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1. INTRODUCTION

Recent years have seen substantial progress in asset return volatility measurement, with
important applications to asset pricing, portfolio allocation and risk management. In
particular, so-called realized variances and covariances (“realized volatilities”), based on
increasingly-available high-frequency data, have emerged as central for several reasons.1

They are, for example, largely model-free (in contrast to traditional model-based
approaches such as GARCH or stochastic volatility), they are computationally trivial,
and they are in principle highly accurate.

A tension arises, however, linked to the last of the above desiderata. Econometric
theory suggests the desirability of sampling as often as possible to obtain highly accurate
volatility estimates, but financial market reality suggests otherwise. In particular, market
microstructure noise (MSN), such as bid-ask bounce associated with ultra-high-frequency
sampling, may contaminate the observed price, potentially rendering naively-calculated
realized volatilities unreliable.

1. Several surveys are now available, ranging from the comparatively theoretical treatments of
Barndorff-Nielsen and Shephard (2007) and Andersen et al. (2010), to the applied perspective of Andersen
et al. (2006) and Andersen et al. (2013).
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Early work (e.g., Andersen et al., 2001a,b, 2003, Barndorff-Nielsen and Shephard,
2002a,b) addressed the sampling issue by attempting to sample often, but not “too often,”
typically resulting in use of five- to thirty-minute returns. Much higher-frequency data
are usually available, however, so reducing the sampling frequency to insure against MSN
discards potentially valuable information.

To use all information, more recent work has emphasized MSN-robust realized
volatilities that use returns sampled at very high frequencies. Examples include Zhang
et al. (2005), Bandi and Russell (2008), Aı̈t-Sahalia et al. (2011), Hansen and Lunde
(2006), and Barndorff-Nielsen et al. (2008, 2011b). That literature is almost entirely
statistical, however, which is unfortunate because statistics offers little guidance regarding
the nature of latent price, MSN, and their interaction. Hence some authors such as Bandi
and Russell assume no correlation (perhaps erroneously), whereas in contrast Barndorff-
Nielsen et al. (2008, 2011a) allow for correlation (perhaps unnecessarily).

To improve this situation, we explicitly recognize that MSN results from the behavior
of economic agents, and we push toward integrating the financial economics of market
microstructure with the financial econometrics of volatility estimation. In particular,
we explore the implications of microstructure theory for the empirical relationship
between latent price and MSN, characterizing the cross-correlation structure between
latent price and MSN, contemporaneously and dynamically. We do so in a variety of
leading benchmark environments, including Roll (1984), Glosten and Milgrom (1985),
Kyle (1985), Easley and O’Hara (1992), and Hasbrouck (2002).2 Simultaneously and
conversely, we also emphasize that our analysis is far from the last word on the subject,
as it is based on stylized benchmark models. In part it serves as a “call to action” for
development of richer microstructure models that would facilitate more sophisticated
analyses.

We proceed as follows. In Section 2 we introduce our general framework, which nests
a variety of microstructure models. In Sections 3 and 4 we provide detailed analyses of
private-information models, distinguishing two types of latent prices based on the implied
level of market efficiency. In Section 5 we discuss the relationship between price change
frequency and sampling frequency. Based on this, we suggest several microstructure-
based estimators and apply them to stock and oil market data in Section 6. We conclude
in Section 7, in which we highlight both the strengths and limitations of our analysis and
briefly sketch aspects of extensions beyond the scope of the present paper. We provide
details of technical results in a web appendix.

2. THE FRAMEWORK

We begin in Section 2.1 by introducing a general framework relating latent prices,
observed prices, and MSN in a wide range of market-making environments. We then
introduce, in Section 2.2, market makers, or – more generally – learning market
participants, who are central in the subsequent analyses.

2.1. Latent Prices, Observed Prices and Microstructure Noise

Let p∗t denote the (logarithm of the) strong form efficient price of some asset in the
calendar (or business) time period t. This price, strictly exogenously changing every

2. See O’Hara (1995) and Hasbrouck (2007) for insightful surveys of the key models, and see Engle
and Sun (2007) for a related but ultimately very different perspective based on conditional duration
modeling.
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T th-period, could stem from sampling increments of standard Brownian motion every T
periods, in which case the standard deviation σ would be proportional to T . At time t,
p∗t is known only to the informed traders, and follows the process

p∗t =

{
p∗t−1 + σεt, ∀t = κT, κ ∈ Z

p∗t−1, otherwise
(2.1)

with εt ∼iid (0, 1). (2.2)

This price process is very restrictive. For simplicity of exposition we do not model
jumps, time-varying volatility (σt), or time-varying sampling intervals (Tt), which are
the subject of sophisticated models of market microstructure theory. In all its simplicity,
however, this process is the discrete time analogue of the latent price process that
estimators of integrated volatility (IV) are based on. As we show later in this paper,
different assumptions about the nature of the latent price process will lead to different
estimates of IV. In particular, the properties of the latent price relevant in many
applications depend on the information set. In this paper we aim to bridge the gap
between market microstructure theory and IV estimation by introducing for the first
time a simple price determination framework founded on market microstructure theory
to IV estimation.

Microstructure noise (MSN) is the difference between the observed market return
and the latent return. Instead of ad-hoc assumptions about the properties of the strong
form noise

∆ut ≡ ∆pt −∆p∗t , (2.3)

which are common in the IV estimation literature, we add additional market
microstructure that helps explain key properties of MSN.

Let qt denote the direction of the trade in period t, where qt = +1 denotes a buy,
qt = −1 a sell, and qt = 0 a no-trade period. Define pet as the expected efficient price
directly before the trade occurs. The semi-strong form efficient price, which summarizes
the knowledge of the market maker after the trade, is in logarithmic terms

p̃et = pet + λtqt, (2.4)

where λt ≥ 0 captures the response to asymmetric information revealed by the trade
direction qt. The admittedly stylized assumption that quantities do not matter for market
maker learning obtains e.g. in a pooling equilibrium of informed with uninformed traders
(Kelly and Steigerwald, 2004). It fits the observation that in recent years order-splitting
into many small trades has become dominant. Because the estimators we derive rely (at
most) on trade direction data, further model detail would not add to our results.

At the beginning of each trading round, additional information about p∗t and εt
might be revealed by information diffusion from other sources, e.g. other markets. With
this information, summarized by ωt, the market maker revises his price expectation for
the next period according to

pet = p̃et−1 + ωt. (2.5)

In periods in which p∗t−1 becomes public information, (2.5) becomes pet = p∗t−1 + ω̃t.
Assuming that the price quotes in logarithmic terms are symmetric around the expected
efficient price before the trade, the observed transaction price can be written as

pt = pet + stqt, (2.6)
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Figure 1

Timing of Information and Prices

where st is one-half of the spread. In particular, the bid price is pbidt = pet − st, the ask
price is paskt = pet + st, and the midprice is pet . These prices and their relationships are
illustrated by Figure 1.

Our stylized setup covers three levels of information: full, intermediate (market
maker), and public information. Of course, in reality market participants are more
heterogeneous with respect to their information sets. Consider, for example, the difference
between traders with to those without access to Nasdaq level II screens. The former
traders cannot see the order book, whereas the latter can. We model for concreteness’
sake the intermediate price as the market maker’s price. It could, of course, also reflect
some other information set, e.g. the one of traders with access to a semi-public market
information source.

Strong form efficient returns in periods t = κT are therefore

∆p∗t ≡ p∗t − p∗t−1 = σεt, (2.7)

and zero in all other periods. Semi-strong form efficient returns are

∆p̃et ≡ p̃et − p̃et−1 = λtqt + ωt, (2.8)

and semi-strong form noise is accordingly

∆ũt ≡ ∆pt −∆p̃et . (2.9)

We use the term “latent price” as a general term comprising both types of efficient
prices. The two latent prices defined here are conceptually very distinct and appeal to
distinct audiences. For example, on the one hand, a pure theorist may want to understand
the properties of the full-information price, and is thus interested in an estimate of the
volatility of the strong form efficient return (2.7). One the other hand, a market maker
may need a volatility measure to calculate his risk exposure, thus his relevant price for
the asset is p̃et , the price at which he keeps the asset on his accounts. It is the volatility
of (2.8), and not of (2.7), that affects his balance sheet.

Semi-strong form noise (2.9) differs fundamentally in its cross-correlation properties
from (2.3). It is therefore essential for a researcher to be clear what type of latent price
the object of interest is, because each requires different procedures to remove MSN
appropriately.

Observed market returns are

∆pt ≡ pt − pt−1 = ∆pet + stqt − st−1qt−1.
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We assume throughout that market conditions are stable so that the noise processes,
∆ut and ∆ũt, are covariance stationary.

A convenient estimator of the variance of the strong form efficient return, σ2, and
therefore of the IV of the underlying continuous time process, is the realized volatility
(RV) as in Andersen et al. (2001b). RV during the time interval [0, T̄ ] is defined as the
sum of squared market returns over the interval, i.e. as

V ar(∆pt) =

T̄∑

t=1

∆p2t .

In the presence of MSN, the RV is generally a biased estimate of σ2. To see this,
decompose the noise into two components, one uncorrelated and one correlated with
the latent price, so that ∆ut = ∆uu

t +∆uc
t . The uncorrelated component, ∆uu

t , reflects
for example the bid-ask bounce in a market populated with uninformed traders only. The
correlated component, ∆uc

t , reflects for example the effect of asymmetric information. RV
can now be decomposed – here shown for the strong form efficient price – as

V ar(∆pt) = V ar(∆p∗t +∆uu
t +∆uc

t)

= σ2 + V ar(∆uu
t ) + V ar(∆uc

t) + 2Cov(∆p∗t ,∆uc
t).

The bias of RV can stem from any of the last three terms, which are all nonzero in
general. IV estimation under the independent noise assumption accounts for the second
and third positive terms, but ignores the last term, which is typically negative (Hansen
and Lunde, 2006). Correcting the estimates for independent noise only, always reduces
the volatility estimate. But because such a correction ignores the last term, which is
the second channel through which asymmetric information affects the IV estimate, the
overall reduction might be too much. Further, serial correlation of noise, or equivalently a
cross-correlation between noise and latent returns at nonzero displacement, requires the
use of robust estimators for both the variance and the covariance terms. In this paper we
determine what correlation and serial correlation market microstructure theory predicts,
and how market microstructure theory can be useful for improving IV estimates.

2.2. Introducing Markets and Market Makers

Whereas the strong form efficient price (2.1) is an exogenous stochastic process, the
semi-strong form efficient price (2.4) and the transaction price (2.6) are an outcome of
the market participants’ optimizing behavior. Key mechanisms of the data generator –
the financial market – are often observable and allow inferring properties of these price
series. This is what we exploit in this paper.

Observed transaction prices are determined by the information available about the
strong form efficient price and the market participants’ response to this information.
Three features of the information process matter in particular: First, information content,
second, the diffusion speed of information into public knowledge, and third, the duration
of its validity.

We focus here on a stylized limit-order market, populated by informed and
uninformed traders. Market makers are the counterparty of all trades. Each trading
round they quote price pet and spread st for one unit of the asset. Thereafter, as shown
in Figure 2, informed traders screen the market with probability α for profitable trading
opportunities. They buy if p∗t > paskt , sell if p∗t < pbidt , and refuse to trade otherwise.
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Sequence of Informed and Uninformed Trading Decisions

In periods of no informed trade, uninformed traders trade instead with probability β,
buying and selling with equal probability.

When trading with an informed trader the market maker always loses. His expected
loss is

Ln

[
pt, F (·; p∗, p∗)

]
= −

∫ p

p

|(pt − p∗t )E(qt |p∗t , pt, st )|n f (p∗t ) dp
∗
t , (2.10)

where n reflects the risk aversion of the market maker and E(qt |pet + st < p∗t ) = α,
E(qt |pet − st > p∗t ) = −α, and E(qt |pet − st ≤ p∗t ≤ pet + st ) = 0. F (·) and f(·) denote
the cdf and pdf with support

[
p, p
]
of the market maker’s belief about the latent price.

Similar to Aghion et al. (1991), the market maker faces a tradeoff between avoiding losses
today and learning quickly.3

Because price quotes are only for limited quantities, the market maker can update
his price quote after every trade and his risk exposure is usually small. Accordingly, we
assume risk neutrality (n = 1) throughout the paper, and relegate the implications of
risk aversion to Section 3.3.2. As shorthand notation for the probability of a trade we
define

φt = E(q2t ) = E [Prob(|qt| = 1)] = β + (1− β)α [1− F (pet + st) + F (pet − st)] .

Note that the model can be recast in tick-time by setting φt = 1 ∀t. We add the following
assumption, which simplifies the model without affecting its basic behavior.

Assumption 1. Ex ante, a buy and a sell is equally likely, so that E(qt) = 0.
There is no “momentum” in uninformed trading, and thus trades are serially uncorrelated

3. Diebold and Strasser (2010) describe the market setup and market-maker problem in more
detail.
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beyond the time of a strong form efficient price change, i.e. E(qκT+τ1 |qκT−τ2) = 0
∀κ, τ1 ∈ N0, ∀τ2 ∈ N.

In the following Sections 3 and 4 we look at specializations of this general market
maker problem and examine their effect on the cross-correlation function. For both strong
form and semi-strong form efficient returns we first examine the multiperiod case, where
private information is not revealed until after many periods. We then specialize to the
one-period case, a case where private information becomes public, and worthless, after
only one period, where we specifically address the effect of risk-aversion.

3. RETURN-NOISE CORRELATIONS IN FINANCIAL ECONOMIC
ENVIRONMENTS I: STRONG FORM EFFICIENT PRICES

We focus in this paper on the cross-correlation between latent returns and noise
contemporaneously and at all displacements. Throughout, we refer to this quantity simply
as the “cross-correlation”. In this section we characterize cross-correlations between
strong form efficient returns (2.7) and the corresponding noise (2.3) in various market
settings. To study the effect of one efficient price change in isolation, suppose for now
that the strong form efficient price changes once every T periods at a commonly known
time at which the previous price becomes public knowledge.

3.1. The General Multi-Period Case

The cross-correlations, as shown in Web Appendix A.1.2, follow directly from the price
and noise processes. The contemporaneous cross-covariance is

Cov(∆p∗t ,∆ut) =
σ

T
[s0E(q0ε0)− σ + E(ω0ε0)] . (3.11)

For cross-covariance at higher displacements τ ∈ [1;T − 1] we get

Cov(∆p∗t−τ ,∆ut) =
σ

T
[(λτ−1 − sτ−1)E(qτ−1ε0) + sτE(qτε0) + E(ωτε0)] , (3.12)

for cross-covariance at displacement T , which is when private information becomes public,

Cov(∆p∗t−T ,∆ut) =
σ

T

[
σ − sT−1E(qT−1ε0)−

T−2∑

i=0

λiE(qiε0)−
T−1∑

i=0

E(ωiε0)

]
, (3.13)

and for all higher order displacements τ > T

Cov(∆p∗t−τ ,∆ut) = 0. (3.14)

Combining (3.11) with the noise variance derived in the web appendix gives the
contemporaneous cross-correlation

Corr(∆p∗t ,∆ut) =
s0E(q0ε0)− σ + E(ω0ε0)√

T V ar(∆ut)
. (3.15)

All other cross-correlations can be obtained analogously.
The term E(qτε0) enters the expressions for the cross-covariance (3.11)–(3.13)

linearly but the denominator of the cross-correlation under a square root. Because this
term decreases in the share of uninformed trades, the contemporaneous cross-correlation
is the smaller, the less informed traders are active. In absence of both informed traders
(E(qτε0) = 0) and of extra information (E(ω0ε0) = 0), the market microstructure reduces
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to a bid-ask bounce, as in Roll (1984). Even in this case, shown in the first row of Table
1, the latent price and noise are not independent. The contemporaneous cross-correlation
(3.15) is negative, the cross-correlations at displacement T is positive and all other cross-
correlations are zero.

Because of order splitting, effective spreads have become very small for liquid
assets. If no extra information is available and the spread sufficiently small, then the
contemporaneous cross-correlation is negative even in presence of informed traders,
because pt does not react sufficiently to ∆p∗t . It is strictly larger than negative one,
because the delayed response of ∆pt to ∆p∗t−τ generates cyclical noise with – absent
other market microstructure effects – up to twice the variance of ∆p∗t . Likewise, if the
spread roughly matches the adverse selection coefficient, by (3.12) the cross-correlations
at displacements one up to T − 1 are positive, which reflects that the more the market
maker learns, the closer pt gets to p∗t , and the closer noise shrinks to zero. If, additionally,
the adverse selection coefficient λ and extra information ω in all periods are sufficiently
small, i.e. if some private information persists until period T , then by (3.13) the cross-
correlation at displacement T is positive as well.

In general, however, the sign of the cross-correlations depends on the behavior of
market makers and traders. We now turn to models that allow us to introduce these
explicitly.

3.2. Special Multi-Period Cases of Informed Trading

The market maker does not observe the strong form efficient price, p∗t , directly, but only
signals which allow him to narrow down the range of the current p∗t level. He learns over
time “by experimentation” the informed traders’ private information about p∗t by quoting
prices and observing the resulting trades (Aghion et al., 1991, 1993). The market maker
has an incentive to find out p∗t , because he loses in every trade with an informed trader.
His optimization task is to quote prices that minimize his losses while learning about p∗t
as quickly as possible. We will see that rational behavior of market participants and the
market setup pin down the cross-correlation sign pattern. Only the absolute value of the
cross-correlation differs depending on how market participants interact.

The recursive problem of the market maker is hard to solve, and has in general no
closed form policy functions for bid and ask prices. Therefore we follow the market
microstructure literature by discussing interesting polar cases, which can be solved
because f(p∗t ) is degenerate. In particular, we limit our discussion to the midprice under
a constant spread.

3.2.1. No Strategic Traders. Consider first a market in which the market
maker observes a noisy signal of whether p∗t has changed, and in which traders do not
behave strategically. The market maker has to learn both about the quality of the signal
and about the latent price. A useful illustration is the stylized model of Easley and
O’Hara (1992). As in our general setup in Section 2.2 informed traders are active with
probability α. The strong form efficient price, which is not a martingale here, can assume
one of two possible levels: p∗t = p∗ or p∗t = p∗ > p∗. These levels, as well as the probability
γ of p∗t = p∗, are publicly known, but the actual realization of p∗t is not.4

4. The case of signal certainty, which implies the absence of any uninformed traders, is trivial
here: Because p∗t can assume only one of two price levels, the first trade reveals the true strong form
efficient price. Until the first trade occurs, the expected efficient price is γp∗ + (1− γ)p∗.
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The direction-of-trade signal, qt, is thereby noisy in two ways. Not only does the
market maker not know if a specific trade originates from informed traders, thereby being
informative; the market maker does not even know if there are any informed traders. He
learns by updating in a Bayesian manner his belief about the probabilities that nobody
observed a signal, that informed traders observed p∗t = p∗, or that they observed p∗t = p∗,
using his information set of all previous quotes and trades.

Easley and O’Hara (1992) show that bid and ask prices, and therefore transaction
prices, converge exponentially to the strong form efficient price in calendar time.Market
makers sampling in tick time have the same correlation pattern, but a lower learning rate,
because they miss the no-trade periods. These no-trade intervals contain information
about p∗t , because they lower the probability that informed traders are active.5

The following proposition gives the cross-correlations in Easley and O’Hara (1992)-
type models. It considers only the dominant exponential learning pattern, and ignores
lower order terms which disappear at faster rates as τ gets large.

Proposition 1. (Cross-correlations in the Easley-O’Hara model)
The contemporaneous cross-correlation in the Easley and O’Hara (1992) model with

learning rate r is

Corr (∆p∗t ,∆ut) = −1 + e−r(T−1)

2
√
K

< 0,

and the cross-correlations at sufficiently large nonzero displacements follow

Corr
(
∆p∗t−τ ,∆ut

)
=

er − 1

2
√
K

e−rτ > 0, ∀τ ∈ [1, T − 1]

Corr
(
∆p∗t−T ,∆ut

)
=

e−r(T−1)

2
√
K

> 0,

where K = K(r, T ).

Proof: The proofs to all propositions are collected in Web Appendix A.

As before, the contemporaneous correlation is negative. It approaches its minimum
for small learning rates and frequent latent price changes. The market maker learning
imposes that the cross-correlation of the strong form efficient price decays geometrically
to zero until τ = T .6

We graph this cross-correlation function in the first row of Figure 3, in the upper
left panel for a learning rate of r = 0.5, and in the upper right panel for a faster learning
rate of r = 2. Often, optimal learning stops before p∗t is reached (Aghion et al., 1991),
e.g. if the spread is large or if market maker risk aversion is small. In that case the
cross-correlations cut off at some τ < T .

5. A variation of this setup is the model of Diamond and Verrecchia (1987), where short selling
constraints cause periods of no trading to be a noisy signal of a low latent price.

6. This decay pattern is not unique to the Easley and O’Hara (1992)-model. Glosten and Milgrom
(1985) show more generally that if learning is costless, the expectations of market makers and traders
necessarily converge as the number of trades increases. Because of the uncertainty of whether a trade
reflects information or just noise, the market maker faced with a noisy signal adjusts only partially.
Therefore, whereas the cross-correlations under a noisy signal have the same signs as under signal
certainty, their absolute values are all dampened toward zero.
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Figure 3

Cross-Correlation Functions ρτ of the Strong Form Efficient Price

3.2.2. Strategic Traders. Because the market maker cannot distinguish
informed from uninformed trades, informed traders can act strategically. Informed traders
aim to make the signals about p∗t conveyed by their orders as noisy as possible, while still
executing the desired trades. By mimicking uninformed traders they keep the market
maker unaware of the change in p∗t . Because the market maker observes the order flow
and uses it to detect informed trading, the informed traders strategically stretch their
orders over time. As the market maker sequentially updates his belief about p∗t based on
the history of trades he still learns about p∗t , but very slowly.

Markets of this type have been described in Kyle (1985) and Easley and O’Hara
(1987). In the following we discuss the cross-correlation function implied by the Kyle
(1985) model. The strategic behavior described by Kyle (1985) requires a monopolistic
informed trader. The market maker does not maximize a particular objective function.
He merely ensures market efficiency, i.e. sets the transaction price such that it equals
the expected strong form efficient price, pet , given the observed aggregate trading volume
from informed and uninformed traders. The only optimizing agent in this model is the
risk neutral, informed trader who optimally spreads his orders over the day to minimize
the unfavorable price reaction of the market maker. Doing so, he maximizes his expected
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total daily profit using his private information and taking the price setting rule of the
market maker as given. Effectively, the informed trader trades most when the sensitivity
of prices to trading quantity is small.

Assuming linear reaction functions of market maker and informed trader, Kyle (1985)
shows that in expectation the transaction price approaches the latent price linearly, not
exponentially. The reason for this difference to the previous subsection is that there the
market maker updates his beliefs in a Bayesian manner, whereas here the market maker’s
actions are constrained to market clearing. The other feature of strategic trading is that
just before p∗t becomes public, the transaction price reflects all information.

More specifically, from the continuous auction equilibrium in Kyle (1985) the price
change at time t is

dpe(t) =
p∗ − pe(t)

T − t
dt+ σdz, t ∈ [0, T ].

The innovation term dz is white noise with dz ∼ N(0, 1) and reflects the price impact of
uninformed traders. Solving this stochastic differential equation gives for the increments
of the expected price over a discrete interval of time

∆peτ =
∆p∗0
T

+ (T − τ)

∫ τ

τ−1

σ

T − s
dz −

∫ τ−1

0

σ

T − s
dz. (3.16)

This implies the following cross-correlations:

Proposition 2. (Cross-correlations in the Kyle model)
The contemporaneous cross-correlation in Kyle (1985) is

Corr (∆p∗t ,∆ut) = −
√

T

T 2 + 1
,

the cross-correlations at displacements τ ∈ [1;T ] are

Corr
(
∆p∗t−τ ,∆ut

)
=

√
1

T (T 2 + 1)
,

and all higher order cross-correlations are zero.

By Proposition 2 the cross-covariance at nonzero displacements is a positive
constant. It is positive because of market maker learning. It is constant because of the
strategic behavior of traders, which spread their informative trades over time. The more
periods, the more pronounced is the negative contemporaneous cross-correlation, and the
smaller are the cross-correlations at nonzero displacements. The second row of Figure 3
plots this cross-correlation function under modestly frequent changes in the latent price
(T = 5) in the left panel, and for more frequent changes (T = 2) in the right panel.

Table 1 compares the cross-correlation patterns of standard multiperiod market
microstructure models: The Roll (1984) model in row 1, the Glosten and Milgrom (1985)
model in row 2, the Easley and O’Hara (1992) model in row 3, and the Kyle (1985) in
row 4, which includes oscillating, linearly decaying and exponentially decaying patterns.

3.3. One-Period Case

In this section we return to the general latent price process, and consider the extreme case
that p∗t becomes public information at the end of each period, i.e. ωt = p∗t−1 − p̃et−1 and
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TABLE 1

Cross-Correlations between ∆p∗t and MSN in Multi-period Models

p∗t mar- signal traders ρ0 ρτ ρT ρτ
tingale strat. τ ∈ [1, T − 1] τ > T

Roll yes none n.a. ρ0 < 0 0 −ρ0 0

G-M yes
certain/
noisy

no ρ0 < 0 ρτ−1 > ρτ > 0 ρT > 0 0

E-O no noisy no − 1+e−r(T−1)

2
√

K(r,T )

−e−rτ+e−r(τ−1)

2
√

K(r,T )

e−r(T−1)

2
√

K(r,T )
0

Kyle yes noisy yes −
√

T
T 2+1

√
1

T (T 2+1)

√
1

T (T 2+1) 0

T = 1. This allows us to investigate the impact of risk aversion on the cross-correlation
pattern. Because p∗t−1 is now known when the market maker decides on pt, it removes any
incentive for informed traders to behave strategically. They therefore react immediately,
which implies that E(qt−τεt) = 0 ∀τ 6= 0 and that all trades are serially uncorrelated,
i.e. E(qt|qt−1) = 0. For the market maker all periods are identical, and therefore the
spread and reaction parameters are both constant over time, i.e. st = s and λt = λ ∀t.

The cross-correlation function inherits its shape from (3.11)–(3.14). At displacement
one it has the opposite sign and same absolute value as contemporaneously, and it is zero
at displacements larger than one. In order to pin down the value of the contemporaneous
cross-correlation, we now turn to specific models.

3.3.1. No Market Maker Information. We start with our baseline assumption
that the market maker at time t has no information whatsoever about ∆p∗t . Plugging
T = 1, st = s, and λt = λ, and thus φt = φ, into the general multiperiod results of
Section 3.1 gives

Proposition 3. (Strong form cross-correlation, one period model)

Corr(∆p∗t ,∆ut) =
1√
2

sE (qtεt)− σ√
φs2 + σ2 − 2sσE(qtεt)

, (3.17)

Corr(∆p∗t−1,∆ut) = −Corr(∆p∗t ,∆ut).

If there is trading in every period (β = 1, and thus φ = 1), then the cross-correlation
(3.17) is bounded from above and below by

Proposition 4. (Bounds of contemporaneous cross-correlation)

− 1√
2
≤ Corr(∆p∗t ,∆ut) ≤ 0.

The cross-correlation reaches the lower bound for zero spread. Thus the cross-
correlation is highest for midprices, and very small spreads. The contemporaneous cross-
correlation for midprices is negative, because pet does not react instantaneously to the
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TABLE 2

Cross-Correlations between Latent Prices and MSN in One-period Models

latent s λ loss ρ0 ρ1 ρτ
price function τ > 1

p∗t

0 any any − 1√
2

1√
2

0

≥ 0 any any − 1√
2
≤ ρ0 < 0 −ρ0 0

≥ 0 any
high n+
extra info

ρ0 > 0 −ρ0 0

p̃et

≥ 0 λopt quadratic − 1√
2
≤ ρ0 ≤ 1√

2
−ρ0 0

∈ [0, λ[ > λopt

2 any ρ0 < 0 ρ1 > 0 0

∈ [0, λ[ < λopt

2 any ρ0 > 0 ρ1 > 0 0
λ any any 0 0 0

≥ λ > λopt

2 any ρ0 > 0 ρ1 < 0 0

≥ λ < λopt

2 any ρ0 < 0 ρ1 < 0 0

change in the strong form efficient price in the same period. This is an instance of the
price stickiness that Bandi and Russell (2006) show to generate “mechanically” a negative
contemporaneous cross-correlation. It differs from negative unity because transaction
prices move in adjustment to the strong form efficient return of one period earlier.

We summarize these results in the upper two rows of Table 2. Compared to the
multiperiod case in Table 1 the absolute value of the cross-correlation at lag one is large,
because all information is revealed. Cross-correlations at any displacement beyond one
are, in contrast, necessarily all zero.

3.3.2. Incomplete Market Maker Information and Risk Aversion.

Throughout this paper we assume a risk-neutral market maker. In this subsection we lift
this assumption, which can be justified in times of market turbulence. If extreme events
occur, strong form efficient prices become highly correlated across assets, in particular
stocks. Although the market maker is bound by his quote only up to a fixed quantity on
an individual stock, the total exposure of a market maker that has quotes outstanding
in many markets might be non-trivial.

Without information about ∆p∗t risk aversion does not change the market maker
behavior. With extra information, however, the market maker adjusts his quotes before
informed traders can take advantage of it. We show in Web Appendix A.6.1 that under
some regularity conditions risk aversion paired with extra information, e.g. about the
direction of the change in the latent price, {sgn(εt)}, can invert the cross-correlation
pattern.

The sensitivity of the expected loss, Ln

[
pt, F (·, p∗, p∗)

]
, to the support of p∗t , that

is, to p∗ and p∗, increases with risk aversion, n. For some values of n, explicit solutions to
the market maker problem are available. A well-known result is that the optimal choice
for a risk neutral market maker (n = 1) is to set pet equal to the median of f(·), and
for a modestly risk averse market maker (n = 2) to the mean. An extremely risk averse
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Figure 4

Optimal Mid-Price for Right-Skewed Expected Latent Price Distributions

(n → ∞) market maker follows the most robust pricing role possible: He minimizes his

expected loss at the price in the middle of the support of f(·), i.e. pt =
p∗+p∗

2 .
Figure 4, which plots the transaction price as a function of risk aversion n, illustrates

this increasing sensitivity. For a right-skewed distribution f(·) with infinite support,
namely the halfnormal distribution, pe(n) increases in n, starting from the median for
n = 1, monotonically without bound. If, in contrast, f(·) has finite support, then pe(n)
increases from the median monotonically toward a finite asymptote pe(∞). This is shown
in the right panel of Figure 4 for the right-triangular distribution defined on [0, 1]. This
has implications for the possible cross-correlations:

Proposition 5. (Cross-correlation under market maker information) If
the distribution of the expected latent price with ex-ante support [p∗

t
, p∗t ] satisfies

[
p∗
t
+ p∗t
2

− p∗t−1

]
sgn(εt) > s+

σ

E(|εt|)
, (3.18)

then ∃n0 > 1 such that ∀n > n0 it holds that Corr(∆p∗t ,∆ut) > 0.

Condition (3.18) holds, for example, for normally distributed, but not for tent
distributed ∆p∗t . This is reflected in Figure 4, where the price in the left panel quickly
reaches the cutoff σ

E(|ε|) , plotted as dashed line, whereas in the right panel it never does.

Comparing these results in the third row of Table 2 with the other models, it appears
that even though the contemporaneous cross-correlation can be positive for high risk
aversion levels, the usual case is that it is negative. For the halfnormal distribution, for
example, we need a rather high risk aversion of n ≥ 8. Nevertheless, changes in risk
aversion of the market maker have a distinctive impact on the cross-correlation. Hansen
and Lunde (2006) note as their “Fact IV” that “the properties of the noise have changed
over time.” Because they base this observation on a comparison of year 2000 with year
2004 it is well possible that the underlying cause is a change in risk aversion.

The link between properties of noise and risk aversion offers itself as a way to estimate
the time path of risk aversion from the cross-correlation pattern of transaction prices. In
stable periods with low risk aversion the contemporaneous cross-correlation is negative,
but as uncertainty shoots up, contemporaneous cross-correlation shoots up with it. In
periods of crisis this can lead to the extreme case of an inverted cross-correlation pattern
that the lower row of Figure 3 illustrates. It shows the typical cross-correlation pattern
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of strong form efficient prices in a one-period model with modest risk aversion on the
left, and under higher risk aversion on the right.

In summary we have shown in this section that many market properties leave
their mark on the cross-correlation pattern: The displacement beyond which correlation
is zero gives an indication of the frequency of information events. The larger the
correlation is in absolute value terms the fewer uninformed trades occur in the market.
If contemporaneous strong form cross-correlation is positive, then market makers are
very risk averse and have access to extra information. If the cross-correlations at nonzero
displacements decay quickly, then market makers learn fast. If they do not decay at all,
then informed traders act strategically.

4. RETURN-NOISE CORRELATIONS IN FINANCIAL ECONOMIC
ENVIRONMENTS II: SEMI-STRONG EFFICIENT PRICES

The strong-form efficient price (2.1) is usually defined as an exogenous price process with
convenient statistical properties. Whereas this price is certainly an interesting theoretical
benchmark, it often is not directly applicable to market participants. For this reason we
explore in this section one example of another latent price, which is of key relevance for
the market maker. We call this price, p̃et given by (2.4), the semi-strong efficient price,
noting that each market participant has his own, depending on his respective information
set. Equivalently this setup can be seen as an endogenous latent price process, determined
by an exogenous trading process qt. It is closely related to the “generalized Roll model”
in Hasbrouck (2007).

4.1. Multi-Period Case

Similar calculations as in the previous sections (see Web Appendix A.1.3) reveal that the
cross-correlations for semi-strong efficient prices stem from a gap between the spread,
st, and the adverse selection parameter, λt. Such a gap can result from processing costs
(st > λt), from legal restrictions (st < λt), or merely from suboptimal behavior of the
market maker.

Noisy signals or strategic behavior do not affect the semi-strong form cross-
correlations, as for example in Easley and O’Hara (1992), where prices are semi-strong
efficient by definition. Under semi-strong market efficiency (st = λt ∀t) the cross-
correlation function is zero for all displacements.

The Kyle (1985) model assumptions λt = λ and st = s ∀t give

Cov(∆p̃et−τ ,∆ũt) =
λ(λ− s)

T

{
E(qT−τqT−1) +

T−1∑

i=τ

[E(qi−τqi−1)− E(qi−τqi)]

}
.

If λ = 0, then this cross-correlation is flat at zero. If instead E(qi−τqi) is a positive
constant between the time of the latent price change and its public announcement, the

cross-correlation is flat and proportional to λ(λ−s)
T

. If E(qiqj) > E(qi−τqj) > 0 ∀i ≤ j,
∀τ > 0, the cross-correlation decreases in τ .

4.2. One-Period Case

The simpler case of markets in which all information is revealed after one period without
any extra information, i.e.

∆p̃et = λ(qt − qt−1) + σεt−1, (4.19)
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∆ũt = (s− λ)(qt − qt−1). (4.20)

offers itself again for illustration of these cross-correlation effects. Unlike their strong
form counterpart the semi-strong efficient prices are not a martingale. We see in the
following proposition that in contrast to the strong form correlations, the absolute value
of semi-strong form cross-correlation at displacement zero and one usually differs even
in one-period models.

Proposition 6. (Semi-strong form cross correlation, one-period model)

The contemporaneous cross-correlation is

Corr(∆p̃et ,∆ũt) =
2φλ− σE(qtεt)√

σ2 − 2σλE(qtεt) + 2φλ2

sgn(s− λ)√
2φ

.

The cross-correlation at displacement one equals

Corr(∆p̃et−1,∆ũt) =
−φλ√

σ2 − 2σλE(qtεt) + 2φλ2

sgn(s− λ)√
2φ

.

All cross-correlations at higher displacements are zero.

Bounds on the contemporaneous cross-correlation can be obtained by assuming a
specific market marker loss function and then solving for the market maker’s optimal
λ. Given the a quadratic loss function E

[
(p̃et − p∗t )

2
]
, for example, the optimal adverse

selection parameter is λopt =
σ
φ
E (qtεt) > 0 (Web Appendix A.8.2). At this λopt we have

Corr(∆p̃et ,∆ũt) = E(qtεt)
sgn(s− λopt)√

2φ
≤ 1√

2φ
,

Corr(∆p̃et−1,∆ũt) = −Corr(∆p̃et ,∆ũt) ≤
1√
2φ

.

Given an uninterrupted flow of trades (φ = 1) the absolute value of cross-correlations is
bounded from above by 1√

2
.

Proposition 6 shows that the size of the spread matters only relative to the adverse
selection parameter. The cross-correlation at displacement one, for example, is negative
if and only if the spread exceeds the adverse selection cost. The contemporaneous cross-
correlation is positive as in Diebold (2006) for s > λ > σ

2φE(qtεt) =
λopt

2 and for

s < λ <
λopt

2 . For these parameters again an inverted (compared to the low risk aversion
case in Section 3) cross-correlation function obtains as in the lower right panel of Figure 3.
Either parametrization reflects a plausible market situation. Small spreads could obtain in
some markets from competition or regulatory constraints. Large spreads without violating
the market maker’s zero-profit condition can be the result of high risk aversion. By the
same reasoning as in Section 3.3.2, there exists a risk aversion level n0 such that all
n > n0 generate a spread s > λ. Generally, because the spread must cover the order
processing cost, it is likely to exceed the adverse selection response.

The lower four rows of Table 2 summarize the differential behavior of semi-strong and
strong form efficient prices. Note again that positive contemporaneous cross-correlation
for semi-strong efficient prices obtains even in situations where the market maker does
not observe a signal.
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In summary, positive contemporaneous cross-correlations occur, firstly, for the
widely-used strong form efficient prices under high risk aversion if a signal is observed,
and, secondly, frequently for latent price processes different from Brownian motion.

5. THE RELATIONSHIP BETWEEN PRICE CHANGE FREQUENCY AND
SAMPLING FREQUENCY

In this section we discuss the implications that the frequency of price changes in financial
markets has for the choice of sampling frequency. We begin with a discussion of the
effects of incompletely observed latent price changes, turn then to the effect of sampling
frequency, and finally examine the implications of trade frequency for econometric theory.

5.1. Frequency of Price Disclosure and Return-Noise Correlations

For clarity of exposition in most of this paper we discuss models, where p∗t−1 becomes
public information just before it changes. In general, however, its exact value might never
become public. In this case all past p∗t−τ , τ > 0 contain unrevealed information about
p∗t .

More specifically, suppose that exact values of the κ most recent latent prices are not
fully revealed and therefore partly private information. This changes the market maker’s
problem in two ways: First, informed trades now convey the signal {sgn(p∗t −pt)}, distinct
from the signal {sgn(εt)}. Second, the larger κ, the more spread out is ceteris paribus
the distribution of the market maker’s belief about p∗t .

Each signal mixes information on the κ most recent latent price changes, ∆p∗t−iT ,
i ∈ [0, κ], which dampens all cross-correlations toward zero compared to the models
discussed earlier. A potentially wider spread dampens the cross-correlation further.

5.2. Sampling Frequency and Return-Noise Correlations

We have so far assumed that pt, p̃
e
t and pet are all updated at the same frequency and

chose this as our sampling frequency. Sampling at faster or slower rates will affect the
shape of cross-correlation functions.

Consider first the effects of sampling “too fast”, in particular more frequently than
trades occur. Suppose we sample m times during an interval of no changes in market
prices, and for that matter, latent prices. Thus the cross-correlation function becomes
a spread-out version of the cross-correlation functions derived in the previous sections:
after each dampened non-zero cross-correlation follow m−1 zero cross-correlations. Zeros
in the middle of a cross-correlation function thus indicate overly fast sampling.

A variant of sampling “too fast” is sampling faster than information evolves. That
is, sampling at trading frequency, i.e. the frequency of pt, although the market maker
updates pet only infrequently, for example only every m-th trade. Any change of peim
(i ∈ N) now reflects the information about ∆p∗0 conveyed by trading activity between
(i − 1)m and im. ∆pim is thus more correlated with ∆p∗0 than under period-by-period
updating. But because the quote is fixed during (i − 1)m + 1 and im, the trades in the
interim period jointly provide less information than under period-by-period updating.
Because further the variance of noise increases due to the delayed accumulated market
maker response, the cross-correlation function oscillates between dampened values.

Now consider the effects of sampling “too slowly”, i.e. slower than p∗t and pet evolve.
Suppose, for example, that we sample in the one-period model of Section 4.2 only every
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m-th tick, where t̂ indexes the m-tick blocks. Then (4.19) becomes

∆p̃e
t̂
=

t̂m∑

i=(t̂−1)m+1

∆p̃ei = λ(qt̂m − q(t̂−1)m) + σ

t̂m−1∑

i=(t̂−1)m

εi,

and the variance increases to V ar(∆p̃e
t̂
) = mσ2 − 2σλE(qtεt)+ 2φλ2. Assuming that the

statistical properties of the interim periods are the same as the properties of the sampled
periods, the expressions for noise (4.20), its variance V ar(∆ut̂), and the covariance
Cov(∆p̃e

t̂
,∆ut̂) remain unchanged. But increasing the sampling interval averages the

initial transaction price reaction with later price changes, thereby again dampening the
entire cross-correlation pattern toward zero:

∣∣Corr(∆p̃e
t̂
,∆ũt̂)

∣∣ =
∣∣∣∣∣

2φλ− σE(qtεt)√
2φ
√
mσ2 − 2σλE(qtεt) + 2φλ2

∣∣∣∣∣ < |Corr(∆p̃et ,∆ut)| .

This averaging effect across latent price changes might explain why the negative
contemporaneous cross-correlation between returns and noise diminishes as more ticks
are combined into one transaction price sample (Hansen and Lunde, 2006).

Standard RV is unbiased if sampling frequency is sufficiently low so that
microstructure effects are averaged out. Applying “noise-corrected” RV estimators to
data at lower frequencies results in biased estimates, because at lower frequencies slow
moving features of the price process are removed, not microstructure noise. Thus they
should only be applied to data sampled at frequencies at which microstructure effects
can conceivably exist, e.g. above 1/100 seconds.

The upshot is that sampling frequency does not change the sign pattern of cross-
correlations but can severely dampen their absolute values. Sampling at a rate detached
from the updating frequency of prices and information mutes complications as well as
information originating from dependent noise, and effectively changes the properties of
the data. Sampling frequency should therefore be chosen based on the price updating
frequency of the market.

5.3. Sampling Frequency and Asymptotic Theory

The previous section has shown that the microstructure of a market implies a natural
sampling frequency. In practice, sampling frequency is also central for econometric theory.
Infill asymptotic theory, for example, requires the number of sampling intervals during
a fixed time span to go to infinity. Sampling at an infinite frequency is impossible
in real financial markets, but as trading keeps becoming faster we can view it as the
trading frequency limit in the (infinite) future. Can econometric theory gain anything
from examining the developments in financial markets?

Consider the Zhou (1996)-estimator as an example. Its consistency hinges on the
ratio of the lag length measured by the number of sample periods to sampling frequency
going to zero as sampling becomes infinitely frequent. That is, under infill asymptotics,
the time span that the lag window spans must asymptotically shrink to zero. It is
commonly argued that this assumption is “inappropriate” for financial markets (e.g.
Hansen and Lunde, 2006, p.139). Effectively, the question comes down to whether MSN
decays according to a tick-time or a calendar-time schedule. Linking econometrics to
market structure, we argue in the following that tick-time dependence is reasonable in
many cases.



DIEBOLD & STRASSER MARKET MICROSTRUCTURE NOISE 19

When deriving the limiting behavior of IV estimators, econometric theory commonly
assumes that the properties of transaction prices are invariant to the sampling frequency.
This might be correct in many instances, but just as often it is not. In the case of financial
markets, the maximum feasible sampling frequency is dictated by the trading frequency.
As the trading frequency in a given market changes, other features of that market change
as well. Therefore asymptotic theory must account for the possibility that price behavior
changes as feasible sampling frequency increases.

To verify the relevance of this possibility, let us revisit the economics of financial
markets. The analogue of shrinking the interval length in infill asymptotics is a higher
trading frequency in financial markets, which implies a higher feasible sampling frequency.
In the following three examples, we examine how a higher feasible sampling frequency
affects noise persistence. We consider a slow and a fast market: The slow market is
rather illiquid, so that a trade is observed only once during a five-minute interval. The
fast market is more liquid, and trades are observed once every minute. The latent price
process is the same in both markets. In fact, both slow and fast market might be the very
same market at different points in time. The latent price moves more between two trades
in the slow market, which means that there the IV over the shortest possible sampling
interval is higher.

Consider first a bid-ask bounce. Bid-ask bounces are purely mechanic, and directly
linked to observed trades. In the slow market, the possible rebounce occurs five minutes
after the original trade, whereas in the fast market it occurs after only one minute. Thus
the market microstructure noise (MSN) is autocorrelated for five minutes in the slow
market, but only for one minute in the fast market.

Next, consider asymmetric information. If learning of market participants is
automated and limited to information extracted from trade signals, then the amount
of learning grows in the number of trade signals observed, not in the time that has
passed. For a specific example, suppose the market maker needs ten trades to include
half of the latent price change into his price quote. This will take 50 minutes in the slow,
but only ten minutes in the fast market. MSN persistence measured in calendar time is
thus much shorter in the faster market.

Our third example shows that this applies only to tick-dependent MSN, i.e. to
situations where private information is revealed by trades only and where the speed
of information processing is not a binding constraint. Some properties of MSN, however,
might be invariant to sampling frequency. For example, the time that strategic informed
traders allocate to fully reveal their information might be exogenous to the trading
frequency. Instead, its optimal value might be a function of the speed of information
diffusion outside the market, determined by e.g. reporting delays, which are fixed in
calendar time. Thus the autocorrelation of MSN generated by strategic informed traders
is the same in calendar time in the slow and the fast market; it does not shrink as
sampling frequency increases.

Overall, the autocorrelation of MSN due to a bid-ask bounce and asymmetric
information without strategic traders shrinks in calendar time as the feasible sampling
frequency increases. The autocorrelation of MSN due to some types of strategic traders
does not.

This has an important implication for the asymptotic theory of IV estimators of
the Zhou (1996)- and Hansen and Lunde (2006)-type. When private information is
revealed by trades only, the necessary lag length is fixed in terms of ticks, not calendar
time. Therefore, the ratio of lag length to sampling frequency approaches zero when
sampling infinitely fast. In these cases the estimators are consistent. They must be
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modified to ensure consistency when relevant information transmission occurs outside
of the financial market, e.g. by subsampling (Barndorff-Nielsen et al., 2011b) or kernel-
based downweighting of higher-order autocovariances (Barndorff-Nielsen et al., 2008).

6. PRACTICAL IMPLICATIONS AND EMPIRICAL APPLICATION

We have already drawn some econometric implications insofar as we have shown that
market microstructure models predict rich cross-correlation patterns between latent
prices and market microstructure noise (MSN), which have yet to be investigated
empirically. Here we go farther, sketching some specific aspects of such empirics, including
strategies for using microstructural information to obtain improved “structural”
volatility estimators, and comparative aspects of structural and non-structural volatility
estimators. We apply our methodology to the stock and the oil futures market.

6.1. Structural Volatility Estimation via Microstructural Restrictions

In the introduction we highlighted the key issue of estimation of integrated volatility
(IV ) using high-frequency data, the potential problems of the first-generation estimator
(simple realized volatility – RV ) in the presence of MSN, and subsequent attempts to
“correct” for MSN.

In an important development, Barndorff-Nielsen et al. (2008) suggest making
RV robust to serial correlation via realized kernel estimation methods, which are
asymptotically justified under very general conditions. That asymptotic generality is,
however, not necessarily helpful in finite samples. Indeed the frequently unsatisfactory
finite-sample performance of nonparametric HAC estimators leads Bandi and Russell
(2011) to suggest sophisticated alternative statistical approaches.

Here we explore aspects of a different approach that specializes the estimator in
accordance with the implications of market microstructure theory. We follow the idea of
Aı̈t-Sahalia et al. (2005) of modeling MSN explicitly in a fully parametric framework,
which makes sampling as often as possible optimal. No claim is made about optimality;
instead we show the practical relevance of tailoring the estimator to the market at hand.

Consider strong form noise given by (2.3), so that ∆pt = ∆p∗t +∆ut. Then we have,
absent insider information, using the notation γi ≡ E(∆pt∆pt−i) and RV ≡ γ0, that the
variance of strong form efficient returns (2.7) is

σ2 = RV + 2

k∑

i=1

γi − 2E(ut∆ut−k)− 2E(∆p∗tut+k). (6.21)

Proof: See Web Appendix B.1.
If MSN is asymptotically uncorrelated, i.e. if lim

k→∞
E(ut∆ut−k) = 0 and

lim
k→∞

E(∆p∗tut+k) = 0, then Equation (6.21) simplifies to

σ2 = RV + 2
∞∑

i=1

γi. (6.22)

This is equivalent to the constant realized kernel estimator discussed in Hansen and Lunde
(2006). Without insight in the market microstructure all higher order autocovariances are
potentially important. Empirically most will be noisy estimates of zero (Barndorff-Nielsen
et al., 2008). Without insights in what patterns in transaction prices are caused by MSN,
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a noise correction like (6.22) will remove all. But actual transaction prices consist not
only of a martingale strong form efficient price plus MSN, but also of other disturbances
of unknown form. These other disturbances might not be part of any microstructure
model. In fact, their existence might not even be known. Lacking better knowledge by
any market participant, these must be considered risk, and therefore be part of the
volatility estimate of the latent price. A noise correction as Equation (6.22) “corrects”
price features that are not MSN, but an essential part of the volatility of the latent price
process.

The key point we stress in this paper is that it is indispensable to sort out the market
microstructure before choosing a noise correction. This applies no matter whether MSN
is dependent on the latent price or not.

In the following we consider ten potential sources of MSN, five of which are
independent, and five are dependent on the latent price. We start with a discussion
of two examples of parsimonious noise-robust estimators for realized volatility, both of
which are special cases of (6.22), before providing an overview of estimators in Table 3.

Consider first a “bid-ask bounce estimator”, based on a one-period model without
extra information and constant spread. From (2.3), (2.5) and (2.6) we obtain ∆ut =
σ(εt−1 − εt) + s(qt − qt−1), and this implies a variance of strong form efficient returns of

E
[
(∆p∗t )

2
]
= E

[
(∆pt −∆ut)

2
]
= E

(
∆p2t

)
+ 2s [σE(qtεt)− φs] .

Simple calculations reveal that the last term equals twice the first-order autocorrelation
of market returns, so that, even if E(qtεt) 6= 0, an unbiased estimator for IV = σ2 is7

ÎV = RV + 2γ1. (6.23)

It is interesting to note the resemblance to estimators of Roll (1984), based on standard
asymptotic theory, and Zhou (1996), based on infill asymptotic theory.

As another example, consider an estimator for a market with nonstrategic
incompletely informed traders. Absent any exogenous noise, the transaction price follows
an MA(∞) process in the innovations of the latent price:

∆pt = (β + σ)εt + β(α− 1)
∞∑

i=0

αiεt−i−1 (6.24)

This parsimonious form of ∆pt accommodates very persistent cross-correlations, similar
to the idea behind the examples in Oomen (2006). If our knowledge of the market is
this comprehensive, we can obtain an unbiased estimate for IV from (6.24) in a GMM
framework using three moments.8 More specifically, a standard exponential learning

7. Hasbrouck (1993) and recently Hansen et al. (2008) show how to embed (6.23) into general
moving average (MA)-based estimators. Such general MA-estimators are warranted if the researcher
has only limited information about the microstructure of the market or has interest different from IV
estimation, such as forecasting the latent price process. If, however, the microstructure is known and
interest centers on estimating IV, as we assume here, then our estimators may be more appealing.

8. The proof, which we sketch here, is straightforward. Recast the price process (2.1) and (2.2) in
continuous time, so that ∆pt = ∆p∗t +∆ut/

√
m, with m denoting the number of subintervals, tm equal

to one unit of calendar time, and the scale of t suitably redefined. Then, following the considerations of
Section 5.3, under standard assumptions r is invariant to m and local infill asymptotic theory can be
applied.
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Figure 5

Ratio of Noise to IV as a Function of Quotes per Day

Note: The vertical axis measures the noise-to-signal ratio as 100 times noise divided by IV under the

assumption of independent noise. The horizontal axis gives the number of quotes per day with a price

change. Data are for 30 NYSE and NASDAQ equities in 2000, obtained from Hansen and Lunde (2006)

Tables 1 and 3. The solid line is a fitted trend.

model (e.g. Easley and O’Hara, 1992) imposes α = e−r and β = −σ, so that

∆pt = 0 · σεt + σ (er − 1)

∞∑

i=1

e−riεt−i =

∞∑

i=1

[
−e−ri + e−r(i−1)

]
σεt−i.

The resulting estimate of IV is a scaled version of standard RV

ÎV =
er̂ + 1

er̂ − 1
·RV =

RV + γ1
RV − γ1

·RV, (6.25)

where the scaling factor requires a consistent estimate of only one additional parameter,
the market maker’s learning rate, r. It is interesting to note the resemblance to the
estimator of Hansen et al. (2008), which is also a scaled variant of RV. In contrast to our
approach, they do not exploit (that is, condition on) a specific market microstructure,
but attempt to achieve robustness to a wide range of possible microstructures.

Estimator (6.25) offers a structural interpretation to estimates of noise and IV. The
learning model predicts that the MSN at all lags decreases with the learning rate. Slow
learning implies a very persistent cross-correlation between noise and latent returns, and
hence persistent autocorrelation of noise, so that fluctuations in MSN tend to dominate
the IV.

Figure 6.1 provides some perspective. It is based on the noise-to-IV ratios reported
by Hansen and Lunde (2006), which are (unfortunately) derived under the assumption
of independent noise. The ratio of noise to IV shrinks with the number of price-changing
quotes per day. If the number of times that the market maker changes his price quote
during a trading day is indicative of his speed of learning, then MSN indeed decreases as
the learning rate of the market maker increases. This supports the multiperiod learning
model.
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Furthermore, the recent decline in noise-induced bias of RV (Hansen and Lunde’s
(2006) fact III) suggests that the learning rate r has increased. Adding to this Meddahi’s
(2002) finding that the standard deviation of the bias is large relative to the IV suggests
that the learning rate itself may have fluctuated considerably around its increasing trend.

Our example uses a MA process with only two free coefficients, but the large sample
sizes typical with high frequency data can accommodate much richer specifications.
Empirical work in market microstructure tends to favor extreme parameterizations,
ranging from the very parsimonious as in the regressions of Glosten and Harris (1988),
to the profligate as in the vector autoregressions of Hasbrouck (1996). For RV noise
correction the most useful parameterizations may be intermediate, imposing a general
correlation pattern but avoiding highly situation-specific assumptions.

Dynamic market microstructure models imply much richer noise structure than
the two polar cases of immediate and slow decay that we just discussed. These
restrictions can be exploited to construct tailored volatility estimators. In Table 3 we
do so by suggesting parsimonious estimators for a variety of market microstructures.
Whereas these estimators inevitably also remove price features that are empirically
indistinguishable from modeled MSN, their parsimony ensures that this miscorrection
is kept to a minimum.

The table is structured as follows: The left column gives the estimator, the
middle column an example of independent MSN, to which this estimator applies,
and the right column an example of dependent MSN. Interestingly, for many market
microstructures that generate dependent noise there is a corresponding market structure
with independent noise to which the same estimator fits. Web Appendix B shows that
all these estimators are unbiased. They are consistent under the conditions discussed in
Section 5.3 or under subsampling (Barndorff-Nielsen et al., 2011b).

We only discuss the dependent noise cases here, because these are – as we have
shown in this paper – the ones of relevance in actual financial markets. The first row of
Table 3 shows that the Zhou (1996)-estimator is the most parsimonious way to deal with
a market in which the only MSN stems from the bid-ask bounce, even if trades are driven
by private information. The geometric decay of MSN over time under learning is covered
by rows two and three, for various exogenous noise processes. The decay becomes linear if
traders act strategically, reflected in row four. These three learning estimators specialize
to the Zhou (1996)-estimator with γ2 = 0 for nonstrategic, and with γ1 = γ2 or S = 1 for
strategic informed traders. Likewise, the noise process we discussed earlier in Equation
(6.25), ut = αut−1−σεt, is a special case of the nonstrategic incomplete informed trader
case, with β = −σ and vt = 0. Finally, the estimator for strategic informed traders
collapse to the estimator for linear independent noise decay if γ2 = 2γ1.

The contribution of the delayed price responses to the learning RV estimators in
rows two and three can be expressed by any pair of autocovariances, γi, γi+1, i ≥ 2.
Whereas in the table we show the most parsimonious expression, replacing the last term
by an average stabilizes the estimates. For example, in the nonstrategic incompletely
informed trader case, we can use γ0 + 2γ1

1
S

∑S
i=1

γi

γi−γi+1
, for any S ≥ 1.

With strategic informed traders choosing the correct length of the private
information period is critical for unbiased results, as noted already by Kelly and
Steigerwald (2004). In our setup in row four S can be estimated by Ŝ =√(

3γ1−γ2

2(γ2−γ1)

)2
+ 2

γ2−γ1

∞∑
i=1

γi − 3γ1−γ2

2(γ2−γ1)
.

The MSN in the upper four rows of Table 3 is asymptotically uncorrelated, so IV
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can be expressed by Equation (6.22). This equation does not hold in market maker
inventory models, as the ones in the bottom row. There, MSN follows a unit root process
with ∆ut = αqt so that E(ut∆ut−i) = α2 ∀i. In this case autocovariances alone are not
sufficient, and ˆIV must be based on the general Equation (6.21).

A common argument for using estimators that, contrary to Equation (6.22),
downweight autocovariances at non-zero displacements is that it rules out the possibility
of a negative volatility estimate. Starting the analysis with such an estimator,
however, strips the researcher of the chance to falsify his assumptions on the market
microstructure. After all, a negative variance estimate first and foremost indicates that
the estimator is misspecified for the microstructure of the market under analysis, and
that it should be refined. We therefore suggest starting with microstructure-inspired
estimators as the ones in Table 3, and resort to microstructure-free estimators if the
market microstructure appears to obey to none of the common models.

Barndorff-Nielsen et al. (2009) notice that their IV estimator’s ability of detecting
properties of volatility depends crucially on the bandwidth: “The ’strength’ of this
’microscope’ is controlled by the bandwidth parameter, and the realized kernel gradually
looses its ability to detect volatility at the local level as ... [the bandwidth] is increased.”
(Barndorff-Nielsen et al., 2009, p.C27) In effect, there is a tradeoff between the loss of
local volatility information and the MSN bias. Utilizing prior knowledge about the market
microstructure, Table 3 allows an informed bandwidth choice instead of having to rely
exclusively on statistical arguments.

6.2. On Structural vs. Non-Structural Volatility Estimators

Here we emphasize that the more the econometrician knows about the price process of
relevance, the more the noise correction can be tailored to it by exploiting microstructure
theory. This is important, because, as discussed in Section 2, the price process of interest
may differ across users of volatility estimates. Many users are likely to be interested
in price processes different from (2.1), which has implications for appropriate volatility

estimation. The variance of strong form efficient returns, E(∆p∗t ) =
σ2

T
, the price under

full information, differs both conceptually and numerically from the variance of semi-
strong efficient returns,

E
[
(∆p̃et )

2
]
=

1

T



σ2 +

T−1∑

i=0

φiλ
2
i + E



( −T∑

i=−1

λiqi

)2

− 2σ

−T∑

i=−1

λiE(qiε−T )



 , (6.26)

which is the volatility that affects the balance sheet of the market maker. It might
therefore be more applicable to studies of market maker behavior than E

[
(∆p∗t )

2
]
. To

take a simple example, consider again one-period private information, T = 1, in which
case strong form volatility is σ2 and semi-strong volatility (6.26) simplifies to

E
[
(∆p̃et )

2
]
= σ2 + 2φλ2 − 2σλE(qtεt) 6= σ2. (6.27)

The RV estimator of Zhou (1996) is

RVAC(1) = E(∆p2t ) + E(∆pt−1∆pt) + E(∆pt∆pt+1),

which is equivalent to Equation (6.23). For T = 1 it is

E
(
RVAC(1)

)
= E {[s(qt − qt−1) + σεt−1]× [σ(εt + εt−1 + εt−2) + s(qt+1 − qt−2)]} = σ2.
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TABLE 3

Noise-Robust Estimators for Realized Volatility

IV Independent – Strong-Form Noise – Dependent

γ0 + 2γ1

Measurement Error/ Dependent Measurement Error
Discrete Data ut = αεt + vt
ut = vt Bid-Ask Bounce
Bid-Ask Bounce from Informed Traders
ut = αqt,

ut = αqt, qt =

{
−1 if εt < 0

+1 if εt > 0
qt ∈ {−1,+1} iid

γ0 + 2
γ2
1

γ1−γ2

Autoregressive Noise Nonstrategic Incompletely
Informed Traders

ut = αut−1 + vt ut = αut−1 + β(εt + vt)

γ0 + 2γ1 + 2
γ2
2

γ2−γ3

Autoregressive Noise Autoregressive Noise with
with Measurement Error One-Period Private Information

ut =
∞∑
i=0

αivt−i + wt ut =
∞∑
i=0

αivt−i + βεt + wt

Nonstrategic Informed Traders

ut = α
∞∑
i=0

βiεt−i + vt

Linear Noise Decay
over S Periods

γ0 + S(S + 1)γ1
ut = α

t−S∑
i=t

i−t+S
S

vi
Strategic Informed Traders
with S-Period Private
Information

γ0 + S(3− S)γ1
ut = α

t−S∑
i=t

i−t+S
S

(εi + vi)+S(S − 1)γ2

Market Maker Inventory
from Noise Trading

γ0 − γ∗
0
2 ut = α

∞∑
i=0

qt−i,

qt ∈ {−1,+1} iid Market Maker Inventory
from Informed Trading

π
π−2

(
γ0 − γ∗

0
2
) ut = α

∞∑
i=0

qt−i, εt ∼iid N(0, 1)

qt =

{
−1 if εt < 0

+1 if εt > 0

Notes: The estimators are based on the observable moments γi ≡ E(∆pt∆pt−i) and γ∗
i ≡ E(∆ptqt−i).

They are based on the assumption that the latent price changes every period (T = 1), and remains

unobserved for one or more periods, depending on the noise specification. The probability of no latent

price change has measure zero. The two white noise processes are vt ∼iid (0, η2v) and wt ∼iid (0, η2w), where

E(vswt) = 0 ∀s, t.
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Hence although RVAC(1) is unbiased for σ2, it is in general biased with ambiguous
direction for V ar(∆p̃et ) in (6.27). The same applies to a noise-robust estimator with
a large, potentially infinite, lag window, which removes any microstructure and other
correlation effect. For these estimators to work, the latent return process of interest
must follow a martingale difference sequence. Semi-strong efficient prices do not; they
are serially correlated and inevitably RVAC(1) is biased relative to V ar(∆p̃et ).

What could an estimator of semi-strong form volatility look like? Consider, for
example, a market where the strong form efficient price become public after two periods.
From (2.4)–(2.9), we obtain ∆pt = ∆p̃et +∆ut with noise given by (4.20). It follows that

E
[
(∆p̃et )

2
]
= E

(
∆p2t

)
+ 2sφ(λ− s).

As p̃et is generated by a more complex process that p∗t , we need additional market data.
Using the autocorrelations of prices, additional market information such as an estimate of
the spread and of the trade frequency φ, an unbiased estimator for IV of the semi-strong
efficient price is

ÎV = RV + 2γ1 − 2
γ1γ2

γ2 + s2φ
. (6.28)

The obvious difference to the estimators in Table 3 emphasizes the importance of carefully
defining the latent price series of interest.9 This is where market microstructure theory
can contribute new insights to IV estimation. By providing distinctive but flexible
relationships between MSN and latent returns, and using additional market information,
the agnostic statistical noise estimate can be decomposed into its various MSN and
fundamental components.

6.3. Two Empirical Applications

In this section we provide two illustrative applications of our microstructure-based
estimators. We first compare their properties with the standard RV estimator and a
statistical IV estimator in a well-known stock market dataset. Then we turn to a current
policy debate centering on oil futures volatility.

6.3.1. Alcoa Stock. As a first application, we compare microstructure-based
estimates with statistical estimates of IV of Alcoa Inc. (AA) stock.10 We use prices on

9. To avoid confusion we adhere in this paper to the convention that the strong form efficient price
follows a martingale. Therefore we introduced p̃et as another latent price series of interest. But there is
no guarantee that a price with martingale properties exists in a given market. For example, the latent
price could itself be the result of learning about random-walk fundamentals, in which case p∗t has the
properties of the semi-strong form efficient price p̃et . Specifically, let fundamentals follow χt = χt−1 + εt

with εt ∼iid (0, σ2). Then the latent price process, known only to the best informed market participants,
is

∆p∗t = σ
T
∑

i=1

[

−e−r1i + e−r1(i−1)
]

εt−i.

If market makers are well informed (pet = p∗t ) and the bid-ask bounce follows Equation (2.6), then
mechanically calculating RVAC(T ) gives the variance of the fundamental, not the variance of the strong
form efficient price. Obviously, a purely statistical noise correction cannot distinguish between cross-
correlation caused by fundamentals and cross-correlation caused by MSN.

10. Gatheral and Oomen (2010) compare 19 IV estimators on simulated data and conclude that
a realized kernel and a maximum likelihood based estimator perform best in practice. However, they
ignore microstructure noise for the most part. Patton (2011) compares four statistical IV estimators of
IBM stock prices under time-varying volatility. Absent jumps, they perform better than standard RV
sampled 1/5 minutes.
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TABLE 4

Comparison of Realized Volatility Estimators (CTS at 1/second)

RV price mid bid ask

Standard 2.493 1.605 2.733 2.685
Statistical - ACNW (30) 2.146 2.141 2.255 2.257

Bid-ask - AC(1) 2.377 1.547 2.524 2.475
Learning - Restricted 2.379 1.548 2.532 2.483
Learning - Nonstr. Noisy 2.268 1.437 2.603 2.395
Learning - Nonstrategic 2.171 1.435 2.429 2.237
Learning - Strategic 2.361 2.363 2.368 2.409

TABLE 5

Comparison of Realized Volatility Estimators (TTS at 1/tick)

RV price mid bid ask

Standard 2.494 1.605 2.733 2.685
Statistical - ACNW (30) 2.386 2.511 2.506 2.534

Bid-ask - AC(1) 1.813 1.603 2.313 2.238
Learning - Restricted 1.895 1.603 2.343 2.272
Learning - Nonstr. Noisy 1.938 1.602 2.424 2.194
Learning - Nonstrategic 1.816 1.677 2.208 2.096
Learning - Strategic 2.164 2.290 2.284 2.304

the New York Stock Exchange for the year 2004 cleaned according to the procedure of
Barndorff-Nielsen et al. (2009). All overnight returns and days with less than five hours
of trading were removed from this dataset, which means that the IV -estimates apply
only to the price process within trading days. They do not capture the overall riskiness
of the stock, because price changes between trading days are excluded.

The estimators in Tables 4 to 7 are for daily IV, i.e. E[(∆p∗t )
2], averaged across

the year. RV Standard is simple realized volatility, E(∆p2t ), RV Bid-ask is the bid-
ask estimator (6.23), RV Learning - Restricted the learning estimator (6.25), and RV
Learning - Nonstr. Noisy stands for the estimator for nonstrategic, incompletely informed
traders. All microstructure-based estimators are defined by Table 3. RV Statistical is the
consistent flat-top kernel estimator RVACNW (30) = γ0 +2

∑30
i=1 γi +2

∑30
i=1

30−i
30 γ30+i of

Hansen and Lunde (2006). It serves as benchmark, as a statistical estimator that removes
all deviations of the transaction price from a martingale, which might be different from
the IV of the – in our terminology – true latent price process, i.e. RV corrected for
market-microstructure-induced noise only.

All estimators except the standard estimator allow for correlation between noise and
latent price. We do not implement the inventory estimators here, because the dataset does
not contain signed trades. In this section, we refer to the difference between RV Standard
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TABLE 6

Comparison of Realized Volatility Estimators (CTS at 1/10 seconds)

RV price mid bid ask

Standard 2.149 1.585 2.328 2.244
Statistical - ACNW (30) 2.155 2.158 2.160 2.169

Bid-ask - AC(1) 1.970 1.764 2.160 2.102
Learning - Restricted 1.977 1.774 2.166 2.107
Learning - Nonstr. Noisy 2.094 1.848 2.190 2.141
Learning - Nonstrategic 1.983 1.994 2.168 2.132
Learning - Strategic 2.211 2.204 2.206 2.214

and RV Statistical as “noise”, in contrast to deviations due to market microstructure
effects, which we call MSN.

Table 4 reveals that under 1/second calendar time sampling (CTS) sampling both
the restricted learning and bid-ask estimators explain one third of noise in transaction
prices (in the second column). Learning appears to be very fast (r̂ > 3), which implies that
γ1 is small compared to RV. As a result the learning and bid-ask volatility estimates are
very similar. More flexible learning estimators capture more of the noise. RV Learning
- Nonstrategic, in particular, captures more than 90% percent of what RV Statistical
removes as noise. This means that for Alcoa under CTS indeed most of the noise
correction embedded in RV Statistical is most likely justified – it is MSN stemming from
nonstrategic informed traders. Similarly, RV Learning - Nonstr. Noisy and RV Learning
- Strategic capture between two-thirds and all of noise.

Under tick time sampling (TTS) all microstructure-based estimators estimate IV
substantially lower than RV Standard and RV Statistical. But if microstructure-based
estimators remove the most common MSN types at this sampling frequency, then what
does RV Statistical add back in? What positive cross-correlation between the latent price
and noise different from learning can justify the higher estimate? And this point we have
to leave this for further research, but also as a warning against a noise correction without
a microstructure interpretation in mind.

At lower sampling frequencies the microstructure-based estimators are less tightly
linked to the model setup under which we derived them. Whereas RV Standard and
RV Statistical almost coincide that these frequencies, the learning estimators suggest a
downward correction under CTS (Table 6) and upward correction under TTS (Table 7).

Examining the structural parameter estimates (not tabulated) provides additional
guidance about which microstructure effects are at work at a given frequency. For
example, under TTS and transaction prices, the restricted learning estimator fits the
data at sampling intervals below 20 ticks (and beyond 130), whereas the strategic
learning estimator at intervals up to about 130 ticks. Under CTS, restricted learning
fits at frequencies of 1/30 seconds and slower (and is thus not reliable for the frequencies
reported in the tables), and strategic learning at frequencies of 1/30 seconds and faster.

The IV estimates based on mid quotes are smaller than the other estimates at
sampling frequencies of 1/1 second or 1/1 tick, in Tables 4 and 5 respectively. This calls
for caution. In the microstructure model setup we discussed, midprices are the least noisy
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TABLE 7

Comparison of Realized Volatility Estimators (TTS at 1/10 ticks)

RV price mid bid ask

Standard 2.117 1.835 2.216 2.162
Statistical - ACNW (30) 2.364 2.232 2.227 2.242

Bid-ask - AC(1) 2.493 2.273 2.307 2.323
Learning - Restricted 2.530 2.333 2.309 2.330
Learning - Nonstr. Noisy 2.494 2.206 2.243 2.272
Learning - Nonstrategic 2.525 2.429 2.400 2.424
Learning - Strategic 2.482 2.354 2.361 2.357

among the four prices. This would even be true if the spread was time-varying, as long as it
was independent of future changes in midprices, e.g. E(∆pet∆pbidt−1) = E(∆pet∆paskt−1) = 0.
If this was the case, the noise correction would push estimates towards midprice-based
estimates, and when lowering sampling rates all IV estimates would converge to these
midprice-based values. Tables 6 and 7 reveal that the opposite is the case: At lower
sampling frequencies the midprice IV estimates reach the IV estimates of the other three
price series. Because none of our microstructure-based IV estimators acceptably corrects
the midprice estimates, we conclude that the midprices are subject to a microstructure
effect that we did not take into account in deriving the estimators. A likely explanation is
an asymmetrically moving spread, where a change in the bid price, say, is followed by an
analogous change in the ask price in a later period, thus temporarily widening the spread.
The temporary uncertainty that the wider spread represents is justified, because over
longer horizons the latent price is indeed that volatile. The unraveling of uncertainty can
be seen as an instance of market maker learning, so there is reason to hope that a learning
estimator such as RV Learning - Nonstrategic improves the estimate. This is indeed the
case. Figure 6 shows the deviation of IV estimates based on midprices from the estimates
based on transaction prices, expressed by the ratio RVmid−RVtrans

RVtrans
. Under TTS, shown

on the right panel, the learning estimator does well despite its misspecification. It also
improves the estimate under CTS, except at very high frequencies, which is shown on the
left panel. Estimators with wide lag windows, such as RV Statistical and RV Learning -
Strategic with estimated learning period are robust to this kind of time-varying spread.
However, as said, they remove this part of MSN jointly with non-MSN components.

The volatility signature plots (Andersen et al., 2000) in Figure 7 graph average daily
realized volatility as a function of the underlying sampling frequency. One might argue
against the use of parsimonious, but microstructure-based, estimators on the practical
ground that they do not fully stabilize as the sampling frequency approaches its limit,
i.e. 1/tick. The volatility signature plots reveal, however, that for the given data RV
Statistical is not stable either – it moves in a range of 2.2 – 2.5 for sampling frequencies
above 1/100 seconds or ticks. Most microstructure-based estimators are just as stable.

6.3.2. Crude Oil Futures. In this subsection we apply our estimators to Light
Sweet Crude Oil futures (symbol CL) traded on the New York Mercantile Exchange
(NYMEX). Our dataset consists of tick-by-tick transaction data from Tick Data, Inc.,
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RV Estimators and Market Maker Learning
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Figure 7

Volatility Signature Plots for Transaction Prices

covering the period from January 2nd, 1987 until September 24th, 2010. It contains trades
both within and outside of the main trading hours, which are Monday through Friday
from 9:00 a.m. until 2:30 p.m. Eastern Time. The oil future is a standardized contract.
One contract covers 1000 barrels with a fixed expiration date, on which oil has to be
physically delivered at Cushing, OK. About 66% of trades in our sample are for a single
contract, and less than 10% are for more than ten contracts.

Physical delivery is the exception, however, as most market participants roll their
positions over to a new contract. We replicate this rollover by constructing a single time
series of oil futures prices from the set of futures of different maturities simultaneously
traded at a each point in time. We switch from one contract to the contract maturing
next as soon as the daily volume of the latter exceeds the current contract’s volume. In
the following analysis, we use TTS and exclude contract rollover and overnight returns.

Comparing the IV estimates from the estimators discussed in this paper, the
volatility signature plots in Figures 8 and 9 reveal that when sampling at a rate of
1/10 ticks or slower all estimators coincide. At higher sampling frequencies RV Standard
diverges, which vividly depicts the MSN in oil futures data. The two most restrictive
learning estimators, RV Learning - Restrictive and RV Learning - Nonstrategic Noisy,
do not stabilize either at higher frequencies, suggesting that MSN in oil futures is more
complex than this. In contrast, the estimators RV Learning - Nonstrategic, RV Learning
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Figure 8

Volatility Signature Plots of Oil Futures by Day of Week
Note: The legend is the same as in Figure 7.
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Figure 9

Volatility Signature Plots of Oil Futures by Year
Note: The legend is the same as in Figure 7.

- Strategic, and RV Statistical stabilize as sampling frequency reaches 1/1 tick. This
convergence pattern in ticks did not change over the years despite a decline in the time
between ticks from more than one per minute in 1989 to less than one per second in
2009.

In the remaining analysis we sample at the highest possible frequency, i.e. 1/1 tick,
and use accordingly only the four estimators that we identified in the volatility signature
plot to converge with oil futures data. Prices of oil futures follow a pronounced seasonal
volatility pattern. Figure 10 shows that volatility during 1987–2010 is particularly high
in January, and reaches its low around July. There is no Monday effect. Instead, the
volatility peaks on Wednesdays - where it is about 20% higher than on Mondays.

The fluctuations of the IV estimates over the years summarize the recent history of
oil prices. In Figure 11 the average daily volatility of oil futures first spikes in 1990, when
the world was faced with the Gulf War. After four calm years, 1992 to 1995, it plateaued
at an intermediate level from 1996 until 2007, despite the steep increase in oil prices.
During the subsequent financial crisis the volatility of oil futures reached unprecedented
levels. As of 2010, the volatility is back to the plateau level from before the financial
crisis. Given the seasonal pattern in average daily realized volatility, the 2010 value has
to be adjusted upwards by a factor of about 1.5, because our dataset ends just before the
Fall 2010. Even then, however, there is no clear evidence of excess volatility in oil prices
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Integrated Variance of Oil Futures by Calendar Month, 1987-2010
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Figure 11

Integrated Variance of Oil Futures by Calendar Year, 1987-2010

at the volatility level of 2010. Based on the data available, regulation of derivatives in
the oil market has to be justified with the volatility during the crisis years 2008/2009
– not with the most recent data –, or with a destabilizing effect of specific groups of
traders on the market microstructure. For example, unlike in previous years, in 2009
the IV estimate correcting for strategic learning is smaller than the one for nonstrategic
learning (Figure 9). This indicates that strategic trading based on private information
rather than noise trading increased high-frequency market volatility during this period.

The four estimators show a similar volatility path over time. Numerically, however,
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they differ considerably. RV Bid-ask and RV Learning - Nonstrategic estimate IV to
be lower from the mid 1990s to the mid 2000s, and higher during 2008/2009 than the
other two estimators. The switch between RV Learning - Nonstrategic and RV Statistical
around 2006 precedes the financial crisis; it suggests that around that time the market
structure changed. Noise different from learning first increased volatility, but dampened
it during the financial crisis. What type of MSN can explain this change is an interesting
question for further research. For example, some links between the strong form efficient
price and noise in addition to learning, e.g. debt-financed trading, might have been muted
during the crisis.

7. CONCLUDING REMARKS

The recent realized volatility literature provides statistical insights into market
microstructure noise (MSN) and its effects. In this paper we have provided
complementary economic insights, treating MSN not simply as a nuisance, but rather as
the result of financial economic decisions, which we seek to understand. In that regard,
we derived the predictions of economic theory regarding correlation between MSN and
two types of latent price, characterizing and contrasting entire cross-correlation functions
in a variety of market environments, with a variety of results. We achieved this not in
a new model of market microstructure, but rather in the context of several classic and
widely-used benchmark models.

Some of our results are generic. For example, cross-correlations between strong form
efficient price and MSN at displacements greater than zero have sign opposite to that
of the contemporaneous correlation. Some of our results are not generic but nevertheless
quite robust to model choice. For example, all models predict negative contemporaneous
correlation between latent price and MSN, so long as the risk aversion of market makers
is not too high. Finally, some of our results are highly model-specific. For example, the
cross-correlation patterns and absolute magnitudes depend critically on the frequency
of latent price changes, the presence of bid/ask bounce, the timing of information and
actions, and the degree of market maker risk aversion.

We see our results as a first step toward disciplining empirical financial-econometric
analyses with microstructure theory. In particular, we have emphasized that benchmark
microstructure models can be used to control for MSN in volatility estimation, and
that attention to sampling frequency is important for empirical microstructure studies.
Moreover, we have shown that microstructure theory enables us to assess the validity
of the independence assumption, to offer explanations of empirically observed cross-
correlation patterns, to predict the existence of as-yet undiscovered patterns, and to
make informed suggestions for improving volatility estimation methods.

Other novel uses of our results may also be possible. For example, the rate of cross-
correlation decay might be used to assess the extent to which strategic traders are active
in the market, and the sign and size of the contemporaneous correlation might be used
to assess the degree of market-maker risk aversion. Indeed market-maker risk aversion
might be time-varying, with associated time-varying cross-correlation structure between
latent price and MSN. During crises, for example, market makers may be more risk
averse, as borrowing and hedging possibilities are reduced. If so, the “normal pattern” of
negative contemporaneous cross-correlation and positive higher-order cross-correlations
might switch to a “crisis pattern” of positive contemporaneous cross-correlation and
negative higher-order cross-correlations.
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We hasten to emphasize, however, that although our results arise most naturally from
learning and market-maker risk aversion in the classic benchmark models that we explore,
those models are of course very simple, and other mechanisms might generate similar
results. In future work beyond the scope of the present paper, one might explore richer
market-microstructure models, incorporating, for example, strategic behavior among
informed traders with differential information, preference heterogeneity, etc. Ultimately
one might attempt to develop and use an encompassing microstructure model that
simultaneously includes a variety of such effects. Intertwined future empirical work on
noise-corrected volatility estimation might exploit high-frequency data on additional
aspects of price determination, such as volume, trade-initiation, and order-book data.
Ultimately we hope that our framework may be useful not only for disciplining estimation
with theory, but also for disciplining theory with estimation, providing robust evidence
on the comparative merits of various competing theoretical microstructure models.
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