
On the Cost of Composing Shared-Memory Algorithms

Dan Alistarh
EPFL

dan.alistarh@epfl.ch

Rachid Guerraoui
EPFL

rachid.guerraoui@epfl.ch

Petr Kuznetsov
TU-Berlin/Telekom Innovation

Labs
petr.kuznetsov@tu-

berlin.de
Giuliano Losa

EPFL
giuliano.losa@epfl.ch

ABSTRACT
Decades of research in distributed computing have led to a variety
of perspectives on what it means for a concurrent algorithm to be
efficient, depending on model assumptions, progress guarantees,
and complexity metrics. It is therefore natural to ask whether one
could compose algorithms that perform efficiently under different
conditions, so that the composition preserves the performance of
the original components when their conditions are met.

In this paper, we evaluate the cost of composing shared-memory
algorithms. First, we formally define the notion of safely compos-
able algorithms and we show that every sequential type has a safely
composable implementation, as long as enough state is transferred
between modules. Since such generic implementations are inher-
ently expensive, we present a more general light-weight specifica-
tion that allows the designer to transfer very little state between
modules, by taking advantage of the semantics of the implemented
object. Using this framework, we implement a composed long-
lived test-and-set object, with the property that each of its mod-
ules is asymptotically optimal with respect to the progress condi-
tion it ensures, while the entire implementation only uses objects
with consensus number at most two. Thus, we show that the over-
head of composition can be negligible in the case of some important
shared-memory abstractions.

Keywords
Composition, Modularity, Complexity, Consensus, Test-and-Set

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Distributed Programming

1. INTRODUCTION
Designing correct and efficient concurrent algorithms is a ma-

jor challenge. There seems to be an agreement on what it means
for a concurrent data structure to be correct [14, 15]; on the other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

hand, the situation is more complex when it comes to efficiency.
Decades of research have led to a variety of algorithms designed
for different models, providing different progress guarantees, and
optimized for different complexity measures. It is hard to believe
that we shall eventually agree on the right model of concurrent sys-
tems, the most beneficial progress condition, or the most important
complexity criterion. All these depend on the evolving hardware
specifics of modern multiprocessors or on unpredictable user com-
puting demands.

To anticipate these uncertainties, it is tempting to look for com-
posable solutions. The idea is that algorithms optimized for differ-
ent complexity metrics and progress conditions could be composed
to obtain new algorithms that maintain the properties of their com-
ponents under a combination of the original model assumptions.
Ideally, such a composed algorithm would have the ability to adapt
to changing environment conditions, e.g. high contention, asyn-
chrony, or failures, while maintaining correctness in all executions.

We focus on composing algorithms providing various progress
guarantees. Thus, a composable algorithm is allowed to abort
whenever the condition under which it is expected to make progress
is violated. In case the currently employed algorithm aborts, the
composition is free to switch to an algorithm that makes progress
under a different set of assumptions. The resulting implementation
has to guarantee correctness, regardless of the way it jumps be-
tween its underlying components. We call this property safe com-
position. Respectively, algorithms that allow such composition are
called safely composable. Safely composable algorithms are ap-
pealing since they have the advantage of being able to optimize for
the common case, while always guaranteeing correctness. Another
advantage of such implementations is that they can be designed and
analyzed in a modular way.

In this paper, we evaluate safely composable algorithms in terms
of computational power and complexity cost, for implementations
that guarantee progress in the absence of interval contention [2] or
step contention [6]. First, we present a composable universal con-
struction that allows for implementing any sequential type. Since
such generic implementations are inherently expensive, we present
an alternative light-weight specification that allows the designer to
transfer very little state between modules, by taking advantage of
the semantics of the implemented object. Using this framework,
we implement a composed long-lived test-and-set object, with the
property that each of its modules is asymptotically optimal with
respect to its progress condition, while the entire implementation
only uses objects with consensus number at most two. Thus, we
show that the overhead of composition, both in terms of step and
space complexity and computational power of underlying objects,
can be made negligible for some shared-memory abstractions.

298

Our safely composable universal construction allows us to build
and compose shared-memory implementations guaranteeing progress
under different conditions. The construction extends the consensus-
based algorithm of Herlihy [14] by using safely composable con-
sensus objects: when such an object aborts, it provides the infor-
mation about the “state” of the object being implemented that is
used for the initialization of the next safely composable consensus
object. For a generic object, this information is represented as a
history, i.e. a sequence of operation requests that were previously
submitted to the object. These histories do not have to be consistent
across processes: only prefixes of committed (i.e., executed) oper-
ations must be consistent. A similar idea was used in [12, 20] to
build an efficient abortable Byzantine fault-tolerant replicated state
machine (Abstract) in message-passing systems.

A light-weight version of safely composable shared-memory im-
plementations can be adapted and optimized to the object being im-
plemented. When a safely composable implementation of the ob-
ject aborts, it provides some object-specific information about the
“state” of the object. This information is then used to initialize the
next safely composable algorithm.

A natural correctness condition is that any safely composable
object should be linearizable, when restricted to invocations and
committed responses. Intuitively, there is a sharp trade-off between
the amount of information transferred between the modules and
the correctness of the composition: in particular, if too little infor-
mation is transferred, the composed algorithm may no longer be
linearizable. Our specification of a safely composable object deals
with this issue in two ways: first, we ensure that all the values re-
turned can be mapped to a matching set of histories of requests,
which have to verify a series of consistency conditions. Second,
we allow a module to restrict the possible interpretations of input
values that it accepts.

The resulting specification (Section 5) has two key properties:
first, the composition of any two safely composable modules is it-
self safely composable. Second, any safely composable module
taken on its own is linearizable. These two properties greatly sim-
plify the design and proof of composed algorithms. Finding an
object specification that is both safe (guaranteeing correct compo-
sition) and general (allowing objects that export little state) is one
of our main technical contributions.

We use our framework to build a speculative test-and-set (TAS)
object that only uses registers in executions where there is low
contention, and may revert to stronger hardware primitives in con-
tended executions. The algorithm is built from two independent
modules: the first module has constant step complexity, and ensures
progress in the absence of step contention (i.e. it is obstruction-
free). The second module reverts to a hardware implementation
of the object and is therefore wait-free. The algorithm switches
forward to a more contention-resilient module when contention is
detected, and can also switch back, using the reset mechanism, to a
more efficient speculative module if the algorithm is currently em-
ploying the expensive hardware object. The implementation is also
long-lived, since the object can be reset once it has been won.

Our TAS algorithm is of independent interest for two reasons.
First, the obstruction-free module shows that TAS can be imple-
mented in constant time and space in the absence of interval con-
tention, whereas the best known bound for obstruction-free consen-
sus is linear [6]. A simple modification of our algorithm (described
in the Appendix) yields the first solo-fast [6] TAS algorithm with
constant step complexity for uncontended operations. Second, the
entire algorithm can be seen as a simple efficient version of a bi-
ased lock [9], that uses only registers as long as a single process
is using it, and reverts to the hardware implementation only un-

der step contention, as opposed to interval contention for previous
implementations [9, 19].

Our constructions have several implications concerning the cost
of safe composition in shared memory. First, our speculative TAS
implementation is wait-free, and results from the composition of
two modules. One might expect that moving from a module that
may abort to one that always makes progress would require con-
sensus, since, intuitively, the processes need to “agree” on the value
returned from a safely composable module before executing a wait-
free one. Thus, the consensus number [14] of the resulting im-
plementation should be n. We find that this is not necessarily the
case. In particular, we show that if the semantic of the implemented
object is known, the algorithm can speculate using only registers
and a hardware implementation of the object, avoiding consensus.
In particular, our composed TAS algorithm only uses objects with
consensus number at most two.

Second, the step complexity overhead induced by composition
is considerable in the case of generic implementations, since each
process has to essentially obtain a snapshot of all previously per-
formed requests. But if the semantics of the implemented object is
known, as is the case of our TAS implementation, we show that the
overhead of composition can be brought down to a small constant
number of steps. In fact, our implementation is optimal in terms of
fence complexity [7]. Therefore, safe composition does not have to
imply an increase in time complexity.

Overall, this paper describes a novel framework for shared-memory
composition. We present a TAS implementation that combines
lightweight components, that only make progress under the absence
of step contention, with a hardware TAS objects at no cost, either
in the computational power of base objects or in step complexity. Is
this possible for any object? If not, can we categorize objects based
on the cost of their safely composable implementations, such as the
power of the underlying model, complexity, or the amount state that
must be transferred between the components? These are interesting
directions for future research.
Roadmap. In Section 2 we present an overview of related work.
Our model definitions are presented in Section 3. In Section 4 we
describe a composable universal construction based on Abstract.
We then present our light-weight framework for composable ob-
jects in Section 5, and showcase it by building a speculative test-
and-set implementation. In the Appendix, we give abortable vari-
ants of shared-memory consensus algorithms. Due to space limi-
tations, we only present sketches for some of the proofs. Detailed
versions can be found in the full version of this paper [5].

2. RELATED WORK
Composing safe distributed algorithms optimized for the com-

mon case has been used to obtain efficient solutions to fundamental
problems such as consensus [8, 10], Byzantine agreement [11, 12],
mutual exclusion [17], or renaming [4].

In shared-memory, composition has either been used implicitly,
by combining a fast-path algorithm with a (slower) wait-free one
in an ad-hoc manner [6, 18], or explicitly, by requiring an algo-
rithm to return an abort indication before a second algorithm can be
called [3, 6]. Implicit solutions have focused on consensus imple-
mentations: Luchangco et al. [18] presented consensus and compare-
and-swap implementations with constant step complexity in execu-
tions with no interval contention, that revert to hardware primitives
otherwise; Attiya et al. [6] showed a consensus implementation
with O(n) step complexity in the absence of step contention, that
reverts to hardware compare-and-swap otherwise, and an Ω(logn)
lower bound for the fast path of such implementations, for per-

299

turbable objects. Attiya et al. [6] also study consensus with fails,
when a process may abort the current execution explicitly; how-
ever, their requirements on the abort condition are strictly stronger
than the ones of safely composable implementations in Section 5.
(For example, any instance of consensus with fails is shown to have
consensus number 2, while a safely composable consensus imple-
mentation may have consensus number 1.) In this paper, we study
the cost of composing such algorithms in a more general way–in
particular, we analyze algorithms

that can be designed an proved independently, whose composi-
tion is always correct.

Aguilera et al. [3] define abortable and query-abortable shared-
memory objects, that may return an abort indication under con-
tention; if queried, these objects return the last operation of the
querying process that caused a state transition and its response. The
authors also introduce efficient universal constructions for such ob-
jects. Our safely composable objects always return a value together
with the indication. However, this value may not be consistent with
the object’s actual state, and may be caused by another process’s
operation, therefore the two definitions are incomparable. Interest-
ingly, reference [3] shows that abortable objects do not compose
if their progress is based on step contention. Intuitively, this is
because, the correctness properties of abortable objects of [3] al-
low an aborted operation to take effect after it aborts. In contrast,
our definition ensures safe composition, irrespective of the progress
predicate. Finally, reference [13] investigates formal specifications
for composition, and their implications for the scalability of soft-
ware verification. Our specification of a safely composable object
can be seen as a generalization of the speculative framework given
in that paper.

3. PRELIMINARIES
Model. We consider the standard wait-free asynchronous shared
memory model with n processes, n−1 of which may fail by crash-
ing. Processes communicate through multiple-writer-multiple-reader
atomic registers. Any register R exports atomic read and write op-
erations, with standard semantics.
Objects, Algorithms and Executions. We define an object as a
quadruple (Q, s, I,R,∆), whereQ is a set of states, s is a starting
state, I is a set of requests, R is a set of responses, and ∆ ⊆
Q × I × Q × R is the sequential specification of the object [6].
We assume that object types are non-trivial, i.e., all these sets are
non-empty. A history is defined as a sequence of inputs (elements
of I) that contains no duplicates. (For simplicity, we assume that
each request has a unique identifier.)

For example, the (one-shot) test-and-set object has initial state 0,
and is accessed by a test-and-set operation. The operation atom-
ically reads the value of the test-and-set and sets it to 1. We say
that the unique process that returns 0 from the test-and-set is the
winner, while the processes that return 1 are losers.

To implement an object, processes follow an algorithm. Given
a process and an input in the set I, an algorithm determines a se-
quence of steps whose execution establish an output in O. The
steps taken may be either local steps or shared memory reads and
writes. A process repeatedly chooses an arbitrary input and exe-
cutes the sequence of steps described by the algorithm until it de-
termines an output. When a process chooses an inputm, we say the
it invokes m. When it determines an output r, we say that it com-
mits r. We say that an algorithm implements an object if and only
if all the sequence of invocations and commits, ordered according
to their real-time occurrences, that can possibly be observed in the
system are linearizable [15].

We are interested in algorithms composed of a sequence of clearly
separated modules. A module is similar to an algorithm, but it can
be initialized and it can abort instead of committing. Two modules
are composed by using the aborts of the first module as initializa-
tion values for the second module. A process starts by running
the first module in the sequence of modules that compose the algo-
rithm. Given an input, the first module determines a sequence of
steps whose execution establish either an output or a switch value
ranging over the set V . If an output is committed, then a new in-
put is invoked, as before. But, when a process determines a switch
value v, we say that it aborts with the switch value v.

As for the first module, the second module determines the steps
to be followed to either commit or abort an input. However it also
determines a sequence of steps to execute given an input and a
switch value. When a process running the first module aborts with
the switch value v, the process executes the sequence of steps de-
termined by the second module given its last input and the switch
value v. In general, a process repeatedly chooses an input and exe-
cutes the steps determined by its current module, until it aborts and
switches to the next module.

We will be interested in properties of the sequence of aborts,
invocations and commits, ordered according to their real-time oc-
currences, observed in the system. We call such sequences traces.

Let V be the set of switch values. We denote by T the set of
tuples consisting of a request and a switch value, and we call such
tuples switch tokens. A request m may be invoked as is or together
with a proposed switch value v ∈ V for the object. In the first case
an invocation is denoted by the tuple (invoke,m) and in the second
case by (init,m, v). In an invocation, the purpose of the switch
value is to initialize the current module of the object.

A reply may be of the form (commit,m, r) where m is the re-
quest being responded to and r is a response inR or (abort,m, v)
where m is the request being responded to and v is a switch value
in V . In an abort response, the purpose of the switch value is to
initialize a new module of the object.
Progress Conditions. Algorithms that ensure safety and progress
in all executions are called wait-free. We will also consider imple-
mentations that ensure safety in all executions, but may not make
progress if two or more processes access the implementation con-
currently; we call such algorithms contention-free, as they ensure
progress in the absence of interval contention. Also, we consider
algorithms that guarantee that a process makes progress as long
as no other process takes steps concurrently. Such algorithms are
called obstruction-free, and they make progress in the absence of
step contention. For more precise definitions of these progress con-
ditions, please see [6].

4. A COMPOSABLE UNIVERSAL
CONSTRUCTION

In this section, we consider implementing generic shared-memory
objects in a composable way. We show that any sequential type can
be implemented using only registers in executions when there is no
step contention, and reverting to stronger compare-and-swap prim-
itives otherwise. More precisely, we describe a composable uni-
versal construction, following the structure of an abortable repli-
cated state machine (Abstract), introduced in [20] in the context
of Byzantine fault-tolerant algorithms. “Light-weight” implemen-
tations that adapt to the semantics of the object are discussed in
Section 5.

4.1 Definition and Properties
We introduce the definition and properties of a composable uni-

300

versal construction, given as an Abstract [12, 20]. An Abstract
encapsulates the specification of a state machine that may abort.
We begin by recalling the definition and properties of an Abstract,
as given in [20].

DEFINITION 1 (ABSTRACT, [20]). An Abstract exports one
operation Invoke(m,h), that issues request m with initial history
h. An Abstract exports two indications that may be returned to the
client: Commit(m,h), and Abort(m,h). We say that the process
or operation commits (resp. aborts) the request m with history h,
where a history h is a sequence of requests that the process can use
to compute a reply (resp., to recover). If the process commits (resp.,
aborts)m with history h, we refer to h as the commit history (resp.,
abort history).
Abstract ensures the following properties on its traces.

1. (Termination) If a correct process invokes a request m, then
it eventually commits or aborts m with history h, and h con-
tains m.

2. (Commit Order) Let h and h′ be any two commit histories.
Then either h is a strict prefix of h′ or vice-versa.

3. (Abort Ordering) Every commit history is a prefix of every
abort history.

4. (Validity) In every commit/abort history h, no request ap-
pears twice and every request was invoked by some process
before the current operation returns.

5. (Non-Triviality) If a correct process invokes a request m and
some predicate NT is satisfied, the process commits m. We
say that the Abstract guarantees progress under predicate
NT .

6. (Init Ordering) Any common prefix of init histories is a prefix
of any commit or abort history.

In short, an Abstract returns histories that represent the ordering
of process requests. (For simplicity, we assume that every request
has a unique identifier.) In case of a commit, this ordering is defini-
tive and the result of the call is uniquely determined by the order of
the requests in the history. In the case of an abort, we require that
every abort history contains every commit history as its (non-strict)
prefix. Thus, effectively, no request invoked after an abort can be
committed.

Note that the above definition and properties hold for any system
model. In this paper, we consider shared memory implementations.
Thus, the non-triviality predicate NT for our implementations will
be expressed in terms of different notions of contention in shared
memory.

We will consider multiple Abstract instances composed to achieve
wait-free object implementations whose performance may change
depending on the adversarial setting. Intuitively, the composition
of two Abstract instances A and B is an algorithm that first calls
AbstractA, returning with history h if the call returns (commit, h);
otherwise, if the call returns (abort, h), it calls Abstract B with
initial history h. The central property of this framework is that its
instances are inherently composable, i.e., the composition of any
two Abstract instances generates a third Abstract instance.

THEOREM 1 (COMPOSITION, [20]). The composition of any
two Abstract instances is an Abstract instance.

4.2 The Universal Construction
We build a universal construction following the Abstract spec-

ification. The construction is based on Herlihy’s classic universal
construction [14], replacing wait-free consensus with consensus in-
stances that may abort in the presence of contention.

More precisely, an abortable consensus instance returns either a
commit or an abort indication, together with a decision value v (in
case of abort, the instance returns an empty value⊥). The instance
guarantees to commit as long as a progress predicateNT holds. In
the Appendix, we present abortable consensus algorithms ensuring
progress in the absence of interval contention (SplitConsensus) and
in the absence of step contention (AbortableBakery), which only
use read-write atomic registers. These are abortable variants of al-
gorithms already present in the literature [6, 18], respectively.
Description. Processes share an array of abortable consensus in-
stances Cons ensuring progress as long as predicate NT holds, an
atomic register Aborted, a snapshot object Reqs, where process
pi adds its requests in component Reqs[i], and an atomic counter
C, used to assign timestamps to process requests. Each process
maintains a list lP rop of proposed requests and a list lPerf of per-
formed requests. The process runs in parallel an instance of the
universal construction and a task checkAbort that checks whether
the Aborted register has been set to true.

As long as the abortable consensus instances do not return an
abort indication, the construction proceeds exactly as Herlihy’s
universal construction, using the Cons vector to agree on the re-
quests to be performed on each process’ local copy of the object,
and incrementing the counter C for each new request. On the
other hand, if a process receives abort from a consensus instance
Cons[`] or readsAborted = true in the checkAbort task, then the
process first sets the Aborted register to true (in case the register
is not already set), and reads count, the value of the counter C, to
get the length of the abort history.

Then the process proceeds to compute a valid abort history. It
starts from an empty history and appends, in order, all requests that
have been decided in the Cons vector, from 1 to count , irrespec-
tive of whether the requests have been committed or aborted. For
consensus instances in Cons to which it has not participated, the
process can get a decision value by proposing ⊥. Following this
procedure, the process obtains an abort history of length at most
count.

For initializing a new instance of the universal construction, each
process proposes, in order, the requests in its (abort) history to the
Cons list of the new instance. The process then proceeds to execute
the new instance as described above. (Note that a process may abort
during this initialization step.)
Progress predicate. The above construction guarantees to commit
requests as long as the progress predicateNT of the abortable con-
sensus implementation holds. (This predicate could be the absence
of interval contention, or the absence of step contention.) It follows
that, given such a consensus algorithm, the construction verifies the
properties of an Abstract with progress predicate NT .

LEMMA 1. Given an abortable consensus algorithm A that al-
ways commits as long as predicate NT holds, the above construc-
tion is an Abstract with progress predicate NT .

Contention-free, obstruction-free and wait-free variants. In the
Appendix, we present abortable consensus algorithms that ensure
progress in the absence of interval contention (SplitConsensus) and
in the absence of step contention (AbortableBakery), which only
use read-write atomic registers. Lemma 1 implies that these al-
gorithms generate universal constructions with the corresponding
progress predicates. It is easy to see that if the abortable con-
sensus algorithm is replaced by a wait-free consensus algorithm
we obtain a wait-free composable universal construction that never
aborts. The composition of these three Abstracts is an Abstract
that never aborts, and only uses registers in executions with no in-

301

terval or step contention. Note that the commit ordering property
of Abstract implies that the composition generates linearizable im-
plementations for generic objects. We formalize this as follows.

PROPOSITION 1. Every sequential type has an Abstract imple-
mentation, using only registers in the absence of interval or step
contention, and employing compare-and-swap otherwise.

Complexity Cost. On the other hand, the composition of generic
object implementations comes at a price. Any wait-free universal
Abstract implementation must have linear space and step complex-
ity [16]. Moreover, we notice that any wait-free Abstract imple-
mentation of a non-trivial sequential type solves consensus, even if
the original object has lower consensus number. This follows eas-
ily, since we can use the commit histories to reach a decision value
among n processes: the process with the first committed request in
the commit histories imposes its proposal value on the consensus
object.

PROPOSITION 2. Every Abstract implementation of a non-trivial
sequential type guaranteeing wait-free progress solves wait-free
consensus.

In the next section, we examine how to avoid this cost.

5. SAFELY COMPOSABLE OBJECTS

5.1 Definitions
Given the definitions in Section 3, letO = (Q, s, I,R,∆) be an

object andH be the set of all possible histories (recall that a history
is a sequence of requests in I that contains no duplicates). The
definition of a safely composable algorithm takes two parameters:
a set of switch values V and a constraint function M : 2T → 2H,
mapping every set of switch tokens into the set of possible histories
that it encodes. (Recall that T denotes the set of switch tokens,
i.e. pairs consisting of a request and a switch value.) Intuitively, a
constraint function puts restrictions on the allowed interpretations
of a given set of init or abort tokens.

Let β be the function from histories to responses of O such that
β(h) is the last response obtained by applying h sequentially to
O. Given a history h and a requests m appearing in h, we define
β(h,m) as the response matching m in h.

Given a set I of requests, we define the equivalence relation ≡I
such that h1 ≡I h2 iff (i) both h1 and h2 contain all the requests
in I , (ii) for all h ∈ H, β(h1h) = β(h2h), and (iii) for all requests
m ∈ I , β(h1,m) = β(h2,m). Intuitively, two histories composed
of requests in I are equivalent if they “appear” the same (return the
same responses) in all possible extensions.

Given a set of switch tokens T , we define requests(T) as the
set of requests found in the token in T and we define eq(T,M)
as the set of equivalence classes of the relation ≡requests(T) parti-
tioning the set M(T). Given a history h we denote by [h]T,M the
equivalence class of h according to ≡requests(T) in M(T).

Let τ be a trace of O, as defined in Section 3. Let an index be a
position in a trace. An index i of τ might be either an invoke, com-
mit, abort, or init index, depending on the event appearing at i in τ .
Let Ind(τ) be the set of all indices in τ . Given a commit index i,
let response(i) be the response appearing at i. Let inits(τ) be the
set of switch tokens found in the init requests of τ and aborts(τ)
be the set of switch tokens found in the abort replies of τ .

An interpretation φ is a function φ : Ind(τ) → H. We denote
by φτ the trace obtained from trace τ by replacing every commit or
switch value appearing in τ at index i with φ(i). A trace τ is valid
with respect to a mapping M : 2T → 2H iff M(inits(τ)) 6= ∅.

An interpretation φ is valid with respect to trace τ , mapping M ,
and history habort ∈M(aborts(τ)) iff:

1. There exists hinit ∈ M(inits(τ)) such that for every init
index i ∈ τ , φ(i) = hinit.

2. For every abort index i ∈ τ , φ(i) = habort.
3. For every commit index i ∈ τ , we have that β(φ(i)) =
response(i).

4. φτ is a trace that satisfies the properties of an Abstract from
Definition 1.

Intuitively, a valid interpretation φ for τ produces a trace φτ by
replacing every commit value or switch value appearing at index i
in τ with a history h so that the invocation, init events, commit and
abort responses are globally consistent.

If φ is valid w.r.t. τ , M , and habort, we denote by init(φ, τ)
the unique history h such that for all init index i of τ , φ(i) = h.
Similarly we denote by abort(φ, τ) the unique history h such that
for all abort index i of τ , φ(i) = h.

DEFINITION 2 (SAFE COMPOSITION). An algorithm A is a
safely composable implementation of an object O with respect to
a set of switch values V and a constraint function M iff for every
trace τ of A that is valid w.r.t. M and for every equivalence class
e ∈ eq(aborts(τ),M), there exists a history habort ∈ e and an
interpretation φ that is valid with respect to τ , M , and habort. If
eq(aborts(τ),M) = ∅, then φ has to be valid with respect to τ ,
M , and the empty history ⊥.

5.2 Properties
The key property of this specification is that the composition of any
two safely composable objects is also a safely composable object.
(Recall that, intuitively, the composition ofA andB runs algorithm
B using A’s outputs as inputs.) The proof of this result illustrates
a trade-off between the strength of the specification and the diffi-
culty of proving correctness of the composition: the more general
the specification, the harder it is to prove that the composition is
correct.

THEOREM 2 (COMPOSITION). LetA andB be two algorithms
that are safely composable implementations of an objectO with re-
spect to a set of switch values V and a constraint functionM. Then
the composition ofA andB is a safely composable implementation
of object O with respect to V andM.

PROOF. We begin the proof by stating a couple of auxiliary re-
sults.

LEMMA 2. For all set V of switch values, the relation ≡V is
a right congruence w.r.t. history concatenation. In other words,
for all set V of switch values, if h1 ≡V h2 then for all history h,
h1h ≡V h2h.

This lemma is straightforward from the definition of ≡V . It means
that we cannot distinguish whether history h1 or history h2 was ex-
ecuted if we only look at subsequent responses. This fact in crucial
in the proof of the next lemma.

Consider now an arbitrary trace τ and suppose that φ is an inter-
pretation of τ such that φτ satisfies the properties of Abstract, all
init indexes are mapped to the same history, and all abort indexes
are mapped to the same history. By the definition of Abstract,
we know that for all init, commit, or abort indexes i of τ , there
exists a history hi such that φ(i) = init(φ, τ)hi. Given a his-
tory h, let subst(φ, h) be the interpretation of τ such that for all
init, commit, or abort indexes i of τ , subst(φ, h)(i) = hhi. Intu-
itively, subst(φ, h) is obtained by replacing, in every history φ(i),
the longest common prefix of init histories in φτ (init(φ, τ)) with
the history h.

302

LEMMA 3. Consider a trace τ and suppose that φ is a valid
interpretation of τ with respect to a constraint function M and
a history habort. Let hinit = init(φ, τ). Then for all histories
h′
init ∈ M(inits(τ)) related to hinit (i.e. such that h′

init ∈
[hinit]inits(τ),M), there exists a history h′

abort ∈ M(aborts(τ))
related to habort (i.e. such that h′

aborts ∈ [habort]aborts(τ)),M)
and an interpretation φ′ such that init(φ′, τ) = h′

init and the in-
terpretation φ′ is valid w.r.t τ , M , and h′

abort.

Intuitively, the lemma implies that interpretations of safely com-
posable objects compose: in particular, every valid interpretation
of abort histories of A can be used to interpret the init histories of
B.

PROOF. Let φ′ = subst(φ, h′
init) and h′

abort = abort(φ′, τ).
Since φ is an interpretation of τ such that φτ satisfies the properties
of Abstract, φ′ and h′

abort are well defined. Moreover we claim that
φ′ is valid w.r.t τ , M , and h′

abort:

• h′
init ∈M(inits(τ)) by definition and we trivially have that
init(φ′, τ) = h′

init.

• We trivially have that that for all abort index i, φ′(i) =
h′
abort.

• Lemma 2 implies that β(φ′(i)) = β(φ(i)) = response(i).

• φ′(τ) is a trace of Abstract because, given any history h, the
four properties of Abstract are left invariant by substituting
h, in every history, for the longest common prefix of init his-
tories.

Hence φ′ is valid w.r.t. τ , M , and h′
abort.

It remains to show that h′
abort ∈ [habort]aborts(τ),M . By Lemma

2 we have that h′
abort ∈ [habort]inits(τ),M . Hence we know that

(ii) for all h ∈ H, β(h′
aborth) = β(haborth).

Moreover because φ′(τ) is a trace of Abstract, Validity holds of
φ′(τ). Hence (i) for all request m in aborts(τ), m ∈ h′

abort. By
definition of h′

abort, we know that there exists h such that habort =
hinith and h′

abort = h′
inith. We now consider two cases: Suppose

m ∈ h′
init. By Validity we have that m ∈ requests(inits(τ)).

Then because h′
init ∈ [hinit]inits(τ),M we have that β(habort,m) =

β(h′
abort,m). Suppose m ∈ h. Since h′

init ∈ [hinit]inits(τ),M
we have that for all h′, β(hinit′h

′) = β(hinith
′). Hence (iii)

β(hinit′h,m) = β(hinith,m). From (i), (ii), and (iii) we have
that h′

abort ∈ [habort]aborts(τ),M .

Returning to the proof of the Theorem, consider a trace τ of
the composition of A and B that is valid w.r.t. M and let τA
be the projection of τ onto the events of A and τB be the pro-
jection of τ onto the events of B. Consider an equivalence class
e ∈ eq(aborts(τB),M). We show below that there exists h ∈ e
and an interpretation that is valid w.r.t. τ , M , and h.

First observe that since τ is valid w.r.t. M , then τA is valid w.r.t.
M too. Thus, because A is a safely composable implementation
of O w.r.t. V and M, τB is valid w.r.t. M. Hence, because B
is a safely composable implementation of object O with respect to
V andM, we know that there exists a history hBabort ∈ e and an
interpretation φB of τB such that φB is valid with respect to τB ,
M , and hBabort.

Let hBinit = init(φB , τB), i.e. the history such that for all init in-
dex i of τB , φB(i) = hBinit. Observe that hBinit ∈M(inits(τB)) =
M(aborts(τA)). Consider e′ = [hBinit]inits(τB),M , which is the
equivalence class of hBinit w.r.t. ≡inits(τB) in M(inits(τB)). Be-
cause A is a safely composable implementation of object O with

respect to V andM, we know that there exists a history hAabort ∈ e′
and an interpretation φA of τA such that φA is valid with respect to
τA, M , and hAabort.

Since hAabort ∈ [hBinit]inits(τB),M , by Lemma 3 we obtain a
history hBabort

′ ∈ [hBabort]aborts(τB),M = e and an interpreta-
tion φ′

B that is valid w.r.t. τB , M , and hBabort
′
, and such that

init(φ′
B , τB) = hAabort = abort(φA, τA). Let φ be the inter-

pretation of τ such that if i is an index of τA, then φ(i) = φA(i)
and else φ(i) = φ′

B(i). Since φA and φ′
B coincide on the abort

indices of τA (or equivalently on the init indices of τB), we have
by the Abstract composition theorem that φτ is a trace of Abstract.
Moreover since φA and φ′

B are valid w.r.t. τA and τB we have
that for all commit index i, β(φ(i)) = response(i). Finally we
have by validity of φA(τA) and φB(τB) that for every init index
i ∈ τ , φ(i) = init(φA, τA), and that for every abort index i in τ ,
φ(i) = hBabort

′
.

In conclusion we obtained the interpretation φ which is valid
w.r.t. τ , M , and hBabort

′
. With the fact that hBabort

′ ∈ e this proves
our goal.
Another property that follows from this specification is that any
safely composable object which is not initialized by a previous
module is linearizable. This follows since a valid interpretation φ
of τ satisfies the Abstract Commit Order and Validity properties.
It was proved in [13] that any trace satisfying these properties is
linearizable.

THEOREM 3 (LINEARIZATION). Consider a safely compos-
able implementation A of object O with respect to a set of switch
values V and a mappingM. Consider a trace τ of A that contains
no init requests. Then then projection of τ onto invoke and commit
events is linearizable.

Note that Abstract is a safely composable implementation of
a generic object which responds to invocations with its full exe-
cution history. This can be seen by taking a constraint function
M that maps a set of histories to their longest common prefix and
by observing that in this case, the interpretation that associates to
init requests the longest common prefix of all inits, to the abort re-
quest the longest common prefix of the abort requests, and to the
responses the history contained in the response, is a valid interpre-
tation.

6. A SPECULATIVE TEST-AND-SET ALGO-
RITHM

We now present a speculative long-lived test-and-set implemen-
tation. The construction is based on two modules, composed to
obtain a wait-free linearizable test-and-set (please see Figure 1 for
an illustration). The first module, A1, uses only registers and has
constant step complexity, ensuring progress in the absence of step
contention. The second module A2 is essentially a hardware imple-
mentation of test-and-set. We consider an implementation where
the two modules are composed in the increasing order of progress
condition strength: a process first tries to execute the obstruction-
free module; if this module aborts (because of contention), then it
tries to execute the wait-free module A2. Upon a reset operation,
the calling process also reverts the algorithm to an instance of the
obstruction-free module A1, thus the module returns to speculative
mode in case it was using the hardware implementation. We now
describe each module in more detail.

6.1 The Obstruction-Free Module
In the first module, described in Algorithm 1, processes share

four atomic registers: aborted , initially false, V , initially 0, and P

303

A1
Obstruction-free
O(1) complexity

A2
Wait-free

Hardware TAS

request

(commit, v) (commit, v)

(abort, v1)

reset

Figure 1: The structure of the test-and-set algorithm.

1 Shared:
2 Registers P and S, initially ⊥, register aborted , initially false,

register V , initially 0

3 procedure A1-test-and-set(val)i
4 if aborted = true then
5 if V.read() = 0 then return (abort,W)
6 else return (abort, L)
7 if V.read() = 1 or val = L then
8 return (commit, loser)
9 if P 6= ⊥ then return (commit, loser)

10 P ← i
11 if S 6= ⊥ then return (commit, loser)
12 S ← i
13 if P = i then
14 V ← 1
15 if aborted = false then
16 return (commit,winner)
17 else return (abort,W)

18 else
19 aborted ← true
20 val ← V
21 if val = 1 then
22 return (commit, loser)
23 return (abort,W)

Algorithm 1: The obstruction-free module.

and S, initially ⊥. The aborted register indicates whether the cur-
rent instance has been aborted, whereas V holds the current value
of the object. Registers P and S are used to indicate whether other
processes are taking steps in the current execution. In short, we en-
sure that each process either reaches a winner/loser decision in the
absence of interval contention, or that the process detects interval
contention, and aborts.

More precisely, processes first check the value of the aborted
register. If it has been set to true, then the process aborts with state
W, if the V register has not been set, or with state L, dropping
from contention, if V has been set. Otherwise, if aborted = false,
competing processes race to write their value to both registers P
and S, in order. If one of these registers has already been written by
another process, then the current process can safely commit loser
(lines 9 and 11). Otherwise, the process checks if its identifier is
still the value in P (line 12). If this holds, then we are certain
that the process is the only one in this state. Next, the process sets
the register V to 1, modifying the value of the object (line 14).
This step will cause other processes to subsequently return loser.
Finally, it checks whether the instance has been aborted by another
process. If not, then the process returns winner. Otherwise, the
process will abort with state W, signifying that the object has not
yet been won (line 17). On the other hand, if register P ’s value is no
longer i, then interval contention occurred. In this case, the process
either returns loser, if V has already been set to 1 by a concurrent
process, or it aborts with state W if V is still 0 (lines 18–23).

Analysis. We show that A1 is a correct safely composable ob-
ject, whose progress predicate is the absence of step contention. It
is easy to see that the algorithm has constant time and space com-
plexity. The main technical point in the proof is mapping algorithm
traces to Abstract histories. We start by defining the set of input
values V and the mapping M with respect to which A1 is safely
composable. In short, V is the set of abort values W and L, while
M maps any set of replies into a set of possible histories that all
start with the same request that returned W, and contain all the re-
quests that caused the replies.

DEFINITION 3. We define the set V = {W, L}. Then the map-
ping M : 2T → 2H is defined as follows. Consider a set of replies
S = {(r1, v1), . . . , (r`, v`)}. If S contains a reply with value
vi = W, then M(S) := {h ∈ H | (∃i ∈ {1, . . . , `} such that vi =
W and head(h) = ri) and (∀j ∈ {1, . . . , `}.rj ∈ h) }.

Otherwise, M(S) contains histories that start with an arbitrary
request r not in S, and contain all requests in S, i.e. M(S) :=
{h ∈ H | (h 6= ⊥ and head(h) ∈ R\S) and (∀j ∈ {1, . . . , `}, rj ∈
h)}.

Next, we prove that module A1 is safely composable with respect
this definition.

LEMMA 4 (OBSTRUCTION-FREE MODULE). The module A1
in Figure 1 is a safely composable test-and-set implementation with
respect to the sets V and M from Definition 3.

PROOF. The proof is structured as follows: we first prove in-
variants on the algorithm A1, after which we use these invariants
to build the mapping to an Abstract required by the definition of a
safely composable object.

The following invariants hold in every execution of A1 (their
proof can be found in the full version of this paper [5]):

1. At most one process may execute lines 14-17. Also, at most
one process may commit winner in A1.

2. If a process commits winner, then no process aborts with W
in A1.

3. In every execution, there exists at least one process p such
that 1) p either a) crashes, or b) commits winner, or c) aborts
with W, and 2) p’s request is invoked before any operation
commits loser.

4. No operation that aborts with W may start after an operation
commits loser.

5. All operations that start after an operation aborts will abort.
All operations that start after an operation aborts with L abort
with L.

We now consider a trace τ of A1 that is consistent with the map-
ping M , i.e. that M(inits(τ)) 6= ∅. In particular, this implies that
the trace τ is non-empty. We will consider arbitrary equivalence
classes of histories e ∈ eq(M(aborts(τ))). For each e, we show
that there exists a history habort ∈ e and an interpretation φ of
events in τ such that φ is valid with respect to τ,M , and habort.

We build habort as follows. Let A be the set of requests in τ
that either commit winner or abort with W. If this set is empty,
then, by Invariant 3, there exists a process p that crashes, whose
operation started before any operation commits loser. IfA is empty,
then we add the corresponding request to A, so that A is now non-
empty. Next, we define the set B to contain all the requests in τ
that committed loser. Finally, we define the set C to contain all
the requests in τ that aborted with L. We order requests in sets B
and C, respectively, based on the linearization order when reading
register aborted in line 3. Notice that, by Invariants 4 and 5, we

304

obtain that the concatenation, in order, of requests in sets A, B,
and C respects the order of non-overlapping operations. The only
ordering which is not fixed at this point is that on members of the
set A of requests.

Therefore, consider an arbitrary equivalence class e from the set
eq(M(aborts(τ))). We consider three cases. First, if aborts(τ)
contains no requests, then all the requests committed in τ . In this
case, e is trivial, habort is empty, and the set A is a singleton. To
the request in A we append all requests in B, ordered as described
above, to obtain history h. For each committed request r we define
φ(r) as the prefix of h that ends with r. It is clear that β(φ(r)) =
response(r) for all requests r. We also assign history h to any init
requests in τ . It then follows that the resulting trace φτ satisfies the
Abstract properties.

Hence we can assume that aborts(τ) is not empty. If aborts(τ)
contains no requests that aborted with W, then, by Definition 3,
M(aborts(τ)) is the set of histories starting with any request r /∈
aborts(τ) that contain each request in aborts(τ). All such histo-
ries are in the same equivalence class with respect to ≡aborts(τ),
therefore there exists only one possible choice for e. On the other
hand, since there are no requests aborting with W, the setA is a sin-
gleton. We build the history habort by concatenating the setsA, B,
and C. Since, by definition, the request in A is not in aborts(τ),
we obtain that habort ∈ e as required. To build φ, we associate
habort to each aborting and init request; to every committed re-
quest r, we associate the prefix of habort up to r. The resulting
mapping φ verifies the Abstract properties.

Finally, we consider the case where aborts(τ) contains at least
one request aborting with W. Let S be the set of these requests.
By Definition 3, for each request r ∈ S, there exists an equiva-
lence class er ∈ eq(M(aborts(τ))) with the property that each
history in er starts with request r. In order to build the history
habort for each such class, first notice that in trace τ the setAmust
equal the set S, by Invariant 2. Hence, given an equivalence class
er for r ∈ S, we place r first in habort, after which we place the
rest of the requests in S (in the linearization order when reading
register aborted on line 3), then requests in B and in C, in the
order described above. Clearly, habort ∈ er . To build φ, we asso-
ciate habort to each aborting and init request; to every committed
request r, we associate the prefix of habort up to r. It is straight-
forward to check that the resulting mapping verifies the Abstract
properties.

Thus, we have verified the safely composable properties in each
case, and therefore module A1 is a safely composable implementa-
tion of test-and-set under V and M .

6.2 The Wait-Free Module
The wait-free module A2, whose pseudocode is given in Algo-

rithm 2, uses a hardware test-and-set T , whose value is initially 0.
Participating processes entering the module with val = L automat-
ically return loser; every other participant calls T , and commits the
value obtained. We prove that this module is also safely compos-
able. The proof is a simplified version of Lemma 4.

LEMMA 5 (WAIT-FREE MODULE). The module A2 in Figure 2
is a safely composable test-and-set implementation with respect to
the sets V and M given in Definition 3.

PROOF SKETCH. We consider an arbitrary trace τ of A2. Since
τ is valid w.r.t. M , τ must be non-empty. Since the module A2
never aborts requests, it follows that aborts(τ) = ∅, therefore the
history habort is empty. Therefore the only requirement is to find
a valid interpretation φ. It is straightforward that this interpretation
is given by the linearization order at the test-and-set object T , after

1 Shared: An array TAS [] of speculative test-and-set objects
2 A register Count, initially 0

3 procedure reset()i
4 if crtWinner = true then
5 Count ← Count .read() + 1
6 crtWinner ← false
7 return
8 procedure test-and-set()i
9 c← Count .read()

10 (res, val)← TAS[c].A1.test-and-set(⊥)
11 if res = abort then
12 (res, val)← TAS[c].A2.test-and-set(val)
13 if val = winner then
14 crtWinner ← true
15 return val

16 Shared: Test-and-set object T
17 procedure A2-test-and-set(val)i
18 if val = L then return (commit, loser)
19 return (commit, T.test-and-set())

Algorithm 2: The resettable test-and-set object.

which we append requests with val = L, respecting the order of
non-overlapping operations.

6.3 Composing and Resetting the Modules
Composing the modules. The above modules have the property
that they can be composed in any order to yield a linearizable im-
plementation (in particular, module A1 can also be composed with
itself). In this extended abstract, we consider A1 composed with
A2, as in Figure 1. The composition yields a linearizable wait-free
test-and-set object that uses only registers in the absence of step
contention, as we show in Lemma 7.
Resetting the Object. The reset mechanism reverts the object to
0 once it has been set, and is also used to revert to a speculative
module from the more expensive wait-free module. Practically, this
mechanism ensures the back edge in the diagram from Figure 1.

The procedure, whose pseudocode is in Algorithm 2, works as
follows: we use an array TAS [] of wait-free test-and-set objects,
each implemented using A1 and A2 and a shared register Count ,
which will be used as a counter. Since the test-and-set is well
formed, only the current winner may reset the object [1]. When
the winner calls reset, it increments the value of Count by one.
Each process wishing to participate in the test-and-set first reads the
value of Count , and then participates in TAS [Count], accessing
each of the modules in this wait-free implementation if necessary.
We note that a similar construction was used by Afek et al. [1] to
obtain multi-use randomized test-and-set from single-writer regis-
ters.

6.4 Proof of Correctness
We first prove that a request may abort from A1 only in the pres-

ence of step contention.

LEMMA 6 (PROGRESS). The algorithm A1 never aborts in
the absence of step contention.

PROOF. There are three possibilities for a process p to abort: ei-
ther on line 17, or on line 23, or on lines 5–6. If p aborts on line 23,
then the presence of step contention is straightforward: there must
exist another process q that wrote to register P after p wrote to
P . On the other hand, if p aborts on line 17, then there must ex-
ist a process q concurrent with p that sets the register aborted to

305

true. While such a process q must exist, it is not immediate that q
takes a step during p’s execution. Assume for contradiction that q
takes no steps during p’s execution, in particular that it wrote to the
aborted register before p invoked its request. In this case, however,
the register P cannot equal⊥ during p’s execution, therefore p will
never reach line 17, a contradiction. Finally, if the process aborts on
lines 5 or 6, then necessarily another process q wrote to the register
aborted . It follows that process q experienced step contention, as
required.

We conclude with the proof of correctness of the long-lived imple-
mentation given in Algorithm 2. We first prove that the composition
of A1 and A2 is a linearizable one-shot test-and-set: from Lemma 4
and Lemma 5 plus Theorem 2, we get that the composition is safely
composable. By Theorem 3, the composition is linearizable, since
no request ever aborts from the composition. Second, we prove that
the long-lived version can be linearized starting from the single-use
linearizations.

THEOREM 4. The composition of modules A1 and A2 given in
Algorithm 2 is a correct wait-free linearizable long-lived test-and-
set implementation, which uses only registers and ensures constant
step complexity in obstruction-free executions.

PROOF. First, notice that we can put together Lemma 4, Lemma 5,
Theorem 2, and Theorem 3 to obtain the following result.

LEMMA 7. The composition of modules A1 and A2 in lines 9-
15 of Figure 2 is a linearizable one-shot test-and-set.

Given this Lemma, consider an arbitrary trace of the long-lived al-
gorithm. For each index i in the array TAS [], let Opi be the op-
erations invoked on TAS [i]. From Lemma 7, we know that, for
any i, we can linearize the operations in idOpi (the reset operation
is simply added to the linearization order given by the Lemma) to
obtain a history hi of requests. We will then obtain a linearization
order for the long-lived object by concatenating the linearization
orders hi in increasing index order. The resulting history respects
the consistency requirements since it is valid on each object, and
respects the order of non-overlapping operations because the regis-
ter Count is atomic. The second claim follows immediately from
Lemma 6.

7. CONCLUSIONS AND FUTURE WORK
We have presented a framework for building safely composable

shared memory algorithms, and analyzed the cost of composing
such algorithms. Our results suggest that this cost is negligible
when expressed in terms of step complexity or computational power,
if the implementation may take advantage of the semantics of the
implemented object. Our framework provides a simple way to
design and prove the correctness of speculative concurrent algo-
rithms. One direction for future work would be to apply our frame-
work to implementations of more complex objects, such as queues
or fetch-and-increment registers, and to see whether it can yield
practical algorithms.

8. REFERENCES
[1] Yehuda Afek, Eli Gafni, John Tromp, and Paul M. B.

Vitányi. Wait-free test-and-set (extended abstract). In WDAG
’92, pages 85–94, London, UK, 1992. Springer-Verlag.

[2] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long lived
adaptive splitter and applications. Distributed Computing,
15(2):67–86, 2002.

[3] Marcos K. Aguilera, Svend Frolund, Vassos Hadzilacos,
Stephanie L. Horn, and Sam Toueg. Abortable and
query-abortable objects and their efficient implementation. In
PODC ’07, pages 23–32, New York, NY, USA, 2007. ACM.

[4] Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Corentin
Travers. Generating fast indulgent algorithms. In ICDCN’11,
pages 41–52, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] Dan Alistarh, Rachid Guerraoui, Petr Kuznetsov, and
Giuliano Losa. On the complexity of composing
shared-memory algorithms. Technical report, EPFL, 2012.

[6] Hagit Attiya, Rachid Guerraoui, Danny Hendler, and Petr
Kuznetsov. The complexity of obstruction-free
implementations. J. ACM, 56:24:1–24:33, July 2009.

[7] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr
Kuznetsov, Maged M. Michael, and Martin T. Vechev. Laws
of order: expensive synchronization in concurrent algorithms
cannot be eliminated. In POPL, pages 487–498, 2011.

[8] Romain Boichat, Partha Dutta, Svend Frølund, and Rachid
Guerraoui. Deconstructing paxos. SIGACT News, 34:47–67,
March 2003.

[9] David Dice, Mark Moir, and William Scherer. Quickly
reacquirable locks. Technical report, Sun Microsystems,
2003.

[10] Partha Dutta and Rachid Guerraoui. The inherent price of
indulgence. In PODC ’02, pages 88–97, New York, NY,
USA, 2002. ACM.

[11] Oded Goldreich and Erez Petrank. The best of both worlds:
Guaranteeing termination in fast randomized byzantine
agreement protocols. Inf. Process. Lett., 36(1):45–49, 1990.

[12] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. The next 700 bft protocols. In EuroSys ’10,
pages 363–376, New York, NY, USA, 2010. ACM.

[13] Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa.
Speculative linearizability. Technical report, EPFL, 2011.
Accepted for publication at PLDI 2012, available at
http://lara.epfl.ch/w/slin.

[14] Maurice Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Systems,
13(1):123–149, January 1991.

[15] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3):463–492, 1990.

[16] Prasad Jayanti. A lower bound on the local time complexity
of universal constructions. In PODC, pages 183–192, 1998.

[17] Prasad Jayanti. Adaptive and efficient abortable mutual
exclusion. In PODC, pages 295–304, 2003.

[18] Victor Luchangco, Mark Moir, and Nir Shavit. On the
uncontended complexity of consensus. In Proc. of the 17th
International Conference on Distributed Computing, pages
45–59, 2003.

[19] Nalini Vasudevan, Kedar S. Namjoshi, and Stephen A.
Edwards. Simple and fast biased locks. In PACT ’10, pages
65–74, New York, NY, USA, 2010. ACM.

[20] Marko Vukolic. Abstractions for asynchronous distributed
computing with malicious players. PhD thesis, EPFL, 2008.

APPENDIX
A. ALGORITHMS FOR ABORTABLE CON-

SENSUS
The SplitConsensus Algorithm. The propose procedure contains

306

1 Shared: S, a splitter object, V , C, D, registers, initially ⊥
2 procedure init(old)i
3 (ind, res)← propose(old)
4 return (ind, res)
5 procedure propose(v)i
6 if splitter.get() = stop then
7 if V 6= ⊥ then
8 if C = false then return (commit, V)
9 else return (abort, V)

10 V ← v
11 if C = false then
12 splitter.reset()
13 return (commit, v)
14 else
15 C = true
16 ret← V
17 return (abort, ret)

18 procedure SplitConsensus(old, v)i
19 (ind, res)← init(old)
20 if ind = abort then return (abort, old)
21 else
22 if res = ⊥ then return propose(v)
23 else return (commit, res)

Algorithm 3: The SplitConsensus Algorithm.

the main body of the consensus protocol, first given in [18]. Each
process proposes a value and receives commit/abort indication, to-
gether with a tentative decision value. If the indication is commit,
then processes agree on the tentative value; if the indication is
abort, agreement is not guaranteed.

Processes share a splitter object S and atomic registers V , which
holds the tentative decided value, and C, a boolean flag signaling
contention. See Algorithm 3 for the pseudocode. Each process
first accesses the splitter S. If the process successfully acquires the
splitter, i.e. returns stop from it, then it proceeds to read the shared
value V . If V has already been updated, then the process returns
(commit, V) or (abort, V), respectively, depending on whether
contention has been detected by reading the flag C or not.

If the register V has not been updated by other processes, then
the process updates it with its initial value v. If the contention flag
C is false, then the process resets the splitter object and returns a
commit to its initial value v. Otherwise, if contention is detected or
the process cannot acquire the splitter, it sets the contention flag C
to true, and aborts with the current value of the shared value V.

In order to compose several instances of consensus protocols, we
introduce a wrapper SplitConsensus function around the propose
procedure. This allows the process to suggest, besides its proposal
value v for the consensus object, a value old for the object that it
may have inherited from another instance of abortable consensus.
(If this is the first invocation of a consensus protocol by the process,
or if no value is inherited, then the process has old = ⊥.)
The AbortableBakery Algorithm. We focus on the description of
the propose procedure, since the wrapper is identical to the previ-
ous algorithm. The algorithm is an abortable variant of the solo-fast
consensus algorithm presented in [6]. Processes share register ar-
rays (Ai) and (Bi) with i ∈ {1, . . . , n}, initially ⊥. Process pj
is assigned registers Aj and Bj . Each process tries to impose its
input value as the decision by associating it with the highest times-
tamp in the arrays (Ai) and (Bi). The process will always succeed
if there is no step contention; otherwise, it may abort.

Each process pi first performs a collect on the (Ai) array. The
local variable ki is the minimal value k such that the registers Ai
contain no values with timestamp larger than k, and no distinct

1 Shared:
2 Registers (Ai), (Bi), i ∈ {1, n}, initially ⊥
3 Register Quit , initially false, and Dec, initially ⊥
4 procedure propose(inputi)i
5 V ← collectAi
6 ki ← minimal k such that the registers Ai contain no values

with timestamp > k,
7 and no different values with timestamp k
8 if ∃(ki, v) ∈ V then vi ← v
9 else

10 V ′ ← collectBi
11 if V ′ 6= ∅ then vi ← u ∈ V with highest timestamp in

V ′

12 else vi ← inputi
13 Ai ← (ki, vi)
14 V ← collectAi
15 if there are no timestamps larger than ki and no values other

than vi with timestamp ki in V then
16 Bi ← (ki, vi)
17 V ← collectAi
18 if there are no timestamps larger than ki and no values

other than vi with timestamp ki in V then
19 if Quit = false then
20 Dec = vi
21 return (commit, vi)
22 Quit ← true
23 return (abort, Dec)
24 procedure init(old)i
25 (ind, res)← propose(old)
26 return (ind, res)
27 procedure AbortableBakery(old, v)i
28 (ind, res)← init(old)
29 if ind = abort then return (abort, old)
30 else
31 if res = ⊥ then return propose(v)
32 else return (commit, res)

Algorithm 4: The AbortableBakery consensus algorithm.

values with timestamp k. If such a timestamp exists in (Ai), then
pi sets its estimate to the associated value v. Otherwise, process pi
collects the contents of the array (Bi). If the collect is not empty,
then it sets its estimate vi to the value in V ′ with largest timestamp.
If the collect is empty, then pi keeps its input value as its estimate.

Next, the process writes its current (ki, vi) combination in its
slot in (Ai), and collects the contents of the array. If there are no
timestamps larger than ki and no values other than vi with times-
tamp ki in the collect, then the process writes (ki, vi) in Bi. The
process then checks again whether any process wrote a timestamp
larger than ki or a value other than vi with timestamp ki in Ai.
Otherwise, the process sets the decision value to vi and returns it.
If any of the previous checks fails, then the process has experienced
step contention and aborts by setting the Quit register to true, and
returns an abort indication together with the current value of the
Dec register.

B. SOLO-FAST TEST-AND-SET
The algorithm composed of modules A1 and A2 can be trans-

formed into a solo-fast algorithm by removing the code in the if
clause on line 3 of module A1. The resulting algorithm has the
property that a process uses the hardware object only when itself
encountering step contention, whereas in the current version a pro-
cess may abort if another process experiences step contention. Given
this modification, the composed algorithm remains correct, but the
proof that A1 is a safely composable object becomes more involved.

307

