A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Becker, Christoph; Wystup, Uwe # Working Paper On the cost of delayed currency fixing announcements CPQF Working Paper Series, No. 3 ## **Provided in Cooperation with:** Frankfurt School of Finance and Management Suggested Citation: Becker, Christoph; Wystup, Uwe (2005): On the cost of delayed currency fixing announcements, CPQF Working Paper Series, No. 3, HfB - Business School of Finance & Management, Centre for Practical Quantitative Finance (CPQF), Frankfurt a. M. This Version is available at: http://hdl.handle.net/10419/40178 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. Centre for Practical Quantitative Finance ## No. 3 ## On the Cost of Delayed Currency Fixing Announcements Christoph Becker Uwe Wystup June 2005 Author: Christoph Becker MathFinance AG Germany http://www.mathfinance.de Prof. Dr. Uwe Wystup HfB – Business School of Finance & Management Frankfurt/Main Germany Publisher: HfB - Business School of Finance & Management Phone: +49 (0) 69 154 008-0 • Fax: +49 (0) 69 154 008-728 Sonnemannstr. 9-11 • D-60314 Frankfurt/M. • Germany Abstract. In Foreign Exchange Markets vanilla and barrier options are traded frequently. The market standard is a cutoff time of 10:00 a.m. in New York for the strike of vanillas and a knock-out event based on a continuously observed barrier in the inter bank market. However, many clients, particularly from Italy, prefer the cutoff and knock-out event to be based on the fixing published by the European Central Bank on the Reuters Page ECB37. These barrier options are called discretely monitored barrier options. While these options can be priced in several models by various techniques, the ECB source of the fixing causes two problems. First of all, it is not tradable, and secondly it is published with a delay of about 10 - 20 minutes. We examine here the effect of these problems on the hedge of those options and consequently suggest a cost based on the additional uncertainty encountered. Keywords: Exotic Options, Currency Fixings JEL classification: C15, G12 **Acknowledgments**. We would like to thank Michael Braun, Ansua Dutta-Wystup, Thomas Heidorn, Wolfgang Schmidt and Dagmar Wicht for their help and comments. ## Contents | 1 | Intr | roduction | 3 | |----------|------------------|--------------------------------------------------|----| | | 1.1 | The Currency Fixing of the European Central Bank | 3 | | | 1.2 | Model and Payoff | 4 | | | 1.3 | Analysis Procedure | 4 | | 2 | Err | or Estimation | 5 | | | 2.1 | European Style up-and-out Call | 5 | | | 2.2 | Discretely Monitored up-and-out Call | 6 | | | 2.3 | Calculating the Delta-Hedge Quantity | 7 | | 3 | Ana | alysis of EUR-USD | 7 | | 4 | Cor | nclusion | 10 | | 5 | App | pendix | 11 | | | $5.\overline{1}$ | Analysis of USD-CHF | 11 | | | 5.2 | Analysis of USD-JPY | 13 | | | 5.3 | Analysis of EUR-GBP | 15 | ## 1 Introduction ## 1.1 The Currency Fixing of the European Central Bank The European Central Bank (ECB) sets currency fixings every working day in Frankfurt at 2:15 p.m. Frankfurt time. The actual procedure of this fixing is done by observing the spot rates in the inter bank market, in which the ECB also participates. Traders of the ECB in various locations get together to decide on how to set the fixing. The quantity quoted is not a bid price or an offer price the ECB or anybody else necessarily trades at, but is rather used for statistical and official means, for instance tax computation or economic research. An example of the ECB37 REUTERS screen is presented in Figure 1. Figure 1: Reuters screen ECB37 of 21 February 2005 showing the fixings of all currencies against EUR $\,$ Corporate treasures often prefer an independent source for currency exchange rates that provides a reference rate for their underlying under consideration. This way they are not bound to their own bank that might move the quoted cut-off rate in favor of their own position. The key features to stress are the following. - 1. The ECB fixing is *not* tradable. - 2. The ECB fixing is published with a delay of 10-20 minutes. In this paper we analyze the impact on the value for the short position of a discretely monitored reverse knock-out, as the problems mentioned above impose additional uncertainty when it comes to determining a proper hedge. Most of the hedging error is expected in the case of jumps in the payoff of the option, which is why we restrict ourselves to the liquidly traded up-and-out call option. The currency-pairs under consideration are EUR-USD, USD-JPY, USD-CHF and EUR-GBP. ## 1.2 Model and Payoff To model the exchange rate we choose a geometric Brownian motion, $$dS_t = S_t[(r_d - r_f) dt + \sigma dW_t], \tag{1}$$ under the risk-neutral measure. As usual, r_d denotes the domestic interest rate, r_f the foreign interest rate, σ the volatility. These parameters are assumed to be constant in this paper. For contract parameters maturity in years T, strike K and knock-out barrier B, fixing schedule $0 = t_0 < t_1 < t_2 \ldots, t_n = T$, the payoffs for the vanilla and for a discretely monitored up-and-out barrier option under consideration are $$V(F_T, T) = (\phi(F_T - K))^+,$$ (2) $$V(F,T) = (\phi(F_T - K))^+ II_{\{\max(F_{t_0}, \dots, F_{t_n}) < B\}},$$ (3) where F_t denotes the fixing of the underlying exchange rate at time t, $I\!\!I$ the indicator function and ϕ a put-call indicator taking the value +1 for a call and -1 for a put. Of course, F_t is usually close to S_t , the spot at time t, but it may differ as well. We start with payoffs $$V(S_T, T) = (\phi(S_T - K))^+, \tag{4}$$ $$V(S,T) = (\phi(S_T - K))^+ II_{\{\max(S_{t_0}, \dots, S_{t_n}) < B\}},$$ (5) whose values are explicitly known in the Black-Scholes model. In this model, the values are called *theoretical value* (TV). #### 1.3 Analysis Procedure - 1. We simulate the spot process with a Monte Carlo simulation using an Euler-discretization. Furthermore, we use a *Mersenne Twister* pseudo random number generator by Takuji Nishimura and Makoto Matsumoto [5] and a library to compute the inverse of the normal cumulative distribution function written by Barry W. Brown et al. [2]. - 2. We model the ECB-fixing F_t by $$F_t = S_t + \varphi, \quad \varphi \in \mathcal{N}(\mu, \sigma),$$ (6) where μ and σ are estimated from historic data. Note that F_t denotes the ECB-fixing at time t, which is nonetheless only announced 10 - 20 minutes later. We denote this time delay by $\Delta_{ECB}(T)$. This means that we model the error, i.e. the difference of fixing and traded spot, as a normally distributed random variable. The estimated values for the mean and the standard-deviation of the quantity Spot - ECB Fixing from historic time series are listed in Table 1. For the cross rates, where EUR is not one of the currencies, we take the respective ratios of fixings against EUR, e.g. for the USD/JPY fixing we divide the EUR/JPY fixing by the EUR/USD fixing, which is also common market practise in trade confirmations. | Currency pair | Expected value | Standard deviation | Time horizon | |---------------|----------------|--------------------|----------------| | EUR / USD | -3.125E-6 | 0.0001264 | 23.6 - 08.8.04 | | USD / YEN | -4.883E-3 | 0.0134583 | 22.6 - 26.8.04 | | USD / CHF | -1.424E-5 | 0.0001677 | 11.5 - 26.8.04 | | EUR / GBP | -1.33E-5 | 0.00009017 | 04.5 - 26.8.04 | Table 1: Estimated values for mean and standard-deviations of the quantity Spot - ECB-fixing from historic time series. The time series were provided by Commerzbank AG - 3. We evaluate the payoffs for barrier options for each path and run the simulations with the appropriate delta hedge quantities to hold. Then we compute for each path the error encountered due the fixing being different from the spot, and then average over all paths. - 4. We do this for various currency pairs, parameter scenarios, varying the rates, volatilities, maturities, barriers and strikes. We expect a significant impact particularly for reverse knock-out barrier options due to the jump of the payoff and hence the large delta hedge quantity. ## 2 Error Estimation Note that since we expect the resulting errors to be fairly small, we introduce a bid/offer-spread δ for the spot, which is of the size of 2 basis points in the inter bank market. We consider the following options in detail. #### 2.1 European Style up-and-out Call To determine the possible hedging error we propose the following to be appropriate. Note that the error is measured for a nominal of 1 unit of the underlying. We consider three cases. - 1. Let $S_T \leq K$. In this case, the seller who is short the option decides not to hedge as the option is probably out of the money, i.e. delta = 0. If the option turns out to be in the money, i.e. $F_T > K$, the holder of the short position faces a P&L of $K (S(T + \Delta_{ECB}(T)) + \delta)$ (units of the base currency). - 2. Let $S_T > K$ and $S_T < B$. Hence, one assumes that the option is in the money and delta is 1. If now $F_T \leq K$ or $F_T \geq B$, there is a P&L of $S(T + \Delta_{ECB}(T)) (S(T) + \delta)$. 3. Let $S_T \geq B$ and $F_T < B$. Here we have a P&L of $K - (S(T + \Delta_{ECB}(T)) + \delta)$. Note that other than in the first case, this P&L is of order K - B due to the jump in the payoff. ## 2.2 Discretely Monitored up-and-out Call We consider a time to maturity of one year with 250 knock-out-events, i.e., the possible knock out occurs every working day at 2:15 p.m. Frankfurt time, when the ECB fixes the reference rate of the underlying currency pair. We propose the following error determination to be appropriate. First of all, we adopt the procedure above for the maturity time. In addition, we consider every knock-out-event and examine the following cases. 1. Let $S_t < B$ and $F_t \ge B$. At time t the trader holds $\Delta(S_t)$ shares of stock in the delta hedge. He does not unwind the hedge at time t, as the spot is below the barrier. Only after the fixing announcement, it turns out that the hedge needs to be unwound, so he does this with delay and encounters a P&L of $$\Delta(S_t) \cdot (S_{t+\Delta_{ECB}(T)} - S_t), \tag{7}$$ where $\Delta(S_t)$ denotes the theoretical delta of the option under consideration, if the spot is at S_t . To see this, it is important to note, that the theoretical delta is negative if the underlying is near the barrier B. In this way, the seller of the option has been short the underlying at time t and must buy it in $t + \Delta_{ECB}(T)$ minutes to close out the hedge. Therefore, he makes profit if the underlying is cheaper in $t + \Delta_{ECB}(T)$, which is reflected in our formula. We shall elaborate later how to compute the theoretical delta, but we would like to point out that whenever we need a spot price at time t to calculate such a delta or to compute the value of a hedge, we refer to S as the tradable instrument instead of the contractually specified underlying F in order to account for the ECB fixing being non-tradable. 2. Let $S_t \geq B$ and $F_t < B$. Here the seller of the option closed out the hedge at time t, though she shouldn't have done so, and in $t + \Delta_{ECB}(T)$ she needs to build a new hedge. Note again that the theoretical delta is negative. This means that at time t the seller bought the underlying with the according theoretical delta-quantity, and in $t + \Delta_{ECB}(T)$ she goes short the underlying with the appropriate new delta-quantity. The profit and loss (P&L) is calculated via $$P\&L = \Delta(S_t) \cdot (S_t + \delta) - \Delta(S_{t + \Delta_{ECR}(T)}) \cdot S_{t + \Delta_{ECR}(T)}$$ (8) The other cases do not lead to errors due to an unexpected fixing announcement. Of course, delta hedging an option in the Black-Scholes model can lead to errors, because of hedge adjustments at discrete times and and because of model risk in general, see, e.g. [1]. #### 2.3 Calculating the Delta-Hedge Quantity The valuation of continuously monitored barrier options has been treated, e.g., in [3]. In order to compute the theoretical delta for the discretely monitored upand-out call, for which no closed-form solution is known, in acceptable time and precision, we refer to an approximation proposed by Per Hörfelt in [4], which works in the following way. Assume the value of the spot is observed at times iT/n, $i=0,\ldots,n$, and the payoff of the discretely monitored up-and-out call is given by Equation (5). We define the value and abbreviations $$\theta_{\pm} \stackrel{\triangle}{=} \frac{r_d - r_f \pm \sigma^2 / 2}{\sigma} \sqrt{T},$$ (9) $$c \stackrel{\Delta}{=} \frac{\ln(K/S_0)}{\sigma\sqrt{T}}, \tag{10}$$ $$d \stackrel{\Delta}{=} \frac{\ln(B/S_0)}{\sigma\sqrt{T}}, \tag{11}$$ $$d \stackrel{\Delta}{=} \frac{\ln(B/S_0)}{\sigma\sqrt{T}},\tag{11}$$ $$\beta \stackrel{\Delta}{=} -\zeta(1/2)/\sqrt{(2\pi)} \approx 0.5826, \tag{12}$$ where ζ denotes the Riemann zeta function. We define the function $$F_{+}(a,b;\theta) \stackrel{\Delta}{=} \mathcal{N}(a-\theta) - e^{2b\theta} \mathcal{N}(a-2b-\theta)$$ (13) and obtain for the value of the discretely monitored up-and-out call $$V(S_0, 0) \approx S_0 e^{-r_f T} \left[F_+(d, d + \beta/\sqrt{n}; \theta_+) - F_+(c, d + \beta/\sqrt{n}; \theta_+) \right]$$ $$-K e^{-r_d T} \left[F_+(d, d + \beta/\sqrt{n}; \theta_-) - F_+(c, d + \beta/\sqrt{n}; \theta_-) \right].$$ (14) Using this approximation for the value, we take a finite difference approach for the computation of the theoretical delta, $$\Delta = V_S(S, t) \approx \frac{V(S + \epsilon, t) - V(S - \epsilon, t)}{2\epsilon}.$$ (15) #### Analysis of EUR-USD 3 Considering the simulations for a maturity T of one year, huge hedging errors can obviously only occur near the barrier. The influence of the strike is comparatively small, as we discussed in the error determination procedure above. In this way we chose the values listed in Table 2 to remain constant and only to vary the barrier. Using Monte Carlo simulations with one million paths we show the average of the profit and loss with 99.9% confidence bands and how the probability of a mishedge depends on the position of the barrier in Figure 2. It appears that the additional costs for the short position are negligible. We also learn that the mishedge is larger for a barrier in a typical traded distance from the spot, i.e. not too close and not too far. In Figure 3 we plot the barrier against the ratio Hedging Error / TV of the upand-out call and the ECB-fixing as underlying. This relationship is an important message for the risk-averse trader. For a one-year reverse knock-out call we see an average relative hedge error below 5% of TV if the barrier is at least 4 big | Spot | 1.2100 | |------------------------|---------------| | Strike | 1.1800 | | Trading days | 250 | | Domestic interest rate | 2.17% (USD) | | Foreign interest rate | 2.27% (EUR) | | Volatility | 10.4% | | Time to maturity | 1 year | | Notional | 1,000,000 EUR | Table 2: EUR-USD testing parameters Figure 2: Additional average hedge costs and probability of a mishedge for the short position of a discretely monitored up-and-out call in EUR-USD Figure 3: Hedging Error /TV for a discretely monitored up-and-out call in EUR-USD figures away from the spot. Traders usually ask for a risk premium of 10 basis points. Finally, we would like to point out that the average loss is not the full story as an average is very sensitive to outliers. Therefore, we present in Figure 4 the distribution of the maximal profits and losses, both in absolute as well as in relative numbers. The actual numbers are presented in Table 3. We have found other parameter scenarios to behave similarly. The crucial quantity is the intrinsic value at the knock-out barrier. The higher this value, the more dangerous the trade. In particular we do not exhibit the results for the vanilla as there is hardly anything to see. Varying rates and volatilities do not yield any noticeably different results. Figure 4: Absolute and relative maximum profit and loss distribution for a discretely monitored up-and-out call in EUR-USD. The upside error is the unexpected gain a trader will face. The downside error is his unexpected loss. On average the loss seems small, but the maximum loss can be extremely high. The effect is particularly dramatic for knock-out calls with a large intrinsic value at the barrier as shown in the left hand side. The right hand side shows the maximum gain and loss relative to the TV. Of course, the further the barrier is away from the spot, the smaller the chance of hedging error occurring. | barrier 1.2500 | <1k\$ | <2k\$ | <3k\$ | <39k\$ | <40k\$ | <41k\$ | <42k\$ | <43k\$ | |----------------|--------|--------|--------|---------|---------|---------|---------|---------| | upside error | 951744 | 20 | 1 | 0 | 0 | 0 | 0 | 0 | | downside error | 48008 | 54 | 2 | 5 | 59 | 85 | 21 | 1 | | barrier 1.3000 | <1k\$ | < 2k\$ | < 3k\$ | <89k\$ | < 90k\$ | <91k\$ | <92k\$ | | | upside error | 974340 | 20 | 1 | 0 | 0 | 0 | 0 | | | downside error | 25475 | 43 | 0 | 2 | 40 | 59 | 20 | | | barrier 1.4100 | <1k\$ | <2k\$ | <3k\$ | <199k\$ | <200k\$ | <201k\$ | <202k\$ | <203k\$ | | upside error | 994854 | 78 | 0 | 0 | 0 | 0 | 0 | 0 | | downside error | 4825 | 194 | 3 | 1 | 19 | 17 | 8 | 1 | Table 3: EUR-USD distribution of absolute errors in USD. The figures are the number of occurrences out of 1 million. For instance, for the barrier at 1.2500, there are 54 occurrences out of 1 million, where the trader faces a loss between 1000 and 2000 \$. As the analysis of the other currency pairs is of similar nature, we list it in the appendix and continue with the conclusion. ## 4 Conclusion We have seen that even though a trader can be in a time interval where he does not know what delta hedge he should hold for an option due to the delay of the fixing announcement, the loss encountered is with probability 99.9% within less than 5% of the TV for usual choices of barriers and strikes and the liquid currency pairs, in which complex barrier options such as a discretely monitored up-and-out call are traded. However, the maximum loss quantity in case of a hedging error can be rather substantial. So in order to take this into account, it appears generally sufficient to charge a maximum of 10% of the TV to cover the potential loss with probability 99.9%. This work shows that the extra premium of 10 basis points per unit of the notional of the underlying, which traders argue is needed when the underlying is the ECB-fixing instead of the spot, is justified and well in line with our results. However, charging 10 basis points extra may be easy to implement, but is not really precise as we have seen, since the error depends heavily on the distance of the barrier from the spot. Of course the level of complexity of the model can be elaborated further arbitrarily, but using a geometric Brownian motion and a Monte Carlo simulation appears sufficient. The relative errors are small enough not to pursue any further investigation concerning this problem. ## 5 Appendix ## 5.1 Analysis of USD-CHF We used the market and contract data listed in Table 4. We summarize the results in Table 5 and Figure 5. The results are similar to the analysis of EUR-USD. | Spot | 1.2800 | |------------------------|---------------| | Strike | 1.2000 | | Trading days | 250 | | Domestic interest rate | 0.91% (CHF) | | Foreign interest rate | 2.17% (USD) | | Volatility | 11.25% | | Time to maturity | 1 year | | Notional | 1,000,000 USD | Table 4: USD-CHF testing parameters | barrier 1.3300 | < 1k | < 2k | < 3k | < 49k | < 50k | < 51k | < 52k | < 54k | |----------------|--------|------|------|--------|--------|--------|--------|--------| | upside error | 950902 | 29 | 1 | 0 | 0 | 0 | 0 | 0 | | downside error | 48846 | 65 | 2 | 9 | 44 | 72 | 28 | 2 | | barrier 1.3900 | < 1k | < 2k | < 3k | < 109k | < 110k | < 111k | < 112k | < 113k | | upside error | 975939 | 26 | 3 | 0 | 0 | 0 | 0 | 0 | | downside error | 23847 | 72 | 5 | 4 | 23 | 52 | 27 | 2 | | barrier 1.5000 | < 1k | < 2k | < 3k | < 4k | < 5k | < 219k | < 220k | < 222k | | upside error | 993544 | 749 | 90 | 2 | 0 | 0 | 0 | 0 | | downside error | 4523 | 880 | 158 | 12 | 3 | 2 | 12 | 25 | Table 5: USD-CHF distribution of absolute errors in CHF. The figures are the number of occurrences out of $1\ \mathrm{million}$ Figure 5: Analysis of the discretely monitored up-and-out call in USD-CHF $\,$ ## 5.2 Analysis of USD-JPY We used the market and contract data listed in Table 6. Again the analysis looks very much like the EUR-USD case. We summarize the results in Table 7 and Figure 6. | Spot | 110.00 | |------------------------|---------------| | Strike | 100.00 | | Trading days | 250 | | Domestic interest rate | 0.03% (JPY) | | Foreign interest rate | 2.17% (USD) | | Volatility | 9.15% | | Time to maturity | 1 year | | Notional | 1,000,000 USD | Table 6: USD-JPY testing parameters $\frac{1}{2}$ | barrier 133.00 | < 10k | <20k | < 30k | < 40k | < 50k | < 60k | < 70k | |----------------|--------|--------|--------|-------|-------|-------|-------| | upside error | 949563 | 957 | 29 | 34 | 18 | 20 | 19 | | downside error | 47623 | 1260 | 32 | 25 | 23 | 23 | 21 | | barrier 133.00 | < 80k | < 155k | < 175k | more | | | | | upside error | 21 | 39 | 3 | 0 | | | | | downside error | 13 | 34 | 0 | 234 | | | | Table 7: USD-JPY distribution of absolute errors in JPY. The figures are the number of occurrences out of 1 million Figure 6: Analysis of the discretely monitored up-and-out call in $\operatorname{USD-JPY}$ ## 5.3 Analysis of EUR-GBP To compare we take now EUR-GBP as a currency pair without the USD. We used the market and contract data listed in Table 8. Again, we observe the usual picture, i.e., a similar hedging error curvature as in EUR-USD. We summarize the results in Table 9 and Figure 7. | Spot | 0.6700 | |------------------------|---------------| | Strike | 0.6700 | | Trading days | 250 | | Domestic interest rate | 5.17% (GBP) | | Foreign interest rate | 2.27% (EUR) | | Volatility | 7.65% | | Time to maturity | 1 year | | Notional | 1,000,000 EUR | Table 8: EUR-GBP testing parameters | barrier 0.7100 | < 1k | < 2k | < 4k0 | < 41k | < 42k | |----------------|--------|--------|--------|--------|--------| | upside error | 950005 | 0 | 0 | 0 | 0 | | downside error | 49711 | 3 | 59 | 220 | 2 | | barrier 0.7400 | < 1k | < 2k | < 7k0 | < 71k | < 72k | | upside error | 978884 | 139 | 0 | 0 | 0 | | downside error | 20493 | 273 | 48 | 162 | 1 | | barrier 0.7800 | < 1k | < 2k | < 3k | < 4k | < 5k | | upside error | 994032 | 678 | 122 | 11 | 2 | | downside error | 4001 | 860 | 183 | 27 | 2 | | barrier 0.7800 | < 109k | < 11k0 | < 111k | < 112k | < 114k | | upside error | 0 | 0 | 0 | 0 | 0 | | downside error | 1 | 15 | 63 | 2 | 1 | Table 9: EUR-GBP distribution of absolute errors in GBP. The figures are the number of occurrences out of 1 million Figure 7: Analysis of the discretely monitored up-and-out call in EUR-GBP $\,$ ## References - [1] ANAGNOU-BASIOUDIS, I. and HODGES, S. (2004) Derivatives Hedging and Volatility Errors. Warwick University Working Paper. - [2] Brown, B., Lovato, J. and Russell, K. (2004). CDFLIB C++ library, http://www.csit.fsu.edu/~burkardt/cpp_src/dcdflib/dcdflib.html - [3] Fusai G. and Recchioni, C. (2003). *Numerical Valuation of Discrete Bar*rier Options Warwick University Working Paper. - [4] HÖRFELT, P. (2003). Extension of the corrected barrier approximation by Broadie, Glasserman, and Kou. *Finance and Stochastics*, **7**, 231-243. - [5] MATSUMOTO, M. (2004). Homepage of Makoto Matsumoto on the server of the university of Hiroshima: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/eindex.html ## HFB – WORKING PAPER SERIES ## CENTRE FOR PRACTICAL QUANTITATIVE FINANCE | No. | Author/Title | Year | |-----|-----------------------------------------------------------------------------------------------------------------------|------| | 03. | Becker, Christoph / Wystup, Uwe
On the Cost of Delayed Currency Fixing Announcements | 2005 | | 02. | Boenkost, Wolfram / Schmidt, Wolfgang M.
Cross currency swap valuation | 2004 | | 01. | Wallner, Christian / Wystup, Uwe
Efficient Computation of Option Price Sensitivities for Options of American Style | 2004 | ## HFB - WORKING PAPER SERIES | No. | Author/Title | Year | |-----|---|------| | 62. | Bayer, Marcus / Cremers, Heinz / Kluß, Norbert
Wertsicherungsstrategien für das Asset Management | 2005 | | 61. | Löchel, Horst / Polleit, Thorsten
A case for money in the ECB monetary policy strategy | 2005 | | 60. | Schanz, Kay-Michael / Richard, Jörg / Schalast, Christoph
Unternehmen im Prime Standard - "Staying Public" oder "Going Private"? - Nutzenanalyse der Börsennotiz - | 2004 | | 59. | Heun, Michael / Schlink, Torsten
Early Warning Systems of Financial Crises - Implementation of a currency crisis model for Uganda | 2004 | | 58. | Heimer, Thomas / Köhler, Thomas
Auswirkungen des Basel II Akkords auf österreichische KMU | 2004 | | 57. | Heidorn, Thomas / Meyer, Bernd / Pietrowiak, Alexander
Performanceeffekte nach Directors Dealings in Deutschland, Italien und den Niederlanden | 2004 | | 56. | Gerdesmeier, Dieter / Roffia, Barbara The Relevance of real-time data in estimating reaction functions for the euro area | 2004 | | 55. | Barthel, Erich / Gierig, Rauno / Kühn, Ilmhart-Wolfram
Unterschiedliche Ansätze zur Messung des Humankapitals | 2004 | | 54. | Anders, Dietmar / Binder, Andreas / Hesdahl, Ralf / Schalast, Christoph / Thöne, Thomas Aktuelle Rechtsfragen des Bank- und Kapitalmarktrechts I: Non-Performing-Loans / Faule Kredite - Handel, Work-Out, Outsourcing und Securitisation | 2004 | | 53. | Polleit, Thorsten
The Slowdown in German Bank Lending – Revisited | 2004 | | 52. | Heidorn, Thomas / Siragusano, Tindaro
Die Anwendbarkeit der Behavioral Finance im Devisenmarkt | 2004 | | 51. | Schütze, Daniel / Schalast, Christoph (Hrsg.)
Wider die Verschleuderung von Unternehmen durch Pfandversteigerung | 2004 | | 50. | Gerhold, Mirko / Heidorn, Thomas
Investitionen und Emissionen von Convertible Bonds (Wandelanleihen) | 2004 | | 49. | Chevalier, Pierre / Heidorn, Thomas / Krieger, Christian
Temperaturderivate zur strategischen Absicherung von Beschaffungs- und Absatzrisiken | 2003 | | 48. | Becker, Gernot M. / Seeger, Norbert
Internationale Cash Flow-Rechnungen aus Eigner- und Gläubigersicht | 2003 | | 47. | Boenkost, Wolfram / Schmidt, Wolfgang M. Notes on convexity and quanto adjustments for interest rates and related options | 2003 | | 46. | Hess, Dieter Determinants of the relative price impact of unanticipated Information in U.S. macroeconomic releases | 2003 | | 45. | Cremers, Heinz / Kluß, Norbert / König, Markus
Incentive Fees. Erfolgsabhängige Vergütungsmodelle deutscher Publikumsfonds | 2003 | | 44. | Heidorn, Thomas / König, Lars
Investitionen in Collateralized Debt Obligations | 2003 | | 43. | Kahlert, Holger / Seeger, Norbert
Bilanzierung von Unternehmenszusammenschlüssen nach US-GAAP | 2003 | | 42. | Beiträge von Studierenden des Studiengangs BBA 012 unter Begleitung von Prof. Dr. Norbert Seeger Rechnungslegung im Umbruch - HGB-Bilanzierung im Wettbewerb mit den internationalen Standards nach IAS und US-GAAP | 2003 | |-----|---|------| | 41. | Overbeck, Ludger / Schmidt, Wolfgang
Modeling Default Dependence with Threshold Models | 2003 | | 40. | Balthasar, Daniel / Cremers, Heinz / Schmidt, Michael
Portfoliooptimierung mit Hedge Fonds unter besonderer Berücksichtigung der Risikokomponente | 2002 | | 39. | Heidorn, Thomas / Kantwill, Jens
Eine empirische Analyse der Spreadunterschiede von Festsatzanleihen zu Floatern im Euroraum
und deren Zusammenhang zum Preis eines Credit Default Swaps | 2002 | | 38. | Böttcher, Henner / Seeger, Norbert
Bilanzierung von Finanzderivaten nach HGB, EstG, IAS und US-GAAP | 2003 | | 37. | Moormann, Jürgen
Terminologie und Glossar der Bankinformatik | 2002 | | 36. | Heidorn, Thomas
Bewertung von Kreditprodukten und Credit Default Swaps | 2001 | | 35. | Heidorn, Thomas / Weier, Sven
Einführung in die fundamentale Aktienanalyse | 2001 | | 34. | Seeger, Norbert
International Accounting Standards (IAS) | 2001 | | 33. | Stehling, Frank / Moormann, Jürgen
Strategic Positioning of E-Commerce Business Models in the Portfolio of Corporate Banking | 2001 | | 32. | Strohhecker, Jürgen / Sokolovsky, Zbynek
Fit für den Euro, Simulationsbasierte Euro-Maßnahmenplanung für Dresdner-Bank-Geschäftsstellen | 2001 | | 31. | Roßbach, Peter
Behavioral Finance - Eine Alternative zur vorherrschenden Kapitalmarkttheorie? | 2001 | | 30. | Heidorn, Thomas / Jaster, Oliver / Willeitner, Ulrich
Event Risk Covenants | 2001 | | 29. | Biswas, Rita / Löchel, Horst
Recent Trends in U.S. and German Banking: Convergence or Divergence? | 2001 | | 28. | Löchel, Horst / Eberle, Günter Georg
Die Auswirkungen des Übergangs zum Kapitaldeckungsverfahren in der Rentenversicherung auf die Kapitalmärkte | 2001 | | 27. | Heidorn, Thomas / Klein, Hans-Dieter / Siebrecht, Frank
Economic Value Added zur Prognose der Performance europäischer Aktien | 2000 | | 26. | Cremers, Heinz
Konvergenz der binomialen Optionspreismodelle gegen das Modell von Black/Scholes/Merton | 2000 | | 25. | Löchel, Horst
Die ökonomischen Dimensionen der "New Economy" | 2000 | | 24. | Moormann, Jürgen / Frank, Axel
Grenzen des Outsourcing: Eine Exploration am Beispiel von Direktbanken | 2000 | | 23. | Heidorn, Thomas / Schmidt, Peter / Seiler, Stefan
Neue Möglichkeiten durch die Namensaktie | 2000 | | 22. | Böger, Andreas / Heidorn, Thomas / Graf Waldstein, Philipp
Hybrides Kernkapital für Kreditinstitute | 2000 | | 21. | Heidorn, Thomas
Entscheidungsorientierte Mindestmargenkalkulation | 2000 | | 20. | Wolf, Birgit Die Eigenmittelkonzeption des § 10 KWG | 2000 | | 19. | Thiele, Dirk / Cremers, Heinz / Robé, Sophie
Beta als Risikomaß - Eine Untersuchung am europäischen Aktienmarkt | 2000 | | 18. | Cremers, Heinz
Optionspreisbestimmung | 1999 | | 17. | Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken | 1999 | | 16. | Chevalier, Pierre / Heidorn, Thomas / Rütze, Merle
Gründung einer deutschen Strombörse für Elektrizitätsderivate | 1999 | | 15. | Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas
CatBonds | 1999 | | 14. | Jochum, Eduard
Hoshin Kanri / Management by Policy (MbP) | 1999 | | 13. | Heidorn, Thomas
Kreditderivate | 1999 | |-----|---|------| | 12. | Heidorn, Thomas
Kreditrisiko (CreditMetrics) | 1999 | | 11. | Moormann, Jürgen
Terminologie und Glossar der Bankinformatik | 1999 | | 10. | Löchel, Horst
The EMU and the Theory of Optimum Currency Areas | 1998 | | 09. | Löchel, Horst
Die Geldpolitik im Währungsraum des Euro | 1998 | | 08. | Heidorn, Thomas / Hund, Jürgen
Die Umstellung auf die Stückaktie für deutsche Aktiengesellschaften | 1998 | | 07. | Moormann, Jürgen
Stand und Perspektiven der Informationsverarbeitung in Banken | 1998 | | 06. | Heidorn, Thomas / Schmidt, Wolfgang
LIBOR in Arrears | 1998 | | 05. | Jahresbericht 1997 | 1998 | | 04. | Ecker, Thomas / Moormann, Jürgen Die Bank als Betreiberin einer elektronischen Shopping-Mall | 1997 | | 03. | Jahresbericht 1996 | 1997 | | 02. | Cremers, Heinz / Schwarz, Willi
Interpolation of Discount Factors | 1996 | | 01. | Moormann, Jürgen
Lean Reporting und Führungsinformationssysteme bei deutschen Finanzdienstleistern | 1995 | #### HFB - SONDERARBEITSBERICHTE DER HFB - BUSINESS SCHOOL OF FINANCE & MANAGEMENT | No. | Author/Title | Year | |-----|---|------| | 01. | Nicole Kahmer / Jürgen Moormann | | | | Studie zur Ausrichtung von Banken an Kundenprozessen am Beispiel des Internet | | | | (Preis: € 120,) | 2003 | Printed edition: €25.00 + €2.50 shipping Download: http://www.hfb.de/Navigator/Fakultaet/Publikationen/Arbeitberichte/Show #### Order address / contact HfB ■ Business School of Finance & Management Sonnemannstr. 9-11 ■ D-60314 Frankfurt/M. ■ Germany Phone: +49 (0) 69 154 008-734 ■ Fax: +49 (0) 69 154 008-728 eMail: johannsen@hfb.de Further informations about HfB - Business School of Finance & Management may be obtained at: http://www.hfb.de