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vide a general algorithm for enumerating such collinear configurations and computing their

contribution to the index. We apply this machinery to the case of black holes described

by quiver quantum mechanics, and give a systematic prescription — the Coulomb branch

formula — for computing the cohomology of the moduli space of quiver representations.

For quivers without oriented loops, the Coulomb branch formula is shown to agree with the

Higgs branch formula based on Reineke’s result for stack invariants, even when the dimen-
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parametrizes the Poincaré polynomial of the quiver moduli space in terms of single-centered

(or pure-Higgs) BPS invariants, which are conjecturally independent of the stability con-
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1 Introduction

BPS states in N = 2 supersymmetric string vacua offer a rich playground for exploring

the microscopic properties of black holes in quantum gravity. Indeed, such states have

dual descriptions as black hole solutions in supergravity at strong coupling, and brane

configurations at weak coupling. The Witten index (more precisely, the second helicity su-

pertrace [1, 2]) remains unchanged upon varying the string coupling. Computing the index

Ω(γ) in both regimes as function of the electromagnetic charges γ can provide non-trivial

tests of the equivalence between the microscopic and gravitational descriptions expected

in any theory of quantum gravity [3].
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This comparison however is complicated by the fact that on the macroscopic side,

contributions to the index Ω(γ) originate not only from single centered black holes with

charge γ, but also from multi-centered black holes with constituents carrying charges {αi}
such that γ =

∑
αi [4–7]. The total index carried by single and multi-centered black

holes is the quantity that should be compared with the index on the microscopic side.

In contrast, the gravitational path integral in the near horizon geometry of each black

hole gives information only about the index ΩS(α) associated with single centered black

holes [8, 9]. Thus it is necessary to express the contribution from multi-centered black

holes in terms of the index ΩS(αi) associated to each center. For this it suffices to compute

the index1 gCoulomb({αi}, {ci}) of the supersymmetric quantum mechanics of n centers car-

rying charges {αi} interacting by Coulomb and Lorentz forces (and other forces related

by supersymmetry). This ‘Coulomb index’ was computed in [10, 11], leading to a general

prescription — the Coulomb branch formula — for expressing the total index Ω(γ) in terms

of the single-centered BPS invariants ΩS(αi). Unlike these single-centered BPS invariants,

the Coulomb index gCoulomb({αi}, {ci}) depends on the moduli at infinity — indeed, this

dependence is responsible for jumps of the total index Ω(γ) across walls of marginal sta-

bility, providing a physically transparent derivation of the wall-crossing formulae known in

the mathematical literature [10, 12, 13].

An important technical tool in [10, 11] was to consider a ‘refined’ version of these

indices, which computes the trace Tr ′(−1)F y2J3 , where J3 is the angular momentum gen-

erator with respect to a fixed z-axis, and the prime denotes the removal of fermion zero

mode contributions before taking the trace. Unlike the helicity supertrace Tr ′(−1)F , the

refined index is not a protected quantity in full-fledged string theory and cannot be directly

compared with the microscopic results. This generalization was nonetheless necessary, as

one could use localization with respect to rotations along the z axis to compute the refined

Coulomb index gCoulomb({αi}, {ci}; y) for any number of centers n, and then take the limit

y → 1 at the end to recover the result for Tr ′(−1)F . Although the description of the fixed

points of this action is straightforward, their enumeration requires solving a set of n − 1

algebraic equations in n− 1 real variables, which quickly becomes unpractical as the num-

ber of centers increases. The first goal of this paper is to remove this bottleneck and give

a completely algorithmic way of computing the Coulomb index gCoulomb({αi}; {ci}; y), and

hence the total refined index Ω(γ; y).2 Using the connection between multi-centered black

hole quantum mechanics and quiver quantum mechanics described in [14] this leads to an

explicit expression for the Poincaré polynomial of quiver moduli spaces. The second goal

is to establish the equivalence of this Coulomb branch formula with Reineke’s formula [15]

and its generalizations [12, 16] for the Poincaré polynomial of quiver moduli spaces for

general quivers with no oriented loop.

Coulomb index from localization. Before explaining our new algorithm, let us

briefly review the prescription of [11] for computing the refined Coulomb index

1The Fayet-Iliopoulos (FI) parameters {ci} depend on αi and on the values of the moduli at infinity,

and will be treated as independent real parameters subject to the constraint
∑
i ci = 0.

2In [10, 11, 14] we used a subscript ref to denote a refined index. In this paper we shall drop this

subscript to avoid cluttering up the formulæ, but it should be understood that whenever the index carries

the argument y, it corresponds to a refined index.
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gCoulomb({αi}, {ci}; y). Let Γ be the charge lattice of electromagnetic charges, equipped

with the Dirac-Schwinger-Zwanziger (DSZ) symplectic product 〈·, ·〉 ∈ Z. Consider a multi-

centered black hole configuration where each center carries charge αi (i = 1 . . . n), with

DSZ products αij ≡ 〈αi, αj〉 between the charges. For fixed values of the moduli at infinity,

encoded in the FI parameters ci, n-centered configurations are parametrized by a 2n− 2-

dimensional phase space Mn({αij}, {ci}) [4, 5]. The coordinates of Mn are the locations

of n centers ~ri up to overall translations, subject to n− 1 constraints3

∀i = 1 . . . n ,
∑
j
j 6=i

αij
|~ri − ~rj |

= ci . (1.1)

The spaceMn admits a symplectic form [5, 17, 18], such that the action of SO(3) rotations

on Mn is generated by the moment map

~J =
1

2

∑
i<j

αij
~rj − ~ri
|~ri − ~rj |

, (1.2)

equal to the angular momentum carried by the configuration. We denote by

gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y) = Tr ′(−y)2J3 (1.3)

the refined index associated to this multi-centered configuration assuming that all the

centers are distinguishible from each other, and that each center carries no intrinsic

degeneracy. Mathematically, this is the equivariant Dirac index of the symplectic space

Mn({αij}, {ci}) [11, 19]. We refer to (1.3) as the Coulomb index of multi-centered black

holes with charges {αi}. This in turn can be used to compute the index associated with

a general multi-centered black hole configurations in terms of indices ΩS(αi) carried by

individual centers following the procedure described in [11, 14].

When there exists an ordering of the charges {αi} such that i ≤ j if and only if

αij ≥ 0, and for generic values of the parameters ci away from walls of marginal stability,

the symplectic space Mn is compact, and the Coulomb index can be computed by

localization with respect to rotations around a fixed axis, using the Atiyah-Bott Lefschetz

fixed point formula [10, 11]. The configurations which stay invariant under such rotations

are collinear configurations, corresponding to solutions of (1.1) lying along the z axis. The

result is expressed as

gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y)=(−1)n−1+
∑
i<jαij (y−y−1)−n+1

∑
extrema

±y
∑
i<jαijsign(zj−zi),

(1.4)

3The constraint (1.1) for i = n follows from the sum of others using the fact that
∑n
i=1 ci = 0. For

a general multi-centered black hole system there are additional constraints besides (1.1) coming from the

requirement of the regularity of the metric and other fields. However when the central charges of the

constituents nearly align, which is the the limit in which the quiver quantum mechanics becomes a good

description, these additional constraints are expected to be satisfied automatically [14]. Throughout this

paper we shall be working in this limit.
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where the sum runs over solutions to the equations

n∑
j=1
j 6=i

αij
|zi − zj |

= ci , for 1 ≤ i ≤ n− 1 , z1 = 0 . (1.5)

The z1 = 0 condition fixes the translational zero-mode. The sign ± in (1.4) is given by

the sign of the Hessian det(∂2W/∂zi∂zj) of the superpotential

W ({zi}) = −
∑
i<j

αij sign(zj − zi) log |zi − zj | −
n∑
i=1

ci zi , (1.6)

whose critical points reproduce the conditions (1.5).

For charges {αi} such that no such ordering exists, the spaceMn may be non-compact,

due to the possibility of ‘scaling solutions’, i.e. a subset of the centers approaching each

other at arbitrary short distances [7, 20]. In that case, we continue to define the Coulomb

index gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y) by the localization formula (1.4), although

the result can no longer be interpreted directly as the refined index associated to the

multi-centered black hole configuration (in particular, it may not be a symmetric Laurent

polynomial). Nevertheless it can be used to construct such a refined index following the

procedure described in [11, 14] and reviewed in section 3.1. When the FI parameters ci sit

on a wall of marginal stability, the space Mn is also non-compact due to the possibility

of separating the centers into two or more clusters at arbitrarily large distances, and we

do not assign a value to gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y) in such cases.

A new algorithm for computing the Coulomb index. Except in very special cases,

it is usually impossible to find all solutions of (1.5) explicitly. This is also unnecessary, since

the contribution of a given solution of (1.5) to the total index (1.4) depends only on the

ordering of the centers, via the angular momentum J3 = 1
2

∑
i<j αij sign(zj − zi) along the

z-axis and the sign of the Hessian W ′′. For a small number of centers, it is possible to find

approximate solutions numerically, and determine both J3 and the sign of W ′′, however this

becomes quickly unpractical as the number of centers grows. Moreover, the brute force enu-

meration of solutions of (1.5) does not take into account the fact that there can be cancella-

tions between different solutions with the same ordering. To exploit this fact, it is useful to

associate a permutation σ to each solution to (1.5), such that i < j iff zσ(i) < zσ(j). Defining

α̃i = ασ(i), xi = zσ(i) and c̃i = cσ(i), solutions of (1.5) correspond to critical points of

W ({xi}) = −
∑
i<j

α̃ij log |xi − xj | −
n∑
i=1

c̃i xi ,
n∑
i=1

c̃i = 0 (1.7)

in the physical region

0 ≡ x1 < x2 < x3 · · · < xn . (1.8)

Reorganizing (1.4) as a sum over all permutations σ of 1, 2, . . . n, we obtain

gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y)=(−1)n−1+
∑
i<j αij (y − y−1)−n+1

∑
σ

s(σ)y
∑
i<j ασ(i)σ(j) ,

(1.9)
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where s(σ) is the sum of the sign of the Hessian of (1.7) over each critical point in the physi-

cal region. In particular, s(σ) is insensitive to pairs of solutions of (1.5) with the same order-

ing, which may appear under small perturbations of the parameters αij and ci, as long as we

stay away from walls of marginal stability in the space of FI parameters {ci} and away from

certain ‘scaling walls’ in the space of DSZ products {αij} described in more detail below.

The first aim of this paper is to develop an explicit algorithm for computing s(σ) and

hence the Coulomb index (1.9) for generic DSZ products {αij} and FI parameters {ci}.
This is achieved in section 2, where we prove an inductive formula (2.20) for the indexed

number s(σ) = F ({α̃1, · · · α̃n}, {c̃1, · · · c̃n}) of critical points of the superpotential (1.7),

by exploiting its robustness under changes of the DSZ products α̃ij . For quivers without

oriented loops and generic products, we arrive at the following completely explicit result:

gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y) = (−1)n−1+
∑
i<j αij (y − y−1)−n+1

×
∑
σ

n−1∏
k=1

Θ

(
ασ(k),σ(k+1)

k∑
i=1

cσ(i)

)
(−1)

∑n−1
k=1 Θ(−ασ(k),σ(k+1)) y

∑
i<j ασ(i)σ(j) ,

(1.10)

where Θ is the Heaviside function and the sum runs over all permutations σ of 1, 2, · · ·n.

If some of the αij ’s vanish then we need to deform them away from zero such that the

deformed quiver continues to satisfy the no loop condition, compute the result using (1.10)

and then take the limit where the deformations are taken back to zero.

As described in (2.20), in the presence of loops the expression for s(σ) picks up

additional contributions ∆FA given in (2.32), which depend on the index F with fewer

centers and another auxiliary quantity G(α̃1, · · · α̃n). The latter counts the (indexed)

number4 of collinear scaling solutions, i.e. solutions of (1.5) with ci = 0 which may arise

when the total angular momentum 1
2

∑
i<j α̃ij vanishes. We find that this ‘scaling index’

can itself be computed inductively using (2.38). These formulæ hold when the DSZ

products α̃ij are generic, but we show that even when this is not the case, all the relevant

physical quantities can be computed in terms of limits of these formulæ.

Quiver quantum mechanics and pure-Higgs invariants. While the refined index

is not protected in full-fledged string theory, it is protected in the context of N = 4

supersymmetric quiver quantum mechanics, which describes the dynamics of certain

multi-black hole bound states around special loci in moduli space where the central

charges of the constituents become nearly aligned [5, 7]. Thus, by considering a black

hole whose dynamics in some region of the moduli space is described by a specific quiver

quantum mechanics, we can use our general Coulomb branch formula for multi-black

hole bound states to parametrize the refined index in the corresponding quiver quantum

mechanics in terms of single-centered BPS invariants [14]. For quivers without oriented

loops, the single-centered BPS invariants are trivial, and the Coulomb branch formula

is completely explicit. We can then use this to establish the equivalence of the Coulomb

branch formula for such quivers with explicit formulae for the cohomology of the moduli

space of stable quiver representations known in the mathematical literature [15, 16, 21, 22].

4Due to the scaling symmetry, each solution arises as a one-parameter family, the number of which is

counted by G.
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Before explaining our results, let us briefly review the relation between quiver quantum

mechanics and multi-centered black holes [14]. N = 4 supersymmetric quiver quantum

mechanics can be obtained by dimensionally reducing an N = 1 supersymmetric gauge

theory in 3+1 dimensions5 — containing vector multiplets in the adjoint representation of

the gauge group G =
∏
i=1...K U(Ni) and chiral multiplets in bi-fundamental representa-

tions of U(Ni) × U(Nj) — down to 0+1 dimensions. The scalars coming from the chiral

multiplets are called the Higgs variables and those from the vector multiplets are called the

Coulomb variables. The vacuum moduli space of the Higgs variables at zero values of the

Coulomb variables is equivalent to the moduli space M of stable quiver representations

(in short quiver moduli space), where the stability condition is determined by the FI

parameters ζ1, . . . ζK for each U(Ni) factor. BPS states are in one-to-one correspondence

with cohomology classes in H∗(M;Z), and the angular momentum is identified with

the component J3 = (p − d)/2 of the Lefschetz SU(2) action on the total cohomology

H∗(M;Z). Thus the refined index is given by the ‘Poincaré-Laurent polynomial’6

Q(M; y) ≡
∑
p

bp(M) (−y)p−d, (1.11)

where bp(M) are the Betti numbers and d is the complex dimension of M. But the

same spectrum may also be calculated by first integrating out all the Higgs variables

and considering the effective theory for the Coulomb variables. The latter turns out to

be given by the same quantum mechanical system as that of multi-centered black holes

in N = 2 supersymmetric string theory, upon identifying the charge vector γ with the

dimension vector (N1, . . . NK) [5], and the DSZ product γij between the basis vectors γi =

(0, . . . , 1, . . . , 0), where the only non-vanishing entry occurs in position i, with the number of

arrows from the i-th to the j-th node of the quiver. The Coulomb branch formula of [11] can

thus be used to express the Poincaré-Laurent polynomial (1.11) in terms of certain ‘single

centered BPS invariants’ ΩS(α), which are (conjecturally) independent of the FI parameters

and of the fugacity parameter y [14]. In simplest cases, ΩS(γ) enters just as an additive

constant in Q(M; y) = Ω(γ), and can be identified as the Lefschetz singlet contribution to

the total cohomology H∗(M;Z) [14, 25–27]. In general however, the single centered BPS

invariants ΩS(α) enter in Q(M; y) in a more complicated fashion. It is a very interesting

open problem to identify the corresponding ‘absolutely stable’ classes in H∗(M;Z).

For quivers without oriented loops, the only non-vanishing single centered BPS invari-

ants are those associated to the basis vectors γi, and for such vectors ΩS(γi) takes the value

1. In that case, the Coulomb branch formula gives a completely explicit result for Q(M; y),

which can be compared to known results in the mathematical literature. In particular, for

5As an aside it should be noted that N = 4 supersymmetric quiver quantum mechanics is also useful

in computing the spectrum of BPS states in N = 2 supersymmetric gauge theories in 3+1 dimensions [19,

23]. Indeed, the BPS spectrum of many gauge theories can be understood in the language of quiver

representations [24]. For example in the context of N = 2 supersymmetric pure SU(2) gauge theory, the

role of single centered ‘black holes’ is played by the monopole and the dyon in Seiberg-Witten theory, which

are stable for all values of the moduli and whose bound states generate the complete BPS spectrum.
6We use this terminology since Q(M; y) differs from the usual Poincaré polynomial

∑
p bpy

p by a y → −y
transformation and a multiplicative factor of (−y)−d.
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primitive dimension vector γ (i.e. such that all Ni are coprime), Reineke’s formula [15] gives

another completely explicit result for Q(M; y). For Abelian quivers (i.e such that all Ni

are one), the Coulomb branch formula equates the Poincaré-Laurent polynomial Q(M; y)

with the Coulomb index gCoulomb({γ1, · · · γn}; {ζ1, · · · ζn}; y) given in (1.10). In section 4.2

we show the equivalence of the Reineke’s formula and Coulomb branch results for Abelian

quivers, generalizing previous arguments given in the context of wall-crossing [10, 28].

For non-Abelian quivers with primitive dimension vector, the equivalence of the Reineke’s

formula and Coulomb branch results can be reduced to the Abelian case, by using the

Abelianization property satisfied by Reineke’s formula [21, 28] (see (4.18) below).

For non-Abelian quivers with non-primitive vector, Reineke’s formula no longer

computes the Poincaré-Laurent polynomial Q(M; y) of the quiver moduli spaceM (which

is singular due to marginal bound states), but rather the ’stack invariant’ GHiggs. It is

conjectured in the mathematical literature that a bone-fide Poincaré-Laurent polynomial

Q(M; y) may be reconstructed from the stack invariants GHiggs [12, 16] (see eq. (4.1)

below), but it is unclear in general how to construct a smooth moduli space M whose

cohomology would agree with GHiggs. At any rate, using a further property of Abelian

stack invariants gHiggs established in [22] (see (4.22) below), we prove that the Coulomb

branch formula agrees with the Poincaré-Laurent polynomial Q(M; y) computed from

Reineke’s formula for the stack invariants. The result can be written as

Q (M; y) =
∑

m|Ni ∀ i

µ(m)

m

y − y−1

ym − y−m
∑
{k(`)
j
}∑

` `k
(`)
j

=Nj/m

gCoulomb({(`γj)k
(`)
j }; {(`ζj)k

(`)
j }; y)

×
K∏
j=1

∏
`

1

k
(`)
j !

(
y − y−1

`(y` − y−`)

)k(`)
j

, (1.12)

where µ(m) is the Möbius function, {(`γj)k
(`)
j } denotes that we have k

(`)
j nodes each

carrying charge `γj for ` ≥ 1 and 1 ≤ j ≤ n, and it is understood that in computing

gCoulomb whenever some αij vanishes we need to deform it away from that value to produce

an Abelian quiver without loop, and then use (1.10) for computing it.

For brevity we shall henceforth refer to Reineke’s formula and its generalizations

as the Higgs branch formulæ, since they compute directly the cohomology of the Higgs

branch moduli space. For quivers with loops, the Higgs branch formula will refer to the

result of any computation of the cohomology of the Higgs branch moduli space, although

no general formula is available in such cases.

A Mathematica package for quiver invariants. It should be clear from the above

that the Coulomb branch formula produces a parametrization of the Poincaré-Laurent

polynomial of any quiver in terms of single-centered BPS invariants in a completely

combinatoric way. However, even for moderately complicated quivers the necessary

computations quickly become tiresome, and are best implemented on a computer. We

have implemented the Coulomb branch formula as well as Reineke’s formula for stack

invariants (and many related other routines) in a mathematica package “CoulombHiggs”

– 7 –
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available from arXiv and described in appendix A, which we hope will facilitate studies of

single-centered BPS invariants. This package has been successfully tested on the examples

investigated in [14] and many more.

2 A formula for the Coulomb index of multi-centered black holes

In this section, we establish a recursive algorithm for computing the Coulomb index

gCoulomb({α1, · · · αn}; {c1, · · · cn}; y) for general charge configurations αi, away from the

walls of marginal stability in the space of FI parameters ci. We start in section 2.1 with

charge configurations for which there exists a possible ordering of the αi’s such that

αij ≥ 0 for i ≤ j , (2.1)

and with all DSZ products αij non-zero. It follows from the discussion in section 1 that this

corresponds to an Abelian quiver without any oriented loop. For such systems we obtain the

simple formula (2.9) for the indexed number s(σ) that enters (1.9). In section 2.2 we show

that for the purpose of computing the total Coulomb index, the same result can be used even

when some of the αij ’s vanish. In section 2.3, we turn to general multi-centered black hole

configurations for which the charges do not admit an ordering satisfying (2.1), and estab-

lish an inductive formulae for computing s(σ). This is given by F ({α̃1, · · · α̃n}, {c̃1, · · · c̃n})
in (2.20) with α̃i = ασ(i). During this analysis we also derive a similar formula for the

coefficient s(σ) for collinear scaling solutions [7, 20] for which all the FI parameters vanish

and the αi’s satisfy
∑

i<j ασ(i)σ(j) = 0. The corresponding inductive formula for s(σ),

called G(ασ(1), · · ·ασ(n)), is given in (2.38). Combining these results and summing over all

permutations yields a general algorithm for gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y) with non

vanishing DSZ products, as summarized in (2.33).

2.1 Abelian quivers with no oriented loops and all αij 6= 0

We start by considering the case of charge configurations which admit an ordering such

that αij > 0 for i < j. A special case arises if all αi are positive linear combinations of

two charge vectors γ1, γ2 with 〈γ1, γ2〉 > 0, as is the case for multi-centered configurations

relevant for wall-crossing [10].

Defining

yi = xi+1 − xi, d̃i = −
n∑

j=i+1

c̃i =
i∑

j=1

c̃i, for 1 ≤ i ≤ n− 1 , (2.2)

we can express (1.7) as

W ({yi}) = −
∑
i<j

α̃ij ln

(
j−1∑
k=i

yk

)
+

n∑
i=1

d̃i yi . (2.3)

This gives

∂W

∂yk
= −

k∑
j=1

n∑
`=k+1

α̃j`
1∑`−1
i=j yi

+ d̃k for 1 ≤ k ≤ n− 1 . (2.4)
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Each yi takes value from 0 to ∞, but by an appropriate coordinate transformation

ui = f(yi) we can bring the range to 0 ≤ ui < 1 for each i. We can regard the space

spanned by the ui’s a unit box. Our goal is to examine the condition under which W has

an extremum with respect to the yi’s in the interior of this box, ı.e. there is a solution to

the equation ∂W/∂yk = 0 for every k.

To this aim, let us now consider the following deformation of the α̃ij ’s:

α̃i.i+1 → α̃i,i+1 ∀ i, α̃ij → λ α̃ij for |i− j| ≥ 2 , 0 ≤ λ ≤ 1 . (2.5)

In the limit λ→ 0, only α̃i,i+1’s remain non-zero and (2.4) takes the simple form

∂W

∂yk
= −

α̃k,k+1

yk
+ d̃k . (2.6)

Thus the set of equations ∂W/∂yk = 0 has a solution in the range 0 < yk <∞ if and only if

sign(α̃k,k+1) = sign(d̃k) for 1 ≤ k ≤ n− 1 . (2.7)

Furthermore the sign of the Hessian of W at this solution is easily determined to be

n−1∏
k=1

sign(α̃k,k+1) . (2.8)

These results can be summarized by saying that for quivers without loops the coefficient

s(σ) of y
∑
i<j α̃ij associated with a given permutation {α̃1, · · · α̃n} is given, for λ = 0, by

F0({α̃1, · · · α̃n}, {c̃1, · · · c̃n}) =

n−1∏
k=1

Θ(α̃k,k+1 d̃k)(−1)
∑n−1
k=1 Θ(−α̃k,k+1) , (2.9)

where Θ(x) is the Heaviside function.

Now consider changing λ from 0 to 1. During this deformation new extrema can appear

and disappear in pairs in the interior of the box, but since they are weighted by the sign

of the Hessian, the result is unaffected. The other possibility is that new extrema can

emerge from (or disappear into) the boundary of the box. This happens when a subset of

the yi’s approach 0 and/or infinity. Since ∂W/∂yk approaches the constant d̃k as yk →∞
irrespective of the values of the other yi’s, it is clear that away from the marginal stability

walls d̃k = 0, none of the yi’s can approach infinity. Thus the only possible boundary

component where extrema of W can appear or disappear is where a subset of the yi’s vanish.

Let us suppose that as λ is increased from 0 to 1, such a phenomenon takes place at

some value λ = λc. If a new extremum appears at λc then for λ slightly above λc, there

will be an extremum of W where a subset of the yi’s are small, corresponding to a subset

of the centers being close to each other. If on the other hand an extremum disappears

as λ approaches λc from below, then such a configuration exists for λ slightly below λc.

These correspond to onset or disappearance of scaling solutions [7, 20], with λ = λc being

the point at which the scaling solution becomes collinear.

Now if the quiver corresponding to the original αij ’s had no oriented loop then neither

does the quiver associated with the deformed αij ’s, since the signs of all the αij ’s are
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preserved under the deformation (2.5). This implies that the deformed quiver cannot have

a scaling configuration, and hence, as we deform λ from 0 to 1, no extremum of W can

emerge from or disappear into the boundary. Thus (2.9) gives the correct contribution to

s(σ) even at λ = 1. Using (1.9) we now get

gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y) = (−1)n−1+
∑
i<j αij (y − y−1)−n+1

×
∑
σ

n−1∏
k=1

Θ

(
ασ(k),σ(k+1)

k∑
i=1

cσ(k)

)
(−1)

∑n−1
k=1 Θ(−ασ(k),σ(k+1)) y

∑
i<j ασ(i)σ(j) .

(2.10)

2.2 Abelian quivers with no oriented loops but some αij = 0

We now turn to the case of a quiver without oriented loops, but for which some of the

αij ’s vanish. For this we first deform all the vanishing αij ’s to non-zero values in such a

way that the deformed quiver does not have any oriented loop. To see that this is always

possible, let us carry out the deformation one link at a time. We begin with the original

quiver without oriented loop and make one of the vanishing αij ’s non-zero. If this leads to

a quiver with an oriented loop, then there exists some component C of the original quiver,

which, together with the new link, gives rise to a quiver with oriented loop. If so let us flip

the sign of αij of the deformed link. In this case C together with the added link no longer

forms an oriented loop. Suppose there were another component C ′ of the original quiver,

which combined with the new link would now form an oriented loop. Then C + C ′ would

form an oriented loop in the original quiver, which contradicts our assumption. Thus,

by choosing the sign of αij of the deformed link we can ensure that the new quiver also

does not have any oriented loop. We can now repeat the argument and show that all the

vanishing αij ’s can be made non-zero and for appropriate choice of sign of the deformed

αij ’s the new quiver does not have any oriented loop. Thus we can compute its index by

our earlier formula (2.10).

We shall now argue that the index of the original quiver can be obtained by taking

the limit of the index of the deformed quiver in which the deformation parameters go to

zero. For this we shall work with the total index (1.9) rather than a given permutation.

We shall use the original charges αi and use their locations zi — related to the xi by

xi = zσ(i) — as the independent variables. The zi’s satisfy (1.5).

Let us now consider the effect of taking αpq to 0 for some specific p, q. For any

extremum of W at which the locations of αp and αq remain at finite separation, this limit

has no drastic effect and the contribution to the index from such extrema at αpq = 0 is the

same as what we get by taking the αpq → 0 limit. Thus we only have to examine the fate of

the critical points for which the locations of αp and αq approach each other in the αpq → 0

limit, as generically such critical points will disappear for αpq = 0. For such solutions we

can replace zq by zp in (1.5) except in the αpq/|zp − zq| terms, and express (1.5) as

−
n∑
i=1

i 6=k,p,q

αik
|zi − zk|

−
αpk + αqk
|zp − zk|

− ck = 0 for 1 ≤ k ≤ n, k 6= p, q

−
n∑
i=1
i 6=p,q

αip
|zi − zp|

− αqp
|zq − zp|

− cp = 0 , −
n∑
i=1
i6=p,q

αiq
|zi − zp|

− αpq
|zq − zp|

− cq = 0 .

(2.11)
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By adding and subtracting the last two equations we get

−
n∑
i=1

i6=k,p,q

αik
|zi−zk|

−
αpk+αqk
|zp−zk|

−ck = 0 for 1 ≤ k ≤ n, k 6= p, q

−
n∑
i=1
i 6=p,q

αip + αiq
|zi − zp|

− cp − cq = 0 , −
n∑
i=1
i6=p,q

αip−αiq
|zi−zp|

+2
αpq
|zq−zp|

−cp+cq=0 .

(2.12)

The first set of equations and the second equation together correspond to the equilibrium

configuration of n−1 charges in which the charges αp and αq have merged to form a charge

αp + αq and the corresponding FI parameters have been added. The last equation can be

interpreted as an equation for zq− zp. The existence of a solution to this equation requires

sign

cq − cp − n∑
i=1
i 6=p,q

αip − αiq
|zi − zp|

 = signαqp . (2.13)

When this condition is satisfied then zq − zp is of order αpq for small αpq. On the other

hand when αpq = 0, the last equation in (2.12) generically has no solution since the left

hand side of the equation becomes independent of zq and all the zi’s for i 6= q are already

fixed by the other equations. This shows that the critical points of W associated with

solutions to (2.12) disappear at αpq = 0. This could give rise to a discontinuity in the

index at αpq = 0. The important point to note however is that even if (2.13) is satisfied,

the solutions to the last equation in (2.12) always occur in pairs, related by a reversal of

the sign of zp − zq. The exponent of y in (1.4) remains unchanged under this exchange

in the αpq → 0 limit since this exchange only flips the sign of the coefficient of αpq in the

exponent. Finally it is easy to check that s(σ) changes sign under this exchange. Thus

the contribution from this pair of solutions cancel and we get a smooth αpq → 0 limit.

Repeating this analysis for the other αpq’s we see that the index associated with the original

quiver can be obtained as the limit of the index associated with the deformed quiver.

Note that the above argument breaks down if the solution to the equations in the first

two lines of (2.12) automatically satisfy

cq − cp −
n∑
i=1
i 6=p,q

αip − αiq
|zi − zp|

= 0 . (2.14)

This happens for example when αp and αq are parallel so that αip/αiq = |αp|/|αq| = cp/cq.

In this case at αpq = 0 there is a solution to (1.5) at zp = zq, obtained by solving the

equations in the first two lines of (2.12). Now consider the case when αpq is deformed

away from 0. In this case in order to look for a solution to the last equation in (2.12)

where zp and zq are close to each other we can no longer set zp = zq in the regular terms

from the beginning, but must keep terms of order (zp − zq) in the last equation. If we call

this term A(zp − zq) for some constant A then we can express this equation as

A(zp − zq) + 2
αpq

|zq − zp|
= 0 . (2.15)
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This equation is no longer invariant under a change of sign of zp − zq, and in fact has a

solution only for one sign of zp − zq irrespective of the sign of αpq. In the αpq → 0 limit

this solution smoothly continues to the solution with zp = zq at αpq = 0. Thus we again

see that the αpq → 0 limit is smooth, and agrees with the result for αpq = 0.

2.3 Generic Abelian quivers with all αij non-zero

We shall now consider a generic multi-centered black hole configuration with all αij
non-zero, but whose associated quiver may possess oriented loops. In this case we need

to take into account possible contributions from scaling solutions. Our goal in this section

will be to compute gCoulomb for such configurations.

2.3.1 An inductive formula for the index of collinear solutions

We proceed as in section 2.1 and consider the deformation (2.5). It is clear that at λ = 0

the contribution from a given permutation σ will be given by (2.9). Thus we need to

investigate the total change in this contribution as λ changes from 0 to 1. As discussed

in section 2.1 these changes could come from values of λ at which a set A of neighbouring

centers come close to each other. This can happen if the total angular momentum carried

by this set of centers vanish, ∑
i,j∈A;i<j

α̃′ij = 0 , (2.16)

where α̃′ij denotes the deformed α̃ij . To see this, note that in the limit where all yi for

i, i+ 1 ∈ A approach zero, the part of the superpotential (2.3) involving the yi’s becomes

quasi-homogeneous,

W ({λyi}) ∼W ({yi})−
∑

i,j∈A;i<j

α̃′ij log λ . (2.17)

Differentiating with respect to λ and using ∂W/∂yi = 0 implies (2.16). Since the set A

must contain at least three elements there are at most (n − 2)(n − 1)/2 possible sets A,

given by the (n − 2)(n − 1)/2 possible ways of choosing the beginning and the end of

the set. Correspondingly there are at most (n − 2)(n − 1)/2 possible values λA of the

deformation parameter λ where such collinear scaling configurations can arise. Using (2.5),

the condition (2.16) becomes a linear equation in λA,

λA
∑

i,j∈A;i≤j−2

α̃ij +
∑

i∈A,i+1∈A
α̃i,i+1 = 0 . (2.18)

The index can jump across λ = λA if λA lies between 0 and 1. This is so if and only if the

left hand side of (2.18) has opposite signs at λA = 0 and 1, i.e. ∑
i∈A,i+1∈A

α̃i,i+1

 ∑
i,j∈A,i<j

α̃ij

 < 0 . (2.19)

If F ({α̃1, · · · α̃n}, {c̃1, · · · c̃n}) denotes the coefficient s(σ) of y
∑
i<j α̃ij associated with a

given permutation, then we have

F ({α̃1, · · · α̃n}, {c̃1, · · · c̃n}) = F0({α̃1, · · · α̃n}, {c̃1, · · · c̃n}) +
∑
A

∆FA , (2.20)
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where F0 is given by (2.9), and ∆FA is the jump across the critical point λA. Our goal

will be to compute the expression for ∆FA.

Let us suppose that set A consists of the integers k, k + 1, · · · `. We shall examine the

configuration close to the critical point by taking∑
r,s

k≤r<s≤`

α̃′rs = ε (2.21)

for some small number ε. We now define zs via

xs = xk + y zs for k ≤ s ≤ ` , zk ≡ 0 , z` ≡ 1 , (2.22)

and use x1, · · ·xk, x`+1, · · ·xn, y, zk+1, · · · z`−1 as independent variables. Then the relevant

equations are given by extremizing

W = −
∑
i,j

i<j;i,j<k or≥`+1

α̃′ij ln(xj − xi)−
k−1∑
i=1

∑̀
s=k

α̃′is ln(xk + yzs − xi)

−
n∑

i=`+1

∑̀
s=k

α̃′si ln(xi − xk − yzs)−
∑
s,r

k≤s<r≤`

α̃′sr ln(y(zr − zs))

−
∑
i

i<k or i≥`+1

c̃ixi −

(∑̀
s=k

c̃s

)
xk − y

∑̀
s=k+1

c̃szs . (2.23)

We shall be examining an extremum of W for which y is small, of order ε. In this case the

extrema of W with respect to x1, · · ·xk, x`+1, · · ·xn can be obtained by extremizing

W1 = −
∑
i,j

i<j;i,j<k or≥`+1

α̃′ij ln(xj − xi)−
k−1∑
i=1

(∑̀
s=k

α̃′is

)
ln(xk − xi)

−
n∑

i=`+1

(∑̀
s=k

α̃′si

)
ln(xi − xk)−

∑
i

i<k or i≥`+1

c̃ixi −

(∑̀
s=k

c̃s

)
xk. (2.24)

The existence of an extremum of W1 is equivalent to the existence of a collinear con-

figuration with n − ` + k centers with charges α̃′1, · · · α̃′k−1,
∑`

s=k α̃
′
s, α̃
′
`+1, · · · α̃′n and

FI parameters c̃1, · · · c̃k−1,
∑`

s=k c̃s, c̃`+1, · · · c̃n, situated at x1, · · ·xk−1, xk, x`+1, · · ·xn.

Extremization of (2.23) with respect to the parameters zs for k + 1 ≤ s ≤ ` − 1 can be

obtained by extremizing

W2 = −
∑
s,r

k≤s<r≤`

α̃′sr ln(zr − zs) . (2.25)

The existence of an extremum of W2 is equivalent to the existence of a collinear scaling

configuration of ` − k + 1 centers with charges α̃′k, · · · α̃′` and zero FI parameters, with

the locations of the centers being at zk = 0, zk+1, · · · , z`−1 and z` = 1. Finally y can be
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obtained by extremizing7

W3 = −
∑
s,r

k≤s<r≤`

α̃′sr ln y − y
k−1∑
i=1

∑̀
s=k+1

α̃′is
zs

xk − xi
+ y

n∑
i=`+1

∑̀
s=k+1

α̃′si
zs

xi − xk
− y

∑̀
s=k+1

c̃szs .

(2.26)

Using (2.21) this gives

− ε

y
−
k−1∑
i=1

∑̀
s=k+1

α̃′is
zs

xk − xi
+

n∑
i=`+1

∑̀
s=k+1

α̃′si
zs

xi − xk
−
∑̀
s=k+1

c̃szs = 0 . (2.27)

For generic α̃ij , a solution to this equation with positive y exists only for one choice of

sign of ε. We shall assume that we have taken the sign of ε to be such that the solution

exists. Let ηA denote a quantity which takes value 1 (−1) if the solution exists for λ above

(below) the critical value λA given in (2.18).

Let us now compute the Hessian at this critical point. From (2.24)–(2.26) it is clear

that the second derivative of W with respect to all the variables except y remain finite,

and we have ∂2W/∂y2 ∼
∑

s,r
k≤s<r≤`

α̃′sr/y
2 ∼ ε/y2. Since this is large for y ∼ ε and all

other second derivatives of W remain finite, the full determinant will be given by the

product of ∂2W/∂y2 and the determinant of the Hessian involving the rest of the variables.

Furthermore we see from (2.23) that ∂2W/∂xi∂zs goes to zero as y → 0. Thus the Hessian

of W with respect to xi’s and zs’s factorizes into the product of the Hessian of W1 with

respect to x1, · · ·xk, x`+1, · · ·xn and the Hessian of W2 with respect to zk+1, · · · z`−1. In

our notation the sign of the Hessian of W1 with respect to x1, · · ·xk, x`+1, · · ·xn is given

by F ({α̃′1, · · · α̃′k−1, α̃
′
k + · · · α̃′`, α̃′`+1, · · · α̃′n}, {c̃1, · · · c̃k−1, c̃k + · · · c̃`, c̃`+1, · · · c̃n}). Let

G(α̃′k, · · · α̃′`) = sign

(
det

k+1≤i,j≤`−1
(∂zi∂zjW2)

)
(2.28)

be the sign of the Hessian of W2 with respect to zk+1, · · · z`−1 when the corresponding

scaling solution exists; otherwise we take G(α̃′k, · · · α̃′`) = 0.8 Then we can write

∆FA = F ({α̃′1, · · · α̃′k−1, α̃
′
k + · · · α̃′`, α̃′`+1, · · · α̃′n}, {c̃1, · · · c̃k−1, c̃k + · · · c̃`, c̃`+1, · · · c̃n})

× ηA sign(ε)G(α̃′k, · · · α̃′`) Θ

(
−
( `−1∑
i=k

α̃i,i+1

)( ∑
i,j

k≤i<j≤`

α̃ij

))
, (2.29)

where the last factor imposes the constraint (2.19). Now it follows from (2.5) that at

λ = λA + δλ,

ε =
∑
r,s

k≤r<s≤`

α̃′rs = δλ
∑̀
i,j=k
i≤j−2

α̃ij . (2.30)

7Since y is small, we have expanded the terms in W which are non-singular in the y → 0 limit to first

order in y.
8As usual if there are more than one solutions then we add their contributions.
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Suppose the solution exists for δλ > 0. Then we have ηA = 1 and we see from (2.30) that

sign(ε)=sign(
∑`

i,j=k
i≤j−2

α̃ij). On the other hand if the solution exists for δλ < 0 then we

have ηA = −1 and sign(ε)=−sign(
∑`

i,j=k
i≤j−2

α̃ij). Thus in either case

ηA sign(ε) = sign

( ∑̀
i,j=k
i≤j−2

α̃ij

)
. (2.31)

Substituting this into (2.29) we get

∆FA=F ({α̃′1, · · · α̃′k−1, α̃
′
k+· · · α̃′`, α̃′`+1, · · · α̃′n}, {c̃1, · · · c̃k−1, c̃k+· · · c̃`, c̃`+1, · · · c̃n})

× G(α̃′k, · · · α̃′`) sign

 ∑̀
i,j=k
i≤j−2

α̃ij

 Θ

−(`−1∑
i=k

α̃i,i+1

) ∑
i,j

k≤i<j≤`

α̃ij


 . (2.32)

Note that a special case of (2.32) is k = 1, ` = n in which case the F on the right hand

side of this equation is F (α̃′1 + · · · α̃′n; c̃1 + · · · c̃n) = 1. If we can compute G(α̃′k, · · · α̃′`),
then we can use (2.20) and (2.32) to compute the function F recursively. Once we know

how to compute F , the Coulomb index can be computed as

gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y) (2.33)

=(−1)n−1+
∑
i<j αij (y−y−1)−n+1

∑
σ

F
(
{ασ(1), · · ·ασ(n)}; {cσ(1), · · · cσ(n)}

)
y
∑
i<j ασ(i)σ(j) ,

where the sum runs over all permutations σ.

2.3.2 An inductive formula for the index of scaling collinear solutions

We now turn to the computation of G(α̂1, · · · α̂m), the indexed number of critical points of

the superpotential

Ŵ = −
∑
i,j

1≤i<j≤m

α̂ij ln(zj − zi) ,
∑
i,j

1≤i<j≤m

α̂ij = 0 , (2.34)

in the range zj > zi for j > i. This coincides with (2.25) under the identifications

{α̂1, · · · α̂m} = {α̃′k, · · · α̃′`}, and obvious redefinitions of zi. The invariance of the

superpotential (2.34) under both translation and rescaling of the zi’s, must be ‘gauge

fixed’ before counting critical points. These invariances were fixed by the conditions

z1 = 0, zm = 1 in (2.22); however in order to compute G(α̂1, · · · α̂m) inductively, it will be

more convenient to choose a different gauge z1 = 0, zm−1 = 1.

Let us now consider the deformation

α̂im → µ α̂im for i = 1, 2, · · ·m− 1, α̂m−3,m−1 → α̂m−3,m−1 + (1− µ)

m−1∑
i=1

α̂im , (2.35)

so that the deformed α̂ij ’s (called α̂′ij) continue to satisfy
∑

i<j α̂
′
ij = 0. In the limit

µ→ 0, we can treat the m-th center as a probe in the background of other centers. From
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the behaviour of Ŵ as a function of zm in the two limits, zm → zm−1 and zm → ∞, we

conclude that the solution exists if and only if the m − 1 centered scaling solution with

α̂ij for 1 ≤ i, j ≤ m− 1 given by (2.35) for µ = 0 exists, and furthermore

sign(α̂m−1,m) = −sign

(
m−1∑
i=1

α̂im

)
. (2.36)

Finally the sign of the Hessian associated with the configuration in the µ→ 0 limit, after

adding up the contribution from all critical points in the range zj > zi for j > i, is

sign(α̂m−1,m)G(α̌1, · · · α̌m−1) , (2.37)

where α̌i for 1 ≤ i ≤ m−1 denote the deformed charges at µ = 0. Using (2.35)–(2.37) we get

G(α̂1, · · · α̂m) = (−1)1+Θ(α̂m−1,m)Θ

(
−α̂m−1,m

m−1∑
i=1

α̂im

)
G(α̌1, · · · α̌m−1) +

∑
B

∆GB ,

(2.38)

where ∆GB denotes the jump in G during the deformation from µ = 0 to µ = 1 across

the various critical points µB where a subset B of the charges can form scaling solutions.9

Since the deformations involve the α̂im and α̂m−3,m−1, new scaling solutions must involve

either the mth center, or both the (m−1)’th and (m−3)’th center. Three kinds of scaling

solutions can be encountered during the deformation:

1. The scaling configuration involves the charges α̂m−2, α̂m−1 and α̂m. In this case we

need

α̂′m−2,m−1 + α̂′m−1,m + α̂′m−2,m = 0 , (2.39)

which requires

α̂m−2,m−1 + µB(α̂m−1,m + α̂m−2,m) = 0 . (2.40)

2. The scaling configuration involves charges α̂k, · · · α̂m for 2 ≤ k ≤ (m − 3). In this

case we require ∑
i,j

k≤i<j≤m

α̂′ij = 0 (2.41)

which translates to

µB

m−1∑
i=k

α̂im +
∑
i,j

k≤i<j≤m−1

α̂ij + (1− µB)
m−1∑
i=1

α̂im = 0 . (2.42)

3. The scaling configuration involves charges α̂k, · · · α̂m−1 for 2 ≤ k ≤ (m− 3). In this

case we require ∑
i,j

k≤i<j≤m−1

α̂′ij = 0 (2.43)

9Due to scale invariance a configuration where a subset of the centers get infinitely separated from the

others is equivalent to a configuration where a subset of the centers come together.
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which translates to ∑
i,j

k≤i<j≤m−1

α̂ij + (1− µB)

m−1∑
i=1

α̂im = 0 . (2.44)

For each of these cases the computation of ∆GB follows the procedure used for computing

∆FA earlier. We shall quote the final results generalizing (2.32):

1. For µ satisfying (2.40) for m > 4 we have

∆GB=G(α̂′1, · · · α̂′m−3, α̂
′
m−2 + α̂′m−1 + α̂′m)×G(α̂′m−2, α̂

′
m−1, α̂

′
m)

×sign(α̂m−1,m+α̂m−2,m)Θ(−(α̂m−2,m−1+α̂m−1,m+α̂m−2,m)α̂m−2,m−1) . (2.45)

The case m = 4 requires special attention and will be discussed later.

2. For µ satisfying (2.42) with k > 2 we have

∆GB = G

(
α̂′1, · · · α̂′k−1,

m∑
i=k

α̂′i

)
×G(α̂′k, α̂

′
k+1, · · · , α̂′m) sign

(
−
k−1∑
i=1

α̂im

)

×Θ

−
 ∑

i,j
k≤i<j≤m

α̂ij


 ∑

i,j
k≤i<j≤m−1

α̂ij +

m−1∑
i=1

α̂im


 . (2.46)

The case k = 2 requires special treatment and will be discussed below.

3. For µ satisfying (2.44) we have

∆GB = G

(
α̂′1, · · · α̂′k−1,

m−1∑
i=k

α̂′i, α̂
′
m

)
×G(α̂′k, α̂

′
k+1, · · · , α̂′m−1) sign

(
−
m−1∑
i=1

α̂im

)

×Θ

−
 ∑

i,j
k≤i<j≤m−1

α̂ij +

m−1∑
i=1

α̂im


 ∑

i,j
k≤i<j≤m−1

α̂ij


 . (2.47)

The case where the scaling configuration involves charges α̂′2, · · · α̂′m requires a special

treatment. If we naively consider this as a special case of (2.46) above with k = 2 or

of (2.45) for m = 4, we would conclude that the jump vanishes since there are no scaling

solution with two centers and hence G(α̂′1, α̂
′
2 + · · · α̂′m) vanishes. However notice that in

this case (2.41) with k = 2 or (2.39) for m = 4 implies

m∑
j=2

α̂′1j = 0 (2.48)

and hence the two centered configuration with one center with charge α̂′1 and the other

center with charge α̂′2 + · · · α̂′m is on a wall of threshold stability.10 As such configurations

10Recall that a wall of threshold stability is one on which the bound state can separate into two

components with vanishing DSZ product. Across this wall the topology of the bound state changes but

the index does not jump.
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exist for vanishing FI parameters, we need to analyze the situation more carefully by

working at µ = µB + δµ where µB is the critical value of µ at which eq.(2.41) is satisfied

for k = 2. At this point we have

m∑
j=2

α̂′1j =

{
δµ α̂1m for m > 4

−δµ (α̂24 + α̂34) for m = 4∑
i,j

2≤i<j≤m

α̂′ij =

{
−δµ α̂1m for m > 4

δµ (α̂24 + α̂34) for m = 4
. (2.49)

In either case we can proceed to analyze the system following a similar kind of analysis

used in computing ∆FA. We denote the locations of the centers as z1, zi = z2 + y wi for

2 ≤ i ≤ m with w2 ≡ 0, wm ≡ 1, and look for solutions with y ∼ δµ. The solution for z2

and y are found by extremizing

Ŵ1 ≡ −
m∑
i=2

α̂′1i ln(z2 − z1)− y

z2 − z1

m∑
i=3

α̂′1iwi − ln y
∑
i,j

2≤i<j≤m

α̂′ij , (2.50)

with respect to z2 and y, and the wi’s are given by extremizing

Ŵ2 = −
∑
s,r

2≤s<r≤m

α̂′sr ln(wr − ws) , (2.51)

with respect to w3, · · ·wm−1. The extremization of Ŵ2 with respect to all the wk and the

sign of the corresponding Hessian gives G(α̂′2, · · · α̂′m). On the other hand the extremization

with respect to z2 and y gives identical conditions11

− 1

z2 − z1

m∑
i=3

α̂′1iwi −
1

y

∑
i,j

2≤i<j≤m

α̂′ij = 0 . (2.52)

For small
∑

i,j
2≤i<j≤m

α̃′ij , a solution for small positive y exists for only one sign of∑
i,j

2≤i<j≤m
α̃′ij . The corresponding contribution to the sign of the Hessian can be found by

taking the second derivative of W either with respect to y or z2 keeping the other variable

fixed, and is given by a multiplicative factor of

sign

 ∑
i,j

2≤i<j≤m

α̂′ij

 . (2.53)

Following a logic similar to that for ∆FA and using (2.49) we find that at this critical

value, the scaling index G jumps by

∆GB = Θ

−
 ∑

i,j
2≤i<j≤m

α̂ij


 ∑

i,j
2≤i<j≤m−1

α̂ij +
m−1∑
i=1

α̂im




×sign(−α̂1m)G(α̂′2, · · · α̂′m) for m > 4

= Θ (−α̂23 (α̂23 + α̂34 + α̂24))× sign(α̂24 + α̂34)G(α̂′2, · · · α̂′4) for m = 4. (2.54)

11This can be traced to the fact that using scale invariance we can fix either z2 or y.
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This gives a recursive procedure for calculating the scaling index G(α̂1, · · · α̂m), and

therefore the total index F using (2.20), (2.32). The recursion is initialized by the result

for three centers, given below.

2.3.3 Coulomb index for 3 and 4 centers

As a simple application of the procedure described above we shall calculate the Coulomb

index for 3 and 4 centers. For 3 centers, collinear scaling solutions exist for

sign(α̂12) = sign(α̂23), α̂13 = −α̂12 − α̂23 , (2.55)

and the sign of the Hessian of Ŵ is (−1)Θ(α̂23)+1. Thus

G(α̂1, α̂2, α̂3) = Θ(α̂12α̂23) (−1)Θ(α̂23)+1 . (2.56)

The total index given by (2.20), (2.32), is

F ({α̃1, α̃2, α̃3}; {c̃1, c̃2, c̃3})=(−1)Θ(−α̃12)+Θ(−α̃23) Θ(α̃12 c̃1) Θ(α̃23(c̃1 + c̃2))

+ (−1)Θ(α̃12)+Θ(α̃13)Θ(α̃12α̃23)Θ(−(α̃12+α̃23)(α̃12+α̃23 + α̃13)),
(2.57)

where the first line corresponds to F0 in (2.9) and the second line to the contribution of the

scaling solution occurring at λ = −(α̃12+α̃23)/α̃13. It is straightforward, if tedious, to check

that (2.57) agrees with the result given in [14] in a particular chamber. The result (2.57) can

be succintly summarized by saying that F vanishes unless the sign of the 5-periodic sequence

Σ123 = {c̃1 + c̃2, c̃1, α̃23, α̃12 + α̃23 + α̃13, α̃12} (2.58)

is either constant (in which case F = 1), or flips 4 times around the sequence (in which

case F = −1). These signs correspond to the behavior of the superpotential W at the

5 boundaries y2 = ∞, y1 = ∞, y2 = 0, y1 = y2 = 0, y1 = 0 of the domain in which the

variables y1, y2 take values. The rule (2.58) is in agreement with the existence of a

gradient flow emanating from a critical point of W inside this domain (see figure 1, left).

For n = 4, we first need to compute the scaling index G(α̂1, · · · α̂4). In this case the

only contribution to ∆GB in (2.38) comes from the configuration where the centers 2, 3 and

4 come together during the deformation. Using (2.54), (2.56) we can then express (2.38) as

G(α̂1, · · · α̂4) = (−1)Θ(α̂23)+Θ(α̂34) Θ(α̂12α̂23) Θ(−α̂34(α̂14 + α̂24 + α̂34))

+(−1)Θ(α̂23)+Θ(α̂24+α̂34) Θ(α̂23α̂34) Θ(−α̂23(α̂23 + α̂24 + α̂34)) . (2.59)

The rule (2.59) can be summarized by saying that the sign of the 5-periodic sequence

Σ1234 = {α̂12, α̂34, α̂23 + α̂34 + α̂24, α̂23, α̂12 + α̂23 + α̂13} (2.60)

is either constant (in which case G = 1) or alternates 4 times (in which case G = −1).

These signs correspond to the behavior of the superpotential Ŵ at the 5 boundaries z2 = 0,

z3 = 1, z2 = z3 = 1, z2 = z3, z2 = z3 = 0 of the domain in which the variables z2, z3 are

valued (in the gauge z1 = 0, z4 = 1). The rule (2.59) is in agreement with the existence of a

gradient flow emanating from a critical point of Ŵ inside this domain (see figure 1, right).
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Figure 1. Left: the physical domain for 3-center collinear solutions has 5 boundary components

at which the superpotential W diverges. The sign of W on each component is that of the quantity

indicated on the corresponding edge. Right: the physical domain for 4-center collinear scaling

solutions also has 5 boundary components, at which the superpotential Ŵ diverges. The sign of

W on each component is that of the linear combination of α̂ij indicated on the corresponding edge

or vertex. In both cases, by considering the topology of the gradient flow (indicated by the arrows

for some suitable choice of signs on the boundary components), it is easy to convince oneself that

a critical point exists in the physical domain if and only if the signs on the 5 boundary components

are identical, or flip 4 times around the boundary.

Using (2.20) we can now compute F ({α̃1, · · · α̃4}, {c̃1, · · · c̃4})) as a sum of four terms:

F0({α̃1, · · · α̃4}, {c̃1, · · · c̃4})) given in (2.9), and the jumps across the values of µ where all

the centers come together, where the centers 2,3,4 come together, and where the centers

1,2,3 come together. The final result takes the form

F ({α̃1, · · · α̃4}, {c̃1, · · · c̃4}) =

3∏
k=1

Θ(α̃k,k+1 d̃k)(−1)
∑n−1
k=1 Θ(−α̃k,k+1)

+ (−1)Θ(α̃13+α̃14+α̃24)+1G
(
α̃

(1)
1 , · · · α̃(1)

4

)
Θ

−
 ∑

1≤i<j≤4

α̃ij

 (α̃12 + α̃23 + α̃34)


+ (−1)Θ(α̃24)+1F

(
{α̃(2)

1 , α̃
(2)
2 + α̃

(2)
3 + α̃

(2)
4 }, {c̃1, c̃2 + c̃3 + c̃4}

)
G
(
α̃

(2)
2 , α̃

(2)
3 , α̃

(2)
4

)
×Θ(−(α̃23 + α̃34)(α̃23 + α̃34 + α̃24))

+ (−1)Θ(α̃13)+1F
(
{α̃(3)

1 + α̃
(3)
2 + α̃

(3)
3 , α̃

(3)
4 }, {c̃1 + c̃2 + c̃3, c̃4}

)
G
(
α̃

(3)
1 , α̃

(3)
2 , α̃

(3)
3

)
×Θ (−(α̃12 + α̃23)(α̃12 + α̃23 + α̃13)) , (2.61)

where

α̃
(1)
ij = λ1 α̃ij for |i− j| ≤ 2, 1 ≤ i, j ≤ 4, α̃

(1)
ij = α̃ij otherwise ,

α̃
(2)
24 = λ2 α̃24, α̃

(2)
ij = α̃ij otherwise ,

α̃
(3)
13 = λ3 α̃13, α̃

(3)
ij = α̃ij otherwise , (2.62)

λ1 = − α̃12 + α̃23 + α̃34

α̃14 + α̃24 + α̃13
, λ2 = − α̃23 + α̃34

α̃24
, λ3 = − α̃12 + α̃23

α̃13
. (2.63)

This can be easily generalized to higher number of centers.
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3 Quiver invariants

In this section we shall describe how the results of the previous sections can be used to give

a complete prescription for computing the Poincaré-Laurent polynomial of quiver moduli

spaces. For this we need to briefly review the prescription given in [14].

3.1 Quiver Poincaré-Laurent polynomial from Coulomb index: a review

We shall consider a quiver with K nodes with a U(N`) factor at the `-th node, γ`k arrows

from the `-th node to the k-th node representing γ`k number of (N`, N̄k) representations of

U(N`)×U(Nk) and FI parameters ζ1, · · · ζK satisfying
∑

`N`ζ` = 0. A negative γ`k indicates

γk` ≡ −γ`k number of (N̄`, Nk) representations of U(N`) × U(Nk). Instead of considering

one specific quiver at a time it turns out to be more convenient to consider the family of

quivers labelled by different ranks {N`} and different values of FI parameters {ζ`}. For this

we assign to each node ` a basis vector γ` = (0, . . . , 0, 1, 0, . . . 0) — with 1 inserted at the `-th

position — in an abstract vector space ZK , denote by Γ ⊂ ZK the collection of vectors γ =∑K
`=1N`γ` where N` are non-negative integers, and by Cγ the hyperplane

∑K
`=1N`ζ` = 0 in

the space of real vectors ζ =
∑K

`=1 ζ`γ` ∈ RK . We also introduce a symplectic inner product

〈γ, γ′〉 ≡
K∑

`,k=1

N`N
′
k γ`k, (3.1)

between the elements γ =
∑K

`=1N`γ` of Γ. To any vector γ ∈ Γ and ζ ∈ Cγ , we associate a

quiver Q(γ, ζ) with K nodes, γ`k arrows connecting the node ` to the node k, gauge group

U(N1) × U(N2) × · · ·U(NK), and FI parameters {ζ1, · · · ζK}. If some of the N`’s vanish

we just drop the corresponding nodes.

Let Q(γ; ζ; y) be the Poincaré-Laurent polynomial

Q(γ; ζ; y) =

2d∑
p=1

bp(M) (−y)p−d (3.2)

where d is the complex dimension of the moduli space M of the quiver Q(γ; ζ) and the

bp’s are the topological Betti numbers of M. The Coulomb branch formula for Q(γ; ζ; y),

which we denote by QCoulomb(γ; ζ; y), takes the form:

QCoulomb(γ; ζ; y) =
∑
m|γ

µ(m)

m

y − y−1

ym − y−m
Q̄Coulomb(γ/m; ζ; ym)

Q̄Coulomb(γ; ζ; y) =
∑
n≥1

∑
{αi∈Γ}∑n
i=1

αi=γ

gCoulomb ({α1, · · · , αn}, {c1, · · · cn}; y)

|Aut({α1, · · · , αn})|

×
n∏
i=1

( ∑
mi∈Z
mi|αi

1

mi

y − y−1

ymi − y−mi
Ωtot(αi/mi; y

mi)

)
. (3.3)

The first line is the standard relation between integer and rational BPS invariants which

has appeared in a variety of contexts [10, 19, 29, 30]. µ(m) is the Möbius function,

which is 1 (−1) if m is a square-free positive integer with an even (odd) number of
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prime factors, and 0 if m is not square-free. In the second line, |Aut({α1, · · ·αn})| is a

symmetry factor given by
∏
k sk! if among the set {αi} there are s1 identical vectors α̃1,

s2 identical vectors α̃2 etc., and m|α means that m is a common divisor of (n1, · · · , nK)

if α =
∑

` n`γ`. The sums over n and {α1, · · ·αn} in the second equation label all possible

ways of expressing γ as (unordered) sums of elements αi of Γ. The coefficients ci are

determined in terms of the FI parameters ζi by ci =
∑

`Ai`ζ` whenever αi =
∑

`Ai`γ`.

From the restrictions
∑

i αi = γ and
∑

`N`ζ` = 0 it follows that
∑

i ci = 0. The Coulomb

indices gCoulomb({α1, · · · , αn}; {c1, · · · cn}; y) can be computed from (2.33). The functions

Ωtot(α; y) are expressed in terms of the single-centered BPS invariants ΩS through

Ωtot(α; y) = ΩS(α; y) +
∑

{βi∈Γ},{mi∈Z}
mi≥1,

∑
i miβi=α

H({βi}; {mi}; y)
∏
i

ΩS(βi; y
mi) . (3.4)

Finally, the functions H({βi}; {ki}; y) and ΩS(γ; y) are determined as follows.

1. When the number of βi’s is less that three, H({βi}; {ki}; y) vanishes.

2. For three or more number of βi’s, observe that the expression for

QCoulomb(
∑

i kiβi; ζ; y) given in (3.3) contains a term proportional to

H({βi}; {ki}; y)
∏
i ΩS(βi; y

ki) arising from the choice m = 1 in the first equa-

tion in (3.3), n = 1, α1 =
∑

i kiβi, m1 = 1 in the second equation in (3.3), and

mi = ki in the expression for Ωtot(
∑

i kiβi; y) in eq.(3.4). We fix H({βi}; {ki}; y) by

demanding that the net coefficient of the product
∏
i ΩS(βi; y

ki) in the expression

for QCoulomb(
∑

i kiβi; y) is a Laurent polynomial in y. This of course leaves open

the possibility of adding to H a Laurent polynomial. This is resolved by using the

minimal modification hypothesis, which requires that H must be symmetric under

y → y−1 and vanish as y → ∞ [11]. We determine H({βi}; {mi}; y) iteratively by

beginning with the H’s with three βi’s and then determining successively the H’s

with more βi’s.

3. H is expected to be independent of the FI parameters and hence can be calculated

for any value of these parameters.

4. After determining H({βi}; {ki}; y) in this way, we set ΩS(γ`; y) = 1 for 1 ≤ ` ≤ K.

For all other charge vectors β, ΩS(β; y) are fixed integers, independent of y and of

the FI parameters, which are left undetermined by the Coulomb branch analysis.

Since these unknown constants, as well as the quivers, are labelled by the vectors

α ∈ Γ, there is one12 unknown constant for each quiver. This can be fixed e.g. by

computing the Euler character of the quiver moduli space for any convenient value

of the FI parameters.

As a special case of our result we can consider the case of a general Abelian quiver.

This corresponds to γ =
∑

`N`γ` with N` = 0 or 1. As a result γ, as well as the αi’s

12Actually the number of unknown constants is less than that of the number of quivers since ΩS(γ)

is non-trivial only if there exists a set of αi’s in Γ such that
∑
i αi = γ and it is possible to find three

dimensional vectors ~ri such that
∑
i,j αij(~ri − ~rj)/|~ri − ~rj | = 0.
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appearing on the right hand side of (3.3), are primitive vectors and the αi’s are all distinct.

Thus (3.3), (3.4) simplifies to

QCoulomb(γ; ζ; y) =
∑
n≥1

∑
{αi∈Γ}∑n
i=1

αi=γ

gCoulomb ({α1, · · · , αn}, {c1, · · · cn}; y)

n∏
i=1

Ωtot(αi; y) , (3.5)

Ωtot(α; y) = ΩS(α; y) +
∑

{βi∈Γ},
∑
i βi=α

H({βi}; y)
∏
i

ΩS(βi; y) , (3.6)

where H({βi}; y) ≡ H({βi}; {1, 1, · · · 1}; y). The functions H({βi}; y) are determined by re-

quiring that they vanish as y → 0,∞, are invariant under y → y−1, and that the coefficient

of
∏
i ΩS(αi; y) in the expression for QCoulomb(γ; ζ; y) is a positive integer for each set {αi}.

3.2 Coulomb index for non-generic charges

The formulæ (3.3), (3.4) are completely explicit provided we have an explicit algorithm for

computing gCoulomb({α1, · · ·αn}; {c1, · · · cn}; y). We have given such an algorithm in the

previous sections for generic αij ’s, e.g. all αij ’s non-zero and no ordered subset ᾱ1, · · · ᾱs
of the αi’s satisfying

∑
1≤k<`≤s ᾱk` = 0. We have also assumed that the FI parameters

stay away from the walls of marginal and threshold stability so that e.g. the quantities∑k
i=1 cσ(i) appearing in (2.10) never vanish. However we need gCoulomb for non-generic αij ’s

and ci’s as well. These come from two sources. First of all the γ`k’s of the original quiver

themselves may be non-generic with some γ`k’s vanishing or satisfying special relations.

Second, even if the original γ`k’s are generic, in the argument of gCoulomb we may have

parallel αi’s. For these the corresponding αij ’s will vanish. Also when the total dimension

vector {N1, · · ·NK} is non-primitive, we shall encounter gCoulomb in (3.3) for which the FI

parameters sit on the threshold stability walls. In all such cases we need to evaluate gCoulomb

by first deforming the αij ’s and/or ci’s to generic values and then taking the limit back to

the original configuration. The goal of this section will be to determine a prescription for

such deformations. We shall first describe the prescription and then justify it.

1. To deal with the first problem we deform the γ`k’s to

γ`k → γ`k + ε1 ξ`k (3.7)

where ε1 is a small positive number and ξ`k’s are random numbers between −1 and

1 satisfying ξ`k = −ξk`. This will make all the γ`k generic.13

2. At this stage in any given term in the sum in (3.3), all the αij ’s are generic

except for subsets of αi’s which are all parallel and/or equal. In computing

gCoulomb({αi}, {ci}; y) for a set of αi’s we consider an arbitrary ordering14 of all the

13In order to increase the efficiency of the procedure, we can arrange the nodes in some fixed order and

then choose the ξ`k’s such that ξ`k > 0 for ` < k. This will minimize the introduction of new oriented loops

and hence scaling configurations during this deformation. For example if we have three nodes i, j and k

such that αij = αjk = αik = 0, then under the deformation (3.7) the subquiver containing the nodes i, j

and k will not have any oriented loop.
14Here we are considering the ordering as a set and not an ordering of the locations of the centers. The

same deformation must be used for all possible arrangements of the centers.
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αi’s and deform them by

αij → αij + ε2 βij , ci → ci + ε2fi , (3.8)

where ε2 is a small positive number that is parametrically smaller than the previous

paramater ε1, βij ’s for i < j are randomly chosen positive numbers between 0 and

1 with βji = −βij , and fi’s are random numbers satisfying
∑

i fi = 0. Under such

a deformation any subset of the {αi}’s which are parallel and/or equal to each other

get deformed in such a way that the corresponding subquiver does not contain any

oriented loop. Also the FI parameters move away from threshold stability walls even

if the undeformed configuration sits on such a wall.

3. At the end of the second step the αij ’s and ci’s are generic and can be used to

compute gCoulomb. In particular the s(σ) factors in gCoulomb are computed using the

deformed αij ’s and ci’s. However in computing the y
∑
i<j α̃ij factors in gCoulomb we

use the undeformed αij ’s, since at the end of the computation we are in any case

supposed to take the αij ’s to their undeformed values. This gCoulomb is then used to

compute QCoulomb(γ; ζ; y) via (3.3).

In order to prove the validity of the procedure we need to argue that the deformed

result reduces to the undeformed one in the limit when the deformations are switched off.

First note that there is a qualitative difference between the deformations generated by ε1
and those generated by ε2. For the latter the deformation of the αij ’s and ci’s we use is

specific to the αi’s and ci’s which appear in the argument of a given gCoulomb. As a result

we need to establish that each gCoulomb returns to its undeformed value upon switching off

this deformation. On the other hand, the deformation generated by ε1 can be carried out

for the full index QCoulomb(γ; ζ; y) as it applies to the whole family of quivers and does

not refer to any specific multi-centered black hole configuration. We shall indeed argue

that while the individual gCoulomb’s in the ε1 deformed system do not necessarily reduce

to the undeformed result, the total index does.

Let us begin with the ε2 deformation. This contains two parts: deformation of the

αij ’s and deformation of the ci’s. First consider the effect of deforming the ci’s. If the

initial configuration is away from the walls of marginal and threshold stability then this

deformation has no effect. However when γ =
∑

i αi is not primitve, it could happen that

the set {α1, · · ·αn} can be divided into two or more sets such that the sum of the αi’s

in each set is parallel to the total charge γ. In this case the sum of the ci’s in each set

vanishes and the FI parameters sit on the wall of threshold stability. The deformation

of the ci’s given in (3.8) is needed to move away from this wall and make gCoulomb well

defined, but the result does not depend on how we deform the ci’s.

Next we turn the effect of the ε2 deformation on the αij ’s. We begin with the deformed

system and take the αij ’s one by one back to their values after the first deformation.

During this process gCoulomb can jump if two or more centers come together during the

deformation. Using the analysis of section 2.2 we know that the possible jumps in gCoulomb

could arise if during the deformation a subset A of the centers can come in the collinear

scaling configuration by having
∑

i<j;i,j∈A α
′
ij = 0. Since at this stage we have already
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carried out the ε1 deformation making the γ`k’s generic; the possible subsets where this

could happen will only involve the centers carrying equal or parallel charges at the end of

the first deformation. However this is ruled out by the fact that the second deformation

has been choosen so that any subquiver, containing equal or parallel charges at the end

of the first deformation, remains free from oriented loops. This shows that we do not

encounter any collinear scaling solutions during the second deformation and hence there

is no jump in the index gCoulomb during this deformation.

Finally we turn to the ε1 deformation. To deal with this case we note that the analysis

of section 2.2, showing that the refined index of a quiver changes continuously under

deformations of the αij ’s, breaks down on a subspace on which
∑

i,j∈A;i<j α̃ij = 0 for some

subset A. Around this subspace the Coulomb index computed for a given set of charges will

depend on the sign of the deformation parameters since a particular collinear solution may

exist for one sign of the deformation, but as the deformation parameter approaches zero

the centers in the subset A come close together and for the opposite sign of the deformation

parameter the solution ceases to exist. However we shall now argue that QCoulomb(γ; ζ; y)

computed from (3.4) remains independent of the sign of the deformation. For this suppose

that we have three centers carrying charges α1, α2 and α3 such that α12 + α23 + α13 = 0,

α12, α23 > 0. In that case for the permutation (123) we can have a collinear scaling solu-

tion. Now in the deformed system whether this permutation contributes or not depends

on whether α12, α23 and α31 form an oriented triangle or not, and this in turn will depend

on the details of the deformation. The difference in gCoulomb({α1, α2, α3}; {c1, c2, c3}; y)

that we shall get between these two cases is, up to a sign, given by (y − y−1)−2

since y
∑
i<j αij = 1. In the expression for QCoulomb(α1 + α2 + α3; ζ; y) there will be

a term proportional to gCoulomb({α1, α2, α3}; {c1, c2, c3}; y)ΩS(α1)ΩS(α2)ΩS(α3) and

the ambiguity in gCoulomb described above will lead to an ambiguity proportional to

(y − y−1)−2ΩS(α1)ΩS(α2)ΩS(α3) in the expression for QCoulomb(α1 + α2 + α3; ζ; y).

Now the expression for QCoulomb(α1 + α2 + α3; ζ; y) will also contain a term propor-

tional to H({α1, α2, α3}; y)ΩS(α1)ΩS(α2)ΩS(α3), and the function H({α1, α2, α3}; y) is

determined by requiring that H vanishes as y → 0,∞ and that the net coefficient of

ΩS(α1)ΩS(α2)ΩS(α3) is a polynomial in y, y−1. Since (y − y−1)−2 → 0 as y → 0,∞ we see

that the ambiguity in gCoulomb introduced above is absorbed completely into the function

H and does not lead to any ambiguity in the expression for QCoulomb(α1, α2, α3; ζ; y). This

argument can be easily generalized to argue that all the ambiguities in gCoulomb can be

absorbed into the functions H and the expression for QCoulomb(γ; ζ; y) is independent of

the choice of the deformation of the γ`k’s for general vector γ.

Using the analysis above we can also answer the question: how small should ε1 and ε2
be for the procedure described above to hold? The general rule is that if α′ij denotes the

deformed αij , then during the deformation we should not have
∑

i<j;i,j∈A α
′
ij = 0 for any

ordered subset A of the centers. This means that we should not encounter any collinear

scaling configurations during the deformation except possibly at the beginning.15

15This would happen if the initial configuration had
∑
i<j;i,j∈A αij = 0 for some ordered subset A of the

centers.
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4 Coulomb/Higgs equivalence for quivers without loops

For quivers without oriented loops, quiver invariants can be computed using the Harder-

Narasimhan recursion, or equivalently using Reineke’s solution to this recursion [15]. In

this section we shall show that for such quivers the Coulomb branch formula (3.3) agrees

with Reineke’s formula, both for Abelian and non-Abelian quivers.

4.1 Reineke’s formula for quivers without loops

As reviewed in [14], the Poincaré-Laurent polynomial of a quiver Q without oriented loops

can be computed using the Harder-Narasimhan recursion. Henceforth we shall denote

the Poincaré-Laurent polynomial computed by this method by QHiggs(
∑

`N`γ`; ζ; y), to

distinguish it from the Coulomb branch formula (3.3). The expression for QHiggs takes the

form [12], [16, Theorem 6.8]

QHiggs(γ; ζ; y) =
∑
m|γ

µ(m)

m

y − y−1

ym − y−m
Q̄Higgs(γ/m; ζ; ym)

Q̄Higgs

(∑
`

N`γ`; ζ; y

)
=
∑
`

∑
{ ~M(i)}∑`

i=1
~M(i)= ~N ; ~M(i)‖ ~N for i=1,...,`

1

` (y − 1/y)`−1

×
∏̀
i=1

GHiggs({M (i)
1 , · · ·M (i)

K }; {γ1, · · · γK}; {ζ1, · · · ζK}; y) .

(4.1)

The sum over { ~M (i)} runs over all ordered partitions of ~N ≡ (N1, · · ·NK) into parallel

vectors ~M (1), · · · ~M (`), and GHiggs({M (i)
1 , · · ·M (i)

K }; {γ1, · · · γK}; {ζ1, · · · ζK}; y) is the ‘stack

invariant’ associated to the quiver with dimension vector ~M (i). If ~M (i) is primitive then

the quiver moduli space is smooth and GHiggs is just its Poincaré-Laurent polynomial,

however in general it is a rational function of y, not necessarily invariant under y → 1/y.

In all cases however, we assume that it is given by Reineke’s formula [15],16

GHiggs({M1, · · ·ML}; {α1, · · ·αL}; {c1, · · · cL}; y) = (−y)−
∑
i,jMiMj max(αij ,0)−1+

∑
iMi

× (y2 − 1)1−
∑
iMi

∑
partitions

(−1)s−1y2
∑
a≤b

∑
i,j max(αij ,0)Nb

iN
a
j

∏
a,i

([Na
i , y]!)−1 , (4.2)

where the sum over partitions in (4.2) runs over all ordered partitions of the vector

(M1, · · ·ML) into non-zero vectors {(Na
1 , · · ·Na

L), a = 1, . . . , s} for s = 1, . . . ,
∑

iMi,

satisfying Na
i ≥ 0,

∑
aN

a
i = Mi and (assuming that

∑
iMici = 0)

b∑
a=1

L∑
i=1

Na
i ci > 0 (4.3)

for all b between 1 and s− 1. [N, y]! denotes the q-deformed factorial,

[N, y]! ≡ [1, y][2, y] . . . [N, y] , [N, y] ≡ y2N − 1

y2 − 1
. (4.4)

16It is related to the quantity I(γ,w) defined in [14], eq. (2.39) via GHiggs(γ; ζ; y) = (1/y − y) I(γ;−y).

– 26 –



J
H
E
P
0
5
(
2
0
1
3
)
1
6
6

It is worth noting that (4.1) can be inverted to express the stack invariants in terms of

the rational Poincaré-Laurent polynomials [16, Theorem 6.8]:

GHiggs({N1, · · ·NK}; {γ1, · · · γK}; {ζ1, · · · ζK}; y)

=
∑
k

∑
{αi}∑k

i=1 αi=
∑
`N`γ`

αi‖
∑
N`γ`

for i=1,...,k

(−1)k−1

k!(y − y−1)k−1

k∏
i=1

Q̄Higgs(αi; ζ; y) , (4.5)

where again the sum over {αi} runs over all ordered partition of
∑

`N`γ` into parallel

vectors α1, α2, · · ·αk. We shall refer to the formula (4.1) (or equivalently (4.5)) and (4.2)

as the Higgs branch formula for the Poincaré-Laurent polynomial Q(γ; ζ; y). Our goal will

be to show the equality of this Higgs branch result with the Coulomb branch formula (3.3).

If
∑

`N`γ` is a primitive vector, ı.e. the N`’s have no common factor other than unity,

then (4.1) reduces to a simple form

QHiggs

(
K∑
i=1

Niγi; ζ; y

)
= GHiggs({N1, · · ·NK}; {γ1, · · · γK}; {ζ1, · · · ζK}; y) . (4.6)

In this case GHiggs is a symmetric Laurent polynomial since QHiggs is.

4.2 Abelian quivers without loops

For quivers with dimension vector Ni = 1, the stack invariant GHiggs appearing in (4.6) is

given by (4.2) where the integers Na
i can only be equal to 0 or 1. We shall use a special

symbol gHiggs for labelling the corresponding GHiggs:

gHiggs({γ1, · · · γK}; {ζ1, · · · ζK}; y) ≡ GHiggs({1, · · · 1}; {γ1, · · · γK}; {ζ1, · · · ζK}; y) . (4.7)

Assuming for the moment that all γij ’s are non-vanishing, we shall choose a strict ordering

convention for the γi’s such that γij > 0 iff i < j. Thus (4.6), (4.2) can be expressed as

QHiggs(γ1 + · · ·+ γK ; ζ; y) = gHiggs({γ1, · · · γK}; {ζ1, · · · ζK}; y) = (4.8)

= (−1)−K+1+
∑
i<j γij (y − y−1)1−K

∑
partitions

(−1)s−1y2
∑
a≤b

∑
j<i γjiN

a
i N

b
j−

∑
1≤i<j≤K γij .

where the sum runs over all ordered partitions of γ = γ1 + · · · + γK into vectors β(a) =∑
iNiγi with Na

i = 0, 1, a = 1, · · · s, satisfying

b∑
a=1

n∑
i=1

Na
i ζi > 0 . (4.9)

Since (4.8) is continuous at γij = 0, the result when some of the γij ’s vanish can be

obtained as a limit of (4.8). Furthermore, throughout this subsection we shall work

with generic FI parameters for which the left hand side of (4.9) never vanishes. In that

case (4.8) is also invariant under small deformations of the FI parameters.

– 27 –



J
H
E
P
0
5
(
2
0
1
3
)
1
6
6

On the Coulomb branch side, the Poincaré-Laurent polynomial QCoulomb(γ; ζ; y) coin-

cides with its rational counterpart Q̄Coulomb(γ; ζ; y). Since the quiver has no oriented loop

there are no contributions from scaling solutions, therefore we can set Ωtot(α, y) = ΩS(α, y)

in (3.5). We can further set ΩS(α; y) to 0 except when α is equal to one of the basis vectors

γ` in which case its value is 1. The Coulomb branch formula (3.5) thus reduces to

QCoulomb(γ1 + · · ·+ γK ; ζ; y) = gCoulomb({γ1, · · · γK}; {ζ1, · · · ζK}; y) . (4.10)

It follows from the discussion in section 2.2 that the result when some of the γij ’s vanish can

be obtained as a limit of (4.10) for generic non-vanishing γij ’s. Comparing (4.10) and (4.8)

we see that the proof of equivalence of QCoulomb and QHiggs for Abelian quivers reduces to

the proof of equivalence of gCoulomb and gHiggs. Furthermore since for both gCoulomb and

gHiggs the result when some of the γij ’s vanish can be obtained as limits of the result for

generic γij ’s, it is enough to prove the equivalence for generic non-vanishing γij ’s.

This equivalence can now be proved by following exactly the same analysis as section

3.3 of ref. [10]. We summarize the main points, refering the reader to [10] for more details.

First, to each permutation σ, we associate a family of ordered partitions of γ1 + · · · γK
into vectors {β(a)} as follows:

• Break the sequence {σ(1), σ(2), · · ·σ(n)} into subsequences {σ(1), σ(2), · · ·σ(i1)},
{σ(i1 + 1), · · ·σ(i2)}, · · · , {σ(ia−1 + 1), . . . , σ(ia)}, · · · , 0 = i0 < i1 < · · · < is = K,

such that each subsequence represents an increasing subsequence: σ(ia−1 + 1) <

σ(ia−1 + 2) < · · · < σ(ia) for each a. s gives the number of such increasing

subsequences.

• For each such breakup of {σ(1), · · ·σ(K)} into increasing subsequences, we can

associate a partition of γ1 + · · · γK into vectors β(a) as follows:

β(s+1−a) =

i=ia∑
i=ia−1+1

γσ(i) . (4.11)

This generates an ordered partition of γ but does not necessarily satisfy (4.9). It is

easy to show that with this choice the power of y in y
∑
i<j γσ(i)σ(j) in (1.9) matches

the power of y inside the sum in (4.8)

For illustration we can consider the permutation σ(1234) = (3412). The increasing

subsequences are {{34}, {12}}, {{3}, {4}, {12}}, {{34}, {1}, {2}}, and {{3}, {4}, {1}, {2}}.
Associated partitions are {γ1 + γ2, γ3 + γ4}, {γ1 + γ2, γ4, γ3}, {γ2, γ1, γ3 + γ4} and

{γ2, γ1, γ4, γ3}, respectively. For each of these partitions we have

2
∑
a≤b

∑
j<i

γjiN
a
i N

b
j −

∑
1≤i<j≤4

γij =
∑

1≤i<j≤4

γσ(i)σ(j) = γ12+γ34−γ13−γ14−γ23−γ24 . (4.12)

The above analysis shows how to each permutation σ we can associate a set of ordered

partitions of γ1, · · · γK into vectors β(1), · · ·β(s). The converse is also true — all ordered

partitions of the vectors (γ1, . . . , γK), before imposing (4.9), are in one to one correspon-

dence with the set of all increasing subsequences of all the permutations of (12 . . . n) via
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the rule (4.11). For a given permutation we shall call an increasing subsequence maximal

if it is not possible to build bigger increasing subsequences involving the elements of

the subsequence. In the example described above the maximal increasing subsequences

are {{34}, {12}}. The complete contribution to the coefficient of y
∑
i<j γσ(i)σ(j) in the

Reineke formula can be generated by beginning with the maximal increasing subsequences

associated with the permutation σ and combining them with the contribution from other

increasing subsequences associated with the same permutation, but we must be careful

to pick only those partitions which satisfy (4.9). As shown in [10], a given permutation

contributes if and only if its maximal increasing subsequences generate a partition

via (4.11) satisfying (4.9), and none of the other (non-maximal) increasing subsequences

generate an allowed partition.17 The sign of the contribution is given by (−1)s−1 where

s is the number of maximal increasing subsequences.

It is now easy to see that the condition that the maximal increasing subsequences

generate a partition satisfying (4.9) translates to

K∑
i=k+1

cσ(i) > 0 for γσ(k),σ(k+1) < 0 , (4.13)

and the condition that none of the non-maximal increasing subsequences satisfy (4.9)

translates to
K∑

i=k+1

cσ(i) < 0 for γσ(k),σ(k+1) > 0 . (4.14)

These precisely agree with (2.7). Finally the number of maximal increasing subsequences

is one more than the number of negative γσ(k),σ(k+1). Thus we have

(−1)s−1 =

K−1∏
k=1

sign(γσ(k),σ(k+1)) , (4.15)

in agreement with (2.8). This proves that the Reinecke formula (4.8) agrees with

the Coulomb index (1.4), and hence also the Coulomb branch formula (4.10) for the

Poincaré-Laurent polynomial,18

gHiggs({γ1, · · · γK}; {ζ1, · · · ζK}; y) = gCoulomb({γ1, · · · γK}; {ζ1, · · · ζK}; y) ,

17In particular, if some non-maximal increasing subsequence satisfies (4.9), then the net contribution

from the partitions associated with the maximal and non-maximal increasing subsequences of a given

permutation cancel pairwise.
18This relation holds away from walls of marginal and threshold stability. On such a wall, the Higgs

branch index on the l.h.s. given by (4.8), (4.9), is still well defined but the derivation of the Coulomb index

given in (2.7), (2.8) clearly breaks down. Furthermore even the Higgs branch index given by (4.8), (4.9)

does not have the form of a symmetric Laurent polynomial, and hence cannot be interpreted as Tr′(−y)2J3

associated with a quantum system. On a threshold stability wall we shall define gCoulomb by deforming the

FI parameters away from the wall since there is no independent definition of gCoulomb in this case, and the

result is independent of the deformation. However for gHiggs we shall continue to use the definition given

in (4.8), (4.9) for reasons which will become clear in section 4.4. The price we pay is that gCoulomb and

gHiggs are no longer equal on the thereshold stability wall.
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QHiggs(γ1 + · · ·+ γK ; ζ; y) = QCoulomb(γ1 + · · ·+ γK ; ζ; y) . (4.16)

For charge configurations relevant for wall-crossing, where all the γ`’s lie in a plane and

the ζ`’s are determined in terms of γij , this equivalence was proved by induction in [28].

Here we have shown that it holds for any Abelian quiver without oriented loop.

4.3 Non-Abelian quivers with primitive dimension vector and without loops

For non-Abelian quivers without loops we still can set Ωtot(α; y) = ΩS(α; y). We also have

ΩS(α; y) = 0 unless α = γ`, and ΩS(γ`; y) = 1. Thus ΩS(αi/mi; y
mi) is non-vanishing (and

equal to 1) only when αi/mi is a basis vector. Furthermore for primitive charge vector,

QCoulomb(γ; ζ; y) is equal to Q̄Coulomb(γ; ζ; y). In that case we can express (3.3) as

QCoulomb

(∑
i

Niγi; ζ; y

)
=

∑
{k(`)
j
}∑

` `k
(`)
j

=Nj

gCoulomb({(`γj)k
(`)
j }; {(`ζj)k

(`)
j }; y)

×


K∏
j=1

∏
`

1

k
(`)
j !

(
y − y−1

`(y` − y−`)

)k(`)
j

 . (4.17)

The argument of gCoulomb given above corresponds to a choice of {α1, · · ·αn} where we

have k
(`)
j copies of the vector `γj for ` = 1, 2, 3, · · · , j = 1, · · ·K, and the FI parameter

associated with each such copy is `ζj . It is understood that if some of the αij ’s appearing in

the argument of gCoulomb vanish then we must deform them in a way so that the deformed

quiver does not contain any oriented loop, compute gCoulomb and then take the deformations

back to zero. The
∏
i

∏
` k

(`)
i ! factor in the denominator represents |Aut({α1, α2, · · · , αn})|.

On the other hand, it was shown in [10, 21] that the stack invariants (4.2) satisfy the

Abelianization formula19

GHiggs({Nj}; {γj}; {ζj}; y)=
∑
{k`}∑
` ` k`=Ni

GHiggs({N̂j}; {γ̂j}; {ζ̂j}; y)
∏
`

[
1

k`!

(
(y − 1/y)

`(y` − y−`)

)k`]

(4.18)

where, on the r.h.s, GHiggs({N̂j}; {γ̂j}; {ζ̂j}; y) is the stack invariant of a quiver Q̂ defined

as follows:

• The vertices of Q̂ are obtained by replacing the vertex i of Q by a collection i`,k of

vertices with k = 1, . . . k` for any ` in the partition Ni =
∑

` ` k`, and keeping all the

other vertices j 6= i of Q;

• Each arrow j → k in Q with j, k 6= i induces an arrow j → k in Q̂;

19In [10], appendix D we proved this formula for a special choice of FI parameters relevant for wall

crossing. However this assumption was inessential and the result easily generalizes to the case of general

FI parameters [21]. The formula (4.18) also holds in the case of quivers with loops, but we shall not make

use of this fact here.
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• The arrows i → j in Q (resp. j → i) with j 6= i induce ` arrows i`,k → j (resp.

j → i`,k) in Q̂ for each `, k;

• The dimension at each node i`,k in Q̂ is equal to one, hence justifying the name;

the dimensions at the other nodes j 6= i are the same as the dimensions Nj in the

original quiver Q;

• The FI parameter at each node i`,k in Q̂ is equal to `ζi; the FI parameters at the

other nodes j 6= i are the same as the FI parameters ζj in the original quiver Q.

Thus for example on the right hand side of (4.18) the set {N̂j} will include all the Nj ’s

except Ni and
∑

` k` number of 1’s, the set {γ̂j} will include all the γj ’s except γi, k1 copy

of γi, k2 copy of 2γi, etc., and the set {ζ̂i} will include all the ζj ’s except ζi, k1 copies of

ζi, k2 copies of 2ζi etc. By successive application of this formula we can express the stack

invariant of any non-Abelian quiver in terms of that of a family of Abelian quivers:

GHiggs({Ni}; {γi}; {ζi}; y)=
∑
{k(`)
j
}∑

` `k
(`)
j

=Nj

gHiggs({(`γj)k
(`)
j }; {(`ζj)k

(`)
j }; y)

K∏
i=1

∏
`

1

k
(`)
i !

(
y − y−1

`(y`−y−`)

)k(`)
i

.

(4.19)

Using (4.6) we can replace the left hand side by QHiggs

(∑K
i=1Niγi; ζ; y

)
. The resulting

equation is identical to (4.17) with QCoulomb replaced by QHiggs and gCoulomb replaced by

gHiggs. Using the equivalence of gCoulomb and gHiggs proven in (4.16), we get

QHiggs

(∑
`

N`γ`; ζ; y

)
= QCoulomb

(∑
`

N`γ`; ζ; y

)
. (4.20)

Thus the Higgs and Coulomb branch formulae are equivalent for non-Abelian quivers as

well, so long as the dimension vector {Ni} is primitive.

4.4 Non-primitive dimension vector

We now turn to the case of a non-Abelian quiver with non-primitive dimension vector.

In this case the Coulomb branch formula is still given by (3.3) although QCoulomb and

Q̄Coulomb are no longer identical. On the other hand the Higgs branch formula is given

by (4.1) (or equivalently (4.5)) and (4.2). Our goal in this section will be to prove the

equality of QCoulomb and QHiggs.

When the dimension vector {Ni}i=1...K ≡ ~N is not primitive, the Abelianization

formula (4.19) is still known to hold, and can be used to express GHiggs in terms of

gHiggs

(
{(`γj)k

(`)
j }; {(`ζj)k

(`)
j }; y

)
for integers k

(`)
j satisfying

∑
` `k

(`)
j = Nj . However some

of the Abelian stack invariants gHiggs({γ̂i}; {ζ̂i}; y) appearing on the r.h.s. have stability

conditions {ζ̂} lying on walls of threshold stability. This happens when the set {γ̂i} can

be divided into several subsets A1, A2, · · · such that
∑

i∈As γ̂i ‖
∑

`N`γ` for each s. As

a result gHiggs({γ̂i}; {ζ̂i}; y) can no longer be equated to gCoulomb({γ̂i}; {ζ̂i}; y) (see foot-

note 18). Let {ζ̂i}′ be a sufficiently generic perturbation of the FI parameters away from the

– 31 –



J
H
E
P
0
5
(
2
0
1
3
)
1
6
6

wall and sufficiently small so that no other walls of marginal stability are crossed. In this

case gHiggs({γ̂i}; {ζ̂i}′; y) can again be equated to gCoulomb({γ̂i}; {ζ̂i}′; y) and furthermore

will be independent of the deformation. Now the HN recursion method [15, 31] relates

gHiggs({γ̂i}; {ζ̂i}′; y) and gHiggs({γ̂i}; {ζ̂i}; y) as follows:

gHiggs(α1, · · ·αn; c1, · · · cn; y)

=
∑
k≥1

(y−1 − y)1−k
∑
{As}∑

i∈As ci=0 ∀ s; ∪ks=1As={1,2,···n}

k∏
s=1

gHiggs({αi; i ∈ As}; {c′i; i ∈ As}; y) (4.21)

where the sum over {As} runs over all unordered partitions of the integers 1, 2, · · ·n into sets

A1, A2, · · ·Ak subject to the conditions indicated above. The symbol {c′i} denotes a generic

deformation in which the FI parameters associated with each of the n nodes are deformed

independently so that the configuration moves away from the wall of threshold stability,

subject to the constraint that the sum of the FI parameters carried by all the nodes must

vanish. It was shown in ref. [22] that the combinatorics of the summation in (4.21) can be

summarized by an equality of generating functions, which in our notation reads

1 + (y−1 − y)−1
∑

{k(`)
i },

∑
` `k

(`)
i ∝Ni

gHiggs

(
{(`γj)k

(`)
j }; {(`ζj)k

(`)
j }; y

)∏
i,`

(ti,`)
k

(`)
i

k
(`)
i !

= exp

[
(y−1−y)−1

∑
{k(`)
i },

∑
` `k

(`)
i ∝Ni

gHiggs

(
{(`γj)k

(`)
j }; {(`ζj)k

(`)
j }′; y

)∏
i,`

(ti,`)
k

(`)
i

k
(`)
i !

]
,

(4.22)

where ti,` are formal parameters and the sum over {k(`)
i } on either side runs over all

integers k
(`)
i for which

∑
` k

(`)
i is of the form cNi for some fixed vector Ni and arbitrary

constant c. Note that for the deformed stability conditions ζ ′, gHiggs can be equated to

gCoulomb, which is by definition equal to the value of gCoulomb for the undeformed stability

condition ζ (see footnote 18). As a result, we get for gHiggs either from (4.21) directly, or

after equating coefficients of
∏
i,`(ti,`)

k
(`)
i on either side,

gHiggs

(
{(`γj)k

(`)
j }; {(`ζj)k

(`)
j }; y

)
=
(∏
i,`

k
(i)
` !
)∑

k

(y−1 − y)1−k

k!

×
∑

{k(`,s)
i

, s=1,···k}∑
` `k

(`,s)
i

∝
∑
` ` k

(`)
i
∀ s,

∑
s k

(`,s)
i

=k
(`)
i

∏
s

{
gCoulomb

(
{(`γj)k

(`,s)
j }; {(`ζj)k

(`,s)
j }; y

)∏
i,`

1

k
(`,s)
i !

}
,

(4.23)

where the sum over {k(`,s)
i } runs over all ordered partitions of {k(`)

i }. Using this we can
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express the Abelianization formula (4.19) as

GHiggs({Ni}; {γi}; {ζi}; y) (4.24)

=
∑
{k(`)
j
}∑

` `k
(`)
j

=Nj

(∏
i,`

k
(i)
` !
)∑

k

(y−1 − y)1−k

k!

∑
{k(`,s)
i

,1≤s≤k}∑
` `k

(`,s)
i

∝
∑
` ` k

(`)
i
∀ s,

∑
s k

(`,s)
i

=k
(`)
i

k∏
s=1

{

×gCoulomb

(
{(`γj)k

(`,s)
j }; {(`ζj)k

(`,s)
j }; y

)∏
i,`

1

k
(`,s)
i !

}
×


K∏
i=1

∏
`

1

k
(`)
i !

(
y − y−1

`(y`−y−`)

)k(`)
i

.
We can now remove the sum over {k(`)

j } by relaxing the constraint
∑

s k
(`,s)
i = k

(`)
i ,

replacing k
(`)
i by

∑
s k

(`,s)
i everywhere, and imposing the constraints

∑
`,s `k

(`,s)
i = Ni and∑

` `k
(`,s)
i ∝ Ni. This gives

GHiggs({Ni}; {γi}; {ζi}; y)

=
∑
k

(y−1 − y)1−k

k!

∑
{k(`,s)
i

,1≤s≤k}∑
` `k

(`,s)
i

∝Ni ∀ s,
∑
s,` ` k

(`,s)
i

=Ni

k∏
s=1

[
gCoulomb

(
{(`γj)k

(`,s)
j }; {(`ζj)k

(`,s)
j }; y

)

×


K∏
i=1

∏
`

1

k
(`,s)
i !

(
y − y−1

`(y` − y−`)

)k(`,s)
i


]
.

(4.25)

Following the discussion at the beginning of section 4.3 but without imposing the

primitivity condition on the dimension vector γ ≡
∑

`N`γ`, we see that the Coulomb

branch formula (3.3) takes the form

QCoulomb(γ; ζ; y) =
∑
m|γ

µ(m)

m

y − y−1

ym − y−m
Q̄Coulomb(γ/m; ζ; ym) (4.26)

Q̄Coulomb(γ; ζ; y) =
∑
{k(`)
j
}∑

` `k
(`)
j

=Nj

gCoulomb({(`γj)k
(`)
j }; {(`ζj)k

(`)
j }; y)

K∏
j=1

∏
`

1

k
(`)
j !

(
y − y−1

`(y` − y−`)

)k(`)
j

.

Let us now defineGCoulomb by a formula analogous to (4.5) with Q̄Higgs replaced by Q̄Coulomb

on the right hand side:

GCoulomb({N1, · · ·NK}; {γ1, · · · γK}; {ζ1, · · · ζK}; y)

=
∑
k

∑
{αi}∑k

i=1 αi=
∑
`N`γ`

αi‖
∑
N`γ`

for i=1,...,k

(−1)k−1

k!(y − y−1)k−1

k∏
i=1

Q̄Coulomb(αi; ζ; y) . (4.27)
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Proving the equivalence ofQHiggs andQCoulomb is then equivalent to proving the equivalence

of GHiggs and GCoulomb. Now using (4.26) we get

GCoulomb({N1, · · ·NK}; {γ1, · · · γK}; {ζ1, · · · ζK}; y)

=
∑
k

∑
{αs}∑k

s=1 αs=
∑
iNiγi

αs‖
∑
Niγi

for s=1,...,k

(−1)k−1

k!(y − y−1)k−1

k∏
s=1

∑
{k(`,s)
j

}∑
` `k

(`,s)
j

γj=αs

gCoulomb({(`γj)k
(`,s)
j }; {(`ζj)k

(`,s)
j }; y)

×


K∏
i=1

∏
`

1

k
(`,s)
i !

(
y − y−1

`(y` − y−`)

)k(`,s)
i

 ,

(4.28)

where the sum over {k(`,s)
i } runs over all ordered partitions of {k(`)

i }. We can now remove

the sum over αs’s by relaxing the constraint that
∑

` `k
(`,s)
j γj = αs, but imposing the

constraints
∑

`,s `k
(`,s)
i = Ni and

∑
` `k

(`,s)
i ∝ Ni. This gives

GCoulomb({N1, · · ·NK}; {γ1, · · · γK}; {ζ1, · · · ζK}; y)

=
∑
k

1

k!
(y−1−y)1−k

∑
{k(`,s)
i

,1≤s≤k}∑
` `k

(`,s)
i

∝Ni ∀ s,
∑
s,` ` k

(`,s)
i

=Ni

k∏
s=1

[
gCoulomb

(
{(`γj)k

(`,s)
j }; {(`ζj)k

(`,s)
j }; y

)

×


K∏
i=1

∏
`

1

k
(`,s)
i !

(
y − y−1

`(y` − y−`)

)k(`,s)
i


]
.

(4.29)

Since the right hand side matches the right hand side of (4.25), it follows that GHiggs and

GCoulomb are identical, and therefore the Higgs and Coulomb branch computations QHiggs

and QCoulomb are equivalent, even for non-primitive dimension vector.

Given the equivalence of QHiggs (defined by the Harder-Narasimhan recur-

sion (4.1), (4.2)) and QCoulomb (defined by the Abelianization formula (4.26)), and given

the equivalence of the Abelian indices gCoulomb and gHiggs for deformed FI parameters, we

conclude that the Poincaré-Laurent polynomial QHiggs of a quiver without loop satisfies,

for arbitrary dimension vector, the Abelianization formula:

QHiggs(γ; ζ; y) =
∑
m|γ

µ(m)

m

y − y−1

ym − y−m
Q̄Higgs(γ/m; ζ; ym) (4.30)

Q̄Higgs(γ; ζ; y) =
∑
{k(`)
j
}∑

` `k
(`)
j

=Nj

gHiggs({(`γj)k
(`)
j }; {(`ζj)k

(`)
j }′; y)

K∏
j=1

∏
`

1

k
(`)
j !

(
y − y−1

`(y` − y−`)

)k(`)
j

.

This can be regarded as the main result of this subsection.
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A The Mathematica package “CoulombHiggs”

To facilitate further investigation, we provide a Mathematica package allowing to com-

pute the Coulomb index gCoulomb for multi-centered black holes and the Poincaré-Laurent

polynomial QCoulomb(γ; ζ; y) and QHiggs(γ; ζ; y) of quiver moduli spaces using the Coulomb

branch and Higgs branch formulae. We also provide three example files where this

package is used to evaluate quiver invariants for the Kronecker quiver (Kronecker.nb),

for non-Abelian 3-node quivers (Threenode.nb) and for several 4 and 5-node Abelian

quivers considered in [14] (Multinode.nb). The validity of the algorithm for the F and G

indices is tested in a fourth file CoulombIndexCheck.nb. All these files are included in the

“source” of this paper available from arXiv and can be obtained from the second name

authors’ webpage.

Assuming that the file CoulombHiggs.m is present in the user’s Mathematica Appli-

cation directory, the package is loaded by entering

In[1]:= <<CoulombHiggs‘

Out[1]:= CoulombHiggs v 1.0 - A package for evaluating quiver

invariants using the Coulomb and Higgs branch formulae.

If the file CoulombHiggs.m has not yet been copied in the user’s Mathematica Ap-

plication directory but is in the same directory as the notebook, evaluate instead

In[1]:= SetDirectory[NotebookDirectory[]]; <<CoulombHiggs‘

Out[1]:= CoulombHiggs v 1.0 - A package for evaluating quiver

invariants using the Coulomb and Higgs branch formulae.

The first main routine is CoulombBranchFormula, whose basic usage is illustrated

below:

In[1]:= Simplify[CoulombBranchFormula[4{{0, 1, -1},{-1, 0, 1}, {1,
-1, 0}}, {1/2, 1/6, -2/3}, {1, 1, 1}, y]]

Out[1]:= 2 + 1
y2 + y2 + OmS({1, 1, 1})

The first argument corresponds to the matrix of DSZ products αij (an antisymmetric

matrix of integers), the second to the FI parameters ζi (a vector of rational numbers), the

third to the dimension vector Ni (a vector of integers), and the last to the angular mo-

mentum fugacity (a formal variable). In this example, the routine expresses the Poincaré-

Laurent polynomial of the moduli space of a three-node Abelian cyclic quiver with 4 arrows

between each subsequent node, in terms of the single centered degeneracy ΩS(γ1 +γ2 +γ3).
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The second main routine is HiggsBranchFormula, which computes the Poincaré-

Laurent polynomial using the Higgs branch formula (4.1). The arguments are the same as

for CoulombBranchFormula, but it only applies to quivers without oriented loop (although

no test is made to ensure that this is the case):

In[1]:= Simplify[HiggsBranchFormula[{{0, 3},{-3, 0}}, {1/2,-1/2},
{2, 2}, y]]

Out[1]:= −(y2+1)(y8+y4+1)
y5

The above command computes the Poincaré-Laurent polynomial for the Kronecker

quiver with 3 arrows, FI parameters (1/2,−1/2), dimension vector (2, 2). The package

allows for much more, as documented below. Inline documentation can be obtained by

typing e.g.

In[1]:= ?CoulombBranchFormula

Out[1]:=

A.1 Symbols

• y: Angular momentum fugacity;

• Om[charge vector ,y ]: denotes the refined index Ω(γ, y);

• Omb[charge vector ,y ]: denotes the rational refined index Ω̄(γ, y);

• OmS[charge vector ,y ]: denotes the single centered degeneracy ΩS(γ, y). The depen-

dence on y can be omitted, but only at the end of the computation;

• OmT[charge vector ,y ]: denotes the (unevaluated) function Ωtot(γ, y) defined in (3.4);

• Coulombg[list of charge vectors ,y ]: denotes the (unevaluated) Coulomb index

gCoulomb({αi}, {ci}, y), leaving the FI parameters unspecified;

• HiggsG[charge vector ,y ]: denotes the (unevaluated) stack invariant GHiggs(γ, y)

defined in (4.2);

• CoulombH[list of charge vectors ,multiplicity vector ,y ]: denotes the (unevaluated)

factor H({αi}, {ni}, y) appearing in the formula (3.4) for Ωtot(
∑
niαi, y) in terms of

ΩS(αi, y).

• QFact[n ,y ]: represents the (non-evaluated) q-deformed factorial [n, y]!
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A.2 Environment variables

• $QuiverPerturb1: Sets the size of the perturbation ε1 = 1/$QuiverPerturb of the DSZ

products in (3.7), set to 1000 by default.

• $QuiverPerturb2: Sets the size of the perturbation ε2 = 1/$DSZPerturb of the DSZ

products in (3.8), set to 100000 by default.

• $QuiverNoLoop: If set to True, the quiver will be assumed to have no oriented loop,

hence all H factors and all ΩS(α) will be set to zero (unless α is a basis vector). Set

to False by default.

• $QuiverTestLoop: If set to True, all H factors and ΩS(α) corresponding to subquivers

without loops will be set to zero (unless α is a basis vector). Set to True by default.

Determining whether a subquiver has loops is time-consuming, so for large quivers it

may be advisable to disable this feature. Note that $QuiverNoLoop takes precedence

over this variable.

• $QuiverMultiplier: Overall scaling factor of the DSZ matrix in any evaluation of

Coulombg or HiggsG. Set to 1 by default, could be a formal variable.

• $QuiverVerbose: If set to False, all consistency tests on data and corresponding error

messages will be skipped. Set to True by default.

• $QuiverDisplayCoulombH: If set to True, the routine CoulombBranchFormula will re-

turn a list {Q, R} where Q is the Poincaré-Laurent polynomial and R is a list of

replacement rules for the CoulombH factors. Set to False by default.

• $QuiverPrecision: Sets the numerical precision with which all consistency tests are

carried out. This is set to 0 by default since all data are assumed to be rational

numbers. This can be set to a small real number when using real data, however the

user is warned that rounding errors tend to grow quickly.

A.3 Coulomb index

• CoulombF[Mat ,Cvec ]: returns the index of collinear solutions

F ({α̃1, · · · α̃n}, {c̃1, · · · c̃n}) with DSZ products α̃ij = Mat[[i, j]], FI terms

c̃i = Cvec[[i]] and trivial ordering.

• CoulombG[Mat ]: returns the index of scaling collinear solutions G({α̂1, · · · α̂n}) with

DSZ products α̂ij = Mat[[i, j]] and trivial ordering. The total angular momentum∑
i<jMat[[i, j]] must vanish;

• CoulombIndex[Mat ,PMat ,Cvec ,y ]: evaluates the Coulomb index

gCoulomb({α1, · · · αn}; {c1, · · · cn}; y) with DSZ products αij = Mat[[i, j]], per-

turbed to PMat[[i,j]] so as to lift accidental degeneracies, possibly rescaled by an

overall factor of $QuiverMultiplier, FI terms ci = Cvec[[i]], angular momentum

fugacity y;
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• CoulombFNum[Mat ]: computes numerically the index F ({α̃1, . . . α̃n}, {c̃1, . . . c̃n}) with

DSZ matrix α̃ij = Mat[[i, j]] and FI parameters c̃i = Cvec[[i]]. For testing purposes

only, works for up to 5 centers.

• CoulombGNum[Mat ]: computes numerically the scaling index G(α̂1, . . . α̂n) with DSZ

matrix α̂ij = Mat[[i, j]]. For testing purposes only, works for up to 6 centers.

• CoulombIndexNum[Mat ,PMat ,Cvec ,k ,y ]: returns the Coulomb index

gCoulomb({α1, · · · αn}; {c1, · · · cn}; y) with DSZ products αij = Mat[[i, j]], pos-

sibly rescaled by an overall factor of $QuiverMultiplier, FI terms ci = Cvec[[i]],

angular momentum fugacity y, by searching collinear solutions numerically; for

testing purposes only, works for up to 5 centers.

A.4 Coulomb branch formula

• CoulombBranchFormula[Mat ,Cvec ,Nvec ,y ]: computes the Poincaré-Laurent

polynomial of a quiver with DSZ products αij = Mat[[i, j]], dimension vector

Ni = Nvec[[i]], FI parameters ζi = Cvec[[i]], in terms of single-centered invariants

ΩS. This standalone routine first constructs the Poincaré-Laurent polynomial us-

ing (3.3), evaluates the Coulomb indices gCoulomb, and determines the H factors

recursively using the minimal modification hypothesis. If $QuiverDisplayCoulombH

is set to True, the routine returns a list {Q, R}, where Q is the Poincaré polynomial

and R is a list of replacement rules for the CoulombH factors. For quivers without

loops, the process can be sped up greatly by setting $QuiverNoLoop to True. For

complicated quivers it is advisable to implement the Coulomb branch formula step

by step, using the more elementary routines described below.

• CoulombBranchFormulaFromH[Mat ,Cvec ,Nvec ,R ,y ]: returns the Poincaré-

Laurent polynomial of a quiver with DSZ products αij = Mat[[i, j]], dimension vector

Ni = Nvec[[i]], FI parameters ζi = Cvec[[i]], using the rule R to replace all CoulombH

factors.

• QuiverPoincarePolynomial[Nvec ,y ]: constructs the Poincaré-Laurent polynomial

of a quiver according to (3.3). Coincides with QuiverPoincarePolynomialRat for

primitive dimension vector;

• QuiverPoincarePolynomialRat[Nvec ,y ]: constructs the rational Poincaré-Laurent

polynomial Q̄Coulomb(γ; ζ; y) according to (3.3);

• QuiverPoincarePolynomialExpand[Mat ,PMat ,Cvec , Nvec , Q ]: evaluates the

Cou-lomb indices gCoulomb and total single center degeneracies Ωtot(αi, y) appear-

ing in the Poincaré-Laurent polynomial Q of a quiver with DSZ products αij =

Mat[[i, j]], perturbed to PMat[[i, j]], dimension vector Ni = Nvec[[i]], FI parameters

ζi = Cvec[[i]], using (1.9) and (3.4);

• CoulombHSubQuivers[Mat ,PMat ,Nvec ,y ]: computes recursively all CoulombH

factors for DSZ matrix Mat, perturbed to PMat, and any dimension vector strictly

less than Nvec; relies on the next two routines:
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• ListCoulombH[Nvec ,Q ]: returns a pair {ListH, ListC} where ListH is a list of

CoulombH factors possibly appearing in the Poincaré-Laurent polynomial Q of a

quiver with dimension vector Nvec, and ListC is the list of coefficients which multiply

the monomials in ΩS(αi, y) canonically associated to the H factors in Q.

• SolveCoulombH[ListH ,ListC , R ]: returns a list of replacement rules for the

CoulombH factors listed in ListH, by applying the minimal modification hypothe-

sis to the coefficients listed in ListC. The last argument is a replacement rule for

CoulombH factors associated to subquivers.

• MinimalModif[f ]: returns the symmetric Laurent polynomial which coincides with

the Laurent expansion expansion of the symmetric rational function f at y = 0, up

to strictly positive powers of y. Here symmetric means invariant under y → 1/y. In

practice, MinimalModif[f] evaluates the contour integral in [14], eq. 2.9∮
du

2πi

(1/u− u) f(u)

(1− uy)(1− u/y)
(A.1)

by deforming the contour around 0 into a sum of counters over all poles of f(u) and

zeros of (1 − uy)(1 − u/y). This trick allows to compute (A.1) even if the order of

the pole of f(y) at y = 0 is unknown, which happens if $QuiverMultiplier is a

formal variable.

• SymplifyOmSbasis[f ]: replaces ΩS(γ, y)→ 1 when γ is a basis vector;

• SymplifyOmSbasismult[f ]: replaces ΩS(γ, y)→ 0 when γ is a non-trivial multiple of

a basis vector;

• CoulombHNoLoopToZero[Mat ,f ]: sets to zero any H factor in f corresponding to

subquivers without loop, assuming DSZ products αij = Mat[[i, j]] ; active only on

2-node subquivers if $QuiverTestLoop is set to False

• OmTNoLoopToZero[Mat ,f ]: sets to zero any Ωtot factor in f corresponding to sub-

quivers without loop, assuming DSZ products αij = Mat[[i, j]] ; active only on 2-node

subquivers if $QuiverTestLoop is set to False

• OmSNoLoopToZero[Mat ,f ]: sets to zero any ΩS factor in f corresponding to subquiv-

ers without loop, assuming DSZ products αij = Mat[[i, j]] ; active only on 2-node

subquivers if $QuiverTestLoop is set to False

• EvalCoulombH3[Mat ,f ]: evaluates any 3-center H factor with multiplicity vector

{1, 1, 1} appearing in f . Not used in any routine so far.

• DropFugacity[f ]: drops the second argument in any ΩS(γ, y) appearing in f, to be

used at the end of computation only;
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A.5 Higgs branch formula

• HiggsBranchFormula[Mat ,Cvec ,Nvec ,y ]: computes the Poincaré-Laurent poly-

nomial of a quiver with DSZ products αij = Mat[[i, j]] (possibly rescaled by

$QuiverMultiplier), dimension vector Ni = Nvec[[i]], FI parameters ζi = Cvec[[i]],

using the Higgs branch formula (4.1). This formula is only expected to produce the

correct Poincaré-Laurent polynomial for quivers without oriented loops, but no check

is made on the quiver to ensure that this is the case;
• StackInvariant[Mat ,Cvec ,Nvec ,y ]: gives the stack invariant (4.2) of a quiver

with DSZ matrix αij = Mat[[i, j]], possibly rescaled by an overall factor of

$QuiverMultiplier, FI parameters ζi = Cvec[[i]], dimension vector Ni = Nvec[[i]],

using Reineke’s formula (4.2); the answer is written in terms of unevaluated q-

deformed factorials QFact[n,y];
• AbelianStackInvariant[Mat ,Cvec ,y ]: gives the Abelian stack invariant (4.7) of

a quiver with DSZ matrix αij = Mat[[i, j]], possibly rescaled by an overall factor

of $QuiverMultiplier, FI parameters ζi = Cvec[[i]], using Reineke’s formula (4.2);

coincides with StackInvariant with Nvec= {1, . . . 1} except that tests of marginal

or threshold stability are performed (unless $QuiverVerbose is set to False);
• QDeformedFactorial[n ,y ]: gives the q-deformed factorial [n, y]!
• EvalQFact[f ]: evaluates any QFact[n,y] appearing in f

A.6 Utilities

• ListAllPartitions[charge vector ]: returns the list of unordered partitions {αi} of

the positive integer vector γ as a sum of positive, non-zero integer vectors αi;
• ListAllPartitionsMult[charge vector ]: returns the list of unordered partitions

{αi,mi} of the positive integer vector γ as a sum of positive, non-zero integer vectors

αi with multiplicity mi;
• ListSubQuivers[Nvec ]: gives a list of all dimension vectors less or equal to Nvec;
• SubDSZ[Mat ,Cvec ,Li ]: gives the DSZ matrix of the subquiver made of vectors in

list Li;
• SymmetryFactor[Li ]: gives the symmetry factor 1/|Aut({α1, α2, · · · , αn}| for the list

of charge vectors Li;
• OmTRat[Nvec ,y ]: gives the rational total invariant Ω̄tot(γ; y) in terms of Ωtot(γ; y).

Coincides with the latter if γ is primitive.
• OmTToOmS[f ]: expands out any Ωtot(γ; y) in f into H factors and ΩS’s using (3.4);
• OmToOmb[f ]: expresses any Ω(γ; y) in f in terms of Ω̄(γ; y)’s;
• OmbToOm[f ]: expresses any Ω̄(γ; y) in f in terms of Ω(γ; y)’s;
• HiggsGToOmb[Nvec ,y ]: returns the (unevaluated) HN invariant GHiggs(γ, y) in terms

of the rational refined indices Ω(γ; y) using (4.5);
• OmbToHiggsG[Nvec ,y ]: returns the (unevaluated) rational refined index Ω(γ; y) in

terms of the (unevaluated) stack invariants GHiggs(γ, y) using (4.1);
• RandomCvec[Nvec ]: generates a random set of FI parameters ζi between -1 and 1,

such that
∑
ζi Nvec[[i]] = 0;

• UnitStepWarn[x ]: gives 1 for x > 0, 0 for x < 0, and 1/2 if x = 0. Produces a

warning in this latter case, irrespective of the value of $QuiverVerbose. If so, the

user is advised run the computation again with a different random perturbation.
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