W=\text { write }_{T}(i, v) \in S^{\prime}: \\
& W \prec_{\left(S^{\prime} \mid i\right)} R \wedge \text { NoWriteBetween }_{\left(S^{\prime} \mid i\right)}(W, R) \\
& \Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists W=\text { write }_{T}(i, v) \in S^{\prime}: \\
& W \prec_{\left(S^{\prime} \mid i\right)} R \wedge \text { NoWriteBetween }_{\left(S^{\prime} \mid i\right)}(W, R) \\
& \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists W=\text { write }_{T}(i, v) \in S: \\
& W \prec_{\left(S^{\prime} \mid i\right)} R \wedge \text { NoWriteBetween }_{\left(S^{\prime} \mid i\right)}(W, R)
\end{aligned}
$$

```
\(\Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S:\)
 \(W \prec_{S^{\prime}} R \wedge\) NoWriteBetween \(_{\left(S^{\prime} \mid i\right)}(W, R)\)
\(\Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S:\)
 \(W \prec_{S} R \wedge\) NoWriteBetween \(_{\left(S^{\prime} \mid i\right)}(W, R)\)
\(\Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S:\)
 \(W \prec_{S} R \wedge \forall W^{\prime} \in T W \operatorname{rites}\left(S^{\prime} \mid i\right): W^{\prime} \preceq_{\left(S^{\prime} \mid i\right)} W \vee R \prec_{\left(S^{\prime} \mid i\right)} W^{\prime}\)
\(\Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S:\)
 \(W \prec_{S} R \wedge \neg \exists W^{\prime} \in T W \operatorname{rites}\left(S^{\prime} \mid i\right): \neg\left(W^{\prime} \preceq_{\left(S^{\prime} \mid i\right)} W\right) \wedge \neg\left(R \prec_{\left(S^{\prime} \mid i\right)} W^{\prime}\right)\)
\(\Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S:\)
 \(W \prec_{S} R \wedge \neg \exists W^{\prime} \in T W \operatorname{rites}\left(S^{\prime} \mid i\right): W \prec_{\left(S^{\prime} \mid i\right)} W^{\prime} \prec_{\left(S^{\prime} \mid i\right)} R\)
\(\Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S:\)
 \(W \prec_{S} R \wedge \neg \exists v^{\prime} \in V: \exists W^{\prime}=\) write \(_{T}\left(i, v^{\prime}\right): W \prec_{\left(S^{\prime} \mid i\right)} W^{\prime} \prec_{\left(S^{\prime} \mid i\right)} R\)
\(\Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S:\)
 \(W \prec_{S} R \wedge \neg \exists v^{\prime} \in V: \exists W^{\prime}=\) write \(_{T}\left(i, v^{\prime}\right): W \prec_{(S \mid i)} W^{\prime} \prec_{(S \mid i)} R\)
\(\Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S:\)
 \(W \prec_{S} R \wedge \neg \exists W^{\prime} \in \operatorname{TWrites}(S \mid i): W \prec_{(S \mid i)} W^{\prime} \prec_{(S \mid i)} R\)
\(\Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S:\)
 \(W \prec_{S} R \wedge \forall W^{\prime} \in T W \operatorname{rites}(S \mid i): \neg\left(W \prec_{(S \mid i)} W^{\prime}\right) \vee \neg\left(W^{\prime} \prec_{(S \mid i)} R\right)\)
\(\Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S: W \prec_{S} R \wedge\)
 \(\forall W^{\prime} \in T W \operatorname{rites}(S \mid i): W^{\prime} \preceq_{(S \mid i)} W \vee R \prec_{(S \mid i)} W^{\prime}\)
 \(\Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S|T| i: W \prec_{S|T| i} R \wedge\)
 \(\forall W^{\prime} \in T W\) rites \((S|T| i): W^{\prime} \preceq_{(S|T| i)} W \vee R \prec_{(S|T| i)} W^{\prime}\)
\(\Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S):\)
 \(\exists W=\) write \(_{T}(i, v) \in S|T| i:\)
 \(W \prec_{S|T| i} R \wedge\) NoWriteBetween \(_{(S|T| i)}(W, R)\)
\(\Leftrightarrow\) LocalWriteObs \((S)\)
```

In these twenty steps, we apply: 1) the definition of LocalReads,
2) the definition of Visible,
3) $S^{\prime}|T=S| T$ and that both $W^{\prime}$ and $R$ are by $T$,
4) that both $W^{\prime}$ and $R$ are on $i$,
5) Lemma 45 ,
6) duplicate conjunction,
7) the definition of Visible,
8) that both $R$ and $W$ are on $i$,
9) $S^{\prime}|T=S| T$ and that both $R$ and $W$ are by $T$,
10) the definition of NoWriteBetween,
11) first-order logic,
12) $\left(S^{\prime} \mid i\right) \in$ Sequential,
13) from $\left(S^{\prime} \mid i\right) \in T$ Sequential, $R$ and $W$ are by transaction $T$ and $W^{\prime}$ is between them, we have $W^{\prime}$ is by $T$,
14) $S^{\prime}|T=S| T$,
15) from $(S \mid i) \in$ TSequential, $R$ and $W$ are by transaction $T$ and $W^{\prime}$ is between them, we have $W^{\prime}$ is by $T$.
16) first-order logic,
17) $(S \mid i) \in$ Sequential,
18) $(S \mid i) \in S e q u e n t i a l$, thread $_{H}(R)=\operatorname{thread}_{H}(W)=T$ and $\arg _{H}(R)=\arg 1_{H}(W)=i$,
19) the definition of NoWriteBetween,
20) the definition of LocalWriteObs.

Lemma 47. Suppose $S \in T$ Sequential $\cap$ TComplete. We have:

$$
\begin{aligned}
& S \in T \text { SeqSpec } \\
& \Leftrightarrow \quad \text { LocalWriteObs }(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Committed}(S): \exists W=\operatorname{write}_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S): \\
&\left(T^{\prime} \preccurlyeq_{S} T\right) \wedge \text { NoWriterBetween } \\
& S, i \\
&\left(T^{\prime}, \preccurlyeq_{S}, T\right)
\end{aligned}
$$

Proof. Suppose $S \in T$ Sequential $\cap$ TComplete. From $S \in T$ Sequential and Lemma 42, we have $\operatorname{Visible}(S, T) \in$ TSequential.

$$
\begin{aligned}
& S \in T S e q S p e c \\
& \Leftrightarrow \quad \forall T \in S: \forall i \in I:(\operatorname{Visible}(S, T) \mid i) \in \operatorname{SeqSpec}(i) \\
& \Leftrightarrow \quad \forall T \in S: \forall i \in I: \\
& \forall T^{\prime \prime} \in(V \operatorname{Visible}(S, T) \mid i): \forall v \in V: \forall R=\operatorname{read}_{T^{\prime \prime}}(i): v \in(\operatorname{Visible}(S, T) \mid i): \\
& \exists T^{\prime} \in(\operatorname{Visible}(S, T) \mid i): \exists W=\text { write }_{T^{\prime}}(i, v) \in(\operatorname{Visible}(S, T) \mid i): \\
& W \prec_{(V i s i b l e(S, T) \mid i)} R \wedge \text { NoWriteBetween }_{(V i s i b l e(S, T) \mid i)}(W, R) \\
& \Leftrightarrow \quad \forall T \in S: \forall i \in I: \\
& \forall T^{\prime \prime} \in \operatorname{Visible}(S, T): \forall v \in V: \forall R=\operatorname{read}_{T^{\prime \prime}}(i): v \in \operatorname{Visible}(S, T): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{Visible}(S, T): \\
& W \prec_{(\text {Visible }(S, T) \mid i)} R \wedge \text { NoWriteBetween }_{\text {(Visible }(S, T) \mid i)}(W, R) \\
& \Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in S: \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{Visible}(S, T): \\
& W \prec_{\left(V_{\text {Visible }(S, T)} \mid i\right)} R \wedge \text { NoWriteBetween }_{(V i s i b l e(S, T) \mid i)}(W, R) \\
& \Leftrightarrow \quad \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{LocalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{Visible}(S, T): \\
& W \prec_{(V i s i b l e(S, T) \mid i)} R \wedge \text { NoWriteBetween }_{(V i s i b l e(S, T) \mid i)}(W, R) \\
& \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{Visible}(S, T): \\
& W \prec_{\left(\text {Visible }_{(S, T)} \mid i\right)} R \wedge \text { NoWriteBetween }_{(\operatorname{Visible}(S, T) \mid i)}(W, R) \\
& \Leftrightarrow \text { LocalWriteObs }(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{Visible}(S, T): \\
& W \prec_{\left(\text {Visible }_{(S, T)} \mid\right. \text { i) }} R \wedge \text { NoWriteBetween }_{(\operatorname{Visible}(S, T) \mid i)}(W, R)
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \text { LocalWriteObs }(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{Visible}(S, T): \\
& W \prec_{\text {Visible }(S, T)} R \wedge \text { NoWriteBetween }_{\left(V_{\text {Visible }(S, T) \mid} \mid i\right)}(W, R) \\
& \Leftrightarrow \text { LocalWriteObs }(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{Visible}(S, T): \\
& T^{\prime} \preccurlyeq_{V_{\text {Visible }(S, T)}} T \wedge \text { NoWriteBetween }_{(\text {Visible }(S, T) \mid i)}(W, R) \\
& \Leftrightarrow \text { LocalWriteObs }(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{Visible}(S, T): \\
& T^{\prime} \preccurlyeq_{S} T \wedge \text { NoWriteBetween }_{\left(\text {Visible }_{(S, T)} \mid i\right)}(W, R) \\
& \Leftrightarrow \text { LocalWriteObs }(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S): \\
& T^{\prime} \prec_{S} T \wedge \text { NoWriteBetween }_{\left(\text {Visible }_{(S, T)} \mid i\right)}(W, R) \\
& \Leftrightarrow \text { LocalWriteObs }(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S): \\
& T^{\prime} \preccurlyeq_{S} T \wedge \text { NoWriter Between }_{S, i}\left(T^{\prime}, \preccurlyeq_{S}, T\right) \\
& \Leftrightarrow \text { LocalWriteObs }(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Visible}(S, T): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S): \\
& \left(T^{\prime}<_{S} T\right) \wedge T^{\prime} \in \operatorname{Committed}(S) \wedge \text { NoWriterBetween }{ }_{S, i}\left(T^{\prime}, \varliminf_{S}, T\right) \\
& \Leftrightarrow \text { LocalWriteObs }(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Committed}(S): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S): \\
& \left(T^{\prime} \prec_{S} T\right) \wedge \text { NoWriter Between }_{S, i}\left(T^{\prime}, \preccurlyeq_{S}, T\right)
\end{aligned}
$$

In these thirteen steps, we apply:

1) the definition of TSeqSpec and $S \in T$ Sequential $\cap$ TComplete,
2) the definition of $\operatorname{SeqSpec}(i)$,
3) $R$ and $W$ access location $i$,
4) that we can choose $T^{\prime \prime}=T$,
5) $T \operatorname{Reads}(S)=\operatorname{LocalTReads}(S) \cup \operatorname{GlobalTReads}(S)$,
6) Lemma 46,
7) that $R$ and $W$ are both on location $i$
8) that $R$ and $W$ are by transactions $T$ and $T^{\prime}$ respectively, Visible $(S, T) \in$ TSequential, and

9) Lemma 42,
10) $T^{\prime} \prec_{S} T$ and NoWriteBetween (Visible $\left.(S, T) \mid i\right)(W, R)$,
11) Lemma 43 ,
12) $T^{\prime} \in \operatorname{Vi} \overline{\operatorname{sib} l e}(S, T)$ and $\left(T^{\prime}<_{S} T\right)$, and
13) the definition of $\operatorname{Visible}(S, T)$.

Lemma 48. (Invariance) If $H \equiv H^{\prime}$, then for every marking relation $\sqsubseteq, \operatorname{Marking}(H)=\operatorname{Marking}\left(H^{\prime}\right)$ and ReadPres $(H, \sqsubseteq) \Leftrightarrow \operatorname{ReadPres}\left(H^{\prime}, \sqsubseteq\right)$ and $\operatorname{WriteObs}(H, \sqsubseteq) \Leftrightarrow W r i t e O b s\left(H^{\prime}, \sqsubseteq\right)$.

Proof. Immediate from the definitions of Marking, ReadPres, and WriteObs.
Lemma 49. $\forall H \in$ THistory $: \forall \sqsubseteq \in \operatorname{Marking}(H): \exists S \in$ TSequential: $H \equiv S \wedge \varliminf_{H} \subseteq \preccurlyeq_{S}$ $\wedge \nwarrow_{S} \subseteq \sqsubseteq$.

Proof. Let $H \in$ THistory and let $\sqsubseteq \in \operatorname{Marking}(H)$. We have that $\sqsubseteq$ is a total order of Trans so we can choose a permutation $\pi$ on $1 . . n$ such that $\forall i, j \in 1 . . n:(i<j) \Leftrightarrow\left(T_{\pi(i)} \sqsubset T_{\pi(j)}\right)$. Define: $S=H\left|T_{\pi(1)}, \ldots, H\right| T_{\pi(n)}$. It is straightforward to prove that $S \in T$ Sequential $\wedge H \equiv S \wedge \varliminf_{H} \subseteq$ $\nwarrow_{S} \wedge \nwarrow_{S} \subseteq \sqsubseteq$.

Lemma 50. Suppose $\sqsubseteq \in \operatorname{Marking}(H) \wedge p_{2} \notin \operatorname{Writers}_{H}(i)$.
If NoWriter Between $H_{H, i}\left(T_{1}, \sqsubseteq, p_{2}\right)$ and NoWriterBetween ${ }_{H, i}\left(p_{2}, \sqsubseteq, T_{3}\right)$, then NoWriterBetween $H_{H, i}\left(T_{1}, \sqsubseteq, T_{3}\right)$.

Proof.

$$
\begin{aligned}
& \text { NoWriterBetween }_{H, i}\left(T_{1}, \sqsubseteq, p_{2}\right) \wedge \text { NoWriterBetween } \\
& H, i \\
&\left(p_{2}, \sqsubseteq, T_{3}\right) \\
& \Leftrightarrow \forall T \in \operatorname{Writers}_{H}(i):\left(T \sqsubseteq T_{1} \vee p_{2} \sqsubseteq T\right) \wedge\left(T \sqsubseteq p_{2} \vee T_{3} \sqsubseteq T\right) \\
& \Leftrightarrow \forall T \in \operatorname{Writers}_{H}(i):\left(T \sqsubseteq T_{1} \wedge\left(T \sqsubseteq p_{2} \vee T_{3} \sqsubseteq T\right)\right) \vee \\
&\left(p_{2} \sqsubseteq T \wedge T \sqsubseteq p_{2}\right) \vee\left(p_{2} \sqsubseteq T \wedge T_{3} \sqsubseteq T\right) \\
& \Rightarrow \forall T \in \text { Writers }_{H}(i):\left(T \sqsubseteq T_{1}\right) \vee\left(T_{3} \sqsubseteq T\right) \\
& \Leftrightarrow \text { NoWriterBetween }_{H, i}\left(T_{1}, \sqsubseteq, T_{3}\right)
\end{aligned}
$$

The first step uses the definition of NoWriter Between. The second step uses $\wedge$ distribution over $\checkmark$. The third step simplifies the first disjunct using conjunction elimination, eliminates the second disjunct using $p_{2} \notin W \operatorname{riters}_{H}(i)$ and simplifies the third disjunct using conjunction elimination. The fourth step uses the definition of $N o W r i t e r$ Between.

Lemma 51. Suppose $S \in T$ Sequential $\cap$ TComplete. We have:

$$
S \in T \text { SeqSpec } \Leftrightarrow S \in \text { FinalStateMarkable }
$$

Proof. Let $S \in$ TSequential $\cap$ TComplete. From Lemma 47, the definition of FinalStateMarkable, and $S \in$ TComplete, we have that we must prove:

```
 LocalWriteObs(S) ^
 \forallT\inS:\foralli\inI:\forallv\inV:\forallR=\mp@subsup{\operatorname{read}}{T}{}(i):v\inGlobalTReads(S):
 \exists\mp@subsup{T}{}{\prime}\inCommitted (S):\existsW=\mp@subsup{write}{\mp@subsup{T}{}{\prime}}{(i,v)\inGlobalTWrites}(S):
 (T'<<<S T)^ NoWriterBetween }\mp@subsup{\}{S,i}{}(\mp@subsup{T}{}{\prime},\mp@subsup{\preccurlyeq}{S}{},T
\Leftrightarrow \exists\sqsubseteq\inMarking(S): Ł}\mp@subsup{S}{S}{\subseteq}\sqsubseteq\wedge\sqsubseteq\in\operatorname{ReadPres(S)^\sqsubseteq\inWriteObs(S)
```

From the definition of WriteObs, GlobalWriteObs and LastPreAccessor we have that:

$$
\begin{array}{ll} 
& \text { WriteObs }(S, \sqsubseteq) \\
\Leftrightarrow \quad \text { LocalWriteObs }(S) \wedge \\
& \forall T \in \operatorname{Trans}: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Trans}^{\prime}: \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S): \quad T^{\prime} \in \operatorname{Writers}_{S}(i) \wedge T^{\prime} \neq T \wedge T^{\prime} \sqsubset R \wedge \text { NoWriterBetween }{ }_{S, i}\left(T^{\prime}, \sqsubseteq, R\right) \\
\Leftrightarrow \quad \operatorname{LocalWriteObs}(S) \wedge \quad \forall T \in \operatorname{Trans}: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Trans}: \exists W=\operatorname{write}_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S): \quad T^{\prime} \in \operatorname{Committed}(S) \wedge T^{\prime} \neq T \wedge T^{\prime} \sqsubset R \wedge \operatorname{NoWriterBetween}_{S, i}\left(T^{\prime}, \sqsubseteq, R\right)
\end{array}
$$

We are now ready to prove the two directions of the equivalence.
$\Rightarrow$ :
Assume that

$$
\begin{aligned}
& \operatorname{LocalWriteObs}(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Committed}(S): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S) \\
& \quad\left(T^{\prime}<_{S} T\right) \wedge \text { NoWriterBetween }_{S, i}\left(T^{\prime}, \preccurlyeq_{S}, T\right)
\end{aligned}
$$

Define:

$$
\begin{aligned}
p_{1} \sqsubset p_{2} \Leftrightarrow \quad & \left(p_{1}<_{S} p_{2}\right) \vee \\
& \left(\text { thread }_{S}\left(p_{1}\right) \preccurlyeq_{S} p_{2}\right) \vee \\
& \left(p_{1} \preccurlyeq_{S} \text { thread }_{S}\left(p_{2}\right)\right) \\
p_{1} \sqsubseteq p_{2} \Leftrightarrow & p_{1} \sqsubset \vee p_{2} p_{1}=p_{2}
\end{aligned}
$$

We show that

$$
\begin{aligned}
& \sqsubseteq \in \operatorname{Marking}(S) \wedge \\
& \nwarrow_{S} \subseteq \sqsubseteq \wedge \sqsubseteq \in \operatorname{ReadPres}(S) \wedge \\
& \text { LocalWriteObs }(S) \wedge \\
& \forall T \in \operatorname{Trans}: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Trans}: \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S)^{\quad} \quad \\
& \quad T^{\prime} \in \operatorname{Committed}(S) \wedge T^{\prime} \neq T \wedge T^{\prime} \sqsubset R \wedge \text { NoWriterBetween }_{S, i}\left(T^{\prime}, \sqsubseteq, R\right)
\end{aligned}
$$

It is straightforward to prove $\sqsubseteq \in \operatorname{Marking}(S)$ and $\nwarrow_{S} \subseteq \sqsubseteq$, ReadPres $(S, \sqsubseteq)$. Additionally, the first conjunct of $\operatorname{WriteObs}(S, \sqsubseteq)$ (that is, $\operatorname{LocalWriteObs}(S)$ ) is immediate from the assumption. So, we still need to prove the second conjunct of $\operatorname{WriteObs}(S, \sqsubseteq)$.

Let $T \in \operatorname{Trans}, i \in I, v \in V, R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S)$. From the assumption (the left-hand side), we have that we can find (1) $T^{\prime} \in \operatorname{Committed}(S)$ and (2) $W=$ write $_{T^{\prime}}(i, v) \in$ GlobalTWrites $(S)$ such that (3) ( $T^{\prime} \preccurlyeq_{S} T$ ) and (4) NoWriterBetween ${ }_{S, i}\left(T^{\prime}, \preccurlyeq_{S}, T\right)$. Let us now prove each conjunct of $T^{\prime} \neq T \wedge T^{\prime} \sqsubseteq R \wedge$ NoWriter Between ${ }_{S, i}\left(T^{\prime}, \sqsubseteq, R\right)$ in turn.

From [3] and that $\preccurlyeq_{S}$ is a total order of $\operatorname{Trans}(S)$, we have (5) $T^{\prime} \neq T$. From [3] and the definition of $\sqsubseteq$, we have $T^{\prime} \sqsubseteq R$. From [4] and $\varliminf_{S} \subseteq \sqsubseteq$, we have (6) NoWriterBetween ${ }_{S, i}\left(T^{\prime}, \sqsubseteq, T\right)$. From $T \varliminf_{S} T$ and the definition of $\sqsubseteq$, we have (7) $R \sqsubseteq T$. From [6], [7] and the definition of $\sqsubseteq$ and transitivity of $\varliminf_{S}$, we have NoWriter Between ${ }_{S, i}\left(T^{\prime}, \sqsubseteq, R\right)$.
$\Leftarrow:$
Assume the right-hand side and choose $\sqsubseteq \in \operatorname{Marking}(S)$ such that:

$$
\begin{aligned}
& \preccurlyeq_{S} \subseteq \sqsubseteq \wedge \sqsubseteq \in \operatorname{ReadPres}(S) \wedge \\
& S \in T \text { LocalSeqSpec } \wedge \\
& \forall T \in \text { Trans }: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Committed}(S): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S) \quad \\
& \quad T^{\prime} \neq T \wedge T^{\prime} \sqsubseteq R \wedge \text { NoWriterBetween } \\
& S, i \\
& \left(T^{\prime}, \sqsubseteq, R\right)
\end{aligned}
$$

We show that

$$
\begin{aligned}
& \operatorname{LocalWriteObs}(S) \wedge \\
& \forall T \in S: \forall i \in I: \forall v \in V: \forall R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S): \\
& \exists T^{\prime} \in \operatorname{Committed}(S): \exists W=\text { write }_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S)(S) \\
& \quad\left(T^{\prime}<_{S} T\right) \wedge \text { NoWriterBetween }_{S, i}\left(T^{\prime}, \preccurlyeq_{S}, T\right)
\end{aligned}
$$

The first conjunct (of the left-hand side), LocalWrite $\operatorname{Obs}(S)$, is immediate from the assumption. From the assumption we have (1) $\nwarrow_{S} \subseteq \sqsubseteq,(2) \sqsubseteq \in \operatorname{ReadPres}(S)$. Let $T \in \operatorname{Trans}, i \in I, v \in V$, $R=\operatorname{read}_{T}(i): v \in \operatorname{GlobalTReads}(S)$. From the above property of $\sqsubseteq$, we have that we can find (3) $T^{\prime} \in \operatorname{Committed}(S)$ and (4) $W=$ write $_{T^{\prime}}(i, v) \in \operatorname{GlobalTWrites}(S)$ such that (5) $T^{\prime} \neq T$ and (6) $T^{\prime} \sqsubseteq R$ and (7) NoWriterBetween ${ }_{S, i}\left(T^{\prime}, \sqsubseteq, R\right)$. From [1], that $\sqsubseteq$ is a total order on $\operatorname{Trans}(S)$ ( $\sqsubseteq \in \operatorname{Marking}(S)$ ), and that $\varliminf_{S}$ is a total order on $\operatorname{Trans}(S)(S \in \operatorname{TSequential})$, we have (8) $\forall T, T^{\prime} \in$ Trans : $T^{\prime} \sqsubseteq T \Rightarrow T^{\prime} \preccurlyeq_{S} T$.

First we prove $T^{\prime} \prec_{S} T$. From [2] , we have (9) NoWriter Between ${ }_{S, i}(T, \sqsubseteq, R)$. From [3] and [4], we have (10) $T^{\prime} \in \operatorname{Writers}_{S}(i)$. From [9] and [10], we have (11) $T^{\prime} \sqsubseteq T \vee R \sqsubseteq T^{\prime}$. From [6], $T^{\prime} \neq R$ and $\sqsubseteq$ is a total order on $\{R\} \cup$ Vriters $_{S}(i)(\sqsubseteq \in \operatorname{Marking}(S))$, we have (12) $R \nsubseteq T^{\prime}$. From [11] and [12], we have (13) $T^{\prime} \sqsubseteq T$. From [8] and [13], we have (14) $T^{\prime} \underline{\preccurlyeq}_{S} T$. From [14] and [5], we have $T^{\prime} \preccurlyeq_{S} T$.

Second, we prove NoWriter Between ${ }_{S, i}\left(T^{\prime}, \varliminf_{S}, T\right)$. From [2], we have (15) NoWriter Between ${ }_{S, i}(R, \sqsubseteq$ $, T)$. From $R \notin$ Writers $_{S}(i)$, [7], [15], and Lemma 50, we have (16) NoWriterBetween ${ }_{S, i}\left(T^{\prime}, \sqsubseteq, T\right)$. From [16] and [8] we have $N o W$ riter Between $n_{S, i}\left(T^{\prime}, \preccurlyeq_{S}, T\right)$.

Theorem (Marking) FinalStateOpaque $=$ FinalStateMarkable.
Proof.
FinalStateOpaque

$$
\begin{aligned}
& =\left\{H \in \text { THistory } \mid \exists H^{\prime} \in \text { TExtension }(H): \exists S \in\right. \text { TSequential: } \\
& H^{\prime} \equiv S \wedge{\nless H^{\prime}}^{\left(\nwarrow_{S} \wedge S \in T S e q S p e c\right\}} \\
& =\left\{H \in \text { THistory } \mid \exists H^{\prime} \in \text { TExtension }(H): \exists S \in\right. \text { TSequential: } \\
& \left.H^{\prime} \equiv S \wedge \preceq_{H^{\prime}} \subseteq \varliminf_{S} \wedge S \in \text { FinalStateMarkable }\right\} \\
& =\left\{H \in \text { THistory } \mid \exists H^{\prime} \in \text { TExtension }(H): \exists S \in \text { TSequential: } H^{\prime} \equiv S \wedge \preccurlyeq_{H^{\prime}} \subseteq \preccurlyeq_{S} \wedge\right. \\
& \left.\exists \sqsubseteq \in \operatorname{Marking}(S): \underline{\preccurlyeq}_{S} \subseteq \sqsubseteq \wedge \operatorname{ReadPres}(S, \sqsubseteq) \wedge \operatorname{WriteObs}(S, \sqsubseteq)\right\} \\
& =\left\{H \in \text { THistory } \mid \exists H^{\prime} \in \text { TExtension }(H): \exists S \in \text { TSequential: } H^{\prime} \equiv S \wedge \varliminf_{H^{\prime}} \subseteq \varliminf_{S} \wedge\right. \\
& \left.\exists \sqsubseteq \in \operatorname{Marking}\left(H^{\prime}\right): \varliminf_{S} \subseteq \sqsubseteq \wedge \operatorname{ReadPres}\left(H^{\prime}, \sqsubseteq\right) \wedge \operatorname{WriteObs}\left(H^{\prime}, \sqsubseteq\right)\right\} \\
& =\left\{H \in \text { THistory } \mid \exists H^{\prime} \in T \text { Extension }(H): \exists \sqsubseteq \in \operatorname{Marking}\left(H^{\prime}\right)\right. \text { : } \\
& \operatorname{ReadPres}\left(H^{\prime}, \sqsubseteq\right) \wedge W \operatorname{riteObs}\left(H^{\prime}, \sqsubseteq\right) \wedge \\
& \left.\exists S \in \text { TSequential: } H^{\prime} \equiv S \wedge \varliminf_{H^{\prime}} \subseteq \varliminf_{S} \wedge \varliminf_{S} \subseteq \sqsubseteq\right\} \\
& =\left\{H \in \text { THistory } \mid \exists H^{\prime} \in T \text { Extension }(H): \exists \sqsubseteq \in \operatorname{Marking}\left(H^{\prime}\right)\right. \text { : } \\
& \nwarrow_{H^{\prime}} \subseteq \sqsubseteq \wedge \operatorname{ReadPres}\left(H^{\prime}, \sqsubseteq\right) \wedge W \operatorname{riteObs}\left(H^{\prime}, \sqsubseteq\right) \wedge \\
& \left.\exists S \in \text { TSequential: } H^{\prime} \equiv S \wedge \underline{<}_{H^{\prime}} \subseteq \preccurlyeq_{S} \wedge \varliminf_{S} \subseteq \sqsubseteq\right\} \\
& =\left\{H \in \text { THistory } \mid \exists H^{\prime} \in T E x t e n s i o n(H): \exists \sqsubseteq \in \operatorname{Marking}\left(H^{\prime}\right)\right. \text { : } \\
& \left.\preccurlyeq_{H^{\prime}} \subseteq \sqsubseteq \wedge \operatorname{ReadPres}\left(H^{\prime}, \sqsubseteq\right) \wedge W \operatorname{riteObs}\left(H^{\prime}, \sqsubseteq\right)\right\} \\
& =\text { Markable }
\end{aligned}
$$

In these eight steps we apply:

1) the definition of FinalStateOpaque,
2) Lemma 51 and $S \in T$ Complete (because $H^{\prime} \in \operatorname{TExtension}(H)$ and $H^{\prime} \equiv S$ ),
3) the definition of FinalStateMarkable and $S \in$ TComplete,
4) Lemma 48,
5) logical rearrangement,
6) transitivity of $\subseteq$,
7) Lemma 49, and
8) the definition of FinalStateMarkable.

### 10.2.2 Marking TL2

Notation. Let us remind the notation. Consider an execution history $H$. We use $l_{1} \prec_{H} l_{2}$ to denote that $l_{1}$ is executed before $l_{2}$. We use $l_{1} \sim_{H} l_{2}$ to denote that $l_{1}$ is executed concurrently to $l_{2}$. We use $l_{1} \precsim_{H} l_{2}$ to denote that $l_{1}$ is executed before or concurrently to $l_{2}$. We use $\prec_{\text {clock }}, \prec_{\text {ver }[i]}$ and $\prec_{\text {lock[i] }}$ to denote the linearization order of clock, ver $[i]$ and lock $[i]$ respectively.

A label $c_{1}{ }^{\prime} c_{2}$ is a call string that denotes a method call labeled $c_{2}$ that is executed in the body of the method call labeled $c_{1}$.

We use $\operatorname{init}^{\operatorname{Li}}\left(f_{H}(T)\right.$ and commitOf $f_{H}(T)$ to denote the init and commit method calls of transaction $T$ in history $H$.

For a TM algorithm specification $\pi$, let $\mathbb{H}(\pi)$ denote the set of complete transaction histories that $\pi$ results.

Marking Relation. Now, we define the marking relation for TL2. The effect order of transactions is the linearization order of their calls to the clock. Every transaction reads an initial snapshot number at $I 01$. A committing transaction makes a new snapshot at C07. A TL2 transaction takes effect at $C 07$ if it is committed and at $I 01$ otherwise. The access order of read operations and writer transactions to location $i$ is the execution order of their accesses to the reg[i] register. The read method reads reg[i] at $R 04$ and a writer transaction writes to reg $[i]$ at $C 16_{i}$.

Definition 19 (Marking TL2). Consider an execution history $H \in \mathbb{H}(T L 2)$. Let

$$
\begin{aligned}
& \operatorname{readAcc}(R)=R^{\prime} R 04 \\
& \text { write } A c c(T, i)=\operatorname{commitOf}_{H}(T)^{\prime} C 16_{i} \\
& E f f(T)= \begin{cases}\operatorname{initOf}_{H}(T)^{\prime} I 01 & \text { if } T \in \operatorname{Aborted}(H) \\
\operatorname{commitOf}_{H}(T)^{\prime} C 07 & \text { if } T \in \operatorname{Committed}(H)\end{cases}
\end{aligned}
$$

The marking $\sqsubseteq$ for $H$ is the reflexive closure of $\sqsubset$ that is defined as follows:

$$
\begin{aligned}
& \left\{\left(T, T^{\prime}\right) \mid T, T^{\prime} \in \operatorname{Trans}(H) \wedge E f f(T) \prec_{\text {clock }} \operatorname{Eff}\left(T^{\prime}\right)\right\} \cup \\
& \left\{(T, R) \mid \exists i: R \in \operatorname{GlobalTReads}(H), i=\arg 1(R), T \in \operatorname{Writers}_{H}(i) \wedge \operatorname{writeAcc}(T, i) \prec_{H} \operatorname{readAcc}(R)\right\} \cup \\
& \left\{(R, T) \mid \exists i: R \in \operatorname{GlobalTReads}(H), i=\arg 1(R), T \in \operatorname{Vriters}_{H}(i) \wedge \operatorname{readAcc}(R) \precsim_{H} \operatorname{write} \operatorname{Acc}(T, i)\right\}
\end{aligned}
$$

We have formally proved the markability of TL2 using a novel program logic that facilitates reasoning about execution and linearization orders. To keep the focus of this section on markability, we avoid the formal presentation of the logic and present a simplified reasoning.

Lemma 52. TL2 preserves reads of aborted transactions (part 1).

$$
\begin{aligned}
& \forall H \in \mathbb{H}(T L 2): \\
& \forall R \in \operatorname{GlobalTReads}(H): \text { Let } i=\arg _{H}(R), T=\operatorname{trans}_{H}(R): \\
& \quad T \in \operatorname{Aborted}(H) \Rightarrow \text { NoWriterBetween }_{H, i}(R, \sqsubseteq, T)
\end{aligned}
$$

Proof Sketch.

T	$T^{\prime}$	
	$C 02{ }_{i}$ ®	lock [i].trylock ()
		...
	C07 $\triangleright$	wver $=$ clock.iaf()
I01■ snap $=$ clock.read ()		...
$\ldots$		
$R 03 \triangleright \quad s_{1}=\operatorname{ver}[i] . \operatorname{read}()$		
$R 04 \triangleright \quad v=r e g[i] . r e a d()$		
	$C 16_{i} \triangleright$	reg[i].write(v)
	$C 17_{i} \triangleright$	ver [i].write(wver)
$R 05 \triangleright \quad l=\operatorname{lock}[i] \cdot \operatorname{read}()$	$C 18_{i} \triangleright$	lock[i].unlock()
$R 06 \triangleright s_{2}=\operatorname{ver}[i] . r e a d()$		
$R 07 \triangleright \quad$ sver $=\operatorname{rver}[t] \cdot \operatorname{read}()$		
$\begin{aligned} & \text { if }\left(\neg\left(\neg l \wedge s_{1}=s_{2} \wedge s_{2} \leq \text { sver }\right)\right) \\ & \\ & \text { return } \mathbb{A} \end{aligned}$		

Figure 10.1: $\quad$ Case $T \in \operatorname{Aborted}(H) \wedge R \sqsubset T^{\prime} \sqsubset T$
We consider an aborted transaction $T$ with an unaborted global read operation $R$ from a location $i$ and a writer $T^{\prime}$ of $i$.
We assume that
$T^{\prime}$ accesses $i$ after $R$
that is
(1) $T^{\prime} \sqsubset R$
and
$T^{\prime}$ takes effect before $T$
that is
(2) $T^{\prime} \sqsubset T$

We show that
TL2 aborts $R$.
Figure 10.1 depicts the two transactions.
By Definition 19 on [1], we have
(3) $R 04 \overline{\prec_{H}} C 1 \overline{6_{i}}$

By Definition 19 on [2], we have
(4) $C 07 \prec_{\text {clock }} I \overline{01}$

The $\bar{m}$ ethod calls $R 05$ and $C 18_{i}$ are on the object lock $[i]$. We consider two cases for the linearization order of them and prove that $R$ returns $\mathbb{A}$ in both cases.

## Case 1:

(5) $R 05 \prec_{\text {lock }[i]} C 18_{i}$

By P2X on the algorithm, we have
(6) $C 02_{i} \prec_{H} C 07$
(7) $I 01 \prec_{H} R 05$

By the rule XLTrans on [6], [4] and [7], we have
$C 02_{i} \prec_{H} R 05$
thus, by the rule X 2 L , we have
(8) $C 02_{i} \prec_{\text {lock }[i]} R 05$

By $\overline{\text { the }}$ rule TryLockReadM on [8] and [5], we have that
$R 05$ returns true i.e. $l=$ true
Thus,
The validation check fails and $R$ returns $\mathbb{A}$.
Case 2:
(9) $C 18_{i} \prec_{\text {lock }[i]} R 05$

By P2X on the algorithm, we have
(10) $C 17_{i} \prec_{H} C 18_{i}$
(11) $R 05 \prec_{H} R 06$

By the rule XLTrans on [10], [9] and [11], we have $C 17_{i} \prec_{H} R 06$
Thus, by the rule X2L, we have

$$
\text { (12) } C 17_{i} \prec_{\text {ver }[i]} R 06
$$

By Lemma 61 on [12], we have (13) wver $\leq s_{2}$

By $\overline{\mathrm{P}} 2 \mathrm{X}$ on the algorithm, we have
(14) $R 03 \prec_{H} R 04$
(15) $C 16_{i} \prec_{H} C 17_{i}$

By the rule XXTrans on [14], [3] and [15], we have $R 03 \prec_{H} C 17_{i}$
Thus, by the rule X2L, we have (16) $R 03 \prec_{v e r[i]} C 17_{i}$

By Lemma 61 on [16], we have
(17) $s_{1}<$ wver

From [13] and [17], we have

$$
\neg\left(\overline{s_{1}}=s_{2}\right)
$$

Thus,
The validation check fails and $R$ returns $\mathbb{A}$ in this case too.

Lemma 53. TL2 preserves reads of aborted transactions (part 2).
$\forall H \in \mathbb{H}(T L 2):$
$\forall R \in \operatorname{GlobalTReads}(H):$ Let $i=\arg _{H}(R), T=\operatorname{trans}_{H}(R)$ :
$T \in \operatorname{Aborted}(H) \Rightarrow$ NoWriterBetween $_{H, i}(T, \sqsubseteq, R)$

T	$T^{\prime}$
I01® snap = clock.read ()	$C 02_{i} \triangleright \quad \operatorname{lock}[i]$. trylock ()
I02 $\triangleright$ rver $[t]$. write(snap)	
	C07® wver $=$ clock.iaf ()
	C16 ${ }^{\text {® }}$ - reg $[i] . w r i t e(v)$
$R 04 \triangleright \quad v=\operatorname{reg}[i] \cdot \operatorname{read}()$	$C 17_{i} \triangleright \quad$ ver $[i] . w r i t e(w v e r)$
$R 05 \triangleright \quad l=\operatorname{lock}[i] \cdot \operatorname{read}()$	C18 ${ }_{\text {i }} \triangleright$ lock $[i]$. unlock ()
$R 06 \triangleright s_{2}=\operatorname{ver}[i] . r e a d()$	
$R 07 \triangleright$ sver $=$ rver $[t] \cdot \operatorname{read}()$	
$\begin{aligned} & \text { if }\left(\neg\left(\neg l \wedge s_{1}=s_{2} \wedge s_{2} \leq \text { sver }\right)\right) \\ & \quad \text { return } \mathbb{A} \end{aligned}$	

Figure 10.2: $\quad$ Case $T \in \operatorname{Aborted}(H) \wedge T \sqsubset T^{\prime} \sqsubset R$

Proof Sketch.
We consider an aborted transaction $T$ with an unaborted global read operation $R$ from a location $i$ and a writer $T^{\prime}$ of $i$.
We assume that
$T^{\prime}$ takes effect after $T$
that is
(1) $T \sqsubset T^{\prime}$
and
$T^{\prime}$ accesses $i$ before $R$
that is
(2) $T^{\prime} \sqsubset R$

We show that
TL2 aborts $R$.
Figure 10.2 depicts the two transactions.
By Definition 19 on [1], we have
(3) $I 01 \prec_{\text {clock }} C 07$

By Definition 19 on [2], we have
(4) $C 16_{i} \preceq R 04$

The $\bar{m}$ ethod calls $R 05$ and $C 18_{i}$ are on the object lock $[i]$. We consider two cases for the linearization order of them and prove that $R$ returns $\mathbb{A}$ in both cases.
Case 1:
(5) $R 05 \prec_{\text {lock }[i]} C 18_{i}$
$\bar{B} y$ P2X on the algorithm, we have
(6) $C 02_{i} \prec_{H} C 16_{i}$
(7) $R 04 \prec_{H} R 05$

By the rule XXTrans on [6], [4] and [7], we have
$C 02_{i} \prec_{H} R 05$
thus, by the rule X 2 L , we have
(8) $C 02_{i} \prec_{\text {lock[i] }} R 05$

By the rule TryLockReadM on [8] and [5], we have that
$R 05$ returns true i.e. $l=$ true.
Thus,
The validation check fails and $R$ returns $\mathbb{A}$.
Case 2:
(9) $C 18_{i} \prec_{\text {lock }[i]} R 05$
$\bar{B} y \mathrm{P} 2 \mathrm{X}$ on the algorithm, we have
(10) $C 17_{i} \prec_{H} C 18_{i}$
(11) $R 05 \prec_{H} R 06$

By the rule XLTrans on [10], [9] and [11], we have
$C 17_{i} \prec_{H} R 06$
Thus, by the rule X2L, we have
(12) $C 17_{i} \prec_{\text {ver }[i]} R 06$

By Lemma 60 on [12], we have
(13) wver $\leq s_{2}$

By the rule SCounter on [3], we have
(14) snap < wver

The value of sver is read at $R 07$ from rver.
The thread-local register rver is only assigned at $I 02$ to snap.
Thus, we have
(15) snap = sver

From [13], [14] and [15], we have
sver $>s_{2}$
Thus,
The validation check fails and $R$ returns $\mathbb{A}$ in this case too.

Lemma 54. TL2 preserves reads of aborted transactions.

$$
\begin{aligned}
& \forall H \in \mathbb{H}(T L 2): \\
& \forall R \in \operatorname{GlobalTReads}(H): \text { Let } i=\arg _{H}(R), T=\operatorname{trans}_{H}(R): \\
& \quad T \in \operatorname{Aborted}(H) \Rightarrow \quad \text { NoWriterBetween }_{H, i}(R, \sqsubseteq, T) \wedge \text { NoWriterBetween }_{H, i}(T, \sqsubseteq, R)
\end{aligned}
$$

Proof. Immediate from Lemma 52 and Lemma 53.
Lemma 55. TL2 preserves reads of committed transactions (part 1).

$$
\begin{aligned}
& \forall H \in \mathbb{H}(T L 2): \\
& \forall R \in \operatorname{GlobalTReads}(H): \text { Let } i=\arg 1_{H}(R), T=\operatorname{trans}_{H}(R): \\
& \quad T \in \operatorname{Committed}(H) \Rightarrow \\
& \quad \text { NoWriterBetween } \\
& H, i \\
& \\
& \quad \text { (R, } \sqsubseteq, T)
\end{aligned}
$$

Proof Sketch.
We consider a committed transaction $T$ with an unaborted global read operation $R$ from a location $i$ and a writer $T^{\prime}$ of $i$.


Figure 10.3: Case $T \in \operatorname{Committed}(H) \wedge R \sqsubset T^{\prime} \sqsubset T$

We assume that
$T^{\prime}$ accesses $i$ after $R$
that is
(1) $R \sqsubset T^{\prime}$
and
$T^{\prime}$ takes effect before $T$
that is
(2) $T^{\prime} \sqsubset T$

We show that
TL2 aborts $R$.
Figure 10.3 depicts the two transactions. We annotate the labels and variables of $T^{\prime}$ by a prime so that they do not conflict with the labels and variables of $T$.
By Definition 19 on [1], we have
(3) $R 0 4 \longdiv { \prec _ { H } } C 1 6 _ { i }$

By Definition 19 on [2], we have
(4) $C 07^{\prime} \prec_{\text {clock }} C 07$

The $\bar{m}$ ethod calls $I 01$ and $C 07^{\prime}$ are on the object clock. We consider two cases for the linearization order of them.
Case 1:
(5) $C 07^{\prime} \prec_{\text {clock }} I 01$

From [5] and [3],
The proof of this case reduces to the proof of Lemma 52.

Case 2:
(6) $I 01 \prec_{\text {clock }} C 07^{\prime}$
$\bar{B} y$ the rule SCounter on [4], we have
(7) wver ${ }^{\prime}$ < wver

By the rule SCounter on [6], we have
(8) snap < wver'

The value of sver is read at $R 07$ from rver.
The thread-local register rver is only assigned at $I 02$ to snap.
Thus, we have
(9) snap = sver

From [8] and [9], we have
(10) sver $<$ wver $^{\prime}$

From [10] and [7], we have
(11) wver $\neq$ sver +1

Thus,
The if branch is taken.
The method calls $C 10_{i}$ and $C 18_{i}^{\prime}$ are on the object lock $[i]$.
We consider two cases for the linearization order of them.
Case 2.1:
(12) $C 10_{i} \prec_{\text {lock }[i]} C 18_{i}^{\prime}$

By $\overline{\mathrm{P}} 2 \mathrm{X}$ on the algorithm, we have
(13) $C 02_{i}^{\prime} \prec_{H} C 07^{\prime}$
(14) $C 07 \prec_{H} C 10_{i}$

By the rule XLTrans on [13], [4] and [14], we have $C 02_{i}^{\prime} \prec_{H} C 10_{i}$
thus, by the rule X 2 L , we have
(15) $C 02_{i}^{\prime} \prec_{\text {lock }[i]} C 10_{i}$

By the rule TryLockReadM on [15] and [12], we have that $R 05$ returns true i.e. $l=$ true
Thus,
The validation check fails and $R$ returns $\mathbb{A}$.

Case 2.2:
(16) $C 18_{i}^{\prime} \prec_{\text {lock }[i]} C 10_{i}$

By $\overline{\text { P2 }}$ X on the algorithm, we have
(17) $C 17_{i}^{\prime} \prec_{H} C 18_{i}^{\prime}$
(18) $C 10_{i} \prec_{H} C 11_{i}$

By the rule XLTrans on [17], [16] and [18], we have $C 17_{i}^{\prime} \prec_{H} C 11_{i}$
Thus, by the rule X2L, we have
(19) $C 17_{i}^{\prime} \prec_{\text {ver }[i]} C 11_{i}$

By Lemma 61 on [19], we have
(20) wver ${ }^{\prime} \leq s$

From [10], [20], we have
sver $<s$

Thus,
The validation check fails and $R$ returns $\mathbb{A}$ in this case too.

Lemma 56. TL2 preserves reads of committed transactions (part 2).

$$
\begin{aligned}
& \forall H \in \mathbb{H}(T L 2): \\
& \forall R \in \operatorname{GlobalTReads}(H): \text { Let } i=\arg _{H}(R), T=\operatorname{trans}_{H}(R): \\
& \quad T \in \operatorname{Committed}(H) \Rightarrow^{\forall} \quad \text { NoWriterBetween } \\
& H, i \\
& (T, \sqsubseteq, R)
\end{aligned}
$$

Proof Sketch.

$T$	$T^{\prime}$		
$R 04 \triangleright$	$v=\operatorname{reg}[i] \cdot \operatorname{read}()$		
	$\ldots$		
	$\ldots 07 \triangleright$	wver $=$ clock.iaf ()	

Figure 10.4: Case $T \in \operatorname{Committed}(H) \wedge T \sqsubset T^{\prime} \sqsubset R$
We consider a committed transaction $T$ with an unaborted global read operation $R$ from a location $i$ and a writer $T^{\prime}$ of $i$. We should show that it is impossible that $T^{\prime}$ takes effect after $T$ and $T^{\prime}$ accesses $i$ before $R$.
We assume that
$T^{\prime}$ takes effect after $T$
that is
(1) $T \sqsubset T^{\prime}$

We show that
$T^{\prime}$ accesses $i$ after $R$.
that is
(2) $R \sqsubset T^{\prime}$

Figure 10.4 depicts the two transactions. We annotate the labels and variables of $T^{\prime}$ by a prime so that they do not conflict with the labels and variables of $T$.
By Definition 19 on [1], we have
(3) $C 07 \prec_{\text {clock }} C 07^{\prime}$

By Definition 19 on [2], we have to show
$R 04 \prec_{H} \overline{C 16}_{i}$
By P2X and the algorithm, we have
(4) $C 04 \prec_{H} C 07$
(5) $C 07^{\prime} \prec_{H} C 16_{i}^{\prime}$

By the rule XLTrans on [4], [3], and [5], we have

Lemma 57. TL2 preserves reads of committed transactions.

$$
\begin{aligned}
& \forall H \in \mathbb{H}(T L 2): \\
& \forall R \in \operatorname{GlobalTReads}(H): \text { Let } i=\arg 1_{H}(R), T=\operatorname{trans}_{H}(R): \\
& \quad T \in \operatorname{Committed}(H) \Rightarrow \quad \operatorname{NoWriterBetween}_{H, i}(R, \sqsubseteq, T) \wedge \text { NoWriterBetween }_{H, i}(T, \sqsubseteq, R)
\end{aligned}
$$

Proof. Immediate from Lemma 55 and Lemma 56.
Lemma 58. TL2 is read-preserving.

$$
\forall H \in \mathbb{H}(T L 2): \operatorname{ReadPres}(H, \sqsubseteq)
$$

Proof. Immediate from Lemma 54 and Lemma 57.

Lemma 59. Version registers are updated to ascending numbers.
Let $C 17_{i}^{1}$ denote the method call at line $C 17_{i}$ executed by a transaction $T_{1}$ and let wver ${ }^{1}$ denote its argument. Similarly, let $C 17_{i}^{2}$ denote the method call at line $C 17_{i}$ executed by a transaction $T_{2}$ and let wver ${ }^{2}$ denote its argument. If $C 17_{i}^{1} \prec_{\text {ver }[i]} C 17_{i}^{2}$, then wver ${ }^{1}<w v e r^{2}$.

Proof Sketch.

$T_{1}$	$T_{2}$
...	
$C 02_{i}^{1} \triangleright \quad$ locked ${ }^{1}=\operatorname{lock}[i]$. trylock ()	
...	
$C 07^{1} \triangleright \quad$ wver $^{1}=$ clock.iaf ()	
...	
$C 17_{i}^{1} \triangleright \quad$ ver $[i]$. write $\left(\right.$ wver $\left.^{1}\right)$	
$C 18_{i}^{1} \triangleright \quad$ lock $[i]$. unlock ()	...
...	$C 02{ }_{i}^{2} \triangleright \quad$ locked ${ }^{2}=\operatorname{lock}[i] . \operatorname{trylock}()$
	...
	$C 07^{2} \triangleright \quad$ wver ${ }^{2}=$ clock.iaf ()
	...
	$C 17_{i}^{2} \quad$ ver $[i] . w r i t e\left(w v e r{ }^{2}\right)$
	C18 ${ }_{\text {i }}^{2}$ lock [i].unlock()
	...

Figure 10.5: Updating Version Registers
We have that
(1) $C 17_{i}^{1} \prec_{v e r[i]} C 17_{i}^{2}$

We show that
wver $^{1}<$ wver 2
By P2X on the algorithm, we have
(2) $C 02_{i}^{1} \prec_{H} C 17_{i}^{1}$
(3) $C 17_{i}^{2} \prec_{H} C 18_{i}^{2}$

By the rule XLTrans on [2], [1] and [3], we have
(4) $C 02_{i}^{1} \prec_{H} C 18_{i}^{2}$

Thus, by the rule X2L, we have
(5) $C 02_{i}^{1} \prec_{\text {lock }[i]} C 18_{i}^{2}$

From the algorithm,
(6) The ownership of lock $[i]$ is respected.

By the rule TryLock on [6] and [5], we have
(7) $C 18_{i}^{1} \prec_{\text {lock }[i]} C 02_{i}^{2}$

By P2X on the algorithm, we have
(8) $C 07_{1} \prec_{H} C 18_{i}^{1}$
(9) $C 02_{i}^{2} \prec_{H} C 07^{2}$

By the rule XLTrans on [8], [7], and [9], we have
(10) $C 07^{1} \prec_{H} C 07^{2}$

By the rule X 2 L on [10], we have
(11) $C 07^{1} \prec_{\text {clock }} \overline{C 0} 7^{2}$

By the rule SCounter on [11], we have
wver $^{1}<$ wver 2

Lemma 60. For every write method call $W$ on ver $[i]$ with argument $v$ and every read method call $R$ on ver $[i]$ with the return value $v^{\prime}$, if $W \prec_{v e r[i]} R$ then $v \leq v^{\prime}$.

Proof Sketch.
We have
(1) $W$ is a write method call on $\operatorname{ver}[i]$.
(2) $R$ is a read method call on $\operatorname{ver}[i]$.
(3) $W \prec_{\text {ver }[i]} R$.
(4) The argument of $W$ is $v$.
(5) The return value of $R$ is $v^{\prime}$.

We show that

$$
v \leq v^{\prime}
$$

Let
(6) $W^{\prime}$ is last write on ver $[i]$ linearized before $R$.
(7) The argument of $W^{\prime}$ is $v^{\prime \prime}$.

By the rule AREG' on [6], [7], and [5], we have
(8) $v^{\prime}=v^{\prime \prime}$

From [6], and [1], we have
(9) $W \preceq \preceq_{\text {ver }[i]} W^{\prime}$

By the algorithm and [1], and [6], we have
(10) $W$ and $W^{\prime}$ are both at $C 17$.

By Lemma 59 on [10], [9], [4] and [7], we have
(11) $v \overline{\leq} v^{\prime \prime}$

From [8] and [11], we have
$v \leq v^{\prime}$

Lemma 61. For every write method call $W$ on ver $[i]$ with argument $v$ and every read method call $R$ on ver $[i]$ with the return value $v^{\prime}$, if $R \prec_{\text {ver }[i]} W$ then $v^{\prime}<v$.

Proof Sketch.
We have
(1) $W$ is a write method call on ver $[i]$.
(2) $R$ is a read method call on $\operatorname{ver}[i]$.
(1) $R \prec_{v e r[i]} W$.
(2) The argument of $W$ is $v$.
(3) The return value of $R$ is $v^{\prime}$.

We show that
$v^{\prime}<v$

Let
(4) $W^{\prime}$ is last write on $\operatorname{ver}[i]$ linearized before $R$.
(7) The argument of $W^{\prime}$ is $v^{\prime \prime}$.

By the rule AREG' on [4], [7], and [3], we have (8) $v^{\prime}=v^{\prime \prime}$

From [1] , and [4], we have
(9) $W^{\prime} \prec_{v e r[i]} W$

By the algorithm and [1], and [4], we have
(10) $W$ and $W^{\prime}$ are both at $C 17$.

By Lemma 59 on [10], [9], [4] and [7], we have
(11) $v^{\prime \prime}<v$

From [8] and [11], we have
$v^{\prime-}<v$

Lemma 62. TL2 is global-write-observant.

$$
\begin{aligned}
& \forall H \in \mathbb{H}(T L 2): \\
& \forall R \in \operatorname{GlobalTReads}(H): \exists W \in \operatorname{GlobalTWrites}(H): \text { Let } T^{\prime}=\operatorname{trans}_{H}(W): \\
& \operatorname{LastPreAccessor} \\
& \arg , \succeq\left(T_{H}(R)=\arg 1_{H}(W) \wedge\right. \\
& \operatorname{retv} \\
& H
\end{aligned}(R)=\arg 2_{H}(W) .
$$

Proof Sketch.
We consider a transaction $T$ with an unaborted global read operation $R$ from a location $i$. The read operation $R$ is from the location $i$, thus,
(1) The argument of $R$ is $i$.

As $\bar{R}$ is global, thus,
(2) The return value of $R$ is the return value of $R 04$.

We first show that
(3) The read method call from $\operatorname{reg}[i]$ at $R 04$ is race-free.
$\bar{W}$ e assume that there is a write method call on reg[i] concurrent to it and show that TL2 aborts $R$.

Figure 10.6 depicts this situation.

$T$	$T^{\prime}$
	$C 02_{i} \triangleright \quad$ locked $=\operatorname{lock}[i] . t r y l o c k()$
	...
$R 03 \triangleright s_{1}=\operatorname{ver}[i] \cdot \operatorname{read}()$	
$R 04 \triangleright \quad v=\operatorname{reg}[i] \cdot \operatorname{read}()$	$C 16_{i} \triangleright \quad v=r e g[i] . w r i t e(v)$
...	$C 17_{i} \triangleright \quad$ ver $[i] . w r i t e(w v e r)$
$R 05 \triangleright \quad \operatorname{lock}[i] . r e a d()$	$C 18_{i} \triangleright \quad \operatorname{lock}[i] . \operatorname{unlock}()$
$R 06 \triangleright s_{2}=\operatorname{ver}[i] \cdot \operatorname{read}()$	...
$R 07 \triangleright \quad$ sver $=$ rver $[t] \cdot \operatorname{read}()$	
$\begin{aligned} & \text { if }\left(\neg\left(\neg l \wedge s_{1}=s_{2} \wedge s_{2} \leq s v e r\right)\right) \\ & \\ & \text { return } \mathbb{A} \end{aligned}$	

Figure 10.6: $\quad R 04$ is race-free
We assume that there a race between $R 04$ and $C 16_{i}$. Thus,
(4) $R 04 \sim C 16_{i}$

The method calls $R 05$ and $C 18_{i}$ are on the object lock $[i]$.
We consider two cases for the linearization order of them and prove that $R$ returns $\mathbb{A}$ in both cases.

We consider two cases
Case 1:
(5) $R 04 \prec_{\text {lock }[i]} C 18_{i}$

By P2X and the algorithm, we have
(6) $C 02_{i} \prec_{H} C 16_{i}$
(7) $R 04 \prec_{H} R 05$

By $\overline{\text { the }}$ re XXTrans on [6], [4], and [7], we have
(8) $C 02_{i} \prec_{H} R 05$

By the rule X 2 L on [8], we have
(9) $C 02_{i} \prec_{\text {lock }[i]} R 05$

By $\overline{\text { the }}$ rule TryLockReadM on [9] and [5], we have that $R 05$ returns true i.e. $l=$ true
Thus,
The validation check fails and $R$ returns $\mathbb{A}$.
Case 2:
(10) $C 18_{i} \prec_{\text {lock }[i]} R 04$

By P2X and the algorithm, we have
(11) $R 03 \prec_{H} R 04$
(12) $R 05 \prec_{H} R 06$
(13) $C 16_{i} \prec_{H} C 17_{i}$
(14) $C 17_{i} \prec_{H} C 18_{i}$

By the rule XXTrans on [11], [4], and [13], we have
(15) $R 03 \prec_{H} C 17_{i}$

By Lemma 61 on [15], we have
(16) $s_{1}<$ wver

By the rule XLTrans on [14], [10], and [12], we have
(17) $C 17_{i} \prec_{H} R 06$

By Lemma 60 on [17], we have
(18) $s_{2}>$ wver

From [15] and [17], we have
(19) $s_{1} \neq s_{2}$

Thus,
The validation check fails and $R$ returns $\mathbb{A}$.
Second, we show that
(20) The register reg[i] is sequentially-written i.e. no two write methods on $r e g[i]$ are concurrent.
$\bar{W}$ assume two concurrent write method calls on $r e g[i]$ and show a contradiction.
Figure 10.7 depicts this situation.

$T$	$T^{\prime}$	
$C 02_{i} \triangleright \quad$ locked $=\operatorname{lock}[i] . \operatorname{trylock}()$		
$\ldots$	$C 02_{i}^{\prime} \triangleright \quad$ locked ${ }^{\prime}=\operatorname{lock}[i]$. trylock ()	
		$\ldots$
$C 16_{i} \triangleright \quad v=\operatorname{reg}[i]$. write $(v)$	$C 16_{i}^{\prime} \triangleright$	$v^{\prime}=\operatorname{reg}[i] . w r i t e\left(v^{\prime}\right)$
	$\ldots$	$\ldots$
$C 18_{i} \triangleright \quad \operatorname{lock}[i]$. unlock ()		
	$C 18_{i}^{\prime} \triangleright \quad \operatorname{lock}[i]$. unlock ()	

Figure 10.7: $r e g[i]$ is sequentially-written
We assume that $C 16_{i}$ and $C 16_{i}^{\prime}$ are concurrent. Thus,
(21) $C 16_{i} \sim C 16_{i}^{\prime}$

By P2X and the algorithm, we have
(22) $C 02_{i} \prec_{H} C 16_{i}$
(23) $C 16_{i}^{\prime} \prec_{H} C 18_{i}^{\prime}$

By the rule XXTrans on [22], [21], and [23], we have
(24) $C 02_{i} \prec_{H} C 18_{i}^{\prime}$

By the rule X 2 L on [8], we have
(25) $C 02_{i} \prec_{\text {lock }[i]} C 18_{i}^{\prime}$

By the rule TryLock on [25], we have that
(26) $C 18_{i} \prec_{\text {lock }[i]} C 02_{i}^{\prime}$

By P2X and the algorithm, we have
(27) $C 16_{i} \prec_{H} C 18_{i}$
(28) $C 02_{i}^{\prime} \prec_{H} C 16_{i}^{\prime}$

By the rule XLTrans on [27], [26], and [28], we have
(29) $C 16_{i} \prec_{H} C 16_{i}^{\prime}$

That is a contradiction to [21].
By the rule BREG on [3], and [20], we have
(30) There is a write method call $w$ on $\operatorname{reg}[i]$ such that

The argument of $w$ is equal to the return value of $R 04$.
The last write method call on $\operatorname{reg}[i]$ that is executed before $R 04$ is $w$.
By the algorithm, we have
(31) The register reg[i] is written only at $C 16_{i}$.

From [28] and [29], we have
There is a transaction $T^{\prime}$ such that
(We annotate the labels and variables of $T^{\prime}$ by a prime so that they do not conflict with the labels and variables of $T$.)
(32) The argument of $C 16_{i}^{\prime}$ is equal to the return value of $R 04$.
(33) The last write method call on reg[i] that is executed before $R 04$ is $C 16_{i}^{\prime}$.

By the algorithm, we have
(34) The argument of $C 16_{i}^{\prime}$ is the value of the key $i$ in the map wset $\left[T^{\prime}\right]$ in the commit.
(35) The map $w \operatorname{set}\left[T^{\prime}\right]$ is updated only at $W 01$ in a write of $T^{\prime}$ such that

The key is equal to the first argument of the write.
The value is equal to the second argument of the write.
From [34], and [35], we have
(36) There exists a write $W$ of $T^{\prime}$
(37) The first argument of $W$ is equal to $i$.
(38) $W$ is the last write of $T^{\prime}$ with the first argument equal to $i$.
(39) The second argument of $W$ is equal to the argument of $C 16_{i}^{\prime}$.

From [1], and [37], we have
(40) The first argument of $R$ is the first argument of $W$.

From [2], [32], and [39], we have
(41) The return value of $R$ is the second argument of $W$.

From [38], we have
(42) $W$ is a global write.

We show that
(43) The transaction $T^{\prime}$ is the last pre-accessor of $R$.

From [33], we have
(44) $C 16_{i}^{\prime} \prec_{H} R 04$

By Definition 19 on [44], we have
(45) $T^{\bar{\prime} \sqsubset} R$

Now, we show that
(46) Every transaction $T^{\prime \prime}$ other than $T^{\prime}$ that accesses $i$ before $R$, takes effect before $T^{\prime}$.

We assume that
(47) $T^{\prime \prime} \neq T^{\prime}$
(48) $T^{\prime \prime} \sqsubset R$

We should show that

$$
T^{\prime \prime} \sqsubset T^{\prime}
$$

By Definition 19 on [48], we have
(We annotate the labels and variables of $T^{\prime}$ by a double prime.)
(49) $C 16_{i}^{\prime \prime} \prec_{H} R 04$

From [33], [33], and [49], we have
(50) $C 1 \overline{6_{i}^{\prime \prime}} \prec_{H} C 1 \overline{6_{i}^{\prime}}$

Consider Figure 10.8.

$T^{\prime \prime}$	$T^{\prime}$
$C 02{ }_{i}^{\prime \prime} \triangleright \quad$ locked ${ }^{\prime \prime}=\operatorname{lock}[i] . \operatorname{tryLock}()$	
...	$C 02_{i}^{\prime} \triangleright \quad$ locked ${ }^{\prime}=\operatorname{lock}[i] . \operatorname{tryLock}()$
$C 07^{\prime \prime} \triangleright \quad$ wver ${ }^{\prime \prime}=\operatorname{clock} . i a f()$	...
..	$C 07^{\prime} \triangleright \quad$ wver ${ }^{\prime}=$ clock.iaf ()
$C 16_{i}^{\prime \prime} \triangleright \quad$ reg $[i] . w r i t e\left(v^{\prime \prime}\right)$	...
...	$C 16_{i}^{\prime} \triangleright \quad$ reg $[i]$. write $\left(v^{\prime}\right)$
$C 18_{i}^{\prime \prime} \triangleright \quad \operatorname{lock}[i]$. unlock ()	...
	C18, $\triangleright$ lock $[i]$. unlock ()

Figure 10.8: Effect-order of pre-accessors
By P2X and the algorithm, we have
(51) $C 02_{i}^{\prime \prime} \prec_{H} C 16_{i}^{\prime \prime}$
(52) $C 16_{i}^{\prime} \prec_{H} C 18_{i}^{\prime}$

By the rule XXTrans on [51], [50], and [52], we have
(53) $C 02_{i}^{\prime \prime} \prec_{H} C 18_{i}^{\prime}$

By the rule X2L on [53], we have
(54) $C 02_{i}^{\prime \prime} \prec_{\text {lock }[i]} \overline{C 18_{i}^{\prime}}$

By the rule TryLock on [45], we have that
(55) $C 18_{i}^{\prime \prime} \prec_{\text {lock }[i]} C 02_{i}^{\prime}$

By P2X and the algorithm, we have
(56) $C 07_{i}^{\prime \prime} \prec_{H} C 18_{i}^{\prime \prime}$
(57) $C 02_{i}^{\prime} \prec_{H} C 07_{i}^{\prime}$

By the rule XLTrans on [56], [55], and [57], we have

$$
\text { (58) } C 07^{\prime \prime} \prec_{H} C 07^{\prime}
$$

By Definition 19 on [58], we have

$$
T^{\prime \prime} \sqsubset T^{\prime} .
$$

The conclusion is
[36], [42], [40], [41], and [43]

Lemma 63. TL2 is local-write-observant.

$$
\begin{aligned}
& \forall H \in \mathbb{H}(T L 2): \\
& \forall R \in \operatorname{LocalTReads}(H): \text { Let } T=\operatorname{trans}_{H}(R), i=\arg 1_{H}(R), H^{\prime}=H|T| i: \\
& \exists W \in T W \operatorname{Trites}\left(H^{\prime}\right): \\
& \quad W \prec_{H^{\prime}} R \wedge \operatorname{NoWriteBetween}_{H^{\prime}}(W, R) \wedge \\
& \quad \operatorname{retv}_{H^{\prime}}(R)=\arg _{H^{\prime}}(W)
\end{aligned}
$$

Proof Sketch.
Let
(1) The operation $R$ is a local read with the first argument $i$ by the transaction $T$. From [1], as $R$ is local, we have
(2) There is a write operation before $R$ with the first argument $i$ by $T$.

From [2], let
(3) The operation $W$ is the last write operation before $R$ with the first argument $i$ by the transaction $T$.
By the algorithm
(4) The value of a key $i$ in wset is updated only at $W 01$ in a write operation with the first argument $i$
and the value of the key $i$ is updated to the second argument of the write operation.
From [3] and [4], we have
(5) The value of a key $i$ in wset during the execution of $R$ is equal to the second argument of $W$.
Thus, by the algorithm
(6) $R 01-R 02$ find a value for the key $i$ in wset.

Thus,
(7) The return value of $R$ is equal to the value of key $i$ in $w$ set.

From [7] and [5], we have
(8) The return value of $R$ is equal to the second argument of $W$.

The conclusion is
[3] and [8]

Lemma 64. TL2 is write-observant.

$$
\forall H \in \mathbb{H}(T L 2): \text { WriteObs }(H, \sqsubseteq)
$$

Proof. Immediate from Lemma $\underline{63}$ and Lemma $\underline{62}$.

Lemma 65. TL2 is real-time-preserving.

$$
\forall H \in \mathbb{H}(T L 2): \text { RealTimePres }(H, \sqsubseteq)
$$

Proof Sketch.
We assume that
(1) $T \varliminf_{H} T^{\prime}$

We show that
$T \sqsubseteq T^{\prime}$
By the definition of $\nwarrow_{H}$, from [1], we have
(2) All the operations of $T$ are executed before all the operations of $T^{\prime}$.

By the rule X2L, from [2], we have
(3) All the operations of $T$ on clock are linearized before all the operations of $T^{\prime}$ on clock.

By Definition 19,
(4) The effect point of each transaction is one of its own operations on the clock object.

From [3] and [4], we have
(5) The transaction $T$ takes effect before the transaction $T^{\prime}$.
that is
$T \sqsubseteq T^{\prime}$

Lemma 66. The relation $\sqsubseteq$ is a marking relation.

$$
\forall H \in \mathbb{H}(T L 2): \sqsubseteq \in \operatorname{Marking}(H)
$$

Proof Sketch.
Consider Definition 19.
By the totality of the linearization order $\prec_{c l o c k}$, the relation $\sqsubseteq$ is a total on the set of transactions.
As every pair of method calls either execute in order or concurrently, every read operation of a location $i$ is ordered either before or after every writer to $i$. In addition, as no method call can execute before another method call and also after after or concurrent to it, no read operation of a location $i$ is ordered both before and after a writer to $i$.

Lemma 67. TL2 is markable.

$$
\forall H \in \mathbb{H}(T L 2): H \in \text { FinalStateMarkable }
$$

Proof. Immediate from Lemma 66, Lemma 58, Lemma 64, and Lemma 65.

Theorem 7. TL2 is opaque.

$$
\forall H \in \mathbb{H}(T L 2): H \in \text { FinalStateOpaque }
$$

Proof. Immediate from Lemma 67, and Theorem 1.

### 10.3 Testing TM Algorithms

### 10.3.1 Example: Dekker Mutual Exclusion

```
DekkerSpec {
 f_1: AtomicRegister
 f_2: AtomicRegister
 r: BasicRegister
 def this() {
 W_01> f_1.write(0)
 W_02> f_2.write(0)
 }
 main {
 {
 W_1> f_1.write(1)
 R_2> m_2 = f_2.read()
 I_1> if (x_2 = 0)
 C_1> r.write(1)
 } || {
 W_2> f_2.write(1)
 R_1> x_1 = f_1.read()
 I_2> if (x_1 = 0)
 C_2> r.write(2)
 }
 }
 order {
 W_1 -> R_2 &&
 W_2 -> R_1
 }
 spec {
 ~
 exec(C_1) /\
 exec(C_2)
)
 }
}
```

Figure 10.9: Dekker Algorithm Specification
We introduce a DSL called Samand for the specification of concurrent object algorithms. A specification of a concurrent object declares the type of a set of shared base objects and defines a set of methods. The set of supported base object types are BasicRegister, AtomicRegister,

```
W_01> f_1.write(0) 1 1
W_02> f_2.write(0) 2 2
3 W_2> f_2.write(1)
4 4 R_1> x_1 = f_1.read()
5 5 I_2> if (x_1=0)
6 6 C_2> r.write(2)
7 W_1> f_1.write(1)
8 R_2> x_2 = f_2.read() 8
9 I_1> if (x_2=1) 9
10 C_1> r.write(1) 10 .
```

Figure 10.10: Bug Trace for Incorrect If Condition

AtomicCASRegister, Lock and TryLock. There is also support for arrays of these types and threadlocal objects. User can define record types. A record type contains a set of object declarations. The new operator dynamically allocates an instance of a record type and returns a reference to it. The method definitions call methods on the base objects. Method calls are ordered by program control and data dependencies and lock happens-before orders. To allow for performance benefits of out-oforder execution, method calls that are unordered by the program are allowed to appear reordered in the histories of the program. The user can explicitly require specific orders in the order block. Note that these orders can be translated to fences for specific architectures. In order to represent complete specifications, there is no implicit program order in the language. The language enforces the discipline that the object types and the program order are explicitly declared.

In the main block, the user can write a concurrent program that calls the methods of the specified concurrent object. The main block is a sequence of blocks, one for each thread. Finally, the spec block specifies the correctness assertion. Every history of the concurrent program is expected to satisfy the correctness assertion. The correctness assertion can assert a partial correctness condition. In particular, it can be the negation of a bug pattern.

The set of histories of a specification are constrained by two set of constraints. Firstly, every history respects the guarantees of the base objects. For example, if a base object is an atomic register, then the sub-history for that register should be linearizable. Secondly, every history respects the control, data and program order dependencies. For example, if a method call is data-dependent on another method call, then the latter should precede the former in the history.

Figure 10.9 shows the specification of Dekker mutual exclusion algorithm in Samand. The two flags are declared as atomic registers. The optional this method specifies the initialization statements. This method is executed before the concurrent execution begins. This simple specification does not define any other method. The main block specifies the concurrent program. The order block specifies that each thread should set its own flag before reading the other thread's flag. Finally, the spec block specifies the correctness assertion i.e. the two critical sections should not both execute.

Running Samand checker on the specification of Dekker results in approval of the specification.
If the specification is not met, the Samand checker reports the trace that leads to violation of the specification in a graphical user interface. If the condition of the statement at line I_1 is replaced with the incorrect condition ( $x_{-} 2=1$ ), Samand checker shows the interleaving depicted in Figure 10.10.

```
W_02> f_2.write(0) 1 1
W 01> f 1.write(0)
R_2> x_2 = f_2.read()
I_1> if (x_2=0) 4
5 W_2> f_2.write(1)
6 6 R_1> m_1 = f_1.read()
7W_1> f_1.write(1) 7
8 8 I_2> if (x_1=0)
9 9 C_2> r.write(2)
10. 10 C_1> r.write(1) 10 .
```

Figure 10.11: Bug Trace for Removed Program Order

1 W_02 >	f_2.write (0)	1		1	
2 W_01 >	f_1.write (0)	2		2	
3		3 W_1 >	f_1.write (1)	3	
4		${ }_{4}$ R_2 ${ }^{\text {/ }}$	$\mathrm{x}_{-} 2=\mathrm{f}$ _ $2 \cdot \mathrm{read}()$	4	
5		5		5 W _ $2>$	f_2.write (1)
6		6		$6_{6}$ R_1 >	$\mathrm{x}_{\mathbf{-}} 1=\mathrm{f}$ _1.read (
7		7 I _ $1>$	if ( $\mathrm{x}_{-} 2=0$ )	7	
8		8 C_1 ${ }^{\text {P }}$	r.write(1)	8	

Figure 10.12: Dekker Random Execution

If the declared order W_1 -> R_2 is removed, Samand checker shows the interleaving depicted in Figure 10.11.

Samand checker is not only a checking tool but can also be viewed as an execution tool. The false literal is an assertion that any execution violates. Therefore, declaring false as the specification assertion results in a random execution. Updating the spec block of the dekker specification as follows shows an execution instance such as the execution depicted in Figure 10.12. In this execution only one of the critical sections C_1 is executed.

```
spec {
 false
}
```


### 10.3.2 Language

The set of currently supported object types are basic registers BasicRegister, atomic registers AtomicRegister, atomic cas registers AtomicCASRegister, locks Lock and try-locks TryLock. As defined in the base objects section, atomic registers, atomic cas registers, locks and try-locks are linearizable objects and basic registers behave as registers only if they are not accessed concurrently.

A base object called $r$ of type BasicRegister is declared as follows:
r: BasicRegister

There is also support for arrays. The following declaration declares an array of try-locks objects of size 10 .
tryLocks: TryLock[10]
The 7th element of the array can be accessed by tryLocks [6]. There is also support for thread-local objects. A thread-local basic register can be declared as

```
reg: TLocal BasicRegister
```

Thread-local objects are arrays in nature. The thread identifier is implicitly passed for accesses to thread-local variables, and hence thread-local variables are conveniently accessed as normal objects. It is also possible to declare thread-local arrays. User-defined record types are also supported. For example, a Node type can be defined as follows:

```
Node {
 lock: Lock
 value: BasicRegister
 next: BasicRegister
}
```

A specification can declare methods. For instance, the following lines show the declaration of a transfer method.

```
def transfer(a) {
 L> lock.lock()
 R1> v1 = b1.read()
 R2> v2 = b2.read()
 C1> v3 = v1 - a
 C2> v4 = v2 + a
 W1> b1.write(v3)
 W2> b2.write(v4)
 U> lock.unlock()
 F> return
}
```

Each method declaration has an implicit parameter for the calling thread identifier. The variable name $t$ is reserved for this parameter and should not be used to name any other variable. The argument for this parameter is automatically passed at the call site. A statement is either a method call, a record creation, an if statement, a return statement or a math statement. The following statement allocates memory for an object of record type Node and returns a reference to it that is assigned to ref.
ref $=$ new Node()
The following statement calls the method method on the base object object with the argument arg and assigns the return value to ret.

```
ret = object.method(arg)
```

If no receiver object is specified for a method call, the receiver is the current object. The following statement calls the method method on the field object of the record referenced by ref with the argument arg and assigns the return value to ret.

```
ret = ref.object.method(arg)
```

The supported math statements are of the form $\mathrm{x} 3=\mathrm{x} 1+\mathrm{x} 2$ or $\mathrm{x} 3=\mathrm{x} 1-\mathrm{x} 2$.
The main block specifies the concurrent program. The thread blocks are separated by \|.
Data and control dependencies order method call. Correctness of the specified algorithm may be dependent on a specific order of method calls that are not ordered by data and control dependencies. The user can declare the required order of method calls in the order block. The program order of a specification is the transitive closure of data and control dependencies, the declared orders and the following conventional orders for locks and this method calls.

Locks (and try-locks) as the foundation of mainstream language memory models have ordering implications (in addition to the linearizability property). Every statement after a lock method (or a successful try-lock method) is ordered after it and every statement before an unlock method is ordered before it. Method calls on this object have ordering implications as well. A function call whose side effects are not clear is even stronger than a compiler barrier. This excludes inline functions and functions known to be pure. We consider full ordering for method calls on this object. The statements before and after method calls on this object (and their enclosing statements) are ordered respectively before and after the call. In addition, the statements of this and ${ }^{\sim}$ this methods are ordered respectively before and after all the statements of the concurrent program (the main block).

Finally, the spec block specifies the assertion that every history of the specification should satisfy. Note that the correctness assertion can assert complete or partial correctness of the specification such as the negation of a bug pattern. The assertion language supports conjunction $/ \backslash$, disjunction $\backslash /$, negation ~ of assertions. Currently, atomic assertions can be that a specific method call is executed

```
exec(M)
```

a method call is executed before another method call
M1 \prec M2
an equality for variables and values

```
x1 = 2
x1 = x2
```

and true and false literals.

### 10.3.3 TM Algorithms in Samand

Note that we have restated the algorithms for the number of threads and locations that are needed for the testing program. Also the foreach loops and procedure callas are inlined. The set and map objects are implemented by registers.

The specification of DSTM is as follows:

```
Loc {
 writer: AtomicRegister
 oldValue: AtomicRegister
 newValue: AtomicRegister
 // These could be basic registers.
 // The bug exists even with these stronger registers.
```

\}

```
DSTM {
 state: AtomicCASRegister [4] // To store thread identifiers
 // Let state[3] be the state of the init trans
 start: AtomicCASRegister[2] // To store Reference to Loc
 rset: TLocal AtomicRegister [2]
 // This could be a basic register array.
 // The bug exists even with these stronger registers.
def this() {
 // init state and start
 I01> state[1].write (\R)
 I02> state[2].write(\R)
 I03> state[3].write(\C)
 IO4> loc1 = new Loc()
 I05> loc1.writer.write(3)
 I06> loc1.newValue.write(0)
 I07> start[0].write(loc1)
 I08> loc2 = new Loc()
 I09> loc2.writer.write(3)
 I10> loc2.newValue.write(0)
 I11> start[1].write(loc2)
 }
def read(i) {
 RO> s = state[t].read()
 R1> if (s = \A)
 R2> return \A
 R3> start = start[i].read()
 // --------------
 // Stable value
 R4> tp = start.writer.read()
 R5> sp = state[tp].read()
 R6> if (tp != t && sp = \R)
 R7> state[tp].cas(\R, \A)
 R8> if (sp = \A)
 R9> v = start.oldValue.read()
 else
 R10> v = start.newValue.read()
 // --------------
 R11> if (tp != t)
 R12> rset[i].write(v)
 // --------------
 // Validate
 R13> rv0 = rset[0].read()
```

```
 R14> if (rv0 != \bot) {
 R15> s0 = start[0].read()
 R16> wt0 = s0.writer.read()
 R17> st0 = state[wt0].read()
 R18> if (st0 = \C)
 R19> vp0 = s0.newValue.read()
 else
 R20> vp0 = s0.oldValue.read()
 R21> if (rv0 != vp0)
 R22> return \A
 R23> cts0 = state[t].read()
 R24> if (cts0 != \R)
 R25> return \A
 }
 R26> rv1 = rset[1].read()
 R27> if (rv1 != \bot) {
 s1 = start[1].read()
 wt1 = s1.writer.read()
 st1 = state[wt1].read()
 if (st1 = \C)
 vp1 = s1.newValue.read()
 else
 vp1 = s1.oldValue.read()
 if (rv1 != vp1)
 return \A
 cts1 = state[t].read()
 if (cts1 != \R)
 return \A
 }
 // --------------
 R39> return v
}
def write(i, v) {
 WO> s = state[t].read()
 W1> if (s = \A)
 W2> return \A
 W3> start = start[i].read()
 W4> wt = start.writer.read()
 W5> if (wt = t) {
 W6> start.newValue.write(v)
 W7> return \Ok
 }
 // --------------
 // Stable value
 W8> tp = start.writer.read()
 W9> sp = state[tp].read()
```

```
 W10> if (tp != t && sp = \R)
 W11> state[tp].cas(\R, \A)
 W12> if (sp = \A)
 W13> vp = start.oldValue.read()
 else
 W14> vp = start.newValue.read()
 // --------------
 W15> startp = new Loc()
 W16> startp.writer.write(t)
 W17> startp.oldValue.write(vp)
 W18> startp.newValue.write(v)
 W19> b = start[i].cas(start, startp)
 W20> if (b = 1)
 W21> return \0k
 else
 W22> return \A
}
def commit() {
 C01> rv0 = rset [0].read()
 C02> if (rv0 != \bot) {
 C03> s0 = start[0].read()
 C04> wt0 = s0.writer.read()
 C05> st0 = state[wt0].read()
 C06> if (st0 = \C)
 C07> vp0 = s0.newValue.read()
 else
 C08> vp0 = s0.oldValue.read()
 C09> if (rv0 != vp0)
 C10> return \A
 C11> cts0 = state[t].read()
 C12> if (cts0 != \R)
 C13> return \A
 }
 C14> rv1 = rset[1].read()
 C15> if (rv1 != \bot) {
 C16> s1 = start[1].read()
 C17> wt1 = s1.writer.read()
 C18> st1 = state[wt1].read()
 C19> if (st1 = \C)
 C20> vp1 = s1.newValue.read()
 else
 C21> vp1 = s1.oldValue.read()
 C22> if (rv1 != vp1)
 C23> return \A
 C24> cts1 = state[t].read()
 C25> if (cts1 != \R)
```

```
 C26> return \A
 }
 C27> b = state[t].cas(\R, \C)
 C28> if (b = 1)
 C29> return \C
 else
 C30> return \A
}
main {
 {
 S11> rset[0].write(\bot)
 S12> rset[1].write(\bot)
 L11> v10 = read(0)
 L12> v11 = read(1)
 L13> write(0, 7)
 L14> c1 = commit()
 } || {
 S21> rset[0].write(\bot)
 S22> rset[1].write(\bot)
 L21> v20 = read(0)
 L22> v21 = read(1)
 L23> write(1, 7)
 L24> c2 = commit()
 }
}
order {
 R3 -> R15 &&
 R3 -> R28 &&
 W16 -> W19 &&
 W17 -> W19 &&
 W18 -> W19 &&
 C02 -> C27 &&
 C15 -> C27
}
spec {
 ~(
 L11_Ret \prec L22_Inv /\
 L21_Ret \prec L12_Inv /\
 L12_Ret \prec L23_Inv /\
 L22_Ret \prec L13_Inv /\
```

```
 L13_Ret \prec L24_Inv /\
 L23_Ret \prec L14_Inv /\
 v10 = 0 / \
 v11 = 0 /\
 v20 = 0 /\
 v21 = 0 /\
 c1 = \C /\
 c2 = \C
)
 }
}
```

The specification of McRT is as follows:
McRT \{

```
r: AtomicRegister [2]
 ver: AtomicRegister [2]
 lock: TryLock[2]
 rset: TLocal AtomicRegister [2]
 uset: TLocal AtomicRegister [2]
 // These regs could be basic register arrays
 def this() {
 L01> lock[0].unlock()
 L02> lock[1].unlock()
 L03> r[0].write(0)
 L04> r[1].write(0)
 L05> ver[0].write(0)
 L06> ver[1].write(0)
 }
 def read(i) {
 RO> u = uset[i].read()
 R1> if (u = \bot) {
 R2> ve = ver[i].read()
 R3> l = lock[i].read()
 R4> if (1 = 1) {
 R5> ov0 = uset[0].read()
 R6> if (ov0 != \bot) {
 R7> r[0].write(ov0)
 R8> lock[1].unlock()
 }
 R9> ov1 = uset[1].read()
 R10> if (ov1 != \bot) {
 R11> r[1].write(ov1)
 R12> lock[1].unlock()
```

```
 }
 R13 >
 return \A
 }
 R14> r = rset[i].read()
 R15> if (r = \bot)
 R16> rset[i].write(ve)
 }
 R17> v = r[i].read()
 R18> return v
}
def write(i, v) {
 WO> u = uset[i].read()
 W1> if (u = \bot) {
 W2> l = lock[i].tryLock()
 W3> if (l = 0) {
 W4> ov0 = uset[0].read()
 W5> if (ov0 != \bot) {
 W6> r[0].write(ov0)
 W7> lock[0].unlock()
 }
 W8> ov1 = uset[1].read()
 W9> if (ov1 != \bot) {
 W10> r[1].write(ov1)
 W11> lock[1].unlock()
 }
 W12> return \A
 }
 W13> ov = r[i].read()
 W14> uset[i].write(ov)
 }
 W15> r[i].write(v)
 W16> return \Ok
}
def commit() {
 CO> oveO = rset[0].read()
 C1> if (ove0 != \bot) {
 C2> l0 = lock[0].read()
 C3> ve0 = ver[0].read()
 C4> if ((l0 = 1)|| (ve0 != ove0)) {
 C5> ov10 = uset[0].read()
 C6> if (ov10 != \bot) {
 C7> r[0].write(ov10)
 C8> lock[0].unlock()
 }
 C9> ov11 = uset[1].read()
```

```
 C10> if (ov11 != \bot) {
 C11> r[1].write(ov11)
 C12> lock[1].unlock()
 }
 C13> return \A
 }
 }
 C14> ove1 = rset[1].read()
 C15> if (ove1 != \bot) {
 C16> l1 = lock[1].read()
 C17> ve1 = ver[1].read()
 C18> if ((l1 = 1) || (ve1 != ove1)) {
 C19> ov20 = uset[0].read()
 C20> if (ov20 != \bot) {
 C21> r[0].write(ov20)
 C22 >
 C23 >
 C24 >
 C25 >
 C26 >
 C27> return \A
 }
 }
 C28> u0 = uset [0].read()
 C29> if (u0 != \bot) {
 C30> v0 = ver[0].read()
 C31> vp0 = v0 + 1
 C32> ver[0].write(vp0)
 C33> lock[0].unlock()
 }
 C34> u1 = uset[1].read()
 C35> if (u1 != \bot) {
 C36> v1 = ver[1].read()
 C37> vp1 = v1 + 1
 C38> ver[1].write(vp1)
 C39> lock[1].unlock()
 }
 C40> return \C
}
main {
 {
 I11> rset[0].write(\bot)
```

```
 I12> rset[1].write(\bot)
 I13> uset[0].write(\bot)
 I14> uset[1].write(\bot)
 L11> r1 = read(1)
 L12> write(0, 7)
 L13> c1 = commit()
 } || {
 I21> rset[0].write(\bot)
 I22> rset[1].write(\bot)
 I23> uset[0].write(\bot)
 I24> uset[1].write(\bot)
 L21> write(1, 7)
 L22> r2 = read(0)
 L23> c2 = commit()
 }
 }
 order {
 R2 -> R3 &&
 R3 -> R17 &&
 C2 -> C3 &&
 C16 -> C17
 }
 spec {
 ~
 r1 = 7 /\
 r2 = 7 /\
 c1 = \A /\
 c2 = \A
)
 }
}
```


### 10.4 Synchronization Object Program Logic

### 10.4.1 Soundness

Theorem 3 (Soundness).
$\forall \pi, \mathcal{A}:((\pi, \bar{\Gamma} \vdash \mathcal{A}) \wedge(\pi \models \Gamma)) \Rightarrow(\pi \models \mathcal{A})$.
Proof.
Hypothesis
(1) $\pi, \Gamma \vdash \mathcal{A}$
(2) $\mathcal{X} \models \Gamma$

Desíred Conclusion

$$
\pi \models \mathcal{A}
$$

Let
(3) $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$
(4) $\mathcal{D}=d^{*}$
(5) $\mathcal{P}=p_{0},\left(p_{1}| | p_{2}\|\ldots\| p_{n}\right)$
(6) $\mathcal{X}=(X, \sigma, \mathcal{L}) \in \llbracket \pi \rrbracket$

By Definitions 16, we need to show that

$$
\mathcal{X} \models \mathcal{A}
$$

Let
(7) $X^{\prime}=\sigma(X)$

By definition [2.71] on [6] and [7], we have
(8) $X^{\prime} \in \mathbb{H}(\pi)$

By definition [2.70] on [6], we have
(9) $\forall o: \overline{\mathcal{T}_{\text {base }}(o)} \in \overline{B T} \Rightarrow$ $X^{\prime} \mid o \in \mathbb{H}_{B}(o)$
(10) $\forall o: \mathcal{T}_{\text {base }}(o) \in L T \Rightarrow$ $\left(X^{\prime} \mid o, \mathcal{L}(o)\right) \in \mathbb{H}_{L}(o)$
$\exists X_{1}, \ldots, X_{n}$ :
(11) $\forall i \in\{0 . . n\}:\left(X_{i}, \sigma\right) \in \llbracket p_{i} \rrbracket \wedge$
(12) $X^{\prime \prime} \in$ Interleave $\left(X_{1}, \ldots, X_{n}\right) \wedge$ $X=X_{0} \cdot X^{\prime \prime}$
By definition [2.16] on [9], we have
(13) $\forall o: \bar{o}^{\in}$ $\mathcal{T}_{\text {base }}(o) \in B T \Rightarrow$

$$
\left(X^{\prime} \mid o \in \text { Sequential }\right) \Rightarrow
$$

By definition [2.18] on [10], we have
(14) $\forall o: o \in \mathcal{T}_{\text {base }}(o) \in L T \Rightarrow$

$$
\begin{aligned}
& X^{\prime} \mid o \equiv \mathcal{L}(o) \wedge \\
& \mathcal{L}(o) \in \operatorname{SeqSpec}(o) \wedge \\
& \prec_{X^{\prime} \mid o \subseteq} \subseteq \prec_{\mathcal{L}(o)}
\end{aligned}
$$

Induction on the derivation of [1]:
Case rule X2L:
By rule X2L on [1], we have that
(15) $\mathcal{T}_{\text {base }}(o) \in \overline{L T}$
(16) $\pi, \Gamma \vdash l \prec l^{\prime}$
(17) $\pi, \Gamma \vdash \operatorname{obj}(l)=o b j\left(l^{\prime}\right)=o$
(18) $\mathcal{A}=l \prec_{o} l^{\prime}$

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

That is

$$
l \prec_{\mathcal{L}(\sigma(o))} l^{\prime}
$$

By the induction hypothesis on [16] and [17], and then [2], [6] and [7], we have
(19) $l \widehat{\prec}_{X^{\prime}} \overline{l^{\prime}}$
(20) $\operatorname{obj}_{X^{\prime}}(l)=o b j_{X^{\prime}}\left(l^{\prime}\right)=\sigma(o)$

From [19] and [20], we have
(21) $l \prec_{X^{\prime} \mid \sigma(o)} l^{\prime}$

By [15], we have
$\left(2 \overline{2)} \mathcal{T}_{\text {base }}(\sigma(o)) \in L T\right.$
By [10] and [22], we have

$$
(23)\left(X^{\prime} \mid \sigma(o), \mathcal{L}(\sigma(o))\right) \in \mathbb{H}_{L}(o)
$$

By Lemma 8 on [23] and [21], we have $l \prec_{\mathcal{L}(\sigma(o))} \bar{l}^{\prime}$

Case rule Src:
We have that

$$
\left(X^{\prime} \mid o \in \operatorname{SeqSpec}(o)\right)
$$

$$
\begin{aligned}
& (24) \\
& \mathcal{A}=\bigvee_{i=1 . . n} c=c_{i} \\
& (\overline{25}) \\
& \pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c\right) \\
& (26) \\
& \pi, \Gamma \vdash \operatorname{obj}\left(\varsigma^{\prime} c\right)=\theta \\
& (27) \\
& \text { (28) } \\
& \text { ( } \text { Calls }_{\pi}\left(\text { name }\left(\varsigma^{\prime} c\right)=n\right. \\
& \underline{(1)}
\end{aligned}
$$

We show that

$$
\mathcal{A} \models \bigvee_{i=1 . . n} c=c_{i}
$$

that is

$$
\bigvee_{i=1 . . n} c=c_{i}
$$

From Lemma 73 on [8], [47] and [48] [42], we have

$$
\varsigma^{\prime} c_{1} \prec_{X^{\prime}} \varsigma^{\prime} c_{2}
$$

By the induction hypothesis on [25], [26], [27], and then [2], [6] and [7], we have
(29) $\varsigma^{\prime} c \in X^{\prime}$
(30) $\operatorname{obj}_{X^{\prime}}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} \theta$
(31) name $_{X^{\prime}}\left(\varsigma^{\prime} c\right)=n$

From [7] and [12] on [29], [30], [31], we have $\exists i \in 0 . . n$ :
(32) $\varsigma^{\prime} c \in X_{i}$
(33) $\operatorname{obj}_{X_{i}}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} \theta$
(34) name $_{X_{i}}\left(\varsigma^{\prime} c\right)=n$

By Lemma 69 on [11] and [32], we have
(35) basename $\left(\overline{o b} j_{X_{i}}\left(\varsigma^{\prime} c\right)\right)=o b j_{\pi}(c)$
(36) name $_{X_{i}}\left(\varsigma^{\prime} c\right)=$ name $_{\pi}(c)$

By the definition of basename and ', we have
(37) basename $\left(\varsigma^{\prime} \theta\right)=$ basename $(\theta)$

From [35], [30] and [37], we have
(38) basename $\left(o \overline{b j_{\pi}}(c)\right)=$ basename $(\theta)$

From [36] and [34], we have
(39) name $_{\pi}(\bar{c})=n$

From the definition of $\operatorname{calls}_{\pi}(\operatorname{basename}(\theta), n)$
on [38] and [39], we have
$\left(\overline{40)} c \in\right.$ call $_{\pi}($ basename $(\theta), n)$
From [28] and [36], we have

$$
\bigvee_{i=1 . . n} c=c_{i}
$$

Case rule P2X:
We have that

$$
\begin{array}{ll}
(41) & \mathcal{A}=\varsigma^{\prime} c_{1} \preceq \varsigma^{\prime} c_{2} \\
(42) & c_{1} \rightarrow c_{2} \\
(43) & \pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c_{1}\right) \\
(44) & \pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c_{2}\right)
\end{array}
$$

We show that

$$
\mathcal{X} \models \varsigma^{\prime} c_{1} \prec \varsigma^{\prime} c_{2}
$$

that is

$$
\varsigma^{\prime} c_{1} \prec_{X^{\prime}} \varsigma^{\prime} c_{2}
$$

By the induction hypothesis on [43], [44],
and then [2], we have
(45) $\mathcal{X} \equiv \operatorname{exec}\left(\varsigma^{\prime} c_{1}\right)$
(46) $\mathcal{X} \models \operatorname{exec}\left(\varsigma^{\prime} c_{2}\right)$
that is
(47) $\varsigma^{\prime} c_{1} \in X^{\prime}$
(48) $\varsigma^{\prime} c_{2} \in X^{\prime}$

Case rule OX2IX:
We have that
(49) $\mathcal{A}=c_{1}{ }^{\prime} c_{3} \prec c_{2}{ }^{\prime} c_{4}$
(50) $\pi, \Gamma \vdash c_{1} \prec c_{2}$
(51) $\pi, \Gamma \vdash \operatorname{exec}\left(c_{1}{ }^{\prime} c_{3}\right)$
(52) $\pi, \Gamma \vdash \operatorname{exec}\left(c_{2}{ }^{\prime} c_{4}\right)$

We show that

$$
\mathcal{X} \models c_{1}{ }^{\prime} c_{3} \prec c_{2}{ }^{\prime} c_{4}
$$

that is

$$
c_{1}{ }^{\prime} c_{3} \prec_{X^{\prime}} c_{2}^{\prime} c_{4}
$$

By the induction hypothesis on [50], [51], [52], and then [2], we have
(53) $\mathcal{X} \models c_{1} \prec c_{2}$
(54) $\mathcal{X} \models \operatorname{exec}\left(c_{1}{ }^{\prime} c_{3}\right)$
(55) $\mathcal{X} \models \operatorname{exec}\left(c_{2}{ }^{\prime} c_{4}\right)$
that is
(56) $c_{1} \prec_{X^{\prime}} c_{2}$
(57) $c_{1}{ }^{\prime} c_{3} \in X^{\prime}$
(58) $c_{2}{ }^{\prime} c_{4} \in X^{\prime}$

From [56], we have
(59) $r E v\left(c_{1}\right) \triangleleft_{X^{\prime}} i E v\left(c_{2}\right)$

From Lemma 74 on [8] and [57], we have
(60) $r E v\left(c_{1}{ }^{\prime} c_{3}\right) \triangleleft_{X^{\prime}} r E v\left(\overline{\left.c_{1}\right)}\right)$

From Lemma 74 on [8], and [58], we have
(61) $\left(i E v\left(\overline{\left.c_{2}\right)} \triangleleft_{X^{\prime}} \bar{i} E v\left(c_{2}{ }^{\prime} \overline{c_{4}}\right)\right.\right.$

From [60], [59] and [61], we have
(62) $r E v\left(c_{1}^{\prime} c_{3}\right) \triangleleft_{X^{\prime}} i E v\left(c_{2}{ }^{\prime} c_{4}\right)$

From [62], we have
(63) $c_{1}{ }^{\prime} c_{3} \prec_{X^{\prime}} c_{2}{ }^{\prime} c_{4}$

Case rule IControl:
We have that
(64) $\mathcal{A}=$
$\operatorname{exec}\left(c^{\prime} c^{\prime}\right) \Leftrightarrow$
$\operatorname{exec}(c) \wedge$
$\bigvee_{c_{i}} c^{\prime}=c_{i} \wedge$
$c^{\prime} \operatorname{cond}_{\pi}\left(c^{\prime}\right) \wedge$
$\bigwedge_{i=1 . . . n} \neg \operatorname{exec}\left(c^{\prime} c_{i}\right)$
(65) Labels $\left(\right.$ name $\left._{\pi}(c)\right)=\left\{\overline{c_{i}}\right\}$
(66) PreReturns $_{\pi}\left(c^{\prime}\right)=\left\{\overline{c_{r}}\right\}$

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

That is

$$
\begin{aligned}
& c^{\prime} c^{\prime} \in X^{\prime} \Leftrightarrow \\
& c \in X^{\prime} \wedge
\end{aligned}
$$

$\bigvee_{c_{i}} c^{\prime}=c_{i} \wedge$
$\sigma\left(c^{\prime} \operatorname{cond}_{\pi}\left(c^{\prime}\right)\right) \wedge$
$\bigwedge_{c_{r}} \neg\left(c^{\prime} c_{r} \in X^{\prime}\right)$
We first show that

$$
\begin{aligned}
& c^{\prime} c^{\prime} \in X^{\prime} \Rightarrow \\
& c \in X^{\prime} \wedge \\
& \bigvee_{c_{i}} c^{\prime}=c_{i} \wedge \\
& \sigma\left(c^{\prime} \operatorname{cond} d_{\pi}\left(c^{\prime}\right)\right) \wedge \\
& \bigwedge_{i=1 . . n} \neg\left(c^{\prime} c_{i} \in X^{\prime}\right)
\end{aligned}
$$

We assume that
(67) $c^{\prime} c^{\prime} \in X^{\prime}$

We show that

$$
c \in X^{\prime} \wedge
$$

$$
\bigvee_{c_{i}} c^{\prime}=c_{i} \wedge
$$

$$
\sigma\left(c^{\prime} \operatorname{cond}_{\pi}\left(c^{\prime}\right)\right) \wedge
$$

$$
\bigwedge_{i=1 . . n} \neg\left(c^{\prime} c_{i} \in X^{\prime}\right)
$$

From [7] and [12] on [67], we have
$\exists i \in\{0 . . n\}$ :
(68) $c^{\prime} c^{\prime} \in X_{i}$

By Lemma 70 on [65], [66], [11] and [68], we have
(69) $c \in X_{i} \wedge$

$$
\begin{aligned}
& \bigvee_{c_{i}} c^{\prime}=c_{i} \wedge \\
& \sigma\left(c^{\prime} \operatorname{cond} d_{\pi}\left(c^{\prime}\right)\right) \wedge \\
& \bigwedge_{i=1 . . n} \neg\left(c^{\prime} c_{i} \in X_{i}\right)
\end{aligned}
$$

From [7] and [12] and uniqueness of label $c$ on [69], we have
(70) $c \in X^{\prime} \wedge$

$$
\begin{aligned}
& \bigvee_{c_{i}} c^{\prime}=c_{i} \wedge \\
& \sigma\left(c^{\prime} \operatorname{cond} d_{\pi}\left(c^{\prime}\right)\right) \wedge \\
& \bigwedge_{i=1 . . n} \neg\left(c^{\prime} c_{i} \in X^{\prime}\right)
\end{aligned}
$$

Now, we show that

$$
\begin{aligned}
& c \in X^{\prime} \wedge \\
& \bigvee_{c_{i}} c^{\prime}=c_{i} \wedge \\
& \sigma\left(c^{\prime} \operatorname{cond} d_{\pi}\left(c^{\prime}\right)\right) \wedge \\
& \Rightarrow \\
& \bigwedge_{i=1 . . n} \neg\left(c^{\prime} c_{i} \in X^{\prime}\right) \\
& c^{\prime} c^{\prime} \in X^{\prime}
\end{aligned}
$$

We assume that
(71) $c \in X^{\prime} \wedge$
(72) $\bigvee_{c_{i}} c^{\prime}=c_{i} \wedge$
(73) $\sigma\left(c^{\prime} \operatorname{cond}_{\pi}\left(c^{\prime}\right)\right) \wedge$
(74) $\bigwedge_{i=1 . . n} \neg\left(c^{\prime} c_{i} \in X^{\prime}\right)$

We show that

$$
c^{\prime} c^{\prime} \in X^{\prime}
$$

From [7] and [12] on [71], we have

$$
\exists i \bar{\in}\{0 . . n\} \overline{:}
$$

(75) $c \in X_{i}$

From [7] and [12] on [74], we have
$\forall i \in\{0 . . n\}$ :
(76) $\bigwedge_{i=1 . . n} \neg\left(c^{\prime} c_{i} \in X_{i}\right)$

By Lemma 71 on [65], [66], [11], [75],
[72], [73] and [76], we have
(77) $c^{\prime} c^{\prime} \in \overline{X_{i}}$

From [7] and [12] on [77], we have $c^{\prime} c^{\prime} \in X^{\prime}$

## Case rule OControl:

Similar to rule IControl using Lemma $\underline{72}$.
Case rule TSEQ:
We have that
(78) $\mathcal{A}=l_{1} \prec l_{2} \vee l_{2} \prec l_{1} \vee l_{1}=l_{2}$
(79) $\pi, \Gamma \vdash \operatorname{exec}\left(l_{1}\right)$
(80) $\pi, \Gamma \vdash \operatorname{exec}\left(l_{2}\right)$
(81) $\pi, \Gamma \vdash \operatorname{thread}\left(l_{1}\right)=\operatorname{thread}\left(l_{2}\right)$
(82) $\pi, \Gamma \vdash o b j\left(l_{1}\right)=o b j\left(l_{2}\right)=$ this $\vee$
$\left(\neg \operatorname{obj}\left(l_{1}\right)=\right.$ this $\wedge \neg \operatorname{obj}\left(l_{2}\right)=$ this $)$
We show that

$$
\mathcal{X} \models l_{1} \prec l_{2} \vee l_{2} \prec l_{1} \vee l_{1}=l_{2}
$$

that is

$$
l_{1} \prec_{X^{\prime}} l_{2} \vee l_{2} \prec_{X^{\prime}} l_{1} \vee l_{1}=l_{2}
$$

By the induction hypothesis on [79], [80], [81], [82], and then [2], we have
(83) $\mathcal{X} \models \operatorname{exec}\left(l_{1}\right)$
(84) $\mathcal{X} \models \operatorname{exec}\left(l_{2}\right)$
(85) $\mathcal{X} \models \operatorname{thread}\left(l_{1}\right)=\operatorname{thread}\left(l_{2}\right)$
(86) $\mathcal{X} \models o b j\left(l_{1}\right)=\operatorname{obj}\left(l_{2}\right)=$ this $\vee$
$\left(\neg\right.$ obj $\left(l_{1}\right)=$ this $\wedge \neg o b j\left(l_{2}\right)=$ this $)$
that is
(87) $l_{1} \in X^{\prime}$
(88) $l_{2} \in X^{\prime}$
(89) thread $_{X^{\prime}}\left(l_{1}\right)=$ thread $_{X^{\prime}}\left(l_{2}\right)$
(90) $\operatorname{obj}_{X^{\prime}}\left(l_{1}\right)=\operatorname{obj}_{X^{\prime}}\left(l_{2}\right)=$ this $\vee$
$\neg^{\prime} \operatorname{obj}_{X^{\prime}}\left(l_{1}\right)=$ this $\wedge \neg o b j_{X^{\prime}}\left(l_{2}\right)=$ this $)$
By [11] and [12] on [87] and [88], we have
$\exists \overline{i, j} \in 0 . . \bar{n}$ :
(91) $l_{1} \in X_{i} \wedge\left(X_{i}, \sigma\right) \in \llbracket p_{i} \rrbracket$
(92) $l_{2} \in X_{j} \wedge\left(X_{j}, \sigma\right) \in \llbracket p_{j} \rrbracket$

Case analysis on [90]:
Case
(93) $\operatorname{obj}_{X^{\prime}}\left(l_{1}\right)=\operatorname{obj}_{X^{\prime}}\left(l_{2}\right)=$ this
$\overline{\mathrm{By}}$ Lemma 75 on [8], [87], [88], [93], we have
$\exists c_{1}, c_{2}$ :
(94) $l_{1}=c_{1}$
(95) $l_{2}=c_{2}$

By Lemma 77 on [91], [92], [94], [95], we have
(96) thread $_{X}\left(l_{1}\right)=T_{i}$
(97) thread $_{X}\left(l_{2}\right)=T_{j}$

From [96], [97] and [89], we have

$$
(98) \quad i=j
$$

By $\overline{\text { Lemma }} 79$ on [91], [92], and [94], [95], and [98], we have

$$
\text { (99) } l_{1} \prec_{X} l_{2} \vee l_{2} \prec_{X} l_{1} \vee l_{1}=l_{2}
$$

Case
(100) $\neg o b j_{X^{\prime}}\left(l_{1}\right)=$ this $\wedge$
$\neg o b j_{X^{\prime}}\left(l_{2}\right)=$ this
Similar to the previous case where lemmas 76,78 and 80 are used.

Case rule TLocal:
We have that

$$
\begin{aligned}
& (101) \mathcal{A}=\operatorname{thread}\left(l_{1}\right)=\text { thread }\left(l_{2}\right) \\
& (102) \\
& \mathcal{T}(\text { basename }(\phi))=\text { ThreadLocal st } \\
& (103) \\
& (104) \\
& (1) \Gamma \vdash \operatorname{exec}\left(l_{1}\right) \wedge \operatorname{exec}\left(l_{2}\right) \\
& \underline{\operatorname{cobj}\left(l_{1}\right)=\operatorname{obj}\left(l_{2}\right)=\phi[u]}
\end{aligned}
$$

We show that

$$
\mathcal{X} \models \operatorname{thread}\left(l_{1}\right)=\operatorname{thread}\left(l_{2}\right)
$$

that is
thread $_{X^{\prime}}\left(l_{1}\right)=$ thread $_{X^{\prime}}\left(l_{2}\right)$
By the induction hypothesis on [104], and then [2], we have
(105) $\overline{\mathcal{X}} \models \operatorname{exec}\left(l_{1}\right) \wedge \operatorname{exec}\left(l_{2}\right)$
(106) $\mathcal{X} \models \operatorname{obj}\left(l_{1}\right)=\operatorname{obj}\left(l_{2}\right)=\phi[u]$
that is
(107) $\operatorname{obj}_{X^{\prime}}\left(l_{1}\right)=\operatorname{obj}_{X^{\prime}}\left(l_{2}\right)=\phi[\sigma(u)]$
(108) $l_{1} \in X^{\prime}$
(109) $l_{2} \in X^{\prime}$

From [107], we have
(110) basename $\left(\right.$ obj $\left._{X^{\prime}}\left(l_{1}\right)\right)=\phi$
(111) index $\left(o b j_{X^{\prime}}\left(l_{1}\right)\right)=\sigma(u)$
(112) basename $\left(o b j_{X^{\prime}}\left(l_{2}\right)\right)=\phi$
(113) $\operatorname{index}\left(o b j_{X}\left(l_{2}\right)\right)=\sigma(u)$

From Lemma 81 on [3], [102], [8], [108] and [110] we have
(114) thread $_{X^{\prime}}\left(l_{1}\right)=\operatorname{index}\left(\right.$ obj $\left._{X^{\prime}}\left(l_{1}\right)\right)$

From Lemma 81 on [3], [102], [8], [109] and [112] we have
(115) thread $_{X^{\prime}}\left(l_{2}\right)=\operatorname{index}\left(\right.$ obj $\left._{X^{\prime}}\left(l_{2}\right)\right)$

From [114] and [111] we have
(116) thread $\overline{X^{\prime}\left(l_{1}\right)}=\sigma(u)$

From [115] and [113] we have
(117) thread $\overline{X^{\prime}\left(l_{2}\right)}=\sigma(u)$

From [116] and [117] we have
(118) thread $_{\overline{X^{\prime}}\left(l_{1}\right)}=$ thread $_{X^{\prime}}\left(l_{2}\right)$

Case rule ID:
We have that
(119) $\mathcal{A}=o b j\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} \theta \wedge$
name $\left(\varsigma^{\prime} c\right)=n \wedge$
$\operatorname{thread}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} \tau \wedge$
$\arg ^{*}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} u^{*} \wedge$
$\operatorname{retv}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} x$
(120) $\mathrm{obj}_{\pi}(c)=\theta$
(121) name $_{\pi}(c)=n$
(122) thread $_{\pi}(c)=\tau$
(123) $\arg _{\pi}(c)=u$
(124) $\operatorname{retv}_{\pi}(c)=x$
(125) $\pi, \Gamma \vdash \operatorname{exec}\left(\varsigma^{\prime} c\right)$

We show that
(126) $\mathcal{X} \models \mathcal{A}$
that is
$\operatorname{obj}_{X^{\prime}}\left(\varsigma^{\prime} c\right)=\sigma\left(\varsigma^{\prime} \theta\right) \wedge$
name $_{X^{\prime}}\left(\varsigma^{\prime} c\right)=n \wedge$
thread $_{X^{\prime}}\left(\varsigma^{\prime} c\right)=\sigma\left(\varsigma^{\prime} \tau\right) \wedge$
$\arg _{X^{\prime}}^{*}\left(\varsigma^{\prime} c\right)=\sigma\left(\varsigma^{\prime} u^{*}\right) \wedge$
$\operatorname{retv}_{X^{\prime}}\left(\varsigma^{\prime} c\right)=\sigma\left(\varsigma^{\prime} x\right)$
By the induction hypothesis on [125],
and then [2], we have
(127) $\overline{\mathcal{X}} \models \operatorname{exec}\left(\varsigma^{\prime} c\right)$
that is
(128) $\varsigma^{\prime} c \in X^{\prime}$

From [7] and [128], we have
(129) $\varsigma^{\prime} c \in X$

From [12] and [129], we have
$\exists i \in\{0 . . n\}:$
(130) $\varsigma^{\prime} c \in X_{i}$

From Lemma 68 on [11] and [130], we have
(131) $\operatorname{obj}_{X_{i}}\left(\overline{\varsigma^{\prime}} c\right)=\overline{\varsigma^{\prime}} \theta \wedge$

$$
\begin{aligned}
& \operatorname{name}_{X_{i}}\left(\varsigma^{\prime} c\right)=n \wedge \\
& \operatorname{thread}_{X_{i}}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} \tau \wedge \\
& \arg _{X_{i}}^{*}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} u^{*} \wedge \\
& \operatorname{retv}_{X_{i}}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} x
\end{aligned}
$$

From [131], [12], we have

$$
\begin{aligned}
& (132) \operatorname{obj}_{X}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} \theta \wedge \\
& \operatorname{name}_{X}\left(\varsigma^{\prime} c\right)=n \wedge \\
& \operatorname{thread}_{X}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} \tau \wedge \\
& \arg _{X}^{*}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} u^{*} \wedge \\
& \operatorname{retv}_{X}\left(\varsigma^{\prime} c\right)=\varsigma^{\prime} x
\end{aligned}
$$

From [132], [7], we have

$$
\begin{aligned}
& (133) \quad \text { obj } j_{X^{\prime}}\left(\varsigma^{\prime} c\right)=\sigma\left(\varsigma^{\prime} \theta\right) \wedge \\
& \\
& \operatorname{name}_{X^{\prime}}\left(\varsigma^{\prime} c\right)=n \wedge \\
& \\
& \operatorname{trread}_{X^{\prime}}\left(\varsigma^{\prime} c\right)=\sigma\left(\varsigma^{\prime} \tau\right) \wedge \\
& \\
& \arg _{X^{\prime}}^{*}\left(\varsigma^{\prime} c\right)=\sigma\left(\varsigma^{\prime} u^{*}\right) \wedge \\
& \\
& \operatorname{retv}_{X^{\prime}}\left(\varsigma^{\prime} c\right)=\sigma\left(\varsigma^{\prime} x\right)
\end{aligned}
$$

## Case rule Caller:

We have that

```
(134) \(\mathcal{A}=\)
\(\bar{c} \cdot t=\operatorname{thread}(c) \wedge\)
 \(c^{\prime} x^{*}=\arg ^{*}(c) \wedge\)
 \(\bigvee_{i=1 . . n}\left(\operatorname{exec}\left(c^{\prime} c_{i}\right) \wedge \arg 1\left(c^{\prime} c_{i}\right)=\operatorname{retv}(c)\right)\)
(135) \(\pi, \Gamma \vdash \operatorname{exec}(c)\)
(136) \(\pi, \Gamma \vdash \operatorname{obj}(c)=\) this
(137) \(\pi, \Gamma \vdash\) name (c) \(=n\)
(138) \(\operatorname{tpar}_{\pi}(n)=t \wedge \operatorname{par}_{\pi}(n)=x\)
(139) \(\operatorname{Return}_{\pi}(n)=\left\{\overline{c_{i}}\right\}\)
```

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

that is

$$
\begin{aligned}
& \sigma\left(c^{\prime} t\right)=\operatorname{thread}_{X^{\prime}}(c) \wedge \\
& \sigma\left(c^{\prime} x^{*}\right)=\arg _{X^{\prime}}^{*}(c) \wedge \\
& \bigvee_{i=1 . . n} \quad\left(c^{\prime} c_{i} \in X^{\prime} \wedge\right. \\
& \left.\quad \arg _{X^{\prime}}\left(c^{\prime} c_{i}\right)=\operatorname{retv}_{X^{\prime}}(c)\right)
\end{aligned}
$$

By induction hypothesis on [135], [136] and [137], and then [2], [6] and [7], we have
(140) $c \in X^{\prime}$
(141) $\operatorname{obj}_{X^{\prime}}(c)=$ this
(142) name $_{X^{\prime}}(c)=n$

From [7] on [140], [141] and [142], we have
(143) $c \in \bar{X}$
(144) $\operatorname{obj}_{X}(c)=$ this
(145) name $_{X}(c)=n$

By Lemma 82 on [6], [138], [139], [143],
[144], and [ $\overline{145}$ ], we have
(146) $\sigma\left(\overline{\left.c^{\prime} t\right)}=\sigma\left(\right.\right.$ thread $\left._{X}(c)\right) \wedge$
(147) $\sigma\left(c^{\prime} x^{*}\right)=\sigma\left(\arg _{X}^{*}(c)\right) \wedge$
(148) $\bigvee_{i=1 . . n}$
$\left(c^{\prime} c_{i} \in X \wedge\right.$
$\left.\sigma\left(\arg 1_{X}\left(c^{\prime} c_{i}\right)\right)=\sigma\left(\operatorname{retv}_{X}(c)\right)\right)$
From [7] on [146], [147], and [148], we have
$\sigma\left(c^{\prime} t\right)=t \overline{h r e a} d_{X^{\prime}}(c) \wedge$
$\sigma\left(c^{\prime} x^{*}\right)=\arg _{X^{\prime}}^{*}(c) \wedge$
$\bigvee_{i=1 . . n}$
$\left(c^{\prime} c_{i} \in X^{\prime} \wedge\right.$
$\left.\arg 1_{X^{\prime}}\left(c^{\prime} c_{i}\right)=\operatorname{retv}_{X^{\prime}}(c)\right)$
Case rule Ret:
We have that

```
(149) \(\operatorname{tpar}_{\pi}(n)=t \wedge \operatorname{par}_{\pi}(n)=x\)
 (150) \(c^{\prime} \in \operatorname{Returns}_{\pi}(n)\)
 (151) \(\pi, \Gamma \vdash \operatorname{exec}\left(c^{\prime} c^{\prime}\right)\)
 (152) \(\mathcal{A}=\)
 \(\operatorname{exec}(c) \wedge\)
 \(\operatorname{obj}(c)=\) this \(\wedge \operatorname{name}(c)=n \wedge\)
 thread \((c)=c^{\prime} t \wedge \arg ^{*}(c)=c^{\prime} x^{*} \wedge\)
 \(\operatorname{retv}(c)=\arg 1\left(c^{\prime} c^{\prime}\right)\)
```

We show that
$\mathcal{X} \models \mathcal{A}$
that is
$c \in X^{\prime} \wedge$
$\operatorname{obj}_{X^{\prime}}(c)=$ this $\wedge$ name $_{X^{\prime}}(c)=n \wedge$
thread $_{X^{\prime}}(c)=\sigma\left(c^{\prime} t\right) \wedge$
$\arg _{X^{\prime}}^{*}(c)=\sigma\left(c^{\prime} x^{*}\right) \wedge$
$\operatorname{retv}_{X^{\prime}}(c)=\arg 1_{X^{\prime}}\left(c^{\prime} c^{\prime}\right)$

By induction hypothesis on [151], and then [2], [6] and [7], we have

## (153) $c^{\prime} c^{\prime} \in X^{\prime}$

From [7] and [153], we have
(154) $c^{\prime} c^{\prime} \in X$

From Lemma 84 on [6], [149], [150], and [154], we have
(155) $c \in X \wedge$
(156) $\operatorname{obj}_{X}(c)=$ this $\wedge \operatorname{name}_{X}(c)=n \wedge$
(157) $\sigma\left(\right.$ thread $\left._{X}(c)\right)=\sigma\left(c^{\prime} t\right) \wedge$
(158) $\sigma\left(\arg _{X}^{*}(c)\right)=\sigma\left(c^{\prime} x^{*}\right) \wedge$
(159) $\sigma\left(\operatorname{retv}_{X}(c)\right)=\sigma\left(\arg 1_{X}\left(c^{\prime} c^{\prime}\right)\right)$

From [7] on [155]-[159], we have
$c \in \bar{X}^{\prime} \wedge$
$\operatorname{obj}_{X^{\prime}}(c)=$ this $\wedge$ name $_{X^{\prime}}(c)=n \wedge$
thread $_{X^{\prime}}(c)=\sigma\left(c^{\prime} t\right) \wedge$
$\arg _{X^{\prime}}^{*}(c)=\sigma\left(c^{\prime} x^{*}\right) \wedge$
$\operatorname{retv}_{X^{\prime}}(c)=\arg _{X^{\prime}}\left(c^{\prime} c^{\prime}\right)$
Case rule Callee:
Similar to rule RET

Case rule XASym:
We have that

$$
\begin{aligned}
& (160) \pi, \Gamma \vdash l \prec l^{\prime} \\
& (161) \mathcal{A}= \\
& \neg\left(l^{\prime} \prec l\right) \wedge \neg\left(l^{\prime} \sim l\right) \wedge \neg\left(l^{\prime}=l\right)
\end{aligned}
$$

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

that is

$$
\neg\left(l^{\prime} \prec_{X^{\prime}} l\right) \wedge \neg\left(l^{\prime} \sim_{X^{\prime}} l\right) \wedge \neg\left(l^{\prime}=l\right)
$$

Straightforward from Lemma 1.

## Case rule XTotal:

Straightforward from Lemma 4.

## Case rule X2X:

Straightforward from Lemma 5.

## Case rule LASym:

We have that

$$
\begin{aligned}
&(162) \pi, \\
&(163) \\
& \mathcal{A}= \\
& \neg\left(l^{\prime} \prec_{0} l\right) \wedge \\
& \neg\left(l^{\prime}=l\right)
\end{aligned}
$$

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

Let
(164) $O=\mathcal{L}(\sigma(o))$

We need to show that

$$
\begin{aligned}
& \neg\left(l^{\prime} \prec_{O} l\right) \wedge \\
& \neg\left(l^{\prime}=l\right)
\end{aligned}
$$

Straightforward from Lemma 10.
Case rule LTotal:
We have that
(165) $\mathcal{T}_{\text {base }}(o) \in L T$
(166) $\pi, \Gamma \vdash \operatorname{exec}(l) \wedge \operatorname{exec}\left(l^{\prime}\right)$
(167) $\pi, \Gamma \vdash \operatorname{obj}(l)=\operatorname{obj}\left(l^{\prime}\right)=o$
(168) $\mathcal{A}=\left(l \prec_{0} l^{\prime}\right) \vee\left(l^{\prime} \prec_{o} l\right) \vee\left(l^{\prime}=l\right)$

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

From [165], let
(169) $O=\mathcal{L}(\sigma(o))$

We need to show that

$$
\left(l \prec_{O} l^{\prime}\right) \vee\left(l^{\prime} \prec_{O} l\right) \vee\left(l^{\prime}=l\right)
$$

By induction hypothesis on [166] and [167],
and then [2], [6] and [7], we have
(170) $l \bar{\in} \overline{X^{\prime}}$
(171) $l^{\prime} \in X^{\prime}$
(172) obj $_{X^{\prime}}(l)=\sigma(o)$
(173) obj $_{X^{\prime}}\left(l^{\prime}\right)=\sigma(o)$

From [172] and [173], we have
(174) $l \in X^{\prime} \mid \overline{\sigma(o)}$
(175) $l^{\prime} \in X^{\prime} \mid \sigma(o)$

From [165], we have
(176) $\mathcal{T}_{\text {base }}(\sigma(o)) \in L T$

From [10], and [176], we have

$$
(177)\left(X^{\prime} \mid \sigma(\overline{o), \mathcal{L}}(\sigma(o))) \in \mathbb{H}_{L}(o)\right.
$$

By Lemma 12 on [177], [174], [175], we have $l \prec_{O} l^{\prime} \overline{\vee l^{\prime}} \prec_{O} \overline{l \vee} \overline{l^{\prime}=l}$

Case rule L2X:
We have that

$$
\begin{aligned}
& (178) \\
& \underline{(179)} \mathcal{A}=\operatorname{A} \vdash \prec_{o} l^{\prime} \\
& \quad \operatorname{exec}(l) \wedge \operatorname{exec}\left(l^{\prime}\right) \wedge \\
& \quad \operatorname{obj}(l)=\operatorname{obj}\left(l^{\prime}\right)=o
\end{aligned}
$$

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

that is

$$
\begin{aligned}
& l \in X^{\prime} \wedge l^{\prime} \in X^{\prime} \wedge \\
& \operatorname{obj}_{X^{\prime}}(l)=\operatorname{obj}_{X^{\prime}}\left(l^{\prime}\right)=\sigma(o)
\end{aligned}
$$

Let

$$
(180) \quad O=\mathcal{L}(\sigma(o))
$$

By induction hypothesis on [178], and then [2],
and [6], we have

$$
(181) l \prec_{O} l^{\prime}
$$

From [10] on [180], we have

$$
(182)\left(X^{\prime} \mid \sigma(o), \mathcal{L}(\sigma(o))\right) \in \mathbb{H}_{L}(\sigma(o))
$$

By Lemma 13 on [182] and [181], we have

$$
\begin{aligned}
& l \in X^{\prime} \wedge \overline{l^{\prime} \in X^{\prime}} \\
& \operatorname{obj}_{X^{\prime}}(l)=\operatorname{obj}_{X^{\prime}}\left(l^{\prime}\right)=\sigma(o)
\end{aligned}
$$

## Case rule XTrans:

Straightforward from Lemma $\underline{2}$.

## Case rule XXTrans:

Straightforward from Lemma $\underline{3}$.
Case rule LTrans:
Straightforward from Lemma 11.
Case rule TREAL:
We have that

$$
\begin{array}{ll}
(183) & \pi, \Gamma \vdash T \prec T^{\prime} \\
(184) & \pi, \Gamma \vdash \operatorname{exec}(l) \wedge \operatorname{thread}(l)=T \\
(185) & \pi, \Gamma \vdash \operatorname{exec}\left(l^{\prime}\right) \wedge \operatorname{thread}\left(l^{\prime}\right)=T^{\prime} \\
(\underline{186)} & \mathcal{A}=l \prec l^{\prime} \vee l=l^{\prime}
\end{array}
$$

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

that is

$$
l \prec_{X^{\prime}} l^{\prime}
$$

By induction hypothesis on [183], [184], and [185], and then [2], [6] and [7], we have
$(187) \quad T \nprec_{X^{\prime}} T^{\prime}$
$(188) \quad l \in X^{\prime}$
$(189)$
thread $_{X^{\prime}}(l)=T$
$(190)$
$l^{\prime} \in X^{\prime}$
$(191)$
thread $_{X^{\prime}}\left(l^{\prime}\right)=T^{\prime}$

From 189], we have
(192) $l \in X^{\prime} \mid T$

From [189], we have
(193) $l^{\prime} \in X^{\prime} \mid T^{\prime}$

From [187], we have

$$
(194) \forall T, T^{\prime}: X^{\prime}\left|T \triangleleft_{H} X^{\prime}\right| T^{\prime}
$$

From 194], [192] and [193], we have $l \prec \overline{X^{\prime} l^{\prime}}$

Case rule AREg:
We have that

$$
\begin{array}{ll}
(195) & \mathcal{T}_{\text {base }}(\text { reg })=\text { AtomicRegister } \\
(196) & \pi, \Gamma \vdash \text { isRead } \\
\underline{(197)} & \mathcal{A}=\exists \ell_{W}: \\
& \text { isWriter }\left(l_{R}\right) \\
& \operatorname{retv}\left(l_{R}\right)=\arg \left(\ell_{W}, l_{R}\right) \wedge \\
\end{array}
$$

Let
(198) reg $^{\prime}=\sigma(r e g)$
(199) $R e g=\mathcal{L}\left(\right.$ reg $\left.^{\prime}\right)$

From [195] and [198], we have
(200) reg' $\in \overline{\text { AtomicRegister }}$

From 10] and [200], [199], we have (201) $\left(X^{\prime} \mid r e \overline{g^{\prime}, R e} \bar{g}\right) \in \mathbb{H}_{L}\left(r e g^{\prime}\right)$

By the definition of $i s W r i t e r$ on [197], we have

$$
\begin{aligned}
& \text { (202) } \mathcal{A}=\exists \ell_{W}: \\
& \text { isWrite }_{\text {reg }}\left(\ell_{W}\right) \wedge \\
& \ell_{W} \prec_{\text {reg }} l_{R} \wedge \\
& \forall \ell_{W}^{\prime}: \text { isWrite }_{\text {reg }}\left(\ell_{W}^{\prime}\right) \Rightarrow \\
& \quad\left(\ell_{W}^{\prime} \preceq_{\text {reg }} \ell_{W} \vee l_{R} \prec_{\text {reg }} \ell_{W}^{\prime}\right) \wedge \\
& \operatorname{retv}\left(l_{R}\right)=\arg 1\left(\ell_{W}\right)
\end{aligned}
$$

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

that is
$\exists l_{W}$ :

$$
{\text { is } X W \text { rite }_{X^{\prime}, \text { reg }}}\left(l_{W}\right) \wedge
$$

$$
l_{W} \prec_{\text {Reg }} l_{R} \wedge
$$

$$
\forall l_{W}^{\prime}: \text { is }^{\prime} \text { Write }_{X^{\prime}, \text { reg }^{\prime}}\left(l_{W}^{\prime}\right) \Rightarrow
$$

$$
\left(l_{W}^{\prime} \preceq_{\text {Reg }} l_{W} \vee l_{R} \preceq_{R e g} l_{W}^{\prime}\right) \wedge
$$

$$
\operatorname{retv}_{X^{\prime}}\left(l_{R}\right)=\arg _{X^{\prime}}\left(l_{W}\right)
$$

From [196], we have

$$
\begin{aligned}
\underline{(203)} \pi & \Gamma \vdash \\
& \operatorname{exec}\left(l_{R}\right) \wedge \\
& \operatorname{obj}\left(l_{R}\right)=\operatorname{reg} \wedge \\
& \operatorname{name}\left(l_{R}\right)=\operatorname{read}
\end{aligned}
$$

By induction hypothesis on [203],
and then [2], [6] and [7], we have
(204) $l_{R} \in \bar{X}^{\prime} \wedge$

$$
\begin{aligned}
& \operatorname{obj}_{X^{\prime}}\left(l_{R}\right)=\text { reg }^{\prime} \wedge \\
& \text { name }_{X^{\prime}}\left(l_{R}\right)=\text { read }
\end{aligned}
$$

From the definition of isX Read on [204], we have
(205) isX Read $_{X^{\prime}, \text { reg }}\left(l_{R}\right)$

By Lemma 17 on [200], [201] and [205], we have

```
(206) \(\exists l_{w}\) :
isLWriter \(_{X^{\prime} \mid \text { reg', Reg,reg' }}\left(l_{W}, l_{R}\right) \wedge\)
\(\operatorname{retv}_{X^{\prime} \mid r e g^{\prime}}\left(l_{R}\right)=\arg _{X^{\prime}}\left(l_{W}\right)\)
```

From the definition of isLWriter on [206], we have

$$
\begin{aligned}
& \exists l_{W} \text { : } \\
& \text { isXWrite }_{X^{\prime} \mid \text { reg', reg' }^{\prime}\left(l_{W}\right) \wedge} \\
& l_{W} \prec_{R e g} l_{R} \wedge \\
& \forall l_{W}^{\prime}: \text { isXWrite }_{X^{\prime} \mid \text { reg }^{\prime}, \text { reg }}\left(l_{W}^{\prime}\right) \Rightarrow \\
& \left(l_{W}^{\prime} \preceq_{\text {Reg }} l_{W} \vee l_{R} \preceq_{\text {Reg }} l_{W}^{\prime}\right) \wedge \\
& \operatorname{retv}_{X^{\prime} \mid \text { reg }}\left(l_{R}\right)=\arg _{X^{\prime} \mid \text { reg' }}\left(l_{W}\right)
\end{aligned}
$$

After simplification, we have

$$
\begin{aligned}
& \exists l_{W}: \\
& \quad{\text { is } X W \text { rite }_{X^{\prime}, \text { reg }}}\left(l_{W}\right) \wedge \\
& l_{W} \prec_{\text {Reg } l_{R} \wedge} \quad \forall l_{W}^{\prime}: \text { isXWrite }_{X^{\prime}, \text { reg' }}\left(l_{W}^{\prime}\right) \Rightarrow \\
& \quad\left(l_{W}^{\prime} \preceq_{\text {Reg }^{\prime}} l_{W} \vee l_{R} \preceq_{\text {Reg }} l_{W}^{\prime}\right) \wedge \\
& \quad \operatorname{retv} \mathcal{X}_{X^{\prime}}\left(l_{R}\right)=\arg _{X^{\prime}}\left(l_{W}\right)
\end{aligned}
$$

Case rule BREG:
Similar to rule AREg by Lemma 16.
Case rule CASREgREAD:
By Lemma 18.

## Case rule CASREGCAST:

By Lemma 19.

## Case rule CASREGCASF:

By Lemma 19.
Case rule Lock:
We have that

$$
\begin{array}{ll}
(207) & \mathcal{T}_{\text {base }}(l o)=\text { Lock } \\
(208) & \pi, \Gamma \vdash \text { isOwnerRespecting }(l o)
\end{array}
$$

$$
\begin{array}{ll}
(209) & \pi, \Gamma \vdash \text { isLock }_{l o}\left(l_{l_{1}}\right) \\
(210) & \pi, \Gamma \vdash \text { isUnlock }_{l_{l}}\left(l_{l_{2}}\right) \\
(211) & \pi, \Gamma \vdash l_{l_{1}} \prec_{l o} l_{u_{2}} \\
\underline{(212)} & \mathcal{A}=\exists l_{l_{1}}, \ell_{l_{2}}: \\
& \text { isUnlock } l_{l o}\left(\ell_{u_{1}}\right) \wedge \\
& \text { thread }\left(\ell_{l_{1}}\right)=\text { thread }\left(l_{l_{1}}\right) \wedge \\
& \text { isLock } k_{l o}\left(\ell_{l_{2}}\right) \wedge \\
& \text { thread }\left(l_{u_{2}}\right)=\text { thread }\left(\ell_{l_{2}}\right) \wedge \\
& \ell_{u_{1}} \prec_{l o} \ell_{l_{2}}
\end{array}
$$

Let
(213) $l o^{\prime}=\sigma(l o)$
(214) $L=\mathcal{L}\left(l o^{\prime}\right)$

We show that

$$
\mathcal{X} \models \mathcal{A}
$$

that is

## (215) $\exists l_{u_{1}}, l_{l_{2}}$ :

isXUnlock ${ }_{X^{\prime}, l o^{\prime}}\left(l_{u_{1}}\right) \wedge$
thread $_{X^{\prime}}\left(l_{l_{1}}\right)=$ thread $_{X^{\prime}}\left(l_{u_{1}}\right) \wedge$
isX $\operatorname{Lock}_{X^{\prime}, l o^{\prime}}\left(l_{l_{2}}\right) \wedge$
thread $_{X^{\prime}}\left(l_{l_{2}}\right)=$ thread $_{X^{\prime}}\left(l_{u_{2}}\right) \wedge$ $l_{u_{1}} \prec_{L} l_{l_{2}}$

By induction hypothesis on [208]-[211], and then [2], [6] and [7], we have
(216) isXOwner Respecting ${ }_{l o^{\prime}}\left(X^{\prime}\right) \wedge$
(217) is $X \operatorname{Lock}_{X^{\prime}, l o^{\prime}}\left(l_{l_{1}}\right) \wedge$
(218) isXUnlock X $_{X^{\prime}, o^{\prime}}\left(l_{u_{2}}\right) \wedge$
(219) $l_{l_{1}} \prec_{L} l_{u_{2}}$ )

From [216]-[219], we have
(220) is $\overline{X O w n e r ~ R e s p e c t i n g ~}{ }_{l o^{\prime}}\left(X^{\prime} \mid l o^{\prime}\right) \wedge$
(221) isX Lock ${ }_{X^{\prime} \mid l o^{\prime}, l o^{\prime}}\left(l_{l_{1}}\right) \wedge$
(222) isXUnlock ${\text { X' } \mid \text { oo }, l o^{\prime}}^{\prime}\left(l_{u_{2}}\right) \wedge$
(223) $l_{l_{1}} \prec_{L} l_{u_{2}}$ )

From 207] and [213], we have
(224) lo ${ }^{\prime} \in L o c k$

From Lemma 21 on [224], and [220]-[223], we have
$\exists l_{u_{1}}, l_{l_{2}}$ :
(225) isXUnlock ${ }_{X^{\prime} \mid l o^{\prime}, l o^{\prime}}\left(l_{u_{1}}\right) \wedge$
(226) thread $_{X^{\prime} \mid l o^{\prime}}\left(l_{l_{1}}\right)=$ thread $_{X^{\prime} \mid l o^{\prime}}\left(l_{u_{1}}\right) \wedge$
(227) isX Lock $_{X^{\prime} \mid l o^{\prime}, l l^{\prime}}\left(l_{l_{2}}\right) \wedge$
(228) thread $_{X^{\prime} \mid l o^{\prime}}\left(l_{l_{2}}\right)=$ thread $_{X^{\prime} \mid l o^{\prime}}\left(l_{u_{2}}\right) \wedge$
(229) $l_{u_{1}} \prec_{L} l_{l_{2}}$

From [225]-[229], we have

$\exists l_{u_{1}}, l_{l_{2}}:$	Case rule TRYLockREADR:
$(230)$ isXUnlock $k_{X^{\prime}, l l^{\prime}}\left(l_{u_{1}}\right) \wedge$	Similar to the proof of rule Lock
$(\overline{231})$ thread $_{X^{\prime}}\left(l_{l_{1}}\right)=$ thread $_{X^{\prime}}\left(l_{u_{1}}\right) \wedge$	using Lemma $\underline{28 .}$
$(232)$ isX $\operatorname{Lock}_{X^{\prime}, l l^{\prime}}\left(l_{l_{2}}\right) \wedge$	
$(\overline{233})$ thread $_{X^{\prime}}\left(l_{l_{2}}\right)=$ thread $_{X^{\prime}}\left(l_{u_{2}}\right) \wedge$	Case rule SCoUNTER:
$\underline{(234)} l_{u_{1}} \prec_{L} l_{l_{2}}$	By Lemma $\underline{30 .}$

Case rule LockReadL:
Similar to the proof of rule Lock using Lemma 22.

## Case rule BasicSetcontains:

By Lemma 31.

Case rule LockReadR:
Similar to the proof of rule Lock using Lemma 23.

Case rule TryLock:
Similar to the proof of rule Lock
using Lemma 26.
Case rule TryLockReadL:
Similar to the proof of rule Lock using Lemma 27.

Case rule BasicSet Add:
By Lemma 32.

Case rule BasicMapGet:
By Lemma 33.
Case rule BasicMapPut:
By Lemma 34.
The basic inference rules and the equivalence and arithmetic rules are standard.

## Lemma 68.

$\forall p, X, \sigma, \varsigma, c^{\prime}$ :
$\left((X, \sigma) \in \llbracket p \rrbracket \wedge \varsigma^{\prime} c^{\prime} \in X\right)$
$\Rightarrow$
$\left(\operatorname{obj}_{X}\left(\varsigma^{\prime} c^{\prime}\right)=\varsigma^{\prime}{ }^{\circ} j_{\pi}\left(c^{\prime}\right) \wedge\right.$ thread $_{X}\left(\varsigma^{\prime} c^{\prime}\right)=\varsigma^{\prime}$ thread $_{\pi}\left(c^{\prime}\right) \wedge$
$\operatorname{name}_{X}\left(\varsigma^{\prime} c^{\prime}\right)=n a m e e_{\pi}\left(c_{i}\right) \wedge \arg 1_{X}\left(\varsigma^{\prime} c^{\prime}\right)=\varsigma^{\prime} \arg 1_{\pi}\left(c^{\prime}\right) \wedge$
$\left.\operatorname{retv}_{X}\left(\varsigma^{\prime} c^{\prime}\right)=\varsigma^{\prime} \operatorname{retv}_{\pi}\left(c^{\prime}\right)\right)$.

Proof.
Structural induction on $p$ :
(1) Case $p=c \triangleright n_{\tau}\left(u^{*}\right): x$

Straightforward form definition [2.67].

Straightforward form definition [2.68] and the induction hypothesis.
(3) Case $p=$ if $b p_{1}$ else $p_{2}$

Straightforward form definition [2.69] and the induction hypothesis.
(2) Case $p=p_{1} ; p_{2}$

## Lemma 69.

$\forall p, X, \sigma, \varsigma, c^{\prime}$ :

$$
\begin{aligned}
& \left((X, \sigma) \in \llbracket p \rrbracket \wedge \varsigma^{\prime} c^{\prime} \in X\right) \\
\Rightarrow & \text { basename }\left(o b j_{X}\left(\varsigma^{\prime} c^{\prime}\right)\right)=o b j_{\pi}\left(c^{\prime}\right) \wedge \operatorname{name}_{X}\left(\varsigma^{\prime} c^{\prime}\right)=\operatorname{name}_{\pi}\left(c^{\prime}\right)
\end{aligned}
$$

## Proof.

Structural induction on $p$ :

## (1) Case $p=c \triangleright n_{\tau}\left(u^{*}\right): x$

Straightforward form definition [2.67] and basename $\left(c^{\prime} o b j_{\pi}\left(c^{\prime}\right)\right)=$ basename $\left.\overline{(o b j} j_{\pi}\left(c^{\prime}\right)\right)$.
(2) Case $p=p_{1} ; p_{2}$

Straightforward form definition [2.68] and the induction hypothesis.
(3) Case $p=$ if $b p_{1}$ else $p_{2}$

Straightforward form definition [2.69] and the induction hypothesis.

## Lemma 70.

Let
Labels $\left(\right.$ name $\left._{\pi}(c)\right)=\left\{\overline{c_{i}}\right\}$
PreReturns ${ }_{\pi}\left(c^{\prime}\right)=\left\{\overline{c_{r}}\right\}$
$\forall p, X, \sigma, c, c^{\prime}$ :
$\Rightarrow \begin{aligned} & \left((X, \sigma) \in \llbracket p \rrbracket \wedge c^{\prime} c^{\prime} \in X\right) \\ & c \in X \wedge \bigvee_{c_{i}} c^{\prime}=c_{i} \sigma\left(c^{\prime} \operatorname{cond}_{\pi}\left(c^{\prime}\right)\right) \wedge \bigwedge_{c_{r}} \neg\left(c^{\prime} c_{r} \in X\right) .\end{aligned}$
Proof.
Structural induction on $p$ :
(1) Case $p=c \triangleright n_{\tau}\left(u^{*}\right): x$

Straightforward form definition [2.67]
(2) Case $p=p_{1} ; p_{2}$

## Lemma 71.

Let
Labels $\left(\right.$ name $\left._{\pi}(c)\right)=\left\{\overline{c_{i}}\right\}$
PreReturns $_{\pi}\left(c^{\prime}\right)=\left\{\overline{c_{r}}\right\}$
$\forall p, X, \sigma, c, c^{\prime}$ :
$((X, \sigma) \in \llbracket p \rrbracket \wedge$
$c \in X \wedge$
$\bigvee_{c_{i}} c^{\prime}=c_{i} \wedge$
$\sigma\left(c^{\prime} \operatorname{cond} d_{\pi}\left(c^{\prime}\right)\right) \wedge$
$\left.\bigwedge_{c_{r}} \neg\left(c^{\prime} c_{r} \in X\right)\right)$
$\Rightarrow$
$c^{\prime} c^{\prime} \in X$.

Proof.
Structural induction on $p$ :
(1) Case $p=c \triangleright n_{\tau}\left(u^{*}\right): x$

Straightforward form definition [2.67]
(2) Case $p=p_{1} ; p_{2}$

Straightforward form definition [2.68], the induction hypothesis and the uniqueness of label $c$.
(3) Case $p=$ if $b p_{1}$ else $p_{2}$

Straightforward form definition [2.69] and the induction hypothesis.

## Lemma 72.

Let
$\forall p, X, \sigma, c$ :

Straightforward form definition [2.68] , and the induction hypothesis.
(3) Case $p=$ if $b p_{1}$ else $p_{2}$

Straightforward form definition [2.69] and the induction hypothesis.

$$
\begin{aligned}
& (X, \sigma) \in \llbracket p \rrbracket \\
& \Rightarrow \\
& \sigma\left(\operatorname{cond}_{\pi}(c)\right) \\
& \Leftrightarrow \\
& c \in X .
\end{aligned}
$$

Proof.
Structural induction on $p$ :
(1) Case $p=c \triangleright n_{\tau}\left(u^{*}\right): x$

Straightforward form definition [2.67] $\operatorname{cond}_{\pi}(c)=$ true
(2) Case $p=p_{1} ; p_{2}$

## Lemma 73.

$\forall \pi, X, \varsigma, c_{1}, c_{2}$ :
$X \in \mathbb{H}(\pi) \wedge$
$\varsigma^{\prime} c_{1} \in X \wedge$
$\varsigma^{\prime} c_{2} \in X \wedge$
$c_{1} \rightarrow_{\pi} c_{2}$
$\Rightarrow$
$\varsigma^{\prime} c_{1} \prec{ }_{X} \varsigma^{\prime} c_{2}$.

## Proof.

Case analysis on $c_{1} \rightarrow_{\pi} c_{2}$
(1) Case: the initialization order

Straightforward form definition [2.71] and [2.70].
$\bar{X}=X_{0} \cdot X^{\prime}$
(2) Case: the sequential order of the sequential programs $p_{i}$

Straightforward form definition [2.68], and the induction hypothesis.
(3) Case $p=$ if $b p_{1}$ else $p_{2}$

Straightforward form definition [2.69] and the induction hypothesis.
$\sigma(b)$ for the then part and $\neg \sigma(b)$ for the else part.

## Lemma 74.

$\forall \pi, X c, c^{\prime}$ :
$\left.X \in \mathbb{H}(\pi) \wedge c^{\prime} c^{\prime} \in X\right) \Rightarrow$
$\left(i E v(c) \triangleleft_{X} i E v\left(c^{\prime} c^{\prime}\right) \wedge r E v\left(c^{\prime} c^{\prime}\right) \triangleleft_{X} r E v(c)\right)$.
Proof.
$r E v\left(c^{\prime} c^{\prime}\right) \triangleleft_{X} r E v(c)$

We have that

$$
\begin{array}{ll}
(\underline{1)} & X \in \mathbb{H}(\pi) \\
(\underline{2}) & c^{\prime} c^{\prime} \in X
\end{array}
$$

We show that

$$
i E v(c) \triangleleft_{X} i E v\left(c^{\prime} c^{\prime}\right)
$$

From definition $\underline{2.71}$ and [2.70] on [1] and [2], we have $\exists X_{i}:$
(3) $\left(X_{i}, \sigma\right) \in \llbracket p_{i} \rrbracket$
(4) $c^{\prime} c^{\prime} \in X_{i}$
(5) $X_{i} \Subset X$

We show that
(6) $i E v(c) \triangleleft_{X_{i}} i E v\left(c^{\prime} c^{\prime}\right)$
(7) $r E v\left(c^{\prime} c^{\prime}\right) \triangleleft_{X_{i}} r E v(c)$

Structural induction on $p$ :
(8) Case $p=c \triangleright n_{\tau}\left(u^{*}\right): x$

Straightforward form definition [2.67]
$X=\operatorname{inv}\left(c \triangleright n_{\tau}(u)\right) \cdot X^{\prime} \cdot \operatorname{ret}\left(c \triangleright \overline{\left.x^{\prime}\right)}\right.$
(9) Case $p=p_{1} ; p_{2}$

Straightforward form definition [2.68],

## Lemma 75.

$$
\begin{aligned}
& \forall \pi, X, \sigma, c: \\
& \quad X \in \mathbb{H}(\pi) \wedge \\
& \quad l \in X \wedge \\
& \quad o b j_{X}(l)=\text { this } \wedge \\
& \Rightarrow \quad \\
& \quad \exists c: l=c .
\end{aligned}
$$

## Proof.

From definition 2.71 and [2.70], we have $\exists X_{i}$ :

$$
\text { (1) }\left(X_{i}, \sigma\right) \in \llbracket p_{i} \rrbracket
$$

## Lemma 76.

$\forall \pi, X, \sigma, c$ :
$X \in \mathbb{H}(\pi) \wedge$
$l \in X \wedge$
$\neg o b j_{X}(l)=$ this $\wedge$
$\Rightarrow$
$\exists c, c^{\prime}: l=c^{\prime} c^{\prime}$.
Proof. Similar to Lemma 75.
Lemma 77.
$\forall \pi, \mathcal{T}, \mathcal{D}, \mathcal{P}, p_{0}, \ldots, p_{n}, X, \sigma, c:$
$(\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P}) \wedge$
$\mathcal{P}=p_{0},\left(p_{1}\left\|p_{2}\right\| \ldots \| p_{n}\right) \wedge$
$(X, \sigma) \in \llbracket p_{i} \rrbracket \wedge$
$c \in X \wedge$
$\Rightarrow$
thread $_{X}(c)=i$.
the induction hypothesis and the uniqueness of label $c$.
(10) Case $p=$ if $b p_{1}$ else $p_{2}$

Straightforward form definition [2.69] and the induction hypothesis.
From [5] on [6] and [7], we have

$$
i \overline{E v}(c) \triangleleft_{X} i E v\left(\overline{c^{\prime} c^{\prime}}\right)
$$

$r E v\left(c^{\prime} c^{\prime}\right) \triangleleft_{X} r E v(c)$

Proof.
By structural induction on $p_{i}$, we have
(1) $c \in \operatorname{Labels}\left(p_{i}\right)$
(2) thread $_{X}(c)=$ thread $_{\pi}(c)$

From the well-formedness conditions, we have

The thread argument of each method call is the identifier of the thread in which it is called.
(3) $\forall c \in \operatorname{Labels}\left(p_{i}\right):$ thread $_{\pi}(c)=i$

From [1], [2] and [3], we have
(4) thread $_{X}(\bar{c})=T_{i}$

## Lemma 78.

$$
\begin{aligned}
\forall \pi, & \mathcal{T}, \mathcal{D}, \mathcal{P}, p_{0}, \ldots, p_{n}, X, \sigma, c: \\
& (\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P}) \wedge \\
& \mathcal{P}=p_{0},\left(p_{1}\left\|p_{2}\right\| \ldots p_{n}\right) \wedge \\
& (X, \sigma) \in \llbracket p_{i} \rrbracket \wedge \\
& c^{\prime} c^{\prime} \in X \wedge \\
\Rightarrow & \\
& \sigma\left(\text { thread }_{X}\left(c^{\prime} c^{\prime}\right)\right)=i .
\end{aligned}
$$

## Proof.

By structural induction on $p_{i}$, we have

## $\exists n, \tau$ :

(1) $c^{\prime} \in \operatorname{Labels}(n)$
(2) thread $_{X}\left(c^{\prime} c^{\prime}\right)=c^{\prime}$ thread $_{\pi}\left(c^{\prime}\right)$
(3) $\sigma\left(c^{\prime}\right.$ tpar $\left._{\pi}(n)\right)=\sigma(\tau)$
(4) $c \in X$
(5) thread $_{X}(c)=\tau$

By Lemma 77 on [4], we have
(6) thread $_{X}(c)=i$

From the well-formedness conditions, we have
The thread argument of each method call is the
identifier of the thread in which it is called.
(7) $\forall c^{\prime} \in \operatorname{Labels}(n):$ thread $_{\pi}\left(c^{\prime}\right)=$ tpar $_{\pi}(n)$

From [2], [7], [3], [5], and [6], we have
(8) $\left.\sigma \overline{\text { th }} r \overline{e a} d_{X}\left(c^{\prime} c^{\prime}\right)\right)=\bar{i}$

## Lemma 79.

$\forall p, X, \sigma, c_{1}, c_{2}$ :
$(X, \sigma) \in \llbracket p \rrbracket \wedge$
$c_{1} \in X \wedge$
$c_{2} \in X \wedge$
$\Rightarrow$
$c_{1} \prec_{X} c_{2} \vee c_{2} \prec_{X} c_{1} \vee c_{1}=c_{2}$.
Proof. Straightforward structural induction on $p$.

## Lemma 80.

```
\forallp,X,\sigma, c, c}\mp@subsup{c}{2}{},\mp@subsup{c}{3}{},\mp@subsup{c}{4}{}\mathrm{ :
 (X,\sigma) \in\llbracketp\rrbracket^
 c _ { 1 } ^ { \prime } { } ^ { \prime } c _ { 2 } \in X \wedge
 c3}\mp@subsup{}{}{\prime}\mp@subsup{c}{4}{}\inX
=>
 c}\mp@subsup{c}{1}{}\mp@subsup{}{}{\prime}\mp@subsup{c}{2}{}\mp@subsup{\prec}{X}{}\mp@subsup{c}{3}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{c}{4}{}\vee\mp@subsup{c}{3}{}\mp@subsup{}{}{\prime}\mp@subsup{c}{4}{}\mp@subsup{\prec}{X}{}\mp@subsup{c}{1}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{c}{2}{}\vee\mp@subsup{c}{1}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{c}{2}{}=\mp@subsup{c}{3}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{c}{4}{}
```

Proof. Straightforward structural induction on $p$.

## Lemma 81.

$$
\begin{array}{ll}
\forall \pi, & X, \phi, \text { st: } \\
& \pi=(\mathcal{T}, \mathcal{D}, \mathcal{P}) \wedge \\
& \mathcal{T}(\phi)=\text { Threadlocal st } \wedge \\
& X \in \mathbb{H}(\pi) \wedge \\
& l \in X \wedge \\
& \text { basename }^{\left(o b j_{X}(l)\right)=\phi} \\
\Rightarrow & \\
& \text { thread } \left._{X}(l)\right)=\text { index }\left(\text { obj }_{X}(l)\right) .
\end{array}
$$

Proof.
We have
(1) $\pi=(\mathcal{T}, \mathcal{D}, \mathcal{P})$
(2) $\mathcal{T}(\phi)=$ Threadlocal st
(3) $X \in \mathbb{H}(\pi)$
(4) $l \in X$
(5) basename $\left(o b j_{X}(l)\right)=\phi$

From definition $\underline{2.71}$ and $\underline{2.70}$ on [3] and [5], we have
$\exists X_{i}$ :
(6) $l \in X_{i}$
(7) $\left(X_{i}, \sigma\right) \in \llbracket p_{i} \rrbracket$
(8) basename $\left._{\left(o b j_{X}\right.}(l)\right)=\phi$
(9) $X_{i} \Subset X$

We show that
(10) thread $_{X_{i}}(l)=\operatorname{index}\left(\operatorname{obj}_{X_{i}}(l)\right)$

Structural induction on $p_{i}$ :
(11) Case $p_{i}=c \triangleright n_{\tau}\left(u^{*}\right): x$

Form definition [2.67], we have
(12) $l=c^{\prime} c^{\prime}$
(13) $\operatorname{index}^{\left(\text {object }_{X_{i}}\left(c^{\prime} c^{\prime}\right)\right)}=c^{\prime}$ index $_{\pi}\left(c^{\prime}\right)$
(14) thread $_{X_{i}}\left(c^{\prime} c^{\prime}\right)=c^{\prime}$ thread ${ }_{\pi}\left(c^{\prime}\right)$

From the well-formedness conditions, we have

The thread argument of each method call is the
identifier of the thread in which it is called.
(15) $\forall c^{\prime} \in \operatorname{Labels}(n): \operatorname{thread}_{\pi}\left(c^{\prime}\right)=\operatorname{tpar}_{\pi}(n)$

From the well-formedness conditions, we have
The array access index to every thread-local object is the current thread identifier.
(16) $\forall \phi, s t, c^{\prime}$ :

- $\mathcal{T}(\phi)=$ Threadlocal st $\wedge$
$c^{\prime} \in \operatorname{Labels}(n) \Rightarrow$
index $_{\pi}\left(c^{\prime}\right)=$ tpar $_{\pi}(n)$
From [13], [14], [15], [16], we have (17) thread $_{X_{i}}(l)=\operatorname{index}\left(\operatorname{obj}_{X_{i}}(l)\right)$
(18) Case $p_{i}=p^{\prime} p^{\prime \prime}$

Straightforward form definition [2.68], the induction hypothesis and the uniqueness of label $l$.
(19) Case $p=$ if $b p_{1}$ else $p_{2}$

Straightforward form definition [2.69] and the induction hypothesis.
From [10] and [9], we have

$$
t h r e a d_{X}(l)=\operatorname{index}\left(o b j_{X}(l)\right)
$$ index $_{\pi}(c)=$ tpar $_{\pi}(n)$

## Lemma 82.

$\forall \pi, X, \sigma, \mathcal{L}, c, n, t, x$ : $(X, \sigma, \mathcal{L}) \in \llbracket \pi \rrbracket$
$\operatorname{tpar}_{\pi}(n)=t \wedge \operatorname{par} 1_{\pi}(n)=x$
$\operatorname{Returns}_{\pi}(n)=\left\{\overline{c_{i}}\right\}$
$c \in X$
$\operatorname{obj}_{X}(c)=$ this
name $_{X}(c)=n$

$$
\begin{aligned}
& \Rightarrow \\
& \quad \sigma\left(c^{\prime} t\right)=\operatorname{thread}_{X}(c) \wedge \\
& \sigma\left(c^{\prime} x^{*}\right)=\arg _{X}^{*}(c) \wedge \\
& \bigvee_{i=1 . . n} \\
& \quad\left(c^{\prime} c_{i} \in X \wedge\right. \\
& \left.\quad \arg _{X}\left(c^{\prime} c_{i}\right)=\operatorname{retv}_{X}(c)\right)
\end{aligned}
$$

## Proof.

We have that
(1) $(X, \sigma, \mathcal{L}) \in \llbracket \pi \rrbracket$
(2) $\operatorname{tpar}_{\pi}(n)=t \wedge \operatorname{par} 1 \pi(n)=x$
(3) $\operatorname{Returns}_{\pi}(n)=\left\{\overline{c_{i}}\right\}$
(4) $c \in X$
(5) $\operatorname{obj}_{X}(c)=$ this
(6) name $_{X}(c)=n$

We show that

$$
\begin{aligned}
& \sigma\left(c^{\prime} t\right)=\sigma\left(\operatorname{thread}_{X}(c)\right) \wedge \\
& \sigma\left(c^{\prime} x^{*}\right)=\sigma\left(\arg _{X}^{*}(c)\right) \wedge \\
& \bigvee_{i=1 . n} \quad\left(c^{\prime} c_{i} \in X \wedge\right. \\
& \left.\quad \sigma\left(\arg _{X}\left(c^{\prime} c_{i}\right)\right)=\sigma\left(\operatorname{retv}_{X}(c)\right)\right)
\end{aligned}
$$

From definition 2.70 on [1], [4], [5], and [6], we have

## $\exists X_{i}:$

(7) $\left(X_{i}, \sigma\right) \in \llbracket p_{i} \rrbracket$
(8) $c \in X_{i}$
(9) $\quad o b j_{X_{i}}(c)=$ this
(10) name $_{X_{i}}(c)=n$
(11) $X_{i} \Subset X$

We show that
(12) $\sigma\left(c^{\prime} t\right)=\sigma\left(\right.$ thread $\left._{X_{i}}(c)\right) \wedge$
(13) $\sigma\left(c^{\prime} x^{*}\right)=\sigma\left(\arg _{X_{i}}^{*}(c)\right) \wedge$
(14)
$\bigvee_{i=1 . . n}$
$\left(c^{\prime} c_{i} \in X_{i} \wedge\right.$
$\left.\sigma\left(\arg 1_{X_{i}}\left(c^{\prime} c_{i}\right)\right)=\sigma\left(\operatorname{retv}_{X_{i}}(c)\right)\right)$
Structural induction on $p_{i}$ :
(15) Case $p_{i}=c \triangleright n_{\tau}\left(u^{*}\right): x$

From the Well-formedness
condition of specifications that
Every branch of every method definition ends
in a return statement.
we have

$$
\exists c_{r} \in\left\{\overline{c_{r}}\right\}: \sigma\left(c^{\prime} \operatorname{cond}_{\pi}\left(c_{i}\right)\right)
$$

The rest is straightforward form the following
conditions of definition [2.67]
$\forall c_{i} \in\left\{\overline{c_{i}}\right\}$ :
$c^{\prime} c_{i} \in X^{\prime} \Leftrightarrow$
$\left(\sigma\left(c^{\prime} \operatorname{cond}_{\pi}\left(c_{i}\right)\right) \wedge\right.$
$\forall c_{j} \in \operatorname{PreReturns}_{\pi}\left(c_{i}\right) \Rightarrow \neg c^{\prime} c_{j} \in X^{\prime}$
and $\forall c_{r} \in\left\{\overline{c_{r}}\right\}:$
$c^{\prime} c_{r} \in X^{\prime} \Rightarrow \sigma\left(x^{\prime}\right)=\sigma\left(c^{\prime} \arg 1_{\pi}\left(c_{r}\right)\right)$
(16) Case $p_{i}=p^{\prime} p^{\prime \prime}$

Straightforward form definition [2.68],
the induction hypothesis and the uniqueness of label $c$.
(17) Case $p=$ if $b p_{1}$ else $p_{2}$

Straightforward form definition [2.69] and the induction hypothesis.
From [11] on [12], [13] and [14], we have
$\sigma\left(\overline{c^{\prime} t}\right)=\overline{\sigma\left(t h r \overline{e a d}_{X}(c)\right)} \bar{\wedge}$
$\sigma\left(c^{\prime} x^{*}\right)=\sigma\left(\arg _{X}^{*}(c)\right) \wedge$
$\bigvee_{i=1 . n}$
$\left(c^{\prime} c_{i} \in X \wedge\right.$
$\left.\sigma\left(\arg 1_{X}\left(c^{\prime} c_{i}\right)\right)=\sigma\left(\operatorname{retv}_{X}(c)\right)\right)$

## Lemma 83.

$\forall X, \sigma, c, n, \tau, u, x^{\prime}$ :
$(X, \sigma) \in \llbracket c \triangleright n_{\tau}(u): x \rrbracket$
$c^{\prime}, c^{\prime \prime} \in \operatorname{Returns}_{\pi}(n)$
$c^{\prime} c^{\prime} \in X \wedge c^{\prime} c^{\prime \prime} \in X$
$\Rightarrow$
$c^{\prime}=c^{\prime \prime}$.

Proof.
We have that
(1) $(X, \sigma) \in \llbracket c \triangleright n_{\tau}(u): x \rrbracket$
(3) $c^{\prime} \in$ Returns $_{\pi}(n)$
(3) $c^{\prime \prime} \in \operatorname{Returns}_{\pi}(n)$
(4) $c^{\prime} c^{\prime} \in X$
(5) $c^{\prime} c^{\prime \prime} \in X$

We show that

$$
c^{\prime}=c^{\prime \prime}
$$

We consider three cases
Case

## Lemma 84.

$$
\begin{aligned}
& \forall \pi, X, \sigma, \mathcal{L}, c, c^{\prime}, n, t, x: \\
& \quad(X, \sigma, \mathcal{L}) \in \llbracket \pi \rrbracket \\
& \quad \operatorname{tpar}_{\pi}(n)=t \wedge \operatorname{par} 1_{\pi}(n)=x \\
& c^{\prime} \in \operatorname{Return} s_{\pi}(n) \\
& c^{\prime} c^{\prime} \in X \\
& \Rightarrow \\
& \\
& c \in X \wedge \\
& \operatorname{obj}_{X}(c)=\operatorname{this}^{\prime} \wedge \operatorname{name}_{X}(c)=n \wedge \\
& \sigma\left(\operatorname{thread}_{X}(c)\right)=\sigma\left(c^{\prime} t\right) \wedge \\
& \\
& \sigma\left(\arg _{X}^{*}(c)\right)=\sigma\left(c^{\prime} x^{*}\right) \wedge \\
& \\
& \sigma\left(\operatorname{retv}_{X}(c)\right)=\sigma\left(\arg _{1_{X}}\left(c^{\prime} c^{\prime}\right)\right) .
\end{aligned}
$$

## Proof.

We have that
(1) $(X, \sigma, \mathcal{L}) \in \llbracket \pi \rrbracket$
(2) $\operatorname{tpar}_{\pi}(n)=t \wedge \operatorname{par} 1 \pi(n)=x$
(3) $c^{\prime} \in$ Returns $_{\pi}(n)$
(4) $c^{\prime} c^{\prime} \in X$

We show that
$c \in X \wedge$

$$
\begin{aligned}
& \operatorname{obj}_{X}(c)=\text { this } \wedge \operatorname{name}_{X}(c)=n \wedge \\
& \sigma\left(\operatorname{thread}_{X}(c)\right)=\sigma\left(c^{\prime} t\right) \wedge \\
& \sigma\left(\arg _{X}^{*}(c)\right)=\sigma\left(c^{\prime} x^{*}\right) \wedge \\
& \sigma\left(\operatorname{retv}_{X}(c)\right)=\sigma\left(\arg _{X}\left(c^{\prime} c^{\prime}\right)\right)
\end{aligned}
$$

From definition 2.70 on [1] and [4], we have $\exists X_{i}$ :
$c^{\prime}=c^{\prime \prime}$
Obvious
Case
$c^{\prime} \in \operatorname{PreReturn} s_{\pi}\left(c^{\prime \prime}\right)$
By definition [2.67] on [5], we have $\neg c^{\prime} c^{\prime} \in X$
which is contradiction to [4].
Case
$c^{\prime \prime} \in \operatorname{PreReturns}_{\pi}\left(c^{\prime}\right)$
By definition [2.67] on [4], we have

$$
\neg c^{\prime} c^{\prime \prime} \in X
$$

which is contradiction to [5].
(б) $c^{\prime} c^{\prime} \in X_{i}$
(7) $X_{i} \Subset X$

We show that
(8) $c \in X_{i} \wedge$
(9) $\operatorname{obj}_{X_{i}}(c)=$ this $\wedge$ name $_{X_{i}}(c)=n \wedge$
(10) $\sigma\left(\right.$ thread $\left._{X_{i}}(c)\right)=\sigma\left(c^{\prime} t\right) \wedge$
(11) $\sigma\left(\arg _{X_{i}}^{*}(c)\right)=\sigma\left(c^{\prime} x^{*}\right) \wedge$
(12) $\sigma\left(\operatorname{retv}_{X_{i}}(c)\right)=\sigma\left(\arg 1_{X_{i}}\left(c^{\prime} c^{\prime}\right)\right)$

Structural induction on $p_{i}$ :
(13) Case $p_{i}=c \triangleright n_{\tau}\left(u^{*}\right): x$

Straightforward form definition [2.67] and Lemma 83.
(14) Case $p_{i}=p^{\prime} p^{\prime \prime}$

Straightforward form definition [2.68], the induction hypothesis and
the uniqueness of label $c$.
(15) Case $p=$ if $b p_{1}$ else $p_{2}$

Straightforward form definition [2.69] and the induction hypothesis.
From [11] on [8]-[12], we have $c \overline{\in X} \wedge$

$$
\begin{aligned}
& o b j_{X}(c)=\text { this } \wedge \operatorname{name}_{X}(c)=n \wedge \\
& \sigma\left(\operatorname{thread}_{X}(c)\right)=\sigma\left(c^{\prime} t\right) \wedge \\
& \sigma\left(\arg _{X}^{*}(c)\right)=\sigma\left(c^{\prime} x^{*}\right) \wedge \\
& \sigma\left(\operatorname{retv}_{X}(c)\right)=\sigma\left(\arg 1_{X}\left(c^{\prime} c^{\prime}\right)\right)
\end{aligned}
$$

### 10.4.2 Derived Rules

P2L:
Derived from rule P2X and rule X2L.

IX2OX:
Derived from rule X2X, rule Callee, rule TSEQ, rule OX2IX, and rule XASYm.
XLTrans:
Derived from rule L2X, rule XTotal, rule XTrans, rule XXTrans, rule X2L, and rule LASym.
X2L':
Derived from rule L2X, rule XTotaL, rule X 2 L , and rule LASym.
AREG':
Derived from rule AREg and the following

$$
\left(\pi, \Gamma \vdash i s W \text { riter }_{\text {reg }}\left(l_{W}, l_{R}\right) \wedge i s W \text { riter }_{\text {reg }}\left(l_{W^{\prime}}, l_{R}\right)\right) \Rightarrow\left(\pi, \Gamma \vdash l_{W}=l_{W^{\prime}}\right)
$$

BReG':
Derived from rule BREg and the following

$$
\pi, \Gamma \vdash i s S e q u e n t i a l(r e g) \Rightarrow \pi, \Gamma \vdash \forall \ell:\left(\text { isRead }_{\text {reg }}(\ell) \vee i s W r i t e_{\text {reg }}(\ell)\right) \Rightarrow \text { isRaceFree }_{\text {reg }}(\ell)
$$

TREG:
Derived from rule TLocal, rule TSEQ and rule BReg'.
CASREGREAD':
Derived from rule CASREGREAD and the following

$$
\left(\pi, \Gamma \vdash i s C W \text { riter }_{\text {reg }}\left(l_{W}, l_{R}\right) \wedge i s C W r i t e r_{\text {reg }}\left(l_{W^{\prime}}, l_{R}\right)\right) \Rightarrow\left(\pi, \Gamma \vdash l_{W}=l_{W^{\prime}}\right)
$$

## SCounter':

Derived from rule LTotal and rule SCounter.
BasicMapGet':
Derived from rule BasicMapGet.

BasicMapPut':
Derived from rule BasicMapPut.
DisjSyllL:
Derived form rule DisjElim and rule NegElim.
DisjSyllR:
Derived form rule DisjElim and rule NegElim.
CondElim':
Derived form rule Premise, rule CondElim, and rule NegIntro.

## Other Lemmas:

Lemma 36:
Derived from rule Premise.

Lemma 37:
Derived from rule Premise.

### 10.5 Syntactic TM Correctness

### 10.5.1 Transactions

Let us define

$$
\begin{align*}
& \operatorname{Inits}(X)=\left\{l \mid l \in X \wedge \operatorname{obj}_{X}(l)=\text { this } \wedge \text { name }_{X}(l)=\text { init }\right\}  \tag{10.3}\\
& \operatorname{Reads}(X)=\left\{l \mid l \in X \wedge \operatorname{obj}_{X}(l)=\text { this } \wedge \text { name }_{X}(l)=\text { read }\right\}  \tag{10.4}\\
& W \operatorname{rites}(X)=\left\{l \mid l \in X \wedge \operatorname{obj}_{X}(l)=\text { this } \wedge \text { name }_{X}(l)=\text { write }\right\}  \tag{10.5}\\
& \operatorname{Commits}(X)=\left\{l \mid l \in X \wedge \operatorname{obj}_{X}(l)=\text { this } \wedge \text { name }_{X}(l)=\text { commit }\right\}  \tag{10.6}\\
& \operatorname{Committed}(X)=\left\{T \mid \exists l: l \in \operatorname{Commits}(X) \wedge \operatorname{thread}_{X}(l)=T \wedge \operatorname{retv}_{X}(l)=\mathbb{C}\right\}  \tag{10.7}\\
& \operatorname{Aborted}(X)=\left\{T \mid \exists l: l \in X \wedge \operatorname{obj}_{X}(l)=\text { this } \wedge \operatorname{thread}_{X}(l)=T \wedge \operatorname{retv}_{X}(l)=\mathbb{A}(10.8)\right. \tag{10.8}
\end{align*}
$$

## Lemma 85.

$\forall X, \sigma, c$ :
$(X, \sigma) \in \llbracket$ trans $_{j} \rrbracket \wedge$
$c \in X$
$\Rightarrow$
$\left(c \in \operatorname{Inits}(X) \wedge c=I L_{j} \vee\right.$
$c \in \operatorname{Reads}(X) \vee$
$c \in W$ rites $(X) \vee$
$\left.c \in \operatorname{Commits}(X) \wedge c=C L_{j}\right) \wedge$
$\left(I L_{j} \preceq c\right) \wedge$
$\left(C L_{j} \in X \Rightarrow c \preceq C L_{j}\right)$
Proof.
Case $j=0$ :
Derived from Equation 2.3 and Equation 2.68.
Case $0<j \leq n$ :
Derived from Equation 2.4, induction on the structure of op and Equation 2.69.

## Lemma 86.

$\forall X, \sigma$ :

```
 (X,\sigma)\in\llbrackettransj\rrbracket
#
 \existsc:
 c\inX ^ obj}\mp@subsup{X}{X}{(c)=this ^ thread
 (retv}\mp@subsup{\mp@code{X}}{(c)}{(c)\mathbb{C}\vee\mp@subsup{\operatorname{retv}}{X}{}(c)=\mathbb{A})
```

Proof.
Case $j=0$ :
Derived from Equation 2.3, Equation 2.68, Equation 2.67 and the well-formedness condition $\forall c^{\prime} \in \operatorname{Returns}_{\pi}(\operatorname{commit}): ~_{\operatorname{retv}}^{\pi}\left(c^{\prime}\right)=\overline{\mathbb{C} V} \operatorname{retv}_{\pi}\left(c^{\prime}\right)=\mathbb{A}$.
Case $0<j \leq n$ :
Derived from Equation 2.4, induction on the structure of op and Equation 2.69, Equation $\underline{2.67}$ and the well-formedness condition
$\forall c^{\prime} \in \operatorname{Returns}_{\pi}\left(\operatorname{commit}^{\prime}\right) \operatorname{retv}_{\pi}\left(c^{\prime}\right)=\mathbb{C} \vee \operatorname{retv}_{\pi}\left(c^{\prime}\right)=\mathbb{A}$.

## Lemma 87.

$\forall X, \sigma, c, c^{\prime}$ :
$(X, \sigma) \in \llbracket t r a n s_{j} \rrbracket$
$c \in X \wedge \operatorname{obj}_{X}(c)=$ this $\wedge$ thread $_{X}(c)=j \wedge$
$c^{\prime} \in X \wedge \operatorname{obj}_{X}\left(c^{\prime}\right)=$ this $\wedge$ thread $_{X}\left(c^{\prime}\right)=j \wedge$
$\left(\operatorname{retv}_{X}(c)=\mathbb{C} \vee \operatorname{retv}_{X}(c)=\mathbb{C}\right) \vee\left(\operatorname{retv}_{X}\left(c^{\prime}\right)=\mathbb{A} \vee \operatorname{retv}_{X}\left(c^{\prime}\right)=\mathbb{A}\right) \Rightarrow$ $c=c^{\prime}$

Proof.
Case $j=0$ :
Derived from Equation 2.3, Equation 2.68, Equation $\underline{2.67}$ and the well-formedness conditions
$\forall c \in \operatorname{Returns}_{\pi}($ init $): \overline{\arg 1} 1_{\pi}(c)=o k$
$\forall c \in$ Returns $_{\pi}($ write $): \arg 1_{\pi}(c) \neq \mathbb{C}$
and that in every execution of the transaction $\operatorname{trans} s_{0}$, all the write method calls return $o k$.
Case $0<j \leq n$ :
Derived from Equation 2.4, induction on the structure of op and Equation 2.69, Equation 2.67 and
the following well-formedness conditions
$\forall c \in \operatorname{Returns}_{\pi}($ init $): \arg 1_{\pi}(c)=o k$
$\forall c \in \operatorname{Returns}_{\pi}($ read $): \arg 1_{\pi}(c) \neq \mathbb{C}$
$\forall c \in$ Returns $_{\pi}$ (write) : $\arg 1_{\pi}(c) \neq \mathbb{C}$
$\forall c \in$ Returns $_{\pi}($ commit $): \arg 1_{\pi}(c)=\mathbb{C} \vee \arg 1_{\pi}(c)=\mathbb{A}$

## Lemma 88.

$\forall \pi \in \Pi_{T M}: \forall X \in \mathbb{H}(\pi): \forall T \in \operatorname{Trans}(X):$ Let $l=\operatorname{commitOf}(T): l \in \operatorname{Inits}(X) \wedge \operatorname{thread}_{X}(l)=T$
Proof. Derived from Equation 2.3, Equation 2.4, Equation 2.5, Equation 2.71, Equation 2.70, and Equation 2.68.

## Lemma 89.

$\forall \pi \in \Pi_{T M}: \forall X \in \mathbb{H}(\pi): \forall l, l^{\prime}:$
$\left(l \in \operatorname{Inits}(X) \wedge l^{\prime} \in \operatorname{Inits}(X) \wedge \operatorname{thread}_{X}(l)=\operatorname{thread}_{X}\left(l^{\prime}\right)\right) \Rightarrow$
$l=l^{\prime}$
Proof. Derived from Equation 2.71, Equation 2.70, Lemma 75, Lemma 77, and Lemma 85.

## Lemma 90.

$\forall \pi \in \Pi_{T M}: \forall X \in \mathbb{H}(\pi): \forall l, l^{\prime}:$
$\left(l \in \operatorname{Inits}(X) \wedge l^{\prime} \in X \wedge \operatorname{obj}_{X}\left(l^{\prime}\right)=\right.$ this $\left.\wedge \operatorname{thread}_{X}(l)=\operatorname{thread}_{X}\left(l^{\prime}\right)\right) \Rightarrow$ $l \preceq_{X} l^{\prime}$

Proof. Derived from Equation 2.71, Equation 2.70, Lemma 75, Lemma 77, and Lemma 85.

## Lemma 91.

$\forall \pi \in \Pi_{T M}: \forall X \in \mathbb{H}(\pi): \forall T \in \operatorname{Trans}(X)$
Let $l=\operatorname{commitOf}(T)$ :
$T \in \operatorname{Committed}(X) \Rightarrow$
$\left(l \in \operatorname{Commits}(X) \wedge\right.$ thread $\left._{X}(l)=T\right)$

Proof. Derived from Equation 2.6, Equation 2.71, Equation 2.70, Lemma 75, Lemma 8 5 and Lemma $\underline{77}$.

## Lemma 92.

$\forall \pi \in \Pi_{T M}: \forall X \in \mathbb{H}(\pi): \forall l, l^{\prime}:$
$\left(l \in \operatorname{Commits}(X) \wedge l^{\prime} \in \operatorname{Commits}(X) \wedge\right.$ thread $\left._{X}(l)=\operatorname{thread}_{X}\left(l^{\prime}\right)\right) \Rightarrow$ $l=l^{\prime}$

Proof. Derived from Equation 2.71, Equation 2.70, Lemma 75, Lemma $\underline{77}$ and Lemma 85.

## Lemma 93.

$\forall \pi \in \Pi_{T M}: \forall X \in \mathbb{H}(\pi): \forall l, l^{\prime}:$
$\left(l \in X \wedge \operatorname{obj}_{X}(l)=\right.$ this $\wedge l^{\prime} \in \operatorname{Commits}(X) \wedge$ thread $_{X}(l)=$ thread $\left._{X}\left(l^{\prime}\right)\right) \Rightarrow$ $l \preceq_{X} l^{\prime}$

Proof. Derived from Equation 2.71, Equation 2.70, Lemma 75, Lemma 77 and Lemma 85.
Lemma 94.
$\forall \pi \in \Pi_{T M}: \forall X \in \mathbb{H}(\pi): \forall t: 0 \leq t \leq n$ $(t \in \operatorname{Committed}(X) \wedge t \in \neg \operatorname{Aborted}(X)) \vee(t \in \operatorname{Aborted}(X) \wedge t \in \neg \operatorname{Committed}(X))$

Proof. Derived from Equation 2.71, Equation 2.70, Lemma 86, and Lemma 87.
Lemma 39
$\forall \pi \in \Pi_{T M}: \pi \models \Gamma_{0}$.
Proof. Derived from Equations 10.3-10.8, Equations 6.7-6.13, Definition 15, Definition 16 and Lemmas 88-94.

## Theorem 40.

Proof. Derived from Theorem $\underline{3}$ and Lemma 39.

### 10.5.2 Markability

Theorem 5:
Markable $\subseteq$ Opaque.
Proof.
We assume that
(1) $\pi \in$ Markable

We show that that

$$
\pi \in \text { Opaque }
$$

By Definition 17 on [1], we have
(2) $\pi, \Gamma_{0} \vdash$ isMarking $(\sqsubseteq)$

From Lemma 40 on [2], we have
(3) $\pi \models i \overline{s M} \operatorname{arking}(\sqsubseteq)$

By Definition 15, and Figure 6.2, Figure 3.5
on [3], we have
(4) $\forall \mathcal{X} \in \llbracket \pi \rrbracket: X \in$ FinalStateMarkable

By Theorem 1 on [4], we have
(5) $\forall \mathcal{X} \in \llbracket \pi \rrbracket: \bar{X} \in$ FinalStateOpaque

By Definition 14 on [5], we have
(6) $\pi \in$ Opaque


Figure 10.13: Specification of DSTM

R00: defread ${ }_{T}(i)$	C00: def commit ${ }_{T}$
R01: if $\left(i \in{\left.\operatorname{dom}\left(\text { wset }_{T}\right)\right)}^{\text {R02: }}\right.$   return wset    $T$    $(i)$    $R 03:$ if $\left(i \notin\right.$ mset $\left._{T}\right)$   $R 04:$ $v:=$ current value of $i^{\text {R05: }}$   rset $T \oplus i$    $R 06:$ return $v$   $R 07:$ else   $R 08:$ return $A_{T}$  	
	C02: Abort the holder of $l_{i}$
	C03: Acquire $l_{i}$
	C04: $\quad$ lset $_{T} \oplus i$
	C05: if $\left(\right.$ rset $\left.{ }_{T} \cap \mathrm{mset}_{T} \neq \emptyset\right)$
	C06: $\quad$ Release locks in lset ${ }_{T}$
	C07: return $A_{T}$
	C08: foreach (trans $T^{\prime}$ )
	C09: $\quad$ if $\left(\right.$ rset $_{T} \cap$ lset $\left._{T^{\prime}} \neq \emptyset\right)$
	C10: $\quad$ Abort $T^{\prime}$
W00: def write $_{T}(i, v)$	C11: foreach (trans $T$ that rset $_{T^{\prime}} \neq \emptyset$ )
W01: $\quad$ wset $_{T} \oplus(i \mapsto v)$	C12: $\quad$ mset $_{T^{\prime}} \oplus$ wset $_{T}$
W02: return ok	C13: Release locks in lset $_{T}$   C14: $\quad$ return $C_{T}$

Figure 10.14: Specification of TL2

### 10.6 Related Works

We rewrite the transition systems of [31] and [24] to make them more readable. Figure 10.13 presents the specification of DSTM algorithm according to [31] and [24]. Figure 10.14 presents the specification of TL2 algorithm according to [31]. The specification of TL2 in [24] is the same as Figure 10.14 except that there is no horizontal line between and and $C 10$ and $C 11$. Horizontal lines separate fragments that are assumed to be executed atomically.

## Chapter 11

## Bibliography

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional memory and automatic mutual exclusion. In POPL, pages 63-74, 2008.
[2] Martín Abadi and Leslie Lamport. Conjoining specifications. ACM Trans. Program. Lang. Syst., 17(3):507-535, May 1995.
[3] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and Sean Lie. Unbounded transactional memory. In HPCA, 2005.
[4] Woongki Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating a model checker for transactional memory systems. In Engineering of Complex Computer Systems (ICECCS), 2010 15th IEEE International Conference on, pages 117-126, 2010.
[5] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware memory protection to build a high-performance, strongly-atomic hybrid transactional memory. In Proceedings of the 35th Annual International Symposium on Computer Architecture, ISCA '08, pages 115-126, Washington, DC, USA, 2008. IEEE Computer Society.
[6] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. A critique of ansi sql isolation levels. SIGMOD Rec., 24(2):1-10, May 1995.
[7] Richard Bornat, Cristiano Calcagno, Peter O'Hearn, and Matthew Parkinson. Permission accounting in separation logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '05, pages 259-270, New York, NY, USA, 2005. ACM.
[8] John Boyland. Checking interference with fractional permissions. In Proceedings of the 10th international conference on Static analysis, SAS'03, pages 55-72, Berlin, Heidelberg, 2003. Springer-Verlag.
[9] Stephen Brookes. A semantics for concurrent separation logic. Theor. Comput. Sci., 375(1-3):227-270, April 2007.
[10] Alexandre Buisse, Lars Birkedal, and Kristian Støvring. Step-indexed kripke model of separation logic for storable locks. Electron. Notes Theor. Comput. Sci., 276:121-143, September 2011.
[11] Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttle, and Lenore D. Zuck. Verifying correctness of transactional memories. In FMCAD, 2007.
[12] Ariel Cohen, Amir Pnueli, and Lenore D. Zuck. Mechanical verification of transactional memories with non-transactional memory accesses. In CAV, 2008.
[13] Joey W. Coleman and Cliff B. Jones. A structural proof of the soundness of rely/guarantee rules. J. Log. and Comput., 17(4):807-841, August 2007.
[14] Intel Corporation. Intel architecture instruction set extensions programming reference. 319433012, 2012.
[15] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark Moir, Michael L. Scott, and Michael F. Spear. Hybrid norec: A case study in the effectiveness of best effort hardware transactional memory. In Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI, pages 39-52, New York, NY, USA, 2011. ACM.
[16] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: streamlining stm by abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP '10, pages 67-78, New York, NY, USA, 2010. ACM.
[17] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proceedings of the Theory and practice of software, 14th international conference on Tools and algorithms for the construction and analysis of systems, TACAS'08/ETAPS'08, pages 337-340, Berlin, Heidelberg, 2008. Springer-Verlag.
[18] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, (LNCS 4167), 2006.
[19] Dave Dice and Nir Shavit. TLRW: Return of the read-write lock. In SPAA, 2010.
[20] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. Concurrent abstract predicates. In Proceedings of the 24th European conference on Object-oriented programming, ECOOP'10, pages 504-528, Berlin, Heidelberg, 2010. SpringerVerlag.
[21] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-guarantee reasoning. In Proceedings of the 18th European Symposium on Programming Languages and Systems: Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, ESOP '09, pages 363-377, Berlin, Heidelberg, 2009. Springer-Verlag.
[22] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and verifying transactional memory. Formal Aspects of Computing, 2012.
[23] Aleksandar Dragojevic, Rachid Guerraoui, and Michal Kapalka. Stretching transactional memory. In PLDI, 2009.
[24] Michael Emmi, Rupak Majumdar, and Roman Manevich. Parameterized verification of transactional memories. In Proceedings of PLDI'10, ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 134-145, June 2010.
[25] Xinyu Feng. Local rely-guarantee reasoning. In Proceedings of the 36th annual ACM SIGPLANSIGACT symposium on Principles of programming languages, POPL '09, pages 315-327, New York, NY, USA, 2009. ACM.
[26] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between concurrent separation logic and assume-guarantee reasoning. In Proceedings of the 16th European conference on Programming, ESOP'07, pages 173-188, Berlin, Heidelberg, 2007. Springer-Verlag.
[27] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. Local reasoning for storable locks and threads. In Proceedings of the 5th Asian conference on Programming languages and systems, APLAS'07, pages 19-37, Berlin, Heidelberg, 2007. Springer-Verlag.
[28] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPOPP, pages 175-184, 2008.
[29] Rachid Guerraoui, Thomas A. Henzinger, Barbara Jobstmann, and Vasu Singh. Model checking transactional memories. In ACM SIGPLAN Conference on Programming Languages Design and Implemen tation, pages 372-382, 2008.
[30] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Software transactional memory on relaxed memory models. In Proceedings of CAV'09, Seventh International Conference on Computer Aided Verification, pages 321-336, 2009.
[31] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Model checking transactional memories. Distributed Computing, 2010.
[32] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. Transactional memory coherence and consistency. In ISCA, 2004.
[33] R. Haring, M. Ohnmacht, T. Fox, M. Gschwind, D. Sattereld, K. Sugavanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara, G.-T. Chiu, P. Boyle, N. Chist, , and C. Kim. The IBM Blue Gene/Q compute chip. IEEE Micro, 32(2):48-60, 2012.
[34] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory. Morgan and Claypool Publishers, second edition, 2010.
[35] Tim Harris, Simon Marlow, Simon Peyton, and Jones Maurice Herlihy. Composable memory transactions. In PPOPP'05, pages 48-60. ACM Press, 2005.
[36] Jonathan Hayman and Glynn Winskel. Independence and concurrent separation logic. In In Proc. LICS 06. IEEE Press, 2006.
[37] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume, we guarantee: Methodology and case studies. In Proceedings of the 10th International Conference on Computer Aided Verification, CAV '98, pages 440-451, London, UK, UK, 1998. Springer-Verlag.
[38] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing software transactional memory. In OOPSLA, pages 253-262, 2006.
[39] M. Herlihy, V. Luchangco, M. Moir, and III W. N. Scherer. Software transactional memory for dynamic-sized data structures. In $P O D C, 2003$.
[40] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492, July 1990.
[41] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for lock-free data structures. In ISCA, pages 289-300, 1993.
[42] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576-580, 1969.
[43] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle semantics for concurrent separation logic. In Proceedings of the Theory and practice of software, 17th European conference on Programming languages and systems, ESOP'08/ETAPS'08, pages 353-367, Berlin, Heidelberg, 2008. Springer-Verlag.
[44] Damien Imbs, José Ramon de Mendivil, and Michel Raynal. Brief announcement: virtual world consistency: a new condition for stm systems. In Proceedings of the 28th ACM symposium on Principles of distributed computing, PODC '09, pages 280-281, New York, NY, USA, 2009. ACM.
[45] Samin S. Ishtiaq and Peter W. O'Hearn. Bi as an assertion language for mutable data structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '01, pages 14-26, New York, NY, USA, 2001. ACM.
[46] Cliff B. Jones. Specification and design of (parallel) programs. In R. E. A. Mason, editor, Information Processing 83, volume 9 of IFIP Congress Series, pages 321-332, Paris, France, September 1983. IFIP, North-Holland slashIFIP.
[47] E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-grained transactions. In POPL, pages 19-30, 2010.
[48] Leslie Lamport. On interprocess communication. part i: Basic formalism. Distributed Computing, 1(2):77-85, 1986.
[49] Mohsen Lesani. On the correctness of transactional memory algorithms, the companion. http: //www.cs.ucla.edu/~lesani/companion/dissertation.
[50] Mohsen Lesani, Victor Luchangco, and Mark Moir. A framework for formally verifying software transactional memory algorithms. In CONCUR, 2012.
[51] Mohsen Lesani, Victor Luchangco, and Mark Moir. Putting opacity in its place. In WTTM'12, 2012.
[52] João Lourenço and Gonçalo Cunha. Testing patterns for software transactional memory engines. In Proceedings of the 2007 ACM Workshop on Parallel and Distributed Systems: Testing and Debugging, PADTAD '07, pages 36-42, New York, NY, USA, 2007. ACM.
[53] Chaiyasit Manovit, Sudheendra Hangal, Hassan Chafi, Austen McDonald, Christos Kozyrakis, and Kunle Olukotun. Testing implementations of transactional memory. In Proceedings of the 15th International Conference on Parallel Architectures and Compilation Techniques, PACT '06, pages 134-143, New York, NY, USA, 2006. ACM.
[54] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat, William N. Scherer III, and Michael L. Scott. Lowering the overhead of software transactional memory. In ACM SIGPLAN Workshop on Transactional Computing. Jun 2006. Held in conjunction with PLDI 2006. Expanded version available as TR 893, Department of Computer Science, University of Rochester, March 2006.
[55] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective hybrid transactional memory system with strong isolation guarantees. In Proceedings of the 34th Annual International Symposium on Computer Architecture, ISCA '07, pages 69-80, New York, NY, USA, 2007. ACM.
[56] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans. Softw. Eng., 7(4):417426, July 1981.
[57] K. F. Moore and D. Grossman. High-level small-step operational semantics for transactions. In POPL, pages 51-62, 2008.
[58] Leonor Prensa Nieto. The rely-guarantee method in isabelle/hol. In Proceedings of the 12th European conference on Programming, ESOP'03, pages 348-362, Berlin, Heidelberg, 2003. SpringerVerlag.
[59] Peter W. OHearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-3):271-307, April 2007.
[60] Peter W. OHearn, Hongseok Yang, and John C. Reynolds. Separation and information hiding. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '04, pages 268-280, New York, NY, USA, 2004. ACM.
[61] J. O'Leary, B. Saha, and Mark R. Tuttle. Model checking transactional memory with spin. In Distributed Computing Systems, 2009. ICDCS '09. 29th IEEE International Conference on, pages 335-342, 2009.
[62] Susan Owicki and David Gries. An axiomatic proof technique for parallel programs i. Acta Informatica, 6(4):319-340, December 1976.
[63] S. Owre, J.M. Rushby, and N. Shankar. Pvs: A prototype verification system. In Deepak Kapur, editor, Automated DeductionCADE-11, volume 607 of Lecture Notes in Computer Science, pages 748-752. Springer Berlin Heidelberg, 1992.
[64] V. Pankratius, A.-R. Adl-Tabatabai, , and F. Otto. Does transactional memory keep its promises? results from an empirical study. Technical Report 2009-12, Institute for Program Structures and Data Organization (IPD), University of Karlsruhe, September 2009.
[65] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. SIGPLAN Not., 40(1):247-258, January 2005.
[66] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS '02, pages 55-74, Washington, DC, USA, 2002. IEEE Computer Society.
[67] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transactional programming actually easier? SIGPLAN Notices, 45(5), January 2010.
[68] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin Hertzberg. McRT-STM: a high performance software transactional memory system for a multicore runtime. In $P P o P P, 2006$.
[69] M. L. Scott. Sequential specification of transactional memory semantics. In TRANSACT, 2006.
[70] Nir Shavit and Dan Touitou. Software transactional memory. In PODC, 1995.
[71] Vasu Singh. Formalizing and Verifying Transactional Memories. PhD thesis, Ecole Polytechnique Federale de Lausanne, April 2010.
[72] Vasu Singh. Runtime verification for software transactional memories. In Proceedings of the First International Conference on Runtime Verification, RV'10, pages 421-435, Berlin, Heidelberg, 2010. Springer-Verlag.
[73] Serdar Tasiran. A compositional method for verifying software transactional memory implementations. Technical Report MSR-TR-2008-56, Microsoft Research, apr 2008.
[74] Viktor Vafeiadis. Concurrent separation logic and operational semantics. Electron. Notes Theor. Comput. Sci., 276:335-351, September 2011.
[75] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation logic. In Lus Caires and VascoT. Vasconcelos, editors, CONCUR 2007 Concurrency Theory, volume 4703 of Lecture Notes in Computer Science, pages 256-271. Springer Berlin Heidelberg, 2007.


[^0]:    ${ }^{1}$ Note that we consider complete histories.

[^1]:    ${ }^{2}$ In this subsection, we use $\forall$ and $\exists$ as a notational convenience. $\forall l: p$ can be rewritten as $\bigwedge_{(l \in L a b e l s(X))} p(X)$ and $\exists l: p$ can be rewritten as $\bigvee_{(l \in \operatorname{Labels(X))}} p(X)$.

[^2]:    ${ }^{1}$ We have formally proved the markability of TL2 using a novel program logic [?] that facilitates reasoning about execution and linearization orders. To keep the focus of this paper on markability, we present a simplified reasoning instead of the formal presentation of the logic.

