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Abstract 

We study the cosmology of the Supersymmetric Standard Model augmented by a gauge singlet 

to solve the/z-problem and describe the evolution of the domain walls which are created during 

electroweak symmetry breaking due to the discrete Z3 symmetry in this model. The usual assump- 

tion that (gravitationally induced) non-renormalisable terms which explicitly break this symmetry 

may cause the walls to collapse on a cosmologically safe timescale, is reconsidered. Such terms 

are constrained by considerations of primordial nucleosynthesis, and also because (by not respect- 

ing the Z3 symmetry) they induce divergences which destabilise the hierarchy and reintroduce the 

/z-problem. We find that, even when the K~ihler potential is 'non-minimal' (i.e. when the hidden 

sector couples directly to the visible), the model is either ruled out cosmologically or suffers from 

a naturalness problem. 

1. Introduct ion 

The purpose of  introducing (softly broken) supersymmetry into the Standard Model 

is to bring under control the quadratic divergences associated with a fundamental Higgs 

boson and make it 'natural '  for its mass to be at the electroweak scale [ 1 ]. Yet the 

minimal supersymmetric Standard Model (MSSM)  has its own naturalness problem. 

Its Lagrangian contains a term/ . t  HIH2 mixing the two Higgs doublets which are now 

required to give masses separately to the up- and down- type quarks. For successful 
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phenomenology/z should also be of order the electroweak scale but this must now be 

set by hand - -  the '/z-problem' [2,3]. To address this problem, the next-to-minimal 

supersymmetric Standard Model (NMSSM) [4] contains an additional singlet Higgs 

superfield N. By invoking a Z3 symmetry under which every chiral superfield ~ trans- 

forms as @ --~ e2~ri/3qb, the allowed terms in the superpotential are now ,~NH1H2 - ~N 3 

(in addition to the usual Yukawa terms generating fermion masses) while the Higgs 

part of the soft supersymmetry breaking potential is extended by the inclusion of two 

additional trilinear soft terms Aa and Ak to 

= - A A ~ ( N H 1 H 2  + h.c.) - kAk (N3  + h.c.) 
K.igg  

oft 

In, 12 + rn22 IH212 + m ~ I N I  2 , (1) 

where HIH2 = I-1~1I-1~2 - H - H  +. The /z-term can now be simply set to zero by invok- 

ing the Z3 symmetry. An effective /x-term of the form A(N) will still be generated 

during SU(2)L ® U(1) r  breaking but it is straightforward to arrange that (N) is of 

order a soft supersymmetry breaking mass. Apart from solving the '/.t-problem' the 

NMSSM also has interesting implications for supersymmetric phenomenology [5] and 

dark matter [6]. 

However, the NMSSM runs into a cosmological difficulty. The Z3 of the model is 

broken during the phase transition associated with electroweak symmetry breaking in 

the early universe. Due to the existence of causal horizons in an evolving universe, 

such spontaneously broken discrete symmetries lead to the formation of domains of 

different degenerate vacua separated by domain walls [7,8]. These have a surface 

energy density ~r ~ 93 where ~, is a typical vacuum expectation value (vev) of the 

fields, here the electroweak scale of (.9( 102) GeV. Such walls would come to dominate 

the energy density of the universe and create unacceptably large anisotropies in the 

cosmic microwave background radiation unless their energy scale is less than a few 

MeV [9]. Therefore cosmology requires the Z3 walls to disappear well before the 

present era. Following the original suggestion by Zel'dovich et al. [7], this may be 

achieved by breaking the degeneracy of the vacua, eventually leading to the dominance 

of the true vacuum. This happens when the pressure, i.e. the difference in energy density 

between the distinct vacua, begins to exceed the tension o'/R, where o- is the surface 

energy density of the walls and R the scale of their curvature. When R becomes large 

enough for the pressure term to dominate, the domain corresponding to the true vacuum 

begins to expand into the domains of false vacuum and eventually fills all of space. It 

was recently argued [ 10] that gravitational interactions at the Planck scale Mpl would 

explicitly violate any discrete symmetry, causing just such a non-degeneracy in the 

minima of O(l,5/Mp1) where ~ is a generic vev (of O ( M w )  in our example). In 

fact, this suggestion had been applied already to the NMSSM in the context of string 

theories [ 11 ]. Thus there would appear to be a natural solution to the cosmological 

domain wall problem for the NMSSM. 

In this paper we study whether this solution is indeed viable. In the following section 

we derive the structure of the walls, and show that the surface energy is approximately 
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M 3 as expected on dimensional grounds. We go on to describe the evolution of the walls 

under the influence of the tension, the pressure due to the small explicit Z3 breaking and 

the friction due to particle reflections. In particular we demonstrate that wall domination 

of the energy density of the universe is avoided if the gravitationally induced terms are 

of order six or less. This is not however the tightest constraint on the domain walls; by 

applying constraints based on primordial nucleosynthesis we show that the magnitude 

of Z3 breaking must be ~> lO-7trM2/Mpl, in order to make the walls disappear before 

the nucleosynthesis era beginning at T ,~ 1 MeV. Thus only operators of dimension five 

(suppressed by at most one power of the Planck mass) are permitted. There are three 

such Z3 breaking terms which are allowed in the superpotential or K~le r  potential and 

which induce dimension-5 operators in the effective potential. By inspection we find 

that the existence of one or more of these operators implies that there is no symmetry 

(discrete, global, gauged, R-symmetry or gauged R-symmetry) under which the low- 

energy singlet can be charged. Consequently there cannot be any explanation for the 

absence of three additional allowed low energy operators which include the/z-term itself 

as well as quadratic and linear terms in N. Thus our first conclusion is that not only 

does the NMSSM not solve the/z-problem, it actually makes things worse by requiring 

the introduction of additional operators and by disallowing any symmetry which would 

forbid them. 

We then go on to consider the fact that the singlet which appears in the NMSSM may 

introduce destabilising divergences [ 12]. Essentially the problem is that the introduc- 

tion of non-renormalisable terms together with soft supersymmetry breaking produces 

corrections to the potential which are quadratically divergent and thus proportional to 

powers of the cut-off A in the effective supergravity theory. Since the natural scale for 

this cut-off is MpI, these can in principle destabilise the hierarchy, forcing the singlet 

vev and hence the scale of electroweak breaking to become very large (at least of 

order x/MwMpl). By examining the possible Z3 breaking terms, we demonstrate that 

the removal of domain walls by this mechanism indeed destabilises the hierarchy. We 

conclude that the two constraints, viz. stability of the hierarchy and removal of domain 

walls, cannot be simultaneously satisfied by any gravitationally suppressed operators 

which one can add to the Lagrangian. 

We consider alternative ways for dealing with the domain walls. One possible solu- 

tion is to reintroduce the g term in the superpotential in such a way as to avoid the 

introduction of the dangerous non-renormalisable operators. If we drop the assumption 

of minimality in the Kahler potential by allowing certain couplings of the hidden sector 

fields to the visible sector (as in Ref. [3] ), we can retain Z3 symmetry in the full theory 

but break it spontaneously when supersymmetry is broken. In this way the hierarchy is 

not destabilised by tadpole diagrams. However the naturalness problem cannot be solved 

even for these more general models. 

Finally we consider how gauge singlets may be accommodated in supersymmetry, 

without invoking these problems. There appear to be only a few possibilities, none of 

which yields a phenomenology bearing any resemblance to the NMSSM. 
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2. Domain walls in the NMSSM 

When a discrete symmetry is spontaneously broken as the universe expands and cools, 

'domains' of the different degenerate vacua form, separated by narrow regions of higher 

potential called 'domain walls' [9]. The structure of these walls may be determined 

by finding time-independent solutions to the classical field equations after imposing the 

boundary conditions that at the endpoints the fields should be in distinct vacuum config- 

urations. This has been done using numerical methods for the NMSSM potential [ 13] 

and we reiterate the essential features of the Z3 walls. As might be expected from 

dimensional arguments and by analogy with the analytically soluble case of a single 

real scalar field in a Z2 symmetric potential [9], the thickness and energy density of 

the walls are of order v - l  and v 3 respectively, where v is a typical vacuum expectation 

value. For naturalness reasons one would tend to assume that all three vacuum expecta- 

tion values are of the same order; however, it is also possible that the singlet vev, x, is 

much larger than the usual v = ~ v ~  = 174 GeV. This is in fact quite likely in the 

light of recent analyses where unification of soft terms and gauge couplings is imposed 

at the GUT scale; the only viable scenarios are then found to have x / v  > 10 with 

especially large values when the Higgs sector Yukawa couplings are very small [ 14]. In 

such cases, we would expect the wall to have a much higher surface energy o-; indeed 

we find that this is well approximated by 

tr _~ 5 × 107 GeV 3 , (2) 

when x is at least a few times larger than v. (This formula is accurate to about a factor 

of 2 in practice and is very good for large x, relative to both the trilinear soft terms and 

to ~,.) Similarly the thickness of walls is given by 

- ,  

t5 "~ 2 × 10 -2 GeV -1 ~v (3) 

which again is most accurate when x >> v and x >> Ak, Aa. We show an example of 

a wall with large x in Fig. 1. In comparison to the cases shown in Ref. [ 13], we see 

that the wall is thinner and the surface energy higher, as expected. (We note that if 

both Ak and Aa are zero, then the Z3 symmetry of the scalar potential becomes a U( 1 ) 

symmetry, so the wall energy falls to zero and its width becomes infinite; in this limit 

however we have an axion problem. We find that if Ak or Aa are greater than a few 

GeV then the wall energy is insensitive to their exact values.) 

Immediately after the electroweak phase transition the universe is filled with equal 

volumes of the three degenerate phases. These are correlated on a length scale which 

depend on the nature of the phase transition, varying from s c ,~ Tc -1 for a second-order 

transition to s c ,-~ H - I  for a strongly first-order transition [9,15]. Since the probability 

for each vacuum (0.333) is just above the percolation threshold (which for continuum 

percolation theories is found to be 0.295 [ 16] ), the universe is then filled with highly 

convoluted, infinite regions separated by stable domain walls of typical curvature scale 

~, which rapidly grows to the size of the horizon. 
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Fig. 1. (a) ,  (b )  An example of  a wall configuration with the singlet vev x = 10u. Here we have chosen 

tanfl  = 2, ,t = k = 0.2, Ak = Aa = 200 GeV. The total surface energy density is 8.6 × 108 GeV 3. Fig. la  

shows the values of  the three scalar fields as a function of position while Fig. lb  shows the energy density in 
the wall relative to the vacuum. 
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Let us now turn to the dynamics of cosmological networks of such walls. As discussed 

in Ref. [7], the most important forces acting on the walls are surface tension, friction 

and pressure. The equation of motion for a quasi-spherical piece of wall moving with 

velocity R (with y -= l/X/1 - /~2)  and having local radius of curvature R, is 

d2R__ _ 2 (npv) e (4) 

dt 2 Ry 2 try 3 o-.)/3 

The first term on the RHS reflects the fact that it is energetically favourable for the 

wall network to reduce its surface area through surface tension, and hence small do- 

mains will collapse, irregularities in the surfaces will straighten out, and the correlation 

length will increase. This term expresses just the conservation of energy in the absence 

of pressure and friction. 

The second term on the RHS corresponds to friction arising due to the interactions of 

the wall network with the thermal plasma. As particles reflect off the walls, they exert a 

force given by the thermally averaged momentum transfer (npv), where n is the particle 

density, v the particle velocity relative to the wall, and p the momentum perpendicular 

to the wall. (Actually the friction is c< v only when v << c.) Friction is clearly important 

at times very close to the electroweak phase transition if the top quark and gauge boson 

fields are still in equilibrium in the plasma. At later times, when the number density of 

these particles is exponentially suppressed, the main source of friction is the interaction 

of the walls with lighter fermions in the plasma. The constant difference in phase in 

the mass terms on either side of the wall (i.e. 7r/3 or 2~r/3) does not by itself cause 

any reflection but rather just a phase shift in the fermion masses (as can be checked by 

equating transmission and reflection coefficients at the wall). In order to estimate the 

reflection coefficient, it is useful to describe the space dependent mass by the inverted 

bell-shaped function 

m2(x±) = m2 _ a2 A(_.__AA_~ 1) (5) 
cosh 2 ax ± ' 

where x± is the perpendicular distance from the wall, and m is the mass given to the 

reflecting particle by the Higgs fields which comprise the domain wall of width a -1. 

The task of finding the reflection coefficient (using the Klein-Gordon equation) then 

reduces to a known problem, the modified P6schl-Teller potential, which can be solved 

analytically (see for example Ref. [ 17] ). We take the depth of the well to be m 2 and 

the width a - 1  N Mw. The depth parameter is A = (1 + m2/M2w) and the reflection 

coefficient is then found to be 

~2m4 m 4 

[R[2= 7 " r 2 m 4 - b  M4sinh 2 7rpa "~ p2M------~w ' (6) 

where we have taken Mw >> p >> m as is appropriate once the gauge bosons and top 

quark have fallen out of equilibrium. (There is a region at low energy [Pl < m2/Mw in 

which the particles experience total reflection [9]. However this contribution is insignif- 

icant here, being suppressed by many powers of m / M w . )  Clearly particles which are 
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Fig. 2. The function f ( T )  [see Eq. (12)] related to friction. 

heavy, especially the bottom quark, will be more important here. We can estimate the 

friction by considering a particle of mass m, when the wall velocity through the plasma, 

u, is small. Then 

I , , ] (npv)  = g (27r) --------~ p2M----~w E e ( re+ru f±) / r  + 1 - e ( r e - y , p ± ) / r  + 1 ' (7) 

where T is the temperature of the plasma, and g is the number of degrees of freedom 

of the reflecting particles. Expanding this function in u keeping the leading term only 

and performing the angular integral, we find 

gu - -  T 2 
( n p v  ) = - ~ 2  T~ --~w F ( X m ) , (8) 

where 

o ( )  

J eX F ( x m )  = dx  x4m(x 2 - X2m) ( ex + 1) 2 , (9) 

X m  

and we have defined x --  E y / T  and Xm - m y / T .  This integral is very well approximated 

by 

5 (0.6 e-X~) 3 (10) F ( x m )  = x m 

Summing over all the particle species in the plasma, we find that 

T 4 

(npv}  = f ( T )  u 8~.2 , ( l 1 ) 

where f ( T )  < 5 x l0 -4 at all temperatures. We show f ( T )  in Fig. 2 where, apart from 

omitting the contribution of the up and down quarks, we have neglected the possible 
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effect of the quark-hadron phase transition. In the era when pressure is negligible (i.e. 

when the typical curvature scale is small), we can calculate the terminal wall velocity, 

Uterm, and establish a poster ior i  that our approximation of small u to obtain Eq. (8) is 

indeed correct, i.e. friction is important. Substituting the friction into Eq. (4),  we find 

167"r2 ( °" ) (12) 
Uterm- f ( T )  T 4 R  " 

For typical values of the radius, R ~ Utermt, we see that friction is important only at 

temperatures above a few hundred MeV. We therefore conclude that shortly after the 

quark-hadron phase transition the walls move with velocities comparable to the speed 

of light and so we may safely neglect friction in what follows. 

The last term on the RHS in Eq. (4) is the pressure corresponding to the difference e 

in the energy density between the different vacua. As remarked earlier, this will become 

dominant when it exceeds the surface tension, i.e. when 

O" 
e >  - - .  (13) 

R 

We show this happening in Fig. 3, where we have performed a simple thin wall simula- 

tion of a network of domain walls using techniques similar to those used in Ref. [ 18], 

and which we have discussed in more detail elsewhere [ 13]. In the absence of friction 

it is convenient to rescale the parameters with some typical length scale, R0, which we 

choose to be 1 cm, corresponding approximately to the curvature scale when pressure 

becomes dominant if e ~ MSw/MPb Thus defining p = R /Ro ,  and 7" - t /Ro ,  Eq. (4) 

becomes 

d2p _ 2 eRo (14) 

dr2 py2 y3 o- " 

Thus there are only two independent parameters in our simulation, given by the pres- 

sure in each of the two false vacua, eRo/~r. Initially, the walls expand under their own 

tension, and the structure develops in the manner discussed in Refs. [ 18,19]. Eventually 

pressure dominates as expected and the entire volume is cleared of walls. This contrasts 

with the no-pressure case, where one or two horizon-sized walls always remain [ 13]. 

The behaviour for different values of the pressure or surface tension is identical if the 

time and length, respectively, are scaled appropriately. 

One might consider the possibility that since frictionless, pressureless walls expand 

until there is roughly one wall per horizon scale [9], domain walls may be accom- 

modated by simply assuming that our local region of space-time just happens to be 

empty of them, i.e. that there is a wall lurking just outside our present horizon. There 

are at least two objections to this. Firstly the walls eventually come to dominate the 

energy density of the universe, causing unacceptable 'power-law' inflation [20], unless 

their separation is many times greater than the present horizon scale, which is clearly 

impossible by causality. Secondly, even such a wall outside the horizon will have a 

curvature scale comparable to the present horizon scale and thus induce unacceptably 

large anisotropy in the cosmic microwave background [21 ]. 
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Fig. 3. A typical example of the evolution of the wall network with a pressure term of order ~M2/MpI .  The 

figure shows the wall network at four epochs separated by an interval of 10 -1° sec, beginning at the time 
when pressure starts to dominate the evolution. 

3. When walls collide 

What value of the pressure (i.e. explicit Z3 breaking) is required to safely remove the 

walls? The crudest estimate we can make is simply to insist that the walls are removed 

before they dominate over the radiation energy density in the universe, in order to avoid 

wall driven inflation. Since the walls move at close to the speed of light below the 

quark hadron phase transition, their curvature scale will be roughly the horizon size, 
• / 1 / 2 ~  2 

R ~ t ~ l v l p l / g .  I . Since the energy density of the walls is 

O" 

Pwalls "~ R ' (15) 
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gl / 2,r,4 
. 1 ,  we see that walls dominate the and the radiation energy density is Prad ,w 

evolution below a temperature 

T, N ~ (16) 
g, Mpl 

To prevent this we require the pressure to have become dominant before this epoch, i.e. 

o- o -2 
e > R---~ '~ MZp---~ " (17) 

A pressure of this magnitude would be produced by dimension-6 operators in the 

potential. However, one should consider further constraints coming from primordial 

nucleosynthesis, and we find that only operators of dimension five or less are sufficient 

to satisfy these. In fact for weak-scale walls the time associated with the temperature T, 

AA2 / , .1 /211A3 , ~  108 Sec, i.e. long after nucleosynthesis. The entropy produced is t, ~ ~,-pl/6* ,,~w 

when the walls collide (which is by now a major proportion of the total entropy in the 

universe) is dumped into all the decay products of neutral Higgs particles, i.e. Standard 

Model quarks and leptons. In order to check whether this violates phenomenological 

bounds, we compute the relative energy density released in such collisions, viz. 

Pwalls ,~ O" 

ny tny  

, ~ 7 ×  10 -11 OeW(~w3w) (-~ec) 1/2, (18, 

where we have taken the number of relativistic degrees of freedom in the plasma to be 

g, = 43/4. Detailed consideration of the effects of high energy particles on primordial 

nucleosynthesis and on the 2.73 K Planckian spectrum of the microwave background 

radiation impose severe upper limits on this parameter [22]. For the typical values 

of o- in Fig. 1, we find that the walls are required to  disappear before the onset of 

nucleosynthesis at about 0.1 sec, as otherwise the hadrons in the showers triggered 

by the decay products would alter the neutron-to-proton ratio, resulting in a 4He mass 

fraction in excess of the conservative observational upper bound of 25% [23]. This 

means that in order not to disrupt primordial nucleosynthesis, we require explicit Z3 

breaking of magnitude 

e ~ A t o ' M 2 w / M p 1 ,  (19) 

with 

a' >~ 10 -7. (20) 

4. The return of the p problem 

Having established that one needs dimension-5, Z3 breaking operators to appear in the 

effective potential, we can consider ways in which this can be achieved by adding terms 
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to the K ~ l e r  potential or superpotential. We first assume that these are 'minimal' in the 

sense that they do not contain couplings between the hidden and visible sectors (which 

couple only through gravity). Later we shall consider the most general non-minimal 

case. In all cases we find that there is a naturalness problem associated with the explicit 

breaking of the Z3 symmetry. 

Let us write down the contributions to the supergravity Lagrangian which explicitly 

break Z3, and which are invariant under the NMSSM gauge group. These are 

A t N2(H1H2) (21) At N 4 , A t (H1H2) 2 , 

MpI ' MpI MpI 

in the superpotential, and 

(N + Nt ) (Hi  Hie) f l ( N t H 1 H 2 + h . c . )  
cei MpI ' \ MpI ' (22) 

in the Kahler potential. As in Ref. [ 12], we can absorb the last two contributions into 

the superpotential to O(M~ 1) by making the redefinitions 

Hi ~ 1 -- Mp1//Hi,  

N ---' N fl(H1H2) (23) 
Mp I ' 

and so we shall consider only the first three contributions in what follows. Inspecting 

these, we observe that N must be a singlet under any additional symmetry in order 

for any one of these terms to exist in addition to the terms N 3 and NHlH2 in the 

low energy superpotential. In other words, each of them implies that the following 

'unnatural' contribution to the superpotential is invariant 

tSW, unnatura 1, = / z ' N  + / z t N  2 +/zHl/-/2. (24) 

Thus not only have we reintroduced the/z-problem, we now have two additional natu- 

ralness problems. Whereas the standard/z-problem may well be solved at a future date 

(for example by the mechanism of Ref. [3] ), we shall see that the naturalness problem 

which has reappeared here can have no solution based on an underlying symmetry. 

5. The return of the hierarchy problem 

As if the difficulties above were not bad enough, there is the possibility of quadratic 

tadpole divergences which can lead to a destabilisation of the hierarchy [ 12]. This 

exacerbates our problems, since such divergences arise at each order in perturbation 

theory, forcing us to re-fine-tune. These are a potential problem in any supergravity 

model with gauge singlets since the dangerous diagrams are not excluded by gauge 

invariance. 
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Fig. 4. (a), (b), (c) The three dangerous diagrams for each of the three operators which can destabilise the 
hierarchy. 

These diagrams arise when supersymmetry is spontaneously broken, because super- 

Weyl-Kahler invariance necessitates that the vev of the K ~ l e r  potential become non- 

trivial. In fact [12] 

2 2 -2 2 02~2Ms 4) (e 2K/3) ~ e 2K/3 (1 + 0 M s + 0 M s + 

(4,) ~ 4,1 (1 + O2M~) , (25) 

where 4, is the chiral compensator, Ms is the scale of supersymmetry breaking in the 

hidden sector, and the RHS refers to only the scalar components. The leading tadpole 

divergences are quadratic and appear at two-loop order for the first two operators in 

Eq. (21). In our case, the diagrams responsible are shown in Figs. 4a and 4b, and they 

lead to the terms 

/Ilk * 2 ~i lk 

3(1677"2) 2 ( 4,N "{- 4,N)MpIm3/2 -}- 3(16rr2) 2 ( FN + F~I)MpIm3/2 (26) 

and 

/ i  ' / i  / i ' / i  
( 4,N + 4,*N)MpIm2/2 + (16¢r2)~(FN + F~v)Mplm3/2 (27) ( 16rr2) 2 

respectively, where we have taken the cut-off to be A ,-~ Mpj and introduced the 

gravitino mass m3/2 "" V/--~/Mm. Here/ i  and k are the Higgs sector Yukawa couplings 

defined earlier. The third term in Eq. (21) gives rise to a divergence at three-loop order 

as shown in Fig. 4c and the calculation is a little more tricky. Using the perturbation 

theory rules of Ref. [ 12], quadratic divergences are indeed found to arise of the form 

/ i I / i2k 
( ! 6rr2) 3 (4,u + 4,*u)MI, lm~/2 (28) 

and 

AI/i2k 
(16rr2) 3 ( FN + F~v)Mr, lm3/2, (29) 
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where we have replaced a quadratically divergent three loop integral with a cut-off, M21 . 

All of these terms naturally drive the vev of the singlet (and hence of H1, /-/2) to the 

hidden sector scale, (x) ~ ~ / ~ 2 M p l  ~ 1011 GeV. If  we wish to avoid the reappearance 
* 3 of the hierarchy problem, these terms should be smaller than ~ (~bu + q~N)m3/2 or 

(FN + F~v)m~/2. Even for the three loop diagram this requires 

A' ~< 3 × 10 - l l  , (30) 

where we have taken m3/2 "~ Mw. Clearly this bound is only approximate, since we do 

not know the precise values of the Yukawa couplings .~ and k, which we have taken 

here to be of  (.9(1). However, it should also be borne in mind that one would like to 

have control over the scale of electroweak symmetry breaking. That is we do not wish 

the mass of the W to depend strongly on the (unknown) physics at the Planck scale, 

i.e. on A t. In order to achieve this, the above bound should be tightened even further. 

The bound in Eq. (30) is clearly incompatible with that in Eq. (20) required for 

successful nucleosynthesis, and we conclude that the NMSSM, at least in the models 

with 'minimal'  K~aler potentials, has either a domain wall problem or a hierarchy 

problem. 

6. A solution to the hierarchy problem 

Is it possible that we can solve these problems by allowing the hidden and visible 

sectors to mix? In this section we shall see that the answer is yes for the destabilising 

divergences, but no for the naturalness problem. In other words, we are able to regain 

perturbative control over the scale of electroweak symmetry breaking, but we find, quite 

generally, that certain couplings must be set by hand initially to be small. This leads to 

a naturalness problem of at least one part in 109. 

In order to eliminate destabilising divergences, we must drop our insistence on mini- 

mality in the Kfihler potential, by allowing the hidden and visible sectors to mix. In this 

case, models similar to the NMSSM can be constructed. We use a mechanism similar to 

that in Ref. [ 3], and find that models with (Standard Model) singlets can have naturally 

large N 2, N 3 and/z  terms. 

The Giudice-Masiero mechanism [3] seeks to solve the /z  problem for the MSSM 

by generating it via the Kahler potential. That is we have 

~ = y i y ] + z z t +  (-~vlztHiH2+h.c.)+M~lln f ( z )+g(Y)  2 (31) 

where the Yi fields belong to the visible sector, and the z singlet field belongs to the 

hidden sector. G is K~ihler invariant. The label 'hidden' is justified when we take the 

"fiat" limit Mpl ~ c~ in the effective potential (keeping M2/Mpl fixed), and find that 

the z field, which acquires a vev of 69(Mpl), decouples from the visible sector, apart 

from inducing soft supersymmetry breaking terms and a / z  term proportional to a,  via 

gravitational couplings. These are all of O(M2s/Mp0, where Ms is the aforementioned 
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scale of supersymmetry breaking in the hidden sector which we introduce by hand. 

Having introduced a new coupling between the visible and hidden sectors, we must 

invoke some symmetry which forbids other couplings as well as a coupling Mp1HIH2 
in the superpotential. This could be a Peccei-Quinn symmetry, a discrete symmetry, or 

a gauged or global R symmetry. In addition the presence of a new symmetry rules out 

the simplest version of the Polonyi model (which in view of its severe cosmological 

problems [24] might not be such a bad thing). 

For the next-to-minimal choice of Kahler potential above, the terms in the scalar 

potential are 

Vscalar -- gig i -~- m2/2YiY i + m t [yig i + ( A - 3)~ (3) + ( B - 2 )m3/2tzH1H2 + h.c.] , 

(32) 

where ~3) are the trilinear terms of the superpotential, rescaled according to 

~3) = {exp (zz~/ZM21))g (3). (33) 

Here ~ is the new low energy superpotential including the/x term 

= ~(3) + txH1H2, (34) 

and m3/2 is the gravitino mass 

m3/2 = (exp (zzt /2M21)f(2)) ,  (35) 

where the vev of f~2~ = M2s/MP1 is set by hand such that Ms ~ l0 II GeV. The/x term 

is given by 

,/~1= a m (  M f f z  ) . (36) 

Applying the constraint of vanishing cosmological constant, the authors of Ref. [3] 

found 

B =  ( 2 A -  3 ) / ( A -  3 ) ,  

Iix I = Imot( A - 3 ) / v ~ l ,  (37) 

where A is the universal trilinear scalar coupling, A = v~(z/Mpl).  Now let us apply the 

same mechanism to a model with MSSM singlets, N. The most obvious extension is to 

choose the Kahler potential 

(-~ol z t H' Hz °t-~Pl Z~f N2 ) I 2 G= yiy] + zz t + + +h.c .  +M~l ln  f ( z )  + g ( y )  
M31 

(38) 

where, in this case, f ( y )  is the superpotential of the NMSSM. The hidden sector field, 

z, has the opposite charge to N under the Z3 symmetry so that the full theory is Z3- 

invariant. In this case Z3 is broken spontaneously at the Planck scale and the resulting 
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domain walls are presumably removed during inflation. The low energy scalar potential 

is 

Vscalar = gig i ~- m2yiy i + m t [yigi + (A - 3)~ (3) + (B - 2)ml.tHiH2 

+(B  - 2)m/~'N 2 + h.c.], (39) 

where 

~=~(3) + tzH1H2 + lz'N 2 

ma(A  S- 3) mer'(A - 3) 
I/xl = x / ~  ' I/x'l = ~ , - f  . ( 4 0 )  

Notice that the low energy model has generally far more terms in its low energy 

lagrangian than the NMSSM. The latter (and the Z3 symmetry) is in fact recovered 

when we let a = a '  = 0; thus we can break the Z3 symmetry by as much or as little as 

we like. 

Although this model has removed the problem of destabilising divergences (it is now 

no longer possible to write down any of the divergent tadpole diagrams), it does not 

quite solve the naturalness problem (i.e. the presence of small couplings unprotected 

by any symmetry), since there is still the coupling zN which is allowed under the Z3 

symmetry, and which no other symmetry can forbid. These may be set to zero by hand 

and will stay zero by virtue of the nonrenormalisation theorem. 

One might wonder if by somehow extending the Kahler potential it may be possible 

to exclude these terms. As we now show however, this is not the case, and no matter 

how complicated we make the Lagrangian, the naturalness problem associated with the 

absence of the zN couplings stays with us. Consider the most general supergravity 

Lagrangian, in which the only requirement we make is that the superpotential contains 

the terms 

~g(y) - kabc((~) NaNbNc + i~abc(() (nlH2)abNc, (41) 
3!3 

where a, b, c are indices representing some symmetry group (discrete or otherwise), and 

the couplings are holomorphic function of the hidden sector fields, sea = Za / /Mp l  . The 

breaking of Z3 symmetry in the visible sector by operators of dimension five, requires 

that we also include at least one of the operators, 

Aab ( ~c, ~) NaNb 

Aab(~,~)(H1H2)ab 

A~ b ( ~, $) Na NbN *c 

Acab(s¢, s ~) (H1HZ)abN tc 

A "b~d ( ( )  NaNbNc Na 

Aabcd ( ( )  NaNb( HiHe)cd 

Aabcd(~) ( H1H2)ab( H1H2)cd, (42) 
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where the first four operators give dimension-5 operators if they appear in the K~hler 

potential or superpotential, but the last three operators must appear in the superpotential, 

hence their couplings are holomorphic functions of the hidden sector fields. If we make 

the assumption that the couplings k abc and A abc are invertible, then corresponding to 

each of the operators above, there is an additional invariant operator which is some 

function of the hidden sector fields multiplied by Na. These are, respectively, 

A~b(k-l)tabCN c 

At  ( ,I--l~fabcM 
abe, "" l ~*c 

A~b ( k - l  )abd( k-I  ) tCde N e 

Aab( ,~-1 ) abd( k -  I ) tcde Ne 

AabCd ( k - l  )abe( k -1 )cd f (  k - l  ) tefgNg 

AabCd ( k -1 )abe(,~ -1 )cdf( k - l  ) tefg Ng 

Aabcd ( A -1 )abe( /~ -1 )cdf( k -1 ) tefgNg. (43)  

The least damage to the effective potential occurs if these terms appear in the K~ihler 

potential, in which case we find terms of the form 

m2/2Mplq~N + h.c. (44) 

appearing in the effective potential. Thus the natural scale of the singlet vev is ,-~ 10 I1 

GeV and since it should be less than the electroweak scale, this constitutes a naturalness 

problem of at least one part in 10 9 . 

7. Conclusions 

Before concluding, we should mention a few escape clauses, none of which however 

are very appealing: 

(i) The most obvious is to introduce the # term into the superpotential by the Giudice- 

Masiero mechanism [3] and simply set to zero all of the operators which might give 

N a large vev. (Although this appears to be rather unaesthetic, one might remark that 

the naturalness problem which results is no worse than that already with us due to 

the smallness of Ms compared to the Planck mass. Since the "unnaturalness" is of the 

same order, it may even be possible to construct the K~hler potential so that the two 

naturalness problems are connected.) 

(ii) Alternatively one can invoke inflation at the weak scale to remove all the domain 

walls, just as has been suggested in the context of other unwanted relics, e.g. string 

moduli [25]. However such a scenario must be very finely tuned - -  the domain walls 

must be adequately diluted without erasing the density perturbations generated by infla- 

tion at the GUT scale [26] ). (Although density perturbations are also generated during 

weak scale inflation, the small value of the Hubble parameter would make these too 

small to account for the microwave background anisotropies observed by COBE.) See- 
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ondly, the reheat temperature must be high enough for both successful baryogenesis and 

nucleosynthesis. We are not aware of any likely candidate for the required scalar field. 

(iii) The Z3 symmetry could be broken at a high scale, Mcontrived, in the visible sector 

and explicit Z3 breaking terms induced. This is similar to the solution to the hierarchy 

problem discussed earlier, with the "advantage" that the fine tuning is driven by Mcontrived 

rather than MpI. However this will still entail a fine tuning of approximately one part 

in 1012, since in order for the walls to be inflated away, Meontrived should exceed the in- 

flationary scale of ~ 1014 GeV as deduced from normalisation to the COBE data [26]. 

Otherwise one would have to invoke a second epoch of inflation at an intermediate 

scale, with its own attendant problems (see above). 

(iv) The Z3 symmetry could be made anomalous by adding extra fields to the theory 

which couple to SU(3)c (for example an additional generation). In this case the sym- 

metry is broken non-perturbatively at the quark-hadron phase transition, and the walls 

collapse very soon thereafter [27]. However, it is difficult to see how this constitutes 

a solution to fine-tuning, since at the same time it seems to preclude a solution to the 

strong CP problem as discussed in Ref. [27]. 

(v) The Z3 symmetry could be embedded in a continuous gauge or global group 

which is broken at some high scale. This is the Lazarides-Shafi mechanism [29], in 

which the apparent discrete symmetry is a subgroup of the centre of the continuous 

group. In this case only U(1) ,  SU(3n) (where n is an integer) and E6 are suitable can- 

didates (see for example Ref. [ 28 ] ). After the electroweak phase transition, one expects 

only a network of walls bounded by strings to form and then quickly collapse [29]. 

To summarize, we have shown that the domain wall problem in the NMSSM causes 

it to be ruled out on cosmological grounds unless we break the Z3 symmetry of the 

model explicitly. The breaking may be driven by terms which are non-renormalisable 

and have no direct effect on the low energy theory. However their introduction will in 

general generate terms which destabilise the hierarchy. In models with "minimal" Kfihler 

potentials, we have shown that there are no non-renormalisable operators which can be 

added to the superpotential with a coefficient which is simultaneously large enough to 

solve the cosmological problem and small enough to avoid reintroducing the hierarchy 

problem. Furthermore, if any of these operators are allowed by the symmetries of the 

theory at the supergravity scale, then there is no possible symmetry which could prevent 

the existence of an operator z N  in the superpotential whose coefficient must be < 10 -17. 

If  we allow mixing between the hidden and visible sectors, the reintroduction of the 

hierarchy problem can be avoided, and the naturalness problem can be formulated in a 

way very similar to the/z  problem in the MSSM. However, even here we must arbitrar- 

ily select coefficients of certain dangerous operators to be of (9( 10 -9 ) or less once we 

have arranged for a /z parameter of a reasonable size, and we have also reintroduced 

the/x problem which the model was at least partly designed to solve. Thus we conclude 

that the parameters in the NMSSM must be very strongly fine tuned if we wish to 

avoid both the cosmological problems associated with domain walls and the hierarchy 

problem, and hence that the model is unnatural. 
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