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Abstract—The emergence of cloud computing provides a cost-
effective approach to deliver video streams to a large number
of end users with the desired user quality-of-experience (QoE).
Under such a paradigm, a video service provider (VSP) can
launch its own video streaming services virtually, by renting
the distribution infrastructure from one or more cloud service
providers (CSPs). However, CSPs like Amazon EC2 normally
offer multiple pricing options for virtual machine (VM) instances
they can provide, such as on-demand instances, reserved in-
stances, and spot instances. Such diverse pricing models make
it challenging for a VSP to determine how to optimally procure
the required number of VM instances in different types to satisfy
dynamic user demands. Given the limited budget, a VSP needs
to carefully balance the procurement cost and the achieved
QoE for end users. In this paper, we investigate the trade-off
between the cost incurred by VM instance procurement and the
achieved QoE of end users under Amazon EC2’s pricing models,
and formulate the VM instance provisioning and procurement
problem into a constrained stochastic optimization problem. By
applying the Lyapunov optimization framework, we design an
online procurement algorithm, which approaches the optimal
solution with explicitly provable upper bounds. We also conduct
extensive trace-driven simulations and our results show that our
proposed algorithm (OPT-ORS) achieves a good balance between
the procurement cost and the user QoE for cloud-based VSPs.
In the achieved near-optimal situation, our algorithm guarantees
that reserved VM instances are fully utilized to satisfy the
baseline user demand, on-demand VM instances are only rent
to handle flash crowds, while spot VM instances are rent more
frequently than on-demand VM instances to serve user demand
over the baseline due to their low prices.

I. INTRODUCTION

Exponential growth of video traffic challenges the current

paradigm to stream large amounts of video contents to end
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users. It has been reported in [1] that video traffic will grow

with an annual rate of 34%, and contribute to 55 percent of

all consumer Internet traffic by 2016. Such explosive growth

of video traffic has started to and would continue to stress

the global Internet, possibly resulting in poor Quality-of-

Experience (QoE) for users. Specifically, this tussle demands

new paradigms to distribute and stream video contents over

the Internet in a cost-effective manner, while maintaining the

required QoE for end users.

Existing solutions, mainly based on content delivery net-

works (CDNs) (e.g., Akamai[2]), are inefficient in resolving

the aforementioned fundamental tussle. In a CDN-based archi-

tecture, video contents are pushed to the network edge, closer

to the users. It serves well as a solution to improve the QoE

and reduce the economical cost, compared to the traditional

client-server architecture[3]. However, highly dynamic video

traffic would result in low resource utilization due to semi-

static resource allocation in CDNs. The utilization ratio of

most CDNs today can be as low as 5%-10% [4]. Such a low

utilization ratio would translate directly into high cost. The

situation would be made even worse when dealing with a flash-

crowd situation[5], in which numerous users are interested in

the same content simultaneously. In such a case, system re-

sources will be undersubscribed, resulting in deteriorated user

experiences. Therefore, a more dynamic resource provisioning

paradigm should be in place.

Cloud computing, owing to its elastic resource allocation

capability, offers a natural solution for cost-effective video

streaming with the desired QoE requirements. Specifically,

system resources can dynamically scale up and down, match-

ing the application demand. Adopting the above design princi-

ple, researchers have started to investigate the deployment of

elastic video streaming services over the cloud infrastructure

(e.g.,[6], [7], [8], [9]). However, previous work mostly focused

on resource provisioning under a single pricing model.

Generally, cloud service providers (CSPs) offer multiple

pricing options for VM instances to satisfy different user

preferences. As a leading CSP in the world, Amazon EC2

offers three typical pricing models for VM instances, includ-

ing: 1) On-demand pricing model: users are allowed to pay by

hours without a long-term commitment; 2) Reserved pricing

model: users can make a low, one-time, upfront payment

for a long-term reservation (e.g., 1-3 years) of an instance;

3) Spot pricing model: Amazon EC2 sets a spot price for

instances dynamically. Users are allowed to set the maximum

hourly price they are willing to pay and the instances are

only allocated when the spot price is lower than the user-

defined price. In spite that multiple pricing models provide
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users with higher flexibility, however, it is also challenging for

a cloud-based video service provider (VSP) to determine how

to optimally procure the necessary number of VM instances

in each type to meet dynamic user demands. There is a clear

trade-off between the cost of VM instance procurement and

the achieved QoE of end users. To be more competitive in the

market, a VSP must utilize its budget economically while still

guaranteeing the desired user QoE.

In this paper, our purpose is to provide guidelines for cloud-

based VSPs on how to optimally procure VM instances to

satisfy user demands under multiple pricing models. We con-

sider a realistic scenario with Amazon EC2’s pricing models,

in which a VSP not only needs to minimize the consumption

of cloud resources, but also needs to optimize the procurement

plan in the presence of price diversity and volatility. Compared

to the case with only a single pricing model, a cloud-based

VSP can exploit the diversity among pricing models to further

reduce its procurement cost.

We develop a theoretic model to explore the trade-off

between the procurement cost and the achieved user QoE

for cloud-based video streaming. We formulate the problem

into a joint optimization problem of resource provisioning

and procurement under price variety and demand dynamics.

We aim at optimizing the time average of the weighted sum

of the total procurement cost and the achieved QoE of end

users. By using the Lyapunov optimization framework, we

propose an approximate online algorithm, called OPT-ORS,

with the explicitly provable performance upper bound. Our

proposed algorithm also has low complexity by exploiting

the structural properties of the optimal solution. Extensive

trace-driven simulations have been conducted to verify the

effectiveness of our proposed OPT-ORS algorithm in the

practical settings. Our algorithm can guarantee that reserved

instances are fully utilized to satisfy the baseline user demand,

even without any information about the future fluctuation of

user demands; spot instances are rent more frequently than

on-demand instances to serve user demand over the baseline

due to their low prices, and on-demand instances are rent only

when flash crowds occur.

The rest of the paper is organized as follows. Section II

reviews related work. The theoretic model is described in

Section III. We formulate the optimization problem in Section

IV. In Section V, we describe the design of our online

strategy. The results obtained from trace-driven simulations

are presented in Section VI. Section VII concludes the paper

and discusses the future work.

II. RELATED WORK

Cloud computing has become a promising approach to

conduct large-scale content distribution over the Internet due

to its capability of elastic resource allocation. Highly dynamic

traffic demand drives researchers to investigate the migration

of Internet video applications to the clouds (e.g., [10], [9],

[8], [7], [11]) and thus reduce the unnecessary operating cost

incurred by resource oversubscription. However, two major

problems need to be resolved before the deployment of video

applications over the cloud, namely, resource provisioning and

resource procurement.

For cloud-based video applications, the problem of cloud

resource provisioning has been extensively studied in [7], [8],

[9], [12], [13], [14], and etc. Researchers have designed kinds

of optimal resource provisioning strategies, which let VSPs

scale up and down resources provisioned in clouds according

to the demand dynamics. However, resource procurement,

which is to strategically procure cloud resources from one or

more CSPs, has not been well investigated yet.

Normally, cloud resources are rented in the unit of VM

instances. Leading CSPs like Amazon EC2 provide multiple

pricing models for their VM instances (see [15]). Amazon

EC2 has three different pricing models, including on-demand

pricing model, reservation pricing model, and spot pricing

model. A cloud-based VSP can possibly exploit the price

diversity to reduce its procurement cost. However, previous

work on cloud-based video streaming mostly focused on the

VM procurement under a single pricing model. For exam-

ple, the on-demand pricing model is adopted in [9], [10],

and the spot pricing model is analyzed in [16], [17], [18].

The problem of VM instance procurement under the spot

pricing model for computation-intensive applications (e.g.,

MapReduce-based applications) has been studied in [19], [20],

[21]. In addition, there has been some work (e.g., [22],

[23], [24]) on maximizing the revenue of CSPs by designing

dynamic cloud resource pricing strategies.

Our work differs from previous works in that we consider

the joint problem of resource provisioning and procurement

under multiple pricing models, which is more realistic and

challenging for cloud-based VSPs.

III. SYSTEM MODEL AND ARCHITECTURE

For cloud-based video streaming, a VSP rents VM instances

from one or more CSPs (e.g., Amazon EC2) in an elastic

manner to provide video streaming services. Fig. 1 provides

a simplified model of cloud-based video streaming systems.

Generally, a CSP offers multiple types of standard VM in-

stances (e.g., small, medium, large and extra-large instances),

each of which has different hardware and bandwidth config-

uration. A VSP can rent a set of VM instances in different

types to provide the required streaming capacity. Each user

request will be served by a provisioned instance in the cloud.

Due to its leading position, we take Amazon EC2 as a typical

example of CSPs in the following sections.

A. Amazon EC2’s Pricing Models

Based on the difference in pricing options, VM instances

provided by Amazon EC2 can be classified into three major

categories:

• On-Demand Instances: Users are allowed to pay for the

rented VM instances by the hour with no long-term

commitments or upfront payments. A user can increase

or decrease the procured streaming capacity based on the

demands of the application and only pay the specified

hourly rate for used instances. Amazon EC2 always

strives to provide enough available on-demand instances

to meet user demands, but during the periods with very

high demand, it is still possible that a user might not be



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

User

group

1

User

group

W

Reserved VM

Instances
On-Demand VM

Instances
Spot VM Instances

Type-1

VM

Type-2

VM
Type-K

VM
Type-1

VM

Type-2

VM

Type-K

VM Type-1

VM

Type-2

VM
Type-

K VM

Cloud Service

Provider(CSP)

User

group

2

Cloud-based Video

Service Provider(VSP)

Fig. 1. Simplified Model of Cloud-based Video Streaming

able to launch specific on-demand instances for a short

period of time.

• Reserved Instances: For reserved instances, users can

make a low, one-time, upfront payment for a long-term

reservation of an instance (e.g., one or three years)

and pay a significantly low hourly rate for running an

instance. For applications that have stable needs, by

using reserved instances, it is able to achieve nearly 50%

savings compared to using on-demand instances. From

the functional perspective, reserved instances and on-

demand instances perform identically.

• Spot Instances: Spot instances provide the ability for

customers to purchase streaming capacity with no upfront

commitment and at hourly rates usually lower than the

on-demand rate. For spot instances, customers are al-

lowed to specify the maximum hourly price that they are

willing to pay to run a particular instance type. Amazon

EC2 sets a spot price for each instance type dynamically,

which is the price that all customers will pay to run

a spot instance for that given period. The spot price

fluctuates according to the supply and demand for VM

instances, but customers will never pay more than the

maximum price they have specified. If the spot price is

higher than a customer’s maximum price, the instance

will be shut down by Amazon EC2 automatically. Other

than the above differences, spot instances perform exactly

the same as on-demand or reserved instances.

Assume that VM instances are classified into K types

by their streaming capacity, and the streaming capacity of

a VM instance takes one of the K values from the set

{s1, s2, · · · , sK}. Abstractly, any VM instance can be char-

acterized by a vector (s, p), where s is the streaming capacity,

and p is the unit price per unit time (e.g., one hour). Based

on the specific VM instance in use, Amazon EC2 provides the

following pricing models:

• On-demand pricing model: the price to procure a type-k

on-demand instance is pk per unit time. The total cost of

renting a type-k on-demand instance for t units of time

is pk · t.
• Reserved pricing model: the price to procure a type-k

reserved instance consists of two parts: (1) a one-time

payment, qk and (2) a usage-based payment, p̂k per unit

time. If being reserved, the total cost of using a type-k

reserved instance for t units of time is qk + p̂k · t.
• Spot pricing model: the price to procure a type-k spot

instance depends on the latest spot price of p̃k(t) at time

t and the bidding price. The VSP can use the instance

only if the bidding price is no less than p̃k(t).

B. User Request and QoE Model

Chunk-based video streaming is considered in this paper

due to its popularity. To facilitate video streaming, the whole

video is divided into multiple chunks, and a video chunk can

be viewed immediately after being downloaded. The playback

duration time of one video chunk lasts for a few seconds

(e.g., 2-5 seconds). For each video, the streaming server

will generate multiple versions of video copies encoded with

different playback rates.

(1)Request a video

with playback rate

(2)Transmit video

chunks with rate r

(3)Respond a video copy

with playback rate

User

Streaming

Server

Fig. 2. Interaction between the user and the streaming server in the cloud

Fig. 2 describes the interaction between a user and a

streaming server in the cloud. In the figure, the dashed lines

represent the control message exchange and the solid line

represents the real video data transmission between the user

and the server. A user request specifies a desired playback

rate ω, which indicates that the user wishes to download a

video copy encoded with a playback rate ω. However, the

downloading rate of a user may not be able to sustain the

desired playback rate. Depending on the real downloading

rate rω , the streaming server will respond with a video copy

encoded with a playback rate ω′. The serving playback rate

ω′ is close to but no greater than the downloading rate rω .

Assume that the arrival of user requests follows a Poisson

process in time slot t. Each user request is associated with

a desired playback rate ω. The total number of user requests

arrived in time slot t is a random variable, denoted by µ(t),
with the mean as λ(t).

Without loss of generality, we assume that the desired

playback rate ω takes values from a finite and discrete set Ω
with |Ω| = W , and user requests are classified into W groups

according to their desired playback rate. ω is a random variable

with a p.m.f of f(ω) for ω > 0.The actual total number of

user requests with the desired playback rate ω in time slot t

is denoted by µ(ω, t). From the p.m.f. f(ω), we can know

that the mean arrival rate of user requests with the desired

playback rate ω in time slot t is λ(ω, t) = f(ω)λ(t).
For a user with a downloading rate of rω and a desired

playback rate of ω, a function g(rω) is defined to map the

downloading rate rω to the serving playback rate ω′, namely,
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g(rω) = argω′ min |rω − ω′|, ω′ ∈ Ω. The function g(rω)
should satisfy that g(rω) ≤ ω because the surplus serving

playback rate over the desired playback rate ω will not provide

any QoE benefits. The QoE score of a user is defined by

the function Q(ω, ω′) = Q(ω, g(rω)), whose value falls in

the range of [0, 5] 1. Q(ω, ω′) is a continuous differentiable,

and increasing function of the playback rate ω′ in the interval

[0, ω]. If ω′ > ω, Q(ω, ω′) will be assigned the maximum

value Q0 = 5. As in [25], [27], the QoE score function of a

user is defined as below:

Q(ω, ω′) =





a1 ln
a2ω

′

ω
ω′ ≤ ω

Q0 ω′ > ω

0 a2ω
′ < ω,

where a1 and a2 are two positive constant parameters, and

a1 ln a2 = Q0 = 5.

IV. PROBLEM FORMULATION

For a cloud-based VSP, there are two major objectives: first,

the VSP should maximize the QoE of end users to improve

its competitiveness in the market; second, the VSP should

minimize the procurement cost of renting VM instances for

cost-savings. However, the above two objectives are in conflict

with each other. To enhance the QoE, the VSP might need to

over-provision virtual machines, which in turn increase the

procurement cost. Therefore, the VSP should first understand

the trade-off between the QoE metrics and the procurement

cost, and then identify an optimal operating point on the trade-

off curve, so that it can determine the number of different VM

instances to be procured under multiple pricing models.

In our problem formulation, users who have not finished

downloading the required amount of video contents are defined

as active users. For each desired playback rate ω, a queue Hω

is defined for each user group, and Hω(t) is the length of

the queue at time slot t, which also represents the number of

active users with the desired playback rate ω at time slot t.

Denote Γω(t) as the total upload bandwidth allocated by the

provisioned VM instances to the group of active users with

the desired playback rate ω.

Given Ω = {ω1, ω2, · · · , ωW } and ω1 < ω2 < · · · < ωW ,

we assume a demand-proportional resource allocation strategy.

Therefore, the total upload bandwidth allocated to each user

group satisfies the following relationship:

Γω1(t) : Γω2(t) : · · · : ΓωW
(t) =

ω1Hω1(t) : ω2Hω2(t) : · · · : ωWHωW
(t).

The downloading rate of an active user in time slot t with

the desired playback rate ω is denoted by rω(t). We assume

uniform resource allocation within a group, that is,

rω(t) =
Γω(t)

Hω(t)
, ∀ω ∈ Ω.

Under such a resource allocation strategy, the downloading

rates of any two users in two different user groups, with the

1Note that, the interval [0, 5] is obtained through the curve fitting results
based on the dataset in [25], [26].

desired playback rate ωi and ωj respectively, satisfy rωi
(t) :

rωj
(t) = ωi : ωj due to rωi

: rωj
=

Γωi
(t)

Hωi
(t) :

Γωj
(t)

Hωj
(t) = ωi : ωj .

Therefore, if
g(rωi

)

g(rωj
) =

ωi

ωj
, we can obtain:

a1 ln a2
g(rωi

)

ωi

− a1 ln a2
g(rωj

)

ωj

= a1ln
g(rωi

)ωj

g(rωj
)ωi

= 0

Therefore, under a demand-proportional resource allocation

strategy, any two users in two different user groups can expe-

rience the same QoE. Due to the uniform resource allocation

within a user group, users within one group will experience

the same QoE. Note that any other resource allocation strategy

(e.g., fair allocation strategies in [28]), which can achieve a

certain level of fairness among users, can also be applied to

the above model directly, as long as the amount of upload

bandwidth allocated to each user group can be known ex-

plicitly. Denote the total uploading rate of all provisioned VM

instances in time slot t as R(t). Given the demand-proportional

resource allocation strategy, we have
∑

ω∈Ω

Γω(t) = R(t),

Γω(t) =
ωHω(t)∑

ω̃∈Ω ω̃Hω̃(t)
R(t). (1)

Assume that the desired playback rate will not change

during the downloading process of the whole video, while the

serving playback rate will change dynamically according to

the downloading rate. Then, the total QoE of all active users

are given by:

Q(t) =
∑

ω∈Ω

Q(ω, g(rω)) ·Hω(t)

=
∑

ω∈Ω

a1 ln
a2 min(g(rω), ω)

ω
·Hω(t)

=
∑

ω∈Ω

a1 ln
a2 min(ω′, ω)

ω
·Hω(t).

Let Td be the playback duration time of a whole video

and Tp be the duration time of one decision period of a

VSP to adjust the procurement plan. We consider a time-

slotted system, where the length of each time slot is the

same as a decision period. Assume that the desired playback

duration time τ of each user follows a uniform distribution

within the interval [0, Td]. The desired playback duration time

is reflected by the playback duration time of video contents

downloaded from the streaming server. A user will leave the

system if the playback duration time of the downloaded video

content has exceeded τ . For example, if the desired playback

duration time is 60 seconds and each video chunk lasts for

5 seconds, then the user will leave the system after finishing

downloading 12 video chunks. The impacts of user arrivals

and departures within one decision period will be reflected by

the variations of queue sizes (i.e., Hω(t)). Thus, the disparity

of time scaling between user actions and the VSP decision

can be mitigated via monitoring the queue sizes. The VSP

only needs to keep track of the states of queue sizes to make

procurement decision.
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For one user with the desired playback rate ω, the download-

ing rate during time slot t is
Γω(t)
Hω(t) , then the amount of video

content can be downloaded during time slot t is
Γω(t)
Hω(t)Tp when

the user arrives the system at the beginning of the slot. If the

user arrives at the middle of the time slot, then the amount of

video content is less than
Γω(t)
Hω(t)Tp. Given the serving playback

rate g(r(ω)), the playback duration time of the video content

downloaded during time slot t is no longer than
Γω(t)
Hω(t)

Tp

g(r(ω)) . Thus,

the probability that a user will leave the system is no more

than Pr(τ ≤
Γω(t)
Hω(t)

Tp

g(r(ω)) ) = min{
Γω(t)
Hω(t)

Tp

g(r(ω)) ·
1
Td

, 1}. Note that, if
Γω(t)
Hω(t)

Tp

g(r(ω)) ≥ Td, the user will leave the system with a probability

of 1.

The update of each queue can be expressed as follows:

Hω(t+ 1) ≤ max[Hω(t)−

min{

Γω(t)
Hω(t)Tp

g(rω)

1

Td

, 1}Hω(t), 0] + µ(ω, t) (2)

= max[Hω(t)−
Γω(t)Tp

g(rω)Td

, 0] + µ(ω, t) (3)

≤ max[Hω(t)−
Γω(t)Tp

ωTd

, 0] + µ(ω, t), (4)

where µ(ω, t) represents the actual number of request arrivals

during time slot t. In the inequality (2), min{
Γω(t)
Hω(t)

Tp

g(rω) ·
1
Td

, 1}Hω(t) is the average number of users in queue Hω

who will leave the system given that min{
Γω(t)
Hω(t)

Tp

g(rω) ·
1
Td

, 1}
represents the maximum probability that a user will leave

the system. For the equality (3), if
Γω(t)
Hω(t)

·Tp

g(rω) · 1
Td

< 1, then

max[Hω(t)−min{
Γω(t)
Hω(t)

Tp

g(rω) ·
1
Td

, 1}Hω(t), 0] = max[Hω(t)−
Γω(t)
Hω(t)

Tp

g(rω) ·
1
Td
·Hω(t), 0]; otherwise, max[Hω(t)−min{

Γω(t)
Hω(t)

Tp

g(rω) ·

1
Td

, 1}Hω(t), 0] = max[Hω(t)−
Γω(t)
Hω(t)

Tp

g(rω) ·
1
Td
·Hω(t), 0] = 0.

The inequality (4) is obtained from g(rω) ≤ ω.

Denote P (t) as the total monetary cost to procure VM

instances in time slot t. Let P on(t), P re(t) and P sp(t) be the

monetary cost associated with the procurement of on-demand

instances, reserved instances and spot instances respectively

in time slot t, then P (t) = P on(t) + P re(t) + P sp(t).
The objective can be defined as the following constrained

stochastic optimization problem:

P1.1 : min lim
T→∞

1

T

T∑

t=1

(−Q(t) + α · P (t))

s.t. lim
T→∞

sup
1

T

T∑

t=1

∑

ω∈Ω

Hω(t) ≤ ∞,

ζ(t) ∈ χ(t),

where the first constraint is to ensure the stability of all user

queues. α is a tunable parameter which represents the tradeoff

between the monetary cost and the QoE. Denote Ak(t),
Bk(t), Nk(t) as the maximum number of type-k on-demand

instances, reserved instances, and spot instances that can be

rented from the CSP in time slot t respectively. In spite that

the cost function includes only the overall QoE of all users,

the QoE of each individual user will be affected similarly

under a demand-proportional resource allocation strategy. The

impact of the solution on the QoE of each individual user is

determined by the tradeoff parameter α. If the service provider

cares more about the QoE experienced by users, it should

choose a smaller α. A feasible procurement strategy is one

strategy which does not violate these upper bounds, Ak(t),
Bk(t) and Nk(t), in each time slot t. Let ζ(t) denote the

procurement strategy in time slot t which tells how many VM

instances of each type to be rented, and χ(t) denote the set

of all feasible procurement strategies at time slot t.

If the mean arrival rate of user requests in time slot t is

known beforehand, then Problem P1.1 can be transformed into

the following problem:

P1.2 : min lim
T→∞

1

T

T∑

t=1

E[−Q(t) + α · P (t)]

s.t. E[
∑

ω∈Ω

Γω(t)Tp

ωTd

] ≥
∑

ω∈Ω

E[µ(ω, t)], ∀t

ζ(t) ∈ χ(t), ∀t,

where λ(ω, t) = E[µ(ω, t)] is the mean arrival rate of the

Poisson process for users with the desired playback rate ω.

The first constraint of Problem P1.2 indicates that the stability

of all queues can be ensured if the expected departure rate is

larger than the expected arrival rate. Let Tc be the duration

time of one charging period, which is on the order of hours

(such as, one hour in EC2 pricing models) and assume that

Tc = mTp,m ≥ 1. The feasible region of ζ(t) depends on the

solution in the previous slots because the charging period of

one VM lasts for multiple decision periods. However, we can

design an optimal stationary randomized algorithm by solving

the following optimization problem:

P1.3 : min
1

m

(m−1)Tp∑

t=t′

E[−Q(t) + αP (t)]

s.t. E[
∑

ω∈Ω

Γω(t
′)mTp

ωTd

] ≥

t′+(m−1)Tp∑

t=t′

∑

ω∈Ω

E[µ(ω, t)]

ζ(t′) ∈ χ(t′), ∀t′,

where t′ mod Tc = 0, which indicates that ζ(t), t ∈ [t′, (m−
1)Tp] is independent of ζ(t′′), t′′ < t′. The transformation

from Problem P1.2 to Problem P1.3 mitigates the disparity

of time scaling between the decision period and the charging

period. The optimal randomized algorithm makes decisions

at the beginning of each charging period based on µ(ω, t).
Given the probability distribution of µ(ω, t), ∀ω ∈ Ω, t, the

solution to Problem P1.3 can be obtained through standard

linear programming [29]. Note that, the optimal randomized

algorithm is impractical as the probability distribution of

µ(ω, t) is not easy, if impossible, to be known a priori.

It has been proved in [30] that any online algorithm can not

do better than the optimal stationary randomized algorithm

solving Problem P1.3. Therefore, we consider the optimal

stationary randomized algorithm as a baseline when analyzing
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the performance of online algorithms. A cost function is

defined as ct(ζ(t)) = −Q(t) + α · P (t). Denote ∆ as the

capacity region of Problem P1.3, which means that for any

µ(ω, t) ∈ ∆, there exist feasible solutions to Problem P1.3.

Denote c∗t (ϵ) as the optimal results of Problem P1.3 with

µ(ω, t) ∈ ∆ being replaced by µ(ω, t) + ϵ ∈ ∆, and c∗t
is the optimal value when ϵ = 0. c̄∗(ϵ) is the time average

cost under the optimal stationary randomized algorithm, and

c̄∗(ϵ) = 1
T

∑T
t=1 c

∗

t (ϵ).

V. DESIGN OF ONLINE PROVISIONING AND

PROCUREMENT STRATEGY

In this section, we design an approximate online procure-

ment algorithm to solve the optimization problem P1.1. By

exploiting structural properties of the optimal solution, we can

reduce the computational complexity of the online algorithm

significantly.

A. Characteristics of Different VM Instances

We first describe the specific properties of VM instances

under different pricing models. Starting from the time point

of renting an instance, the charging time point of one VM

instance is the time slot after a period of Tc. Define “active

VM instance” as the VM instances whose charging time point

hasn’t exceeded the current time slot.

1) On-Demand Instances: Denote ak(t) ≥ 0 as the number

of type-k on-demand VM instances provisioned in time slot t.

Then
∑m−1

i=1 ak(t− iTp) is the number of active on-demand

VM instances provisioned in the previous slots before time

slot t. Therefore, the number of active on-demand type-k VM

instances in time slot t is ak(t) +
∑m−1

i=1 ak(t− iTp). Note

that, ak(t − iTp) = 0 if t − iTp < 0. The monetary cost in

time slot t incurred by provisioning on-demand instances is

given by P on(t) =
∑K

k=1 ak(t)pk.

2) Reserved Instances: The reservation time of Amazon

EC2 instances can be as long as one or three years. The

reserved instances are more suitable to handle the stable

portion of user demand. If the infimum of the mean arrival

rate λmin(ω) can be found, to guarantee queue stability,

the optimal online provisioning strategy should ensure that∑
ω∈Ω

Γω(t)Tp

ω·Td
≥

∑
ω∈Ω λmin(ω) according to [30].

Let λmin(ω) be the baseline demand of a user group, whose

members have a desired playback rate of ω. Even without any

prediction of user demand, we can utilize reserved instances to

satisfy the baseline user demand. Denote bk as the number of

type-k reserved instances, then bk can be derived by solving

the following optimization problem:

P2.1 : min
bk

K∑

k=1

bk · qk

s.t.

K∑

k=1

skbkTp ≥
∑

ω∈Ω

λmin(ω) · ω · Td

0 ≤ bk ≤ Bk.

Denote âk(t) as the number of type-k reserved VM in-

stances provisioned in time slot t. The number of active type-k

reserved instances in time slot t is âk(t)+
∑m−1

i=1 âk(t− iTp).
Note that, âk(t − iTp) = 0 if t − iTp < 0. As the one-

time fee does not affect the results of online algorithms, it

can be ignored for simplicity. Then the usage-based mon-

etary cost of reserved instances at time slot t is given by

P re(t) =
∑K

k=1 âk(t)p̂k, where K is the number of VM

instance types.

3) Spot Instances: The price of a spot VM instance p̃k(t)
can be described by a stochastic process. Due to the low

spot price, the rental of spot instances can further reduce the

monetary cost. For any arbitrary stochastic process of spot

price, it is feasible to obtain the expected spot price E[p̃k(t)] of

a type-k spot instance. As in [19], we can obtain the expected

spot price by constructing a semi-Markov process for spot

price evolution. E[p̃k(t)] can be derived from the stochastic

kernel of the semi-Markov process, which is constructed by

a maximum likelihood estimator based on the observed spot

price history.

In addition, we assume that it is also feasible to obtain

the reliability insurance ρ (see [16]), which is defined as

the probability that the bidding price exceeds the actual spot

price of a VM instance after declaring the bidding price. No

specific bidding strategy is assumed. Intuitively, the reliability

insurance is a function of the declared bidding price as a

fraction of on-demand price.

Denote the number of type-k spot instances provisioned in

time slot t as nk(t) ≥ 0, then the number of active type-k

spot instances at slot t is given by:

nk(t) +

m−1∑

i=1

nk(t− iTp).

Note that, nk(t − iTp) = 0 if t − iTp < 0. The expected

monetary cost of spot instances in time slot t is defined by

P sp(t) =

K∑

k=1

nk(t)E[p̃k(t)]ρ.

B. Design of Approximate Online Algorithm

By combining three pricing models together, we can trans-

form Problem P1.1 into the following optimization problem:

P3.1 : min
âk(t),ak(t),nk(t)

lim
T→∞

1

T

T∑

t=1

(−Q(t) + α · P (t))

s.t. lim
T→∞

sup
1

T

T∑

t=1

∑

ω∈Ω

Hω(t) ≤ ∞

K∑

k=1

sk · y(t) = R(t), ∀t ∈ [1, T ] (a)

âk(t) +
m−1∑

i=1

âk(t− iTp) ≤ bk,

∀t ∈ [1, T ], k ∈ [1,K] (b)
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Γω =
ωHω(t)R(t)∑
ω′∈Ω ω′Hω′(t)

, ∀ω ∈ Ω, t ∈ [1, T ] (c)

ak(t) ≤ Ak(t), ∀t ∈ [1, T ], k ∈ [1,K] (d)

nk(t) ≤ Nk(t), ∀t ∈ [1, T ], k ∈ [1,K]. (e)

Note that, nk(t) · ρ is the expected number of type-k spot

VM instances that can be bidden successfully, and y(t) =
(âk(t)+

∑m−1
i=1 âk(t− iTp))+(ak(t)+

∑m−1
i=1 ak(t− iTp))+

((nk(t) +
∑m−1

i=1 nk(t− iTp)) · ρ) is the number of active

instances in time slot t. The total cost incurred in time slot t

is P (t) = P on(t) + P re(t) + P sp(t).

Due to the problem complexity, we transform Problem

P3.1 to Problem P3.2 by applying the Lyapunov optimization

framework [30]. Define the Lyapunov function as L(H⃗(t)) =∑
ω∈Ω H2

ω(t). The one-slot Lyapunov drift E{L(H⃗(t + 1) −

L(H⃗(t)))|H⃗(t)} is upper bounded by B−2 ·E[
∑

ω∈Ω Hω(t) ·
Γω(t)Tp

ω·Td
|H⃗(t)] + 2 · E[

∑
ω∈Ω Hω(t) · µ(ω, t)|H⃗(t)], where B

is a constant (See Appendix B in our technical report [31] for

details). According to the Lyapunov optimization framework,

the original Problem P3.1 can be transformed to a problem

which aims to minimize a weighted sum of the upper bound of

the Lyapunov drift at time t and −Q(t)+αP (t), with constant

terms being deleted. We can design an online algorithm to

achieve the approximately optimal solution for Problem P3.1.

And the online algorithm can obtain the optimal solution to

the following optimization problem at each decision period:

P3.2 : min
ak(t),âk(t),nk(t)

−

W∑

j=1

Hωj
(t) ·

Γωj
(t)Tp

ωj · Td

+

V · [

W∑

j=1

−Q(ωj , g(
Γωj(t)

Hωj
(t)

)) ·Hωj
(t)] + αV P (t)

s.t. (a)(b)(c)(d)(e).

Denote the algorithm that can achieve the optimal solution

to Problem P3.2 as OPT-ORS, which is the abbreviation of

approximate OPTimal provisioning strategy with On-demand,

Reserved and Spot instances. Details of the OPT-ORS algo-

rithm can be found in Algorithm 1.

In Algorithm 1, all the queue sizes Hω(0) are initialized at

the beginning of the algorithm, and then the online algorithm

makes the procurement decision every decision period. Note

that, the VSP should run the online algorithm to decide the

amount of resources that should be procured from the CSP as

long as the video streaming service is active. At the beginning

of each decision period, the expected price of spot instances is

calculated. Then, the resource allocation Γω(t) is determined

explicitly. Γω(t) depends on the number of active instances

procured in the previous decision period and the number of

instances to be procured in the current decision period. After

determining the resource allocation, the optimal procurement

decision can be obtained by solving Problem P3.2. It can be

easily verified that Problem P3.2 is convex. Thus, we can

solve Problem P3.2 efficiently by exploiting standard convex

optimization tools (e.g., cvx). At the end of each decision

period, all queues are updated according to user arrivals and

departures in the past decision period.

Algorithm 1 Online Algorithm OPT-ORS

Input:

Prices of on-demand VM instances and reserved VM

instances;

Trade-off parameter α;

Decision period Tp, playback duration time of a whole

video Td, charging period Tc;

Parameters of QoE function a1, a2.

Output:

VM procurement decision

âk(t), ak(t), nk(t), k = 1, · · · ,K.

1: Initialization step: Let t = 0, and set Hω(0) = 0, for all

ω ∈ Ω.

2: while the video streaming service is active do

3: Calculate the expected price of spot instances E[p̃k(t)]
at the beginning the decision period according to the

estimator in [19].

4: Determine the resource allocation Γω(t) according to

the demand proportional resource allocation strategy

(1).

5: Calculate the optimal procurement decisions

(â∗k(t), a
∗

k(t), n
∗

k(t)) for each k = 1, · · · ,K of

Problem P3.2.

6: For each ω ∈ Ω, update the queues Hω(t) =
max[Hω(t − 1) − Lω(t), 0] + µ(ω, t), where Lω(t)
denotes the actual number of departed users from queue

Hω in decision period t.

7: Set t← t+ 1.

8: end while

From the structure of Problem P3.2, the properties of the

optimal results obtained by OPT-ORS can be described in the

following theorem.

Theorem 5.1: Denote â∗k(t), a
∗

k(t) and n∗

k(t) as the solution

to Problem P3.2, then we have

1) Given p̂k ≤ pk, ∀k, we have the following relationship:

(a) If E[p̃k(t)] ≤ p̂k, then

(i)n∗

k(t) < Nk(t)⇒ â∗k(t) = 0, a∗k(t) = 0;

(ii)n∗

k(t) = Nk(t), â
∗

k(t) +
m−1∑

i=1

â∗k(t− iTp) < bk

⇒ a∗k(t) = 0;

(b) If p̂k < E[p̃k(t)] ≤ pk, then

(i)â∗k(t) +

m−1∑

i=1

â∗k(t− iTp) < bk

⇒ n∗

k(t) = 0, a∗k(t) = 0;

(ii)â∗k(t) +
m−1∑

i=1

â∗k(t− iTp) = bk, n
∗

k(t) < Nk(t)

⇒ a∗k(t) = 0;
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(c) If p̂k < pk < E[p̃k(t)], then

(i)â∗k(t) +

m−1∑

i=1

â∗k(t− iTp) < bk

⇒ a∗k(t) = 0, n∗

k(t) = 0;

(ii)â∗k(t) +
m−1∑

i=1

â∗k(t− iTp) = bk, a
∗

k(t) < Ak(t)

⇒ n∗

k(t) = 0.

2) If
∑K

k=1 sk(â
∗

k(t) + a∗k(t) + n∗

k(t)) ≥
∑W

j=1 Hωj
(t)ωj ,

which indicates that the total downloading rate is larger

than total desired playback rate, then we have:

−sk

W∑

j=1

H2
ωj
(t)T 2

p∑
ω∈Ω ωHω(t)Td

+ V αpk ≤ 0⇒ ak
∗ = Ak(t),

−sk

W∑

j=1

H2
ωj
(t)T 2

p∑
ω∈Ω ωHω(t)Td

+ V αp̂k ≤ 0⇒ â∗k = bk,

−sk

W∑

j=1

H2
ωj
(t)T 2

p∑
ω∈Ω ωHω(t)Td

+ V αρE[p̃k(t)] ≤ 0⇒

n∗

k(t) = Nk(t).

Proof: Please refer to Appendix A in our technical report

[31] for the proof details.

Due to the difficulty to make accurate user arrival and

departure predictions in practice, we exploit Lyapunov opti-

mization techniques to avoid the need of prediction. Therefore,

instead of directly solving the optimization problem with

complete information, our algorithm can approach the optimal

solution with provable upper bounds by greedily minimizing

the Lyapunov drift at each decision period.

Theorem 5.2: The online algorithm OPT-ORS can stabilize

the system with an upper bounded average queue length and

time-average cost. Moreover, for a given parameter V > 0 and

any non-negative value ϵ, we have

lim
T→∞

1

T
·

T∑

t=1

∑

ω∈Ω

E[Hω(t)] ≤
B

2ϵ
+

V · c̄∗(ϵ)

2ϵ

lim
T→∞

1

T

T∑

t=1

E[ct(ζt)] ≤ c̄∗ +
B

V
,

where B =
(
∑K

k=1 (Ak+bk+Nk)sk)
2T 2

p

Td
2
·
∑

ω∈Ω ω2 +
∑

ω∈Ω µ2
max(ω),

µmax(ω) is upper bound of the number of request arrivals

µ(ω, t) during one slot, and Ak = max{Ak(t), ∀t}, Nk =
max{Nk(t), ∀t}. c̄

∗ is the optimal result achieved by the op-

timal stationary randomized algorithm which solves Problem

P1.3.

Proof: Please refer to Appendix B in our technical report

[31] for the proof details.

Intuitively, given a type-k VM instance, it is of a higher

priority to rent type-k instances under the pricing model that

can provide a lower price. Part 1) of Theorem 5.1 reveals

that the procurement decisions for different types of VMs

are correlated. In one decision period, the number of VM

instances of a certain type to be procured in the current

decision period is determined by the number of active VM

instances procured in the previous decision period and the

price relationship across different types of VM instances. For

example, the Property 1)(a) in Theorem 5.1, the expected

price of the type-k spot VM instance E[p̃k(t)] is the lowest

compared to other types of instances. If the optimal number

of type-k spot instances procured has not reached the upper

bound, namely, n∗

k(t) < Nk(t), then no type-k on-demand or

reserved instances will be rented in the optimal solution. Thus,

for each instance type, the rentals under each pricing model

are prioritized by the price under each pricing model. The

priorities may be variant across different VM instance types.

The variant prices of spot instances also affect the priorities.

For type-k VM instances, they will not be procured until

all other type-k′ VM instances with lower prices have been

procured. Furthermore, since the total surplus downloading

rate over the total desired playback rate will result in excessive

monetary cost without providing any QoE benefits, the total

downloading rate provided by all active instances in time slot

t is upper bounded by the total desired playback rate from all

active users in time slot t. From the Property 2) in Theorem

5.1, though the surplus downloading rate can not provide QoE

benefits, the leaving rate of users can increase with the surplus

downloading rate. Therefore, to ensure queue stability, the

surplus downloading rate may happen when the queue size

is large enough.

From Theorem 5.1, it is able to further decrease the com-

putation complexity of Algorithm OPT-ORS. The property

2) in Theorem 5.1 indicates that the size of feasible region

can be reduced into a smaller set
∑K

k=1 sk(â
∗

k(t) + a∗k(t) +

n∗

k(t)) =
∑W

j=1 Hωj
(t)ωj , then we can determine the optimal

solution by applying the Property 2). From the Property 1)

in Theorem 5.1, the further decrease of computation com-

plexity can be achieved by determining the derivative of
d∆(H(t))+V (−Qt+αPt)

dR(t) . For example, given p̂k < E[p̃k(t)] ≤
pk, ∀k, then only reserved instances will be provisioned if the

derivative is larger than 0 at the point R(t) =
∑K

k=1 skbk.

For each type of VM instances, the prices p̂k, E[p̃k(t)],
and pk divide the feasible solutions into three separate parts:

{0 ≤ âk(t) +
∑m−1

i=1 âk(t− iTp) ≤ bk, nk(t) = 0, ak(t) =

0, ∀k}, {âk(t) +
∑m−1

i=1 âk(t− iTp) = bk, 0 ≤ nk(t) ≤

Nk(t), ak(t) = 0, ∀k}, and {âk(t) +
∑m−1

i=1 âk(t− iTp) =
bk, nk(t) = Nk(t), 0 ≤ ak(t) ≤ Ak(t), ∀k}. The minimum

value of ∆(H(t)) + V (−Qt + αPt) in each part can be

obtained by calculating
d∆(H(t))+V (−Qt+αPt)

dR(t) . The optimal

solution to Problem P3.2 is the smallest one.

VI. SIMULATION EXPERIMENTS

In this section, we conduct trace-driven simulations to

evaluate the effectiveness of our proposed algorithm.

A. Dataset Description and Experiment Settings

To make the simulation be more realistic, we use the video

traffic dataset obtained from Youku [32], which is the largest

VSP in China, to drive the simulation. The Youku dataset

contains the video traffic logs from March 24, 2012 to March
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30, 2012. Each traffic log includes the user ID, the user arrival

time, and the requested video ID. By dividing the one week

period into a series of 5-minute time slots and aggregating the

number of user requests in each time slot, we can plot the

evolution of user request pattern in Fig. 3.
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Fig. 3. Number of user request arrivals in each time slot

Define the set of available playback rates as Ω =
{200kbps, 400kbps, 800kbps}. The playback duration time

of a whole video is Td = 600s, and the length of one

procurement adjustment slot is Tp = 300s. There are 4 types

of VM instances, and their corresponding streaming capac-

ity is {10Mbps, 20Mbps, 40Mbps, 80Mbps}. The number of

VM instances in each type follows a uniform distribution

U(10, 30). α = 18000,V = 10000, ρ = 0.8 and bk = 1, ∀k =
1, 2, 3.

The prices of VM instances in each type are obtained

directly from the Amazon EC2 pricing website [15]. There

are four types of VM instances: small, medium, large and

extra large. Fig. 4 shows the prices of VM instances (in the

unit of US dollars) in each time slot. The price of on-demand

instances are much higher than reserved and spot instances.

The price of spot instances changes dynamically, and can be

lower than the price of reserved instances.
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Fig. 4. Prices of VM instances in different types

For comparison, we select the algorithm that obtains optimal

results of Problem P1.3 as a baseline. Note that, the optimal

algorithm needs to know all video traffic statistics a priori,

which is impossible in reality.

B. Simulation Results

We first analyze the total monetary cost of all VM instances.

The total one-time fee for reserved instances is 1035 US

dollars. Fig. 5(a) illustrates the cumulative total monetary cost

of all VM instances. Algorithm OPT-ORS provisions more

instances than the optimal algorithm, while OPT-ORS can

ensure a higher time-average QoE, which is illustrated in Fig.

5(b). High demand will incur a higher monetary cost, which is

consistent with the Property 2) in Theorem 5.1. It means that

large queue size leads to provision more instances to ensure

the stability of queues, which will result in a larger increasing

rate of the monetary cost. From Fig. 5(a), we can see that the

increasing rate of the monetary cost between time slot 100

and 200 is much smaller than that between time slot 300 and

400. From Fig. 3, we can see user demand between time slot

100 and 200 is much smaller than that between time slot 300

and 400. Fig. 5(b) illustrates the time average QoE per user.

The algorithm OPT-ORS provides a higher expected QoE for

each user by provisioning more VM instances. Because we

calculate the time-average expected QoE, the fluctuation of

QoE during the early slots will result in significant changes

of the time-average value.

Fig. 6(a) illustrates the percentage of monetary cost on each

type of VM instances. Note that, we do not include one-time

fee of reserved instances since both OPT-ORS and the optimal

algorithm incur the same one-time fee. In the figure, we can

see that the percentage of monetary cost spent on reserved

instances is quite stable because we only utilize reserved

instances to satisfy the baseline demand. Flash crowds will

lead to more monetary cost on on-demand instances. For

example, the increase of monetary cost of on-demand instances

at time slot 50, 200 and 950. Flash crowds result in large

queue sizes, which further require more rentals of on-demand

instances to ensure queue stability. Note that, the high price

of on-demand VM instances also leads to a high increasing

rate of monetary cost of on-demand instances. Spot instances

are rent more frequently than on-demand instances to satisfy

user demand over the baseline demand due to their low

prices. Because of the high prices of on-demand instances,

the percentage of monetary cost of spot instances will decrease

significantly in time slot 50 and 200.

Fig. 6(b) illustrates the time-average weighted sum of the

total monetary cost and the user QoE. In the figure, we can

see that the difference between OPT-ORS and the optimal

algorithm (around 1000) is smaller than the upper bound

proved in Theorem 5.1 (> 3000).

Fig. 7(a) shows the amount of bandwidth allocated to

each user group. Fig. 7(b) illustrates the evolution of queue

sizes. Queue H1, H2 and H3 are correspondent to user

groups with the desired playback rate 200Kbps, 400Kbps, and

800Kbps respectively. From the two figures, we can see that

the amount of allocated bandwidth is almost consistent with

the evolution of queue sizes. The number of provisioned VM
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Fig. 6. Monetary cost distribution and time average of objective value

instances are highly correlated between two continuous time

slots due to the mismatched timescales of decision period and

charging period, while user arrivals and departures between

two continuous time slots are independent. Therefore, we

analyze the correlation between the bandwidth and the queue

size in the time unit of one charging period. From the figures,

we can see that large queue sizes require large bandwidth to

be allocated. Large bandwidth will lead to high user departure

rate, then the queue size will fast decrease. The correlation

between the amount of allocated bandwidth and queue size

are 0.79, 0.86 and 0.80 respectively.

Fig. 8 illustrates the time-average monetary cost and QoE

when varying the value of α. We take 15 different values

in the interval [10000, 25000]. Note that, we do not include

the one-time fee in the monetary cost since the one-time

fee has no effect on the comparison of OPT-ORS. In this

figure, we can see that the monetary cost and the QoE

exhibit concave relationship. Therefore, the objective problem

is convex. What’s more, when α is large (i.e., larger than

21000), the QoE will fast decrease and there is no significant

reduction of monetary cost. If α is small (i.e., close to 10000),

the QoE can hardly increase because it has approached the

maximum value. α = 18000 is a sweet spot for the real system

configuration.

Fig. 9 shows the performance of OPT-ORS under various

values of V . From this figure, we can see that a larger value
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Fig. 8. Tradeoff between time average monetary cost and QoE with varying
α ∈ [10000, 25000].
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of V can approach the optimality more closely, which is

consistent with the result in [30].

VII. CONCLUSION AND FUTURE WORK

In this paper, we build a theoretic model to study the cost-

QoE tradeoff for cloud-based video streaming providers, and

consider a realistic scenario with Amazon’s EC2 pricing mod-

els. We formulate the procurement of different VM instances

under multiple pricing models as a constrained stochastic

optimization problem, and design an online procurement algo-

rithm to approach the optimal solution with explicitly provable

bounds by applying the Lyapunov optimization techniques. By

characterizing structural properties of our proposed algorithm,

we can further reduce the computation complexity of the

algorithm. Through extensive simulations, we evaluate the

effectiveness of our proposed online algorithm. Our algorithm

can result in an optimal tradeoff between the monetary cost

incurred by VM instance procurement and the achieved user

QoE efficiently. As the next step, we will investigate the case

of adaptive video streaming, in which the desired playback

rate of a video can be changed dynamically according to

the bandwidth availability. We are also interested in the

optimization of procurement plans under other pricing models.
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