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On the Coupling of Boundary Integral
and Finite Element Methods

By Claes Johnson and J. Claude Nedelec

Abstract.   Let ííc be the complementary of a bounded regular domain in R    of bound-

ary T.   We consider the problem

(1)
l Au = f;    in nc,

\u\r = u0,
where /has its support in a bounded subdomain nx of Í2e.   Let T2 be the common

boundary of fij and fi2 = f2c - ßj.  We solve the problem (1) by using an equivalent

system of equations involving an integral equation on r2 coupled with the equation:

in il,

(2)

ÍAu =f
«Ir = "o

"lr\, = *••r2~
We introduce a finite element approximation of Eq. (2) and of the integral equation

and we prove optimal error estimates.

Introduction.   The purpose of this note is to analyze a procedure obtained by
coupling the boundary integral method (cf. [4], [5], [7], [8], [12]) and the usual
finite element method.  Such coupled procedures have been proposed by e.g. Silvester-
Hsieh [10] and Zienkiewicz et al. [11] for the numerical solution of problems in un-
bounded domains.  As a typical example let us consider a problem of the form

!Au=f     mQ.c,
u = u0    on T,

where Í2 is a bounded domain in the plane with boundary T, £2C is the unbounded
complement of Í2, and A is an elliptic differential operator.   Let us further assume that
Í2C can be divided into a bounded part £2j and an unbounded part £22, with common
boundary T2 (see Figure 1), so that /= 0 in Í22 and A is linear and has constant coef-
ficients in il2 while A may be nonlinear or have variable coefficients in the bounded part
iij. Then the unbounded part £22 can be taken into account using an integral equation
on the boundary T2, and an approximate solution can be found using a conventional finite
element discretization of Qx together with a discretization along T2. Below we shall
analyze a model problem of this type.

For numerical experiments and references into the engineering literature on this
subject, we refer to [11].
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1064 CLAES JOHNSON AND J. CLAUDE NEDELEC

(1.1)

1.   A Model Problem.   Let us consider the following exterior Dirichlet problem:

/    ini2c,

0   on r,
!-Au

U

where Í2 is a bounded domain in R2 with smooth boundary T and £2C is the comple-
ment of ft U T.   Let us assume that the support of/is bounded and that /G ¿2(Í2C).
It is known (see e.g. [3], [6]) that the problem (1.1) admits a unique solution
«E W xinc), where

Wl(Sic) = {v: (1 + W2)-1/2(l + logVl + \x\2)-xveL2iSlc), Vu E [£2(i2c)]2},

and that this solution has the following asymptotic behavior:

1

(1.2)

a+0{^u(x)

'»<*) = o (¿),
where a is a constant.

Let now T2 be a smooth curve dividing £2e into an unbounded part ft2 and a
bounded part £2, containing the support of/(see Figure 1).  Then (1.1) can alternative-
ly be formulated as follows:
(1.3a)

(1.3b)

(1.3c)

(1.3d)

-Aw, / in ft i '

-Aw, = / = 0 in Í2.,

on r,,

du,      aw.

(1.3e) V.      ux = 0 on T,

where u¡ = w|í2¿, 1 = 1,2, and 9/9« denotes the outward normal derivative to T2 =
9Í22 (see Figure 1).   The equations (1.3a) and (1.3b) signify a decomposition into
two problems in the separate domains Í2, and Í22, while (1.3c) and (1.3d) reflect the
appropriate coupling of these two problems.

n2

Figure 1
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1065

2.   A Variational Formulation of the Model Problem.   Let us now give a varia -
tional formulation of (1.2).  Since -Aw = /in £2j, we find, using Green's formula, that

(2.1) «(«, v) + (v,X) = if, v)    Vu G W,

where

X = í ir2,      a(u,v)= f     Vw vudx,
9n     z Jf¡i

<u, X> = f    uXds,       (/ u) = J     /wdx,
J r2 J fi i

H'= {i)e//'(íí,): i> = 0 on T}.

Moreover, since -Aw = 0 in £22, we find, using Green's formula and (1.2), that (cf.

[6]),

(2.2) Iwíx) = fr^u(y)Gnix, y)dsy - J^ \(y)G(x, y)dsy + a,      x G T2,

(2.3) uix) = /   w(y)G„(^, ^)dSjF - j    X(y)C(*, j)&y + a,      x G í22,

where

Gix, y) = 2¡¡logk - J I,      xi^y,

is the Green's function associated with the two-dimensional Laplacian and

_9_
9«,Gnix> yï = èr Gix' y)>    x^y,yer2,

y
with n being the outward unit normal to T2 at y G T2. Let us observe that (1.2)
together with (2.3) imply that /r Xds = 0, since otherwise u(x) would behave like
c log|x|, c ^ 0, as 1*1 —► °°, thus contradicting (1.2).

Now, formally multiplying (2.2) by the function p(x) satisfying Jr nds = 0, and
integrating over T2, we find that

(2.4) b(X, p) - i<w, m> + <G„w, At> = 0,

where

b(x, p) = - f    f   xom*)G(*, v-)<Mv
(2.5)

G„"(X> = I    «(jc)G (*, >')*v-r2

We recall (see [6]) that b is a continuous bilinear form on H~XI2(V2) x //_1/2(r2).
Moreover, Z> is //-elliptic with

//={AiG//"1/2(r2): <l,/i> = 0},

i.e., there exists a positive constant (3 such that

(2-6) b(p,p)>ß\p\lx/2,       pEH.
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1066 CLAES JOHNSON AND J. CLAUDE NEDELEC

Here <•,'■> denotes the duality between HXI2(T2) and H~XI2(T2) and we use the nota-
tion

I • I, = II ' Htf*(r2)-

Recalling (2.1) and (2.4), we are thus led to the following variational formulation of
(1.2):  Find (u, X) G W x H such that

(2.7a) Í a(u, v) + (v, X) = (/ v) Vu G W,

(2.7b) ( 2Z>(X, P) - (u, p) + 2<G„w, p) = 0    Vp G H.

Let us now analyze this problem.  First, recalling the trace theorem:

(2.8) l-rul^ < CJMI,   Vue/t'(n,),

where s > Vi, yv = v\r   and || • ||s = || • H^j^ y it follows that < •, •> is a continuous
bilinear form on W x H. Further, since v = 0 on T if v G W, it follows that a(-, •) is
IV-elliptic, i.e., there is a positive constant ß' such that

(2.9) a(v, v) > ß'lMI2    \/v G W.

Moreover, since

(2.10) Gn(x,y) x,y^T2,
_ny • (x-y)

\x-y*

and r is smooth, it follows that Gn is pseudo-homogeneous of degree zero and thus
(see [9]) the integral operator G„ defined by (2.5) is smoothing.  More precisely, one
has

(2.11) \Gnv\s+1 < Cs\v\s    Vt;G//s(r2).

In order to analyze (2.7), it is convenient to introduce the following simplified prob-
lem obtained by omitting the term <G„«, p):   Given g = igx, g2, g3) find (w, 0) G
W x H such that

(2.12a) Í  a(w, v) + (v, 6) = (gx, v) + (v, g2)    Wv G W,

(2.12b) {2bid,p)-(w,p)=(g3,p) VmG//.

We shall see that due to (2.11) the full problem (2.7) is a compact perturbation of the
simplified problem (2.12).

Let us now formulate (2.7) and (2.12) as operator equations.  To this end we
introduce the continuous bilinear forms

A,B,K: V x V-^R,

where V = W x H, and the corresponding continuous linear mappings

A,B, K:V-+ V',
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1067

defined by

B(û, D) = [Bû, v] = a(u, v) + <d, X) - (u, p) + 2biX, p),

K(û, 0) = [Kû, v] = (Gnu, p)    V5 = (w, X), û = (v, p) G V,

A=B + K,
where [ •, • ] denotes the duality between V and V', the dual of V.  Then (2.12) can
be formulated

(2.13) Bû=g,      ú = (w, X),

i.e.,

(2.14) B(û, 0) = [g, v]    V0 = (u, X) G V,

and (2.7) is equivalent to

(2.15) Aû=f,
i.e.,

(2.16) A(Û, v) = \f, D]    V& G F,

with/=(/, 0,0).
Let us note that the bilinear form /?(•, •) is F-elliptic; by (2.6) and (2.9) we

have that

Biv,v)=a(v,v) + 2b(p,p)

(2'17) > ß'M\2 + 2ß\p\2_x/2 > ß"\m2v    VO G V,

where ß" = min(j3', 2j3) and || ■ ||K denotes the norm in V, i.e.,

IIOII2, = (||< + \ptl/2)1'2.

Lemma 1.   The mapping B: V —* V' is an isomorphism.  Moreover, for k > 0
the mapping

B~x : Hk~x (Í2, ) x Hk-X'2(r2) x /^ + '/2(r2 ) ^ //* + J (ft! ) x Hk~xl2(T2 ),

defined by Bû = g is continuous.

Proof.   The first statement of the lemma follows directly from the K-ellipticity
(2.17).  The regularity result is proved in the Appendix below. D

Let us now return to the original problem Au = f.  Since A = B + K, this prob-
lem can be written after applying B~x :

(2.18) iI + B-xK)Û=B-xf,

where /: V —> V is the identity mapping.  Now, recalling (2.8) and (2.11), it follows
that K: V—► {0} x {0} x //3/2(r2), is continuous.  Therefore, using Lemma 1 with
k= 1, we see that B~XK: F—>//2(i2,) x //1/2(T2) is continuous.  Since //2(ftj) x
//^2(r2) is compactly embedded in V, it follows that B~XK: V —► V is compact and
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1068 CLAES JOHNSON AND J. CLAUDE NEDELEC

hence (2.18) is an equation of the Fredholm second kind.  Thus, to prove existence of
a solution to (2.18) or the equivalent original problem (2.15), it is sufficient to prove
uniqueness.  With this observation it is easy to prove

Lemma 2.   The mapping A: V —► V' is an isomorphism.  Moreover, for k >0
the mapping

A~x: Hk-x(Slx) x Hk-Xl2ir2) x Hk + 1'2(r2)^ Hk + X(£lx) * Hk-X'2(r2)

is continuous.

Proof.   To prove uniqueness of the solution of the equation Au = /, let us assume
that w = (w, 6) & V and Aw = 0, i.e.,

(2.19a) j a(w, y) + („, e> = o    Vu G W,

(2.19b) (2bi6, p) - (w, p) + 2(Gnw, p) = 0    V/i G H.

From (2.19a) it follows that

-Aw = 0    in £2,,

9w
dll

0   on r 2-

Let now w G WX(D,2) be the harmonic extension of w to Í22, i.e.,

(2.20) |-A"=0      ini22'

|     w = yw   on T.

Then, by an argument similar to that leading to (2.4), it follows that

(2.21) 2b(6, p) - <w, p) + 2(Gnw, p) = 0,      p&H,

where <T = 9w/9w|r2 G//.  Combining (2.19b) and (2.21) we find that b(d-8,p) =
0 Vju G H, and thus (2.6) shows that 9 = 6.  But this means that if w is extended to
S2C by putting vv = w in Í22, then Aw = 0 in Í2C, w G W1 (Í2C), and w = 0 on T so
that w = 0 and the uniqueness follows.  Thus, for any g G V', the equation Aw = g
has a unique solution and the continuity of A~x : V' —*■ V follows from the closed
graph theorem.  This proves the first statement of the lemma.

To prove the regularity result, we use induction on k.   Thus assume that the
statement holds for k — m — 1.  Let us consider the equation A w = g, where
g eHm-x(nx) x Hm-XI2(T2) x Hm + Xl2(r2).  By the induction hypothesis, we then
havewG//m(r¿1) x//m"3/2(r2) so that by (2.11) Kw G {0} x {0} x//m + 1/2(r2).
But the equation Aw = g can be written

Bw = g - Kw,

and thus by Lemma 1 we conclude that vv G//m + 1(r21) x Hm~x!2(T2) x
Hm + X'2(r2).  Therefore ,4-1 maps Hm-X(üx) x //m"1/2(r2) x //m + 1/2(r2) into
Hm + Xiilx) x Hm~xl2(r2) and the continuity of the mapping follows from the closed
graph theorem. This completes the induction step and thus the proof of the lemma. D
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1069

We shall also need the corresponding result for the adjoints B*,A*: V —*■ V'
defined by

[A*v, w] = [Aw, 0],

[B*v, w] = [Bw, 0]    V0, vv G K

Lemma 3.  The mappings B*,A*: V —> V' are isomorphisms and, for k>0,

B*-x,A*-x:Hk-x(Slx) xHk-x'2(r2) x Hk+XI2(F2) ^Hk+x(Slx) x Hk~xl2(Y2)

are continuous.

The proof is parallel to the proofs of Lemmas 1 and 2.
Remark.   As pointed out by the referee, if the outer boundary T2 is a circle,

then one can solve the equation (2.3) in X explicitly.  More precisely, in this case (2.3)
takes the form

1    fill ~ /

I/oX(ö)log   2
.8-7]sm    2 Rd6 =7(77),

where X(0) = X(R cos 6, R sin 6) and 7 is determined by w.  This integral equation has
the explicit solution

*» " mi" % — \çr) * - soffit1 *
which makes it possible to eliminate X from (2.7) and thus obtain an equation involv-
ing only w.  To see if such a procedure is advantageous from a numerical point of
view requires further investigation. D

3.  The Coupled Procedure.   Error Estimates.   Let us now consider a finite ele-
ment method based on the variational formulation (2.7).  Let Wh C W and Hn C H
be finite-dimensional spaces depending on the positive parameter h and set Vn =
Wn x Hn.  Let An( ■,   ■ ) be a bilinear form approximating A(•,   ) and consider the
following discrete problem:  Find ûn = iun, Xn) G Vn such that

(3-D Ah(Ûh,v) = (f,u)    VOGF,.

We shall assume that the spaces Wh and Hn satisfy the following approximation
hypothesis:   For any positive e, there exists a constant C such that

(3.2a) àwh I|W ~ U"' < C/iS|W!s+i+e>      ° < s < k>

(3.2b) M |0 - p\_x/2 < Chs\9\s_x/2, 0<s<k,

where k is a positive integer.  This will correspond to using piecewise polynomials of
degree k for Wh and degree k - 1 for Hn (cf. Example 1 below).  Note that the func-
tions in Hh may be chosen to be discontinuous while the functions in Wh will have to
be continuous.   Furthermore, we shall assume that there is a constant C such that

(3-3) L4(o, w) - Ahiv, w)\ < Chk\\v\\v\\w\\v    Vu, w G V
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1070 CLAES JOHNSON AND J. CLAUDE NEDELEC

In Example 1 below we shall in detail consider a finite element method satisfying (3.2)
and (3.3) with k = 1.

We shall now prove that for h small enough the problem (3.1) admits a unique
solution ûh and then estimate the error û - ûn.  The crucial result is then the following:

Lemma 4.  There is a positive constant c such that for h small enough

AJw, v)
(3.4) sup    -^-- >c\\w\\v    \/w&Vn.vevn;ô*o    \\v\\v v n

Proof.   Given vv G V~n there exists by Lemma 3 i// = (\¡j, H) G V such that

(3.5) ¿(0, í) = (w, v)v,      ÛGF,

where ( ■, ■ )v denotes the scalar product in V, and

(3.6) mv<Q\w\\v.
In fact, \p = A*~xJw, where J: V —► V', is the canonical mapping defined by [/vv, 0]
= (vv, î))v, Vu, vv G F.   Furthermore, again by Lemma 3, there exists \¡/n = (t//ft, Hh)&
Vh such that

(3-7) Biv, 0-íA) = O    VÛGK„,

and

(3.8) ll^llK<C||^llK.

Now, using (3.7) and (3.5) with u = w, we find that

A(w, Uh)=B(w, $h) + K(w, %h)

= B(w, tp) + K(w, 4ih) = A(w, i//) + Âïvv, îin - h

(3.9) = llvv|l2F + (G>, Hh - H)

>\m2v-\Gnw\3/2\H-HhL3/2

>\\w\\2v-\\w\\v\ri-HhL3/2,

since by (2.11) and (2.8),

IG„w|3/2 <CHVa <aiw||, <C||vv|¡K.

In order to estimate \H - Hh\_3,2, we shall use the usual duality argument:   Given
v G H3/2(r2) let (p = B~x v where v = (0, 0, v), i.e.,

(3.10) Bifi, v) = (v, p>    Vv = (v,p)EV.

By Lemma 2 we then have

(3.11) ll¿lltf2(ni)XWl/2(r2)<CM3/2-
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1071

Hence, taking û = \p - \pn in (3.10) and using (3.7), we find that for any $n^Vh,

{v, H-Hh)= BÇp, $-$„) = B@-Q,,*$- h)

<   C\VP  -$h\\y   \\4>   -   î/„\\y   <   C\ti>  -  *h\\y \\W\\V,

where the last inequality follows from (3.6) and (3.8).  Thus, using (3.2) with s = 1 - e
together with (3.11), it follows that

(v, H - fi„> < C7í,-e|v|3/2|¡>v|iP,,      v G//3/2(r2),

which proves that

IH-rtftL3/2 <al"m\y,
where 0 < e < 1.   Returning to (3.9) we thus have

A(w, #„) > \\w\\y - Chx^\\w\\2v = (1 - Chx-*)\\w\\2y.

Finally, recalling (3.3), we conclude that

Ah(w, #„) = A(w, 4>h) + Ah(w, $h)-A(w, 4in) > (1 - Ch^Uwfy.

Since ||i//JIK < C||vv||K, this proves that (3.4) holds for h sufficiently small and the
proof is complete. D

We can now prove

Theorem 1. For h sufficiently small the discrete problem (3.1) admits a unique
solution ûn G Vn and we have the following error estimate:

WÛ-ûh\\v<Chk\\u\\k+x+£.

Proof.   Uniqueness, and hence existence, of a solution of (3.1) for h sufficiently
small follows directly from Lemma 4.   Furthermore, using (2.16), (3.1), (3.3) and
Lemma 4, we see that for any vh G V~n,

,r       -„*./, Ahiûh '"h'»)
\\Uh-Vh\\y<C^ -^-

A(û-vn,v)+A(vh,v)-Anivh,v)
= C sup -¡r^-

devh IMIf

<C||w-Dh||K + C7z'c||Ûft||K.

Thus, choosing vh according to (3.2), we find that

||«-«ÄllK<ll«-öh||F+ \\ûn-vh\\v

< Chki\\u\\k + x+e + \X\k_x/2).

Finally, by the trace theorem (2.8), we have

|X|fc_1/2<C||w||fc+1,

and the proof is complete.  D
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1072 CLAES JOHNSON AND J. CLAUDE NEDELEC

Let us now exhibit a natural finite element method satisfying (3.2) and (3.3)
with k = 1.

Example 1.   Let T2 be chosen so that Í2 U Í2t is convex and let Í2j C Í2j be a
polygonal domain approximating Í2, according to Figure 2.  Let r'1 and T2 be the
corresponding polygonal approximations of T and T2 so that 9£2j = Th U rí¡.  Let
Sh = {S} be the sides of T2, let h be the maximal length of the sides S G Sn, and
define

Hh ={pEL2irh):p\s is constant, S GSh,<l,p)h =0],

where (v, p)h = frnvpds.  Further, let Tn = {T} be a regular* triangulation of Í2¡
with maximal sidelength at most h and define

Wn = {u G Z/1 (Í2^): u|r is linear, T G Tft, u = 0 on r*}.

Figure 2

In order to formulate a discrete analogue of (2.7), using the spaces Wn and Hn
and replacing boundary integrals along T by integrals along the polygonal boundary
T2, we have to rewrite the term <G„w, p).  To this end we note that taking w = 1 in
(2.2) shows that

fT GÁX' y)dsy = -J4,    ^ g r2.

Hence recalhng (2.10), we have

<G„w, p) = f     f   G„(x, 7) ["(J) - u(x)] nix)ds dsx - Wh, p)j r2 ^ 12

(3.12)

=-s k /r2\'y («w - «»w^ ** - «* ̂ >
= d(u, p) - Wu, p),

* All angles of the triangles T e Tn are bounded below uniformly in h.
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1073

with the obvious definition of <Z(w, p).  As a discrete analogue of the form ti( ■, • ), we
now introduce the form dh(-, •) defined by

\   r     r   n h ■ (x - y)
dn(w, p) = "^ Jr„ Jr*  \-y\2      (^) " wix))pix)dsydsx,

where nn   is linear on each S G Sn and nn   interpolates the normal n   at the vertices
of r^.  We note that, since functions in Wn are Lipschitz continuous, the form
dni-, ■ ) is well defined on Wn x Hn.

We can now formulate the following discrete analogue of (2.7):  Find (îin, Xn) G
Wh x Hn such that

(3.13a) ( an(uh, u) + <u, \\ = if, v\    Vu G Wn,

(3.13b) \2bhiXh,p) - 2<w„, m>; + 2dhiun, p) = 0    V/t G//„,

where

an(u, v)= J   ft Vw ■ Vvdx,

{v>K~n = f^vXds,

Ï*(X, M) = -Jph Jjj, mtix)Gix, y)dsydsx.

The problem (3.13) will lead to a nonsymmetric linear system of equations where we
have one unknown per node in the triangulation Th of f2j and one unknown per side
of the polygonal boundary T2.  The coefficients corresponding to the forms ahi-, ■)
and <•, ->^ are easy to compute.  Algorithms for computing the coefficients corre-
sponding to the forms bhi ■, ■) and dn can be found in [2].

Let us now show that the problem (3.13) can be put into the form (3.1) with
assumptions (3.2) and (3.3) fulfilled. First, in order to convert the spaces Wh and Hn
into subspaces Wn C W and Hh C //, we introduce the mapping \p: T2 —>■ T2, where
\pix) is the point on T2 closest to the point x G T2. For h small enough t// is clearly
a bijection. Now, using the mapping \p~x to transform integrals along 1^ to integrals
along T2, we have

l2 l2

where 7(i//_1) = \d\p~x ¡bs\, and d/ds denotes differentiation in the tangential direction
to T2. We now define

Hh ={p:p=Ji^-x)po^-x,pGHh}.

Note that if p = 7(i//_1 )p ° \¡j~x G Hh with p &Hn, then

0 = fuPds = f    p » t// lJ(^i x)ds = f   pds,
1 r" J vi2 12

so that Hn C //.
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1074 CLAES JOHNSON AND J. CLAUDE NEDELEC

Furthermore, we extend each function vv G Wn defined in £2^ to a function w
defined in £2, by setting w = 0 in the "skin" cJ\ with boundary r U r* and finally by
setting w(jy) = w(x) for y on the line segment between x G T2 and \pix) thus defining
vv in the "skin" tdl with boundary T2 U T2 (see Figure 2).  We denote by Wh the set
of functions obtained in this way.

By changing integrations from T2 to T2 and using the definitions of Hn and Wn,
the problem (3.13) can now be formulated as follows:  Find iun, Xh) G Wh x Hh
such that

(3.14a) (ahiuh,v) + (v,Xh) = if,v)    Vu G W„,

(3.14b) ( 2iÄ(XÄ, P) - 2{un, p) + 2dniuh,p) = 0    WpGHn,

where

bniX, P)=~L    L  XOO/xtologlOT'OO - ^~1ix))\dsydsx,

7 r,  N     irr «,,/,-or'to-^oo),,,   , -w,

x/^-'f») &,,&,.

Let us now check that the assumptions (3.2) and (3.3) are satisfied with k = 1 and

Ah(v, w) = aniv, vv) + <w, X) - 2<u, p) + 2bniX, p) + 2dhiv, p).

To prove (3.2a) let w G //2(í2j) be given and let wn G W interpolate w at the nodes
of Th.  Then, by well-known interpolation theory (see [1]),

llw-^Ib/iffi*) <Cfc||w||2.

By Sobolev's embedding theorem we have, for any e > 0,

llvHl£~(ni)<C|M|2+e,
and hence also

H^nlli-inj) < C\\w\2+e-

Since the area of Í2j - £2j is of the order 0(h2), this proves that

llW-Wftll//l(í2l\íí?)<C/2HWll2+e.

and thus (3.2a) follows.  For a proof of (3.2b) we refer to [6].
It remains to prove (3.3).  First, since by the construction of Wh,

we find that

(3.15) \aiwn, v„) - ah(wn, vn)\ = f h Vw, • Whdx <Ch\\wh\\x\\vh\\x.
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Next, since (see [5])

i.,.-ir..\      .1.-1/-.. m
<Ch2,

W-xix)-jj-x(y)\ _
\x-y\(3.16)

it follows easily that

(3.17) \b(v, p) - bniv, p)\ < Ch2\v\0 \p\0.

By the "inverse estimate" (see [6] )

(3.18) \p\0<Ch-xl2\p\_x/2,      pGHh,

we thus have

(3.19) \b(v, p) - bniv, p)\ < Ch\v\_x/2 \p\_l/2.

Finally, using (3.16) we find that, for e > 0,

|dO, p) - dhiw, p)\ < Ch2 (    f    lW(f)_^X%ix)dsxdsy
rh    rh       |A     yx

< ch2( f. L Jfi^ ***>)1/2 ( í h L lwCy)":+(x)|2 *,*
vJi^Jr^-^i-e    x    y)       vJr^Jr^   |x-^l1 + e

Ch2F.F.,r 2'

where we have used Cauchy's inequality and F, and F2 are defined in the obvious way.
Integrating with respect to y in the factor F,, we get F, < |/n|0.  Further (see [5]),
for 0 < e < 2, F2 < C|w|e/2, and therefore, taking e = 1, we have again, using (3.18),

(3.20) \diw, p) - dhiw, p)\ < Oz2|w|1/2 \p\0 < Ch3l2\\w\\x \p\_i/2.

Combining (3.15), (3.19), and (3.20), it follows that (3.3) is valid with k = 1 and thus
the verification is complete.

We can also construct analogous methods satisfying (3.2) and (3.3) for k > 1
using polynomials of degree k for Wh and degree k - 1 for Hn.  In such a case the
domain Í2, will be approximated by a domain £lhx with piecewise polynomial boundary
rh U T2 of degree k approximating T U T2.  In the triangulation of Í2^, it is then
natural to use isoparametric elements of degree k with one curved edge along rh U T2
(cf. [1]). D

4.   Error Estimates in Weaker Norms.   Let us now, using a duality argument, prove
an error estimate in a norm weaker than the norm in V.  We shall then make the fol-
lowing assumption:   For any e > 0 there exists a constant C such that if wn G V~n
interpolates vv G X, then

(4.1) \A(ûh,wh)-Ah(Ùh,wh)\<Chk+1-e\\Û\\xm\x,
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where X = //2(Í2,) x //1/2(r2). We have

Theorem 2. For any e > 0 there exists a constant C such that if û G //fc+1(í21)
xHk-x>2ir2),k> I, then

II" - "/,ll¿2(n,)xtf-3/2(r2) < C72A+1~eIMIfc+1+e.

/'roo/.   Given 0 G ¿2(í2j) x //3/2(r2), let ^ e K satisfy

(4.2) -4(0, i/0 = [û, ¡p]    Vß G K.

By Lemma 3 we then have

||l/)|lx<CIMI¿2(c21)x//3/2(r2)-

Taking 0 = û - Qh in (4.2), recalling (2.16), (3.1), and (3.2), and using (4.1), letting
$fc G Vh interpolate i//, we find that

[û-ûh,(p] =A(û, ûh, $)

= A(û-ûh,îi- #„) + Ah(ûn, $h)-A(ûh, #„)

<   II«   -  Ûh\\yÛ   -   $h\\y   +   C»* + 1-,||fi||jrllÍHjr

< CQi^UÛ - ÙH\\V + ^+wlla|l^)ll^ll¿2(íil)x//3/2(r2).

Together with Theorem 1, this proves that

[û-û„,(p]< o** + 1-ell¿llL2(íii)x//3/2(r2) V0 G L2(Slx) x //3/2(T2),

and the lemma follows. □
Remark.   It is easy to see that the method of Example 1 satisfies (4.1) with

k = 1.   Furthermore, if we define uhix) for x G £22 by
ix-y)uhix) - i Lew - b»(»» "*'_,,/ *y -4L 5»ooefc *)*„.

then, for all x G r22 with dist(x, T2) > ô > 0 and /z sufficiently small, we have
\u(x) - uhix)\ < Cxh2~e, where the constant Cx depends on dist(x, T) (cf. [7]).  D

5.  A Symmetrized Procedure.   The solution of the original problem (1.1) can be
characterized as the solution of the minimization problem

min      I \ f    IVw|2 dx - (    fwdx \

Since / = 0 in Í22, this problem can be formulated in the following way:

rsn minUr    |Vw|2^ + if    \\/w\2dx- [    fwdxi ,\->-1) wev¡2->nx 2 Jn2 Jnx I

where w G Wxi£l2) is the harmonic extension of w according to (2.20).  Since vv is
harmonic in Í22, we have by Green's formula /n |Vw|2 = <w, Dw), where
D: //1/2(r2) —>H is the continuous operator defined by Dw = 9w/9«|r .  Thus (5.1)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1077

can be formulated as follows:

min U f    |Vw|2 dx + kw, Dw) - (    fw) .
wov | 2 Jiij 2 J nx      I

The solution w G IV of this problem is characterized by the relation

(5.2) a(u, u) + i{<u, Du) + <w, Dv)} = (f, u)    Vu G W.

Recalling the formulation (2.7), we have that (2.7b) can equivalently be written X = Du
and thus (2.7c) becomes

(5.3) aiu, v) + (u, Du) = if, u)    Vu G W.

By Green's formula we have

(5.4) (v, Du) = <u, Dv),      v, u G IV,

and hence (5.2) and (5.3) are equivalent.  Thus the problem (5.3) obtained from (2.7),
eliminating the variable X, is in fact symmetric.   Let us check if the discretized problem
(3.13) of Example 1 has the same feature.  Introducing the mapping Dh: Wh —► Hn
defined by

bhiDhwn, p) - (wn, p) + dniwh,p) = 0    VpGHn,

the problem (3.13) can be written:  Find uh G Wn such that

(5-5) ahiuh,v) + (v,Dhun)=if,v)    Vu G &/„.

Now, in contrast to (5.4), we have in general <u, Dhw) =£ <w, Dhv), and thus (5.5) will
in general lead to a nonsymmetric system of equations.

In order to obtain a symmetric problem, which will facilitate the incorporation
of the coupled procedure into existing finite element codes, it is natural to consider
the following variant of (5.5):  Find uh G Wn such that

(5.6) aniun,v) + Wv,Dhuh) + (uh,Dhv)} = if,v)    Vu G Wn,

or, equivalently, the minimization problem:

min {ViaJw, w) + Vi{w, Dhw) - if, w)}.
wewn

The problem (5.6) can also be formulated:   Find ûn G Vn such that

(5.7) Ah(Ûh, 0) = {f, v)    VCGIV
where

Ah(w, v) = Aniw, v) + W(w, Dhv) - (v, Dhw)}.

We shall prove the following lemma which extends the result of Section 3 to the sym-
metrized problems (5.6), (5.7).
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Lemma 3.   There exists a constant C such that for v, w G Vn,

\An(w, D) - Ah(w, 0)| < C/z||U|¡K||vv||K.

Proof.   By the definition of Dnv, it follows easily that

bn = 2\Aniw, v)-Ahiw, i;)| = |<w, Dnv) - (v, Dhw>\

= \dhiw,Dnv)-dhiv,Dhw)\.

On the other hand, by (5.4) and the definition of D, we have

diw, Dv) = d(v, Dw),      v, w G W,

and thus
S„ < \dniw, Dhv) - diw, Dnv)\ + \dhiv, Dhw) - J(u, Dnw)\

+ \diw, Dnv- Dv) - div, Dnw- Dw)\

~8hl   +8h2  +dh3'

with obvious notation.  The first two terms can be estimated using (3.20).   Rewriting
the remaining term using (3.12), we get

5h3 = \(Gnw, Dhv - Dv) - (Gnv, Dnw - Dw)\

<C[|G„w|3/2 !(/>-/)„ )uL3/2 + \Gnv\m\(D-Dh)v\_m\.
Now, by a standard duality argument (see e.g. [6]), we have that

Moreover,

\iD-Dh)v\_3¡2^Ch\v\x¡2 <Ch\\v\\x.

\Gnv\3/2 <C\v\l/2<CM\v

and thus 5n3 < CriHull, ||w||,, which completes the proof.  D
Remark.   The results of Section 4 can also easily be extended to the problem

(5.7). D

6.   Appendix.  We shall here briefly indicate a proof of the regularity result of
Lemma 1.  We want to prove that, for k > 0,

(6.1) IMU+i + l0|k_1/2 <C(JM*-i + kalfc-i/2 + \s3\k + 1/2)

if (w, 6) G W x H satisfies (2.12).  To this end let us first reformulate (2.12b):   We
have (cf. [4]) that 0 G // satisfies (2.12b) if and only if

_ <V
i

_ dip
9« intr2 dn(6.2)

where ip G IV1 (R2 ) satisfies

(6.3a) -A^ = 0 in R2\r2

(6.3b) $ = Ww +g3) + c    on T2 ;

ext r9
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here [dy/dn] denotes the jump in the normal derivative across T2 and c is a suitable
constant.   By Green's formula we get from (6.2) and (6.3a) that

(6.4) D&, i//) - <t//, 0> = 0    W G Wx (R2),

where

Diip,\p)= Jr2 Vv Viidx.

Recalling (2.12a), we also have

(6.5) a(w, v) + <u, 0> = igx, u) + <u, g2)    Vu G W.

Now, to prove (6.1) for k = 0, we take u = w in (6.5), \p — f in (6.4) multiply by two
and add.  Using (6.3b) we then obtain

aiw, w) + 2Diy, i/j) = igx, w) + (w, g2) + (g3, 0),

and thus (cf. [6] )

M2 + IMI^i(R2)<C[(||^1IL, + I^I.^^Mij + l0l_1/2l*3l,/2].
This proves (6.1) in the case k = 0.  For k > 1 we parallel the argument in [8] using
the W x H"(R2)-ellipticity of the form

D(vv, u) = aiw, v) + 2D(p, -$>),      vv = (w, <p),      v = (u, *) G W x WX(R2). D
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