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On the Coupling of Boundary Integral
and Finite Element Methods

By Claes Johnson and J. Claude Nedelec

Abstract. Let $2€ be the complementary of a bounded regular domain in R2 of bound-
ary I'. We consider the problem
Au = f; in Qf,
1)
uly = ug,
where f has its support in a bounded subdomain ; of Q€. Let I'y be the common
boundary of £ and Q5 = Qf - 1. We solve the problem (1) by using an equivalent

system of equations involving an integral equation on I'y coupled with the equation:

Au=f in Qy,
) ulp = ug,
uII*2 = A

We introduce a finite element approximation of Eq. (2) and of the integral equation

and we prove optimal error estimates.

Introduction. The purpose of this note is to analyze a procedure obtained by
coupling the boundary integral method (cf. [4], [5], [7], [8], [12]) and the usual
finite element method. Such coupled procedures have been proposed by e.g. Silvester-
Hsieh [10] and Zienkiewicz et al. [11] for the numerical solution of problems in un-
bounded domains. As a typical example let us consider a problem of the form

Au=f inQF,

u=u, onkl,

where  is a bounded domain in the plane with boundary T, Q€ is the unbounded
complement of 2, and A4 is an elliptic differential operator. Let us further assume that
€ can be divided into a bounded part 2, and an unbounded part §2,, with common
boundary I', (see Figure 1), so that f=0in £, and A4 is linear and has constant coef-
ficients in £, while 4 may be nonlinear or have variable coefficients in the bounded part
Q,. Then the unbounded part £2, can be taken into account using an integral equation
on the boundary I';, and an approximate solution can be found using a conventional finite
element discretization of £, together with a discretization along I',. Below we shall
analyze a model problem of this type.

For numerical experiments and references into the engineering literature on this
subject, we refer to [11].
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1064 CLAES JOHNSON AND J. CLAUDE NEDELEC

1. A Model Problem. Let us consider the following exterior Dirichlet problem:

-Au =f in QF,
1.1
a.n u=0 onT,
where  is a bounded domain in R? with smooth boundary I' and Q€ is the comple-
ment of & UT. Let us assume that the support of fis bounded and that f € L2(Q2°).

It is known (see e.g. [3], [6]) that the problem (1.1) admits a unique solution
u € W(Q°), where

WHQ) = {v: (1 + Ix)72(1 + log/T + xP)'v € L2(Q°), Vv € [L2(Q9)]?},
and that this solution has the following asymptotic behavior:
ux)=a + O(l—;—l>, |x] —> oo,
(1.2)
vu(x) = 0 ( 1 > x| — o=,

| x{2
where « is a constant.

Let now I', be a smooth curve dividing Q€ into an unbounded part 2, and a

bounded part §2, containing the support of f (see Figure 1). Then (1.1) can alternative-
ly be formulated as follows:

(1.3a) -Au, =f inQ,,
(1.3b) —Au, =f=0 in 2,,
(1.3¢) u, =u, onTl,,
3 ou, du, \ r
(1.3d) 3n " an N Ol
(1.3¢) u, =0 on I,

where u; = u|lQ,;, i =1, 2, and 9/dn denotes the outward normal derivative to I, =
3S2, (see Figure 1). The equations (1.3a) and (1.3b) signify a decomposition into
two problems in the separate domains §2, and Q,, while (1.3c) and (1.3d) reflect the
appropriate coupling of these two problems.

rl

FIGURE 1
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1065

2. A Variational Formulation of the Model Problem. Let us now give a varia-
tional formulation of (1.2). Since —Au = fin Q,, we find, using Green’s formula, that

.1) au, v) + L,V =(,v) WeEW,
where
ou _ .
A= o Ty, av)= Inl Vu - Vvdx,

on=[ oa v)=fnlfvdx,

W=@peH (Q,):v=0o0nT}.

Moreover, since ~Au = 0 in ,, we find, using Green’s formula and (1.2), that (cf.

[6] )3
1 — _
(2.2) iu(x) = fr2u(y)Gn(x, y)ds, fl“z APYG(x, y)ds, + @, x€T,,

@3 u@=[ 1 10IG, 5, )ds, = f o, NOXGE )ds, +a, XEQy,
where

Gx, ) = o-logh = yl,  x#,

is the Green’s function associated with the two-dimensional Laplacian and

)
G,(x, y)= s ey, xFy,yEL,,
¥y

with n,, being the outward unit normal to I', at y € I';. Let us observe that (1.2)
together with (2.3) imply that f I,27\ds = 0, since otherwise u(x) would behave like
¢ loglx|, ¢ # 0, as |[x] — oo, thus contradicting (1.2).

Now, formally multiplying (2.2) by the function u(x) satisfying [ M ds = 0, and
integrating over I',, we find that

2.4) BOL ) = 3 (u, 1) + Gy, 1) = O,

where

b0u 1) == [ [ M0WEIGG, y)ds,ds,,

2.5)
Gu(x) = | (1G5, ) ds,.

We recall (see [6]) that b is a continuous bilinear form on H~Y2(T',) x H=Y(T,).
Moreover, b is H-elliptic with

H={u€HXT,): 1, =0},
i.e., there exists a positive constant § such that

(2.6) b, w) > Blul,,, HEH.
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1066 CLAES JOHNSON AND J. CLAUDE NEDELEC

Here (-, -) denotes the duality between HY2(I",) and H~Y/2(T",) and we use the nota-
tion

|- |s =1 “HS(I‘2)'

Recalling (2.1) and (2.4), we are thus led to the following variational formulation of
(1.2): Find (u, \) € W x H such that

(2.7) {a(u, v) + (u, \) = (f, v) YoeE W,

(2.7b) 2b(\, p) — Cu, ) + 2G,u, ) =0 Vu€EH.

Let us now analyze this problem. First, recalling the trace theorem:
(2.8) hvlg_y, < Cilivlly Yo € H(Q,),

where s > %, yu = vIF2 and ||-ll, = Il lle(Ql), it follows that (-, -) is a continuous
bilinear form on W x H. Further, since v =0 on I'if v € W, it follows that a(-, -} is

W-elliptic, i.e., there is a positive constant g’ such that

(29) a(v, v) > ﬁ’llvllf Yv € W.
Moreover, since

n, - (x ~y)
b —y2

(2.10) G, (x,y)=- , x,y€ET,,

and I is smooth, it follows that G, is pseudo-homogeneous of degree zero and thus
(see [9]) the integral operator G, defined by (2.5) is smoothing. More precisely, one
has

(2.11) IG,vlypy < Clul, Vo € HYT,).

In order to analyze (2.7), it is convenient to introduce the following simplified prob-
lem obtained by omitting the term (G u, u): Given § = (g,, &,, &3) find (w, 8) €
W x H such that

(2.12a) { aw,v) + @, ) =(g,,v) + v, g WYWEW,

(2.12b) 260, 1) — W, W= €3, W Yu € H.

We shall see that due to (2.11) the full problem (2.7) is a compact perturbation of the
simplified problem (2.12).

Let us now formulate (2.7) and (2.12) as operator equations. To this end we
introduce the continuous bilinear forms

A B K:VxV—R,
where V = W x H, and the corresponding continuous linear mappings

A B K V—V,
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1067

defined by
B(u, 9) = [Ba, 0] =a(u, v) + ©, N — (u, w + 2b(\, w),
K@, 0) = [Ka, 8] =(Gu, w» Va=(u, \),0=@,u) €V,
A=B+K, -

where [+, -] denotes the duality between ¥ and V', the dual of V. Then (2.12) can
be formulated

(2.13) Bi=g, i4=(ud),
ie.,
(2.14) B(@, )= 1[g 0] Vo=@ NEV,

and (2.7) is equivalent to

(2.15) An =T,
ie.,
(2.16) A@, 0)=[£, 0] Vbev,

with f = (£, 0, 0).
Let us note that the bilinear form B(-, -} is V-elliptic; by (2.6) and (2.9) we
have that

B(0, 0) = a(v, v) + 2b(u, 1)

2.17 " e o
217) > Bloll} + 28lul?,, > "1, VoeEV,

where ' = min(§’, 28) and || - ||;, denotes the norm in V, ie.,
1012 = (Il + 1ul?,,,)"2.
LEMMA 1. The mapping B: V —> V' is an isomorphism. Moreover, for k > 0
the mapping

B1: Hk—l(Ql) x Hk—l/2(F2) x Hk+1/2(F2)—')Hk+l(Ql) x Hk_l/2(F2),

defined by Bii = g is continuous.

Proof. The first statement of the lemma follows directly from the V-ellipticity
(2.17). The regularity result is proved in the Appendix below. O

Let us now return to the original problem Aé = f. Since A = B + K, this prob-
lem can be written after applying B~ :
(2.18) ( + B Ky = B},
where I: V —> V is the identity mapping. Now, recalling (2.8) and (2.11), it follows
that K: ¥V — {0} x {0} x H¥*(T,), is continuous. Therefore, using Lemma 1 with
k =1, we see that B'K: V — H*(Q,) x H'*(T,) is continuous. Since H%(%,) x
HV*(T,) is compactly embedded in V, it follows that B~'K: ¥ — V is compact and
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1068 CLAES JOHNSON AND J. CLAUDE NEDELEC

hence (2.18) is an equation of the Fredholm second kind. Thus, to prove existence of
a solution to (2.18) or the equivalent original problem (2.15), it is sufficient to prove
uniqueness. With this observation it is easy to prove

LEMMA 2. The mapping A: V — V' is an isomorphism. Moreover, for k > 0
the mapping

A_li Hk—l(Ql) x Hk—1/2(F2) x Hk+l/2(F2)'—>Hk+l(Ql) ™ Hk——l/2(l-v2)
is continuous.

Proof. To prove uniqueness of the solution of the equation Aé = 7, let us assume
that w = (w, 6) € V and Aw = 0, ie.,

(2.19a) aw, V) + 0,0 =0 WYWwEW,
(2.19b)

2b(0, 1) — w, W + 24G,w, > =0 WuEH
From (2.19a) it follows that
-Aw =0 in £,

ow _
5’;—0 on [,.

Let now w € Wl(Qz) be the harmonic extension of w to §,, ie.,

(2.20)

~

~Aw =0 in §,,
w=yw onl.

Then, by an argument similar to that leading to (2.4), it follows that
(2.21) 26(0, ) — w, W + AG,w, W =0, pEH,

where § = a?v'/anlp2 € H. Combining (2.19b) and (2.21) we find that b(8 - 0, ) =
0 Vu € H, and thus (2.6) shows that § = 6. But this means that if w is extended to
Q° by putting w = w in Q,, then Aw = 0 in Q°, w € W(°),and w =0 on I so
that w = 0 and the uniqueness follows. Thus, for any § € V', the equation AW = g
has a unique solution and the continuity of A=': ¥' — ¥ follows from the closed
graph theorem. This proves the first statement of the lemma.

To prove the regularity result, we use induction on k. Thus assume that the
statement holds for k = m — 1. Let us consider the equation AW = g, where
gEH™1(Q,) x H™~YX(,) x H™*Y3(T,). By the induction hypothesis, we then
have w € H™(2,) x H™~¥%(T",) so that by (2.11) KW € {0} x {0} x H™*V(T,).
But the equation AW = § can be written

Bw =g - Kw,
and thus by Lemma 1 we conclude that w € H™*1(Q,) x H™~Y*(T',) x
H™TY2(T,). Therefore A~ maps H™~1(Q,) x H™~V3(,) x H™*Y2(T,) into

H™*1(Q,) x H™~Y2(T,) and the continuity of the mapping follows from the closed
graph theorem. This completes the induction step and thus the proof of the lemma. []
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1069

We shall also need the corresponding result for the adjoints B* A*: V — V'
defined by

[B*), w] = [Bw, D] Vb, weV.
LEMMA 3. The mappings B*, A*: V. — V' are isomorphisms and, for k > 0,
B*—I,A*—-l: Hk—](Ql) x Hk—1/2(F2) % Hk+1/2(F2) __)Hk+1(Ql) x Hk—l/2(F2)
are continuous.

The proof is parallel to the proofs of Lemmas 1 and 2.

Remark. As pointed out by the referee, if the outer boundary I, is a circle,
then one can solve the equation (2.3) in A explicitly. More precisely, in this case (2.3)
takes the form

1 m .0 -n
?fo A(@)log <2'sm 3

where 7\(6) = MR cos 8, R sin 0) and v is determined by u. This integral equation has
the explicit solution

~ _ 1 Z"d_’)' n_g _ 1 2m d
) =5zl @ °°ta“< 2 )d” 27R(log R2)J 0 7 4™

which makes it possible to eliminate A from (2.7) and thus obtain an equation involv-

> Rdf = ~(n),

ing only u. To see if such a procedure is advantageous from a numerical point of
view requires further investigation. [

3. The Coupled Procedure. Error Estimates. Let us now consider a finite ele-
ment method based on the variational formulation (2.7). Let W, C Wand H, C H
be finite-dimensional spaces depending on the positive parameter 7 and set V,, =
W, x H,. Let A, (-, -) be a bilinear form approximating A(-, *) and consider the
following discrete problem: Find 4, = (u,, \,) € V,, such that

(3.1) A,@,,0)=(fv) VOEV,

We shall assume that the spaces W, and H, satisfy the following approximation
hypothesis: For any positive ¢, there exists a constant C such that

(3.2a) ueh%vf,, w—vll;, < ChfIwllg, 1, O <s<Kk,
(3.2b) uénlgh 10 = 1y SCHIB1y)5, 0<s<k

where k is a positive integer. This will correspond to using piecewise polynomials of
degree k for W), and degree k — 1 for H, (cf. Example 1 below). Note that the func-
tions in H, may be chosen to be discontinuous while the functions in W, will have to
be continuous. Furthermore, we shall assume that there is a constant C such that

(3.3) A, W) — 4,0, W) < CH Il IWll, V5, we V.
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1070 CLAES JOHNSON AND J. CLAUDE NEDELEC

In Example 1 below we shall in detail consider a finite element method satisfying (3.2)
and (3.3) with k = 1.

We shall now prove that for 4 small enough the problem (3.1) admits a unique
solution i, and then estimate the error # — &, . The crucial result is then the following:

LEMMA 4. There is a positive constant ¢ such that for h small enough
A, W, 0)

34 su =
(3.4) sesy B0 TR,

> cliwll, VWEV,.

Proof. Given w € ¥V, there exists by Lemma 3 ¥ = (¥, H) € V such that

(3.5) AD, ) =W, D), DEV,
where (-, *),, denotes the scalar product in ¥, and
(3.6) Wl < Wl

In fact, y = A*~1W, where J: ¥V — V', is the canonical mapping defined by [/, b
= (W, 0)y, V0, w € V. Furthermore, again by Lemma 3, there exists ¥/, = (V/,,, H,) e
V,, such that

(3.7) B®,y~-9,)=0 VeV,
and
(3.8) 1§11, < Clilly-

Now, using (3.7) and (3.5) with v = w, we find that

A(w’ \Dh) = B(W, th) + K(VT’, ([/h)
= BOv, §) + KW, ) = AW, §) + KW, ¥, = ¥)
(3.9) = |Wl2, + G, W, H, — H

P “ﬁ)”%/ - ‘anl:;/le - Hh|—3/2

= ”w”%/ - HWHVH'{ - Hh|—3/2’
since by (2.11) and (2.8),
|G,,W|3/2 < C|W|,/2 < Cliwly, < Clwlty, .

In order to estimate |[H — H, |_3/,> we shall use the usual duality argument: Given
v € H¥*(T,) let $ = B™'$ where § = (0, 0, v), i.e.,

(3.10) B@,0)=w, u Yi=Q@pEV.
By Lemma 2 we then have

(3.11) ||¢|IH2(QI)><H1/2(I‘2) < C|Vl3/2-
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1071
Hence, taking o = ¢ — th in (3.10) and using (3.7), we find that for any §, € V,,
w, H=Hy =B@, ¥~ T,) =B@~ &,V -,
S Clig — @l 1§ = $ully < ClI = Gyl W,

where the last inequality follows from (3.6) and (3.8). Thus, using (3.2) withs =1 —¢
together with (3.11), it follows that

0, H = Hy) < Ch' iy, WMy, v € HIX(T,),
which proves that
H=Hyl 5, < Ch'¢ Wl
where 0 < ¢ < 1. Returning to (3.9) we thus have

AW, ) = W2, = CRI W2 = (1 - ChI)w)i2,.
Finally, recalling (3.3), we conclude that
A, 0, §,) = AW, §,) + 4,08, §,) = AW, §,) > (1 - Ch' )l

Since ||y ally < CIWlly,, this proves that (3.4) holds for & sufficiently small and the
proof is complete. [J
We can now prove

THEOREM 1. For h sufficiently small the discrete problem (3.1) admits a unique
solution i, € V, and we have the following error estimate:

A

A ' k
lie = a,liy, < Ch*llully 4 g 4e-

Proof. Uniqueness, and hence existence, of a solution of (3.1) for 4 sufficiently
small follows directly from Lemma 4. Furthermore, using (2.16), (3.1), (3.3) and
Lemma 4, we see that for any o, €V,

A, (@, —0,, D)
i, — <Csup 07
||uh Uh”V 6619,, ”v”V

_ C ‘A(l2 - aha i)) + A(ah’ i}) - Ah(i}h’ i))
~eer, o,

< Cliid = 8,1, + CHEND, 1,
Thus, choosing ¥, according to (3.2), we find that
i =,y < it = Dplly + llid, = ylly
< O (lull e + Nye—1/2)-
Finally, by the trace theorem (2.8), we have
IN—yj2 < Clitll 4y

and the proof is complete. O
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Let us now exhibit a natural finite element method satisfying (3.2) and (3.3)
with k = 1.

Example 1. Let T, be chosen so that Qu 2, is convex and let Q’l' CQ, bea
polygonal domain approximating £, according to Figure 2. Let ' and I‘g be the
corresponding polygonal approximations of I' and I', so that 89’1’ =T"u I"z' Let
S, = {S} be the sides of I“’z', let 1 be the maximal length of the sides S € S, and

define
;1;, ={u€ L2(Fh): ulg is constant, S € Sy, (1, wy, = 0},

where v, w), = fpnvuds. Further, let T, = {T} be a regular* triangulation of Q’l'
with maximal sidelength at most # and define

W, = (v € H'(Q"): vy is linear, T € T,, v = 0 on "},

FIGURE 2

In order to formulate a discrete analogue of (2.7), using the spaces ﬁ/h and ;Ih

and replacing boundary integrals along I' by integrals along the polygonal boundary
I"2‘, we have to rewrite the term (G,u, u). To this end we note that taking 4 =1 in

(2.2) shows that
frz G, y)ds, =4, x €T,
Hence recalling (2.10), we have

Gy, = N f r, Gl 2 [0) =~ u)] ) ds, ds,, = 44, 10
(.12)

=] "y &) o) - .
T 2 frz fr2 x -y @(y) — u(x)u(x)ds, ds, — u,
=d(u, p) — %u, w,

* All angles of the triangles T € Ty are bounded below uniformly in h.
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BOUNDARY INTEGRAL AND FINITE ELEMENT METHODS 1073

with the obvious definition of d(u, u). As a discrete analogue of the form d(-, -), we
now introduce the form d, (-, -) defined by

dy(w, 1) = %mp x)mewmmm

where Ny, 8 linear on each § € S, and Ry interpolates the normal n, at the vertices
of F'z’ We note that, since functions in W, are Lipschitz continuous, the form
d,(+, +)is well defined on W, x H,. _

We can now formulate the following discrete analogue of (2.7): Find (i, \,) €
W, x H, such that

(3.13a) a, (i, 0) + 0, X5 = (fv), WEW,,
(3.13b) 25, (X,, 1) — 26, W + 24, (%, 1) =0 Vu€EH,,
where

a,(u, v) = fn" Vu - Vvdx,
1
O N, = ff"z' vAds,

Eh()\, W= _ff"{ fré’ AU G(x, y)dsy ds,,.

The problem (3.13) will lead to a nonsymmetric linear system of equations where we
have one unknown per node in the triangulation T, of Q’l‘ and one unknown per side
of the polygonal boundary I‘Q’. The coefficients corresponding to the forms a, (-, -)
and (-, -), are easy to compute. Algorithms for computing the coefficients corre-
sponding to the forms Zh( -, *)and Eh can be found in [2].

Let us now show that the problem (3.13) can be put into the form (3.1) with
assumptions (3.2) and (3.3) fulfilled. First, in order to convert the spaces ﬁlh and H h
into subspaces W, C W and H, C H, we introduce the mapping : l";’ — T',, where
¥(x) is the point on I'; closest to the point x € I’g. For h small enough  is clearly
a bijection. Now, using the mapping ¥ ! to transform integrals along Fg to integrals
along I",, we have

Joguas = Jwevaw s

where J(y 1) = |8y ! /ds|, and 9/ds denotes differentiation in the tangential direction
to I'y. We now define

Hy={wu=J0aey™, L EH,)
Note that if u = J(y ) ° ' €H, withp € I?h, then
= n = U o -1 -1 =
0 frguds fr2u yJ( T )ds frzuds,

so that #, C H.
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1074 CLAES JOHNSON AND J. CLAUDE NEDELEC

Furthermore, we extend each function w € W,, defined in Q’l' to a function w
defined in Q, by setting w = 0 in the “skin” w'l' with boundary ' U I'"* and finally by
setting w(y) = w(x) for ¥ on the line segment between x € l"g and Y(x) thus defining
w in the “skin” wg with boundary I', U Fg (see Figure 2). We denote by W, the set
of functions obtained in this way.

By changing integrations from Fg to I', and using the definitions of H, and W,,
the problem (3.13) can now be formulated as follows: Find (u,, \,) €W, x H,

such that

(3.14a) a, (W, v) + ©,\) =(Lv) WEW,

(3.14b) 2b,,(>\,,, B - 2y, W + 2dh(uh: w=0 Wue Hy,
where

b ) = = [ [ AOIuGlogiy () = v )l ds, d,,

W) -y
R T & = (y)l?)) () ~ uCN)

x J~ (v))ds, ds, .
Let us now check that the assumptions (3.2) and (3.3) are satisfied with k = 1 and
A,© w)=a,, w) +w, V- 20, ) + 2b,(A, n) + 2d, (v, ).

To prove (3.2a) let w € H2(2,) be given and let w, € W interpolate w at the nodes
of T,. Then, by well-known interpolation theory (see [1]),

llw — W,,IIHl(Qi;) < Chlwll,.
By Sobolev’s embedding theorem we have, for any ¢ > 0,
IIVWHLeo(Ql) S Clwlly 4o
and hence also
19wy ll o) < ClWlly 4

Since the area of 2, — Q’l' is of the order O(h?), this proves that

_— |
lw Wh”Hl(Ql\g'i’) <Ch}|W“2+€,

and thus (3.2a) follows. For a proof of (3.2b) we refer to [6].
It remains to prove (3.3). First, since by the construction of W, ,
Wallg 1oty < CH2Iwylly wy, € Wy,

we find that

(3.15) la(w,,, v,) — a,(w,, v,)l = fwg Vwy, Vo, dx < Chilw, |l vl -
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Next, since (see [5])

Nl—l(x) - lIl_l(y)l -1 < Ch2

(3.16) Y]

it follows easily that

3.17) 1b(v, 1) = by, W] < CH2 [l lul,.

By the “inverse estimate” (see [6])

(3.18) luly < CRV2ul_, . uEH,,
we thus have
(319) |b(V, /.l.) - bh(V’ IJ)I < Ch|V|_1/2 “11_1/2-

Finally, using (3.16) we find that, for ¢ > 0,

ld(w, u) — d,(w, )l < Ch? fFf, frﬁ%—ﬁ(x)lu(x)dsx ds,

<0 foy fy ) (fy Sy M )"

= Ch*F\F,,

where we have used Cauchy’s inequality and F, and F, are defined in the obvious way.
Integrating with respect to y in the factor F, we get F| < |ul,. Further (see [S]),
for0<e<2,F, < Clwle/2, and therefore, taking ¢ = 1, we have again, using (3.18),

(3.20) \d(w, w) = dy(w, )l < ChZIwl, ), lulg < CRY2Iwl Tl _y .-

Combining (3.15), (3.19), and (3.20), it follows that (3.3) is valid with ¥k = 1 and thus
the verification is complete.

We can also construct analogous methods satisfying (3.2) and (3.3) for k > 1
using polynomials of degree k for W,, and degree k — 1 for 1~{h. In such a case the
domain £2, will be approximated by a domain Q’l' with piecewise polynomial boundary
M™mu I‘g of degree k approximating ' U T',. In the triangulation of Q" it is then
natural to use isoparametric elements of degree k with one curved edge along I'* U I"g
(cf. [1]). O

4. Error Estimates in Weaker Norms. Let us now, using a duality argument, prove
an error estimate in a norm weaker than the norm in V. We shall then make the fol-
lowing assumption: For any € > 0 there exists a constant C such that if w, € V,
interpolates w € X, then

@.1) @, W) = A, @, W)l < CHEFIE )] W1,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




1076 CLAES JOHNSON AND J. CLAUDE NEDELEC

where X = Hz(Ql) x H1/2(F2). We have

THEOREM 2. For any € > O there exists a constant C such that if i € Hk“(Ql)
x H*=V2(T), k > 1, then

lla - ﬁh||L2(nl)xH—3/2(r2) S O ully gy
Proof. Given € L*(Q2,) x HY?*(T',), let § € V satisfy
4.2) A@, D)= [B,9] WEV.
By Lemma 3 we then have
Iy < CldlL20 )xE32wy)

Taking b = & — ii,, in (4.2), recalling (2.16), (3.1), and (3.2), and using (4.1), letting
¥, €V, interpolate {, we find that

[@ — d,, ] =A@, @, §)
= A(l2 - ﬁh, @ - J’h) + Ah(ah, J)h) —A(ﬁh, ‘ﬁh)

<l = iyl W = dylly, + CRE 14l 11

< C(hl_e”a - ah”V + hk+l-e||a”X)”¢||L2(Ql)xH3/2(F2).
Together with Theorem 1, this proves that
[ﬁ _ ah, @] < thk+1—6“‘2”[42(91))(1{3/2(1‘2) V(’b (S L2(Ql) X H3/2(F2),

and the lemma follows. O
Remark. It is easy to see that the method of Example 1 satisfies (4.1) with

k = 1. Furthermore, if we define u,(x) for x € Q, by
== - 2h T Tl as, - = |, X ()G, y)ds,,
uy () = 5 fp,z,(u,,(y) i) 2 dsy ~ 3 fz,, 2(V)G(x, y)ds,

then, for all x € Q, with dist(x, I';) > & > 0 and & sufficiently small, we have
fu(x) — up, (x)l < th2‘e, where the constant C, depends on dist(x, I') (cf. [7]). O

5. A Symmetrized Procedure. The solution of the original problem (1.1) can be
characterized as the solution of the minimization problem

i 1 2 gy _
werv:/nl?m) 32 fnc {Vw|* dx fncfwdxz .

Since f = 0 in §,, this problem can be formulated in the following way:

Lyl 2 1 512 dy —
L S A s s

where w € W'(Qz) is the harmonic extension of w according to (2.20). Since W is
harmonic in §,, we have by Green’s formula f Q, [Vw|? = (w, Dw), where
D: H'*(T',) — H is the continuous operator defined by Dw = BW/anlrz. Thus (5.1)
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can be formulated as follows:

. 51 2 1 _
‘Te%ﬁfnlwm dx + 5w, D0 = [ fwi.

The solution u € W of this problem is characterized by the relation

(5.2) a(u, v) + —;—{(v, Duw) + (u, Du} = (f,v) VYvEW.

Recalling the formulation (2.7), we have that (2.7b) can equivalently be written X\ = Du
and thus (2.7¢) becomes

(5.3) a(u, v) + v, Dy = (f,v) WEW.
By Green’s formula we have
(54) @, Duy =@, Dv), v, u€W,

and hence (5.2) and (5.3) are equivalent. Thus the problem (5.3) obtained from (2.7),
eliminating the variable A, is in fact symmetric. Let us check if the discretized problem
(3.13) of Example 1 has the same feature. Introducing the mapping D,: W, — H,
defined by

b, (Dywy, 1) —wy, > +d,(w,, 1)) =0 VYu€EH,
the problem (3.13) can be written: Find u, € W, such that
5.5 a,(u,,v) + w,Dyu,) =(f,v) YWEW,.

Now, in contrast to (5.4), we have in general (, D,w) # (w, D,v), and thus (5.5) will
in general lead to a nonsymmetric system of equations.

In order to obtain a symmetric problem, which will facilitate the incorporation
of the coupled procedure into existing finite element codes, it is natural to consider
the following variant of (5.5): Find u, € W, such that

(5.6) a,(uy,, v) + %{©, Dyuy) + wy, DY = (fv) YWEW,,
or, equivalently, the minimization problem:

min {%a,(w, w) + %w, D,w) = (f, w)}.
wewh

The problem (5.6) can also be formulated: Find i, € V, such that
(5.7) Ay(@,, 0) = (fv) WEV,
where

A, O, 5) = 4,(W, D) + B{w, D) — v, D).

We shall prove the following lemma which extends the result of Section 3 to the sym-
metrized problems (5.6), (5.7).
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LEMMA 3. There exists a constant C such that for b, w € V R
4, (%, ) =~ A, b, B)| < Chlidlly Il
Proof. By the definition of D, v, it follows easily that
5, =214, (W, 0) — A, (W, b)| = Kw, D) — v, D, W]
= |d,(w, D,v) — d,, (v, D, w)I.
On the other hand, by (5.4) and the definition of D, we have
d(w, Dv) = d(v, Dw), v, wEW,
and thus
8, <ld,(w, D,v) — d(w, D)l + Id, (v, D,w) — d(v, D,w)I
+ |d(w, D,v — Dv) — d(v, D,w — Dw)|

=8y, t oy, T8,

with obvious notation. The first two terms can be estimated using (3.20). Rewriting
the remaining term using (3.12), we get

8,3 = KG,w, D,v — Dv) = (G,v, D,w — Dw)|
S ClG,Wlgp (D = Dy wl_z)5 + 1G,wl3), (D = Dy )vl_gp, 1.
Now, by a standard duality argument (see e.g. [6]), we have that
(D — Dp)vl_y/, < Chivly), < Chlvll;.
Moreover,
IGpvl3, < Clolyyy < Clivlly,
and thus 6,4 < Chllvll, wll,, which completes the proof. (I

Remark. The results of Section 4 can also easily be extended to the problem
¢¢.7n. O

6. Appendix. We shall here briefly indicate a proof of the regularity result of
Lemma 1. We want to prove that, for k = 0,

6.1) Wy +10l_yyp < Clllg, llx—; + lg, Ik—1/2 + Ig3'k+1/2)

if (w, 0) € W x H satisfies (2.12). To this end let us first reformulate (2.12b): We
have (cf. [4]) that § € H satisfies (2.12b) if and only if

_ lop] _ oy 0y
6.2 g=|% =9 -% ,
62 [3”] on [itr, M |extr,
where ¢ € W! (R?) satisfies
(6.3a) ~Ap =0 in R\T,,
(6.3b) p=Y%w+g)+c onl,;
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here [0p/on] denotes the jump in the normal derivative across I', and ¢ is a suitable
constant. By Green’s formula we get from (6.2) and (6.3a) that

6.4) D, Y)W, =0 W€ W (R?),

where

Dlp, ¥) = fR2 Vo - V{dx.
Recalling (2.12a), we also have
(6.5) a(w, v) + @, 0) = (g,,v) + ©, &) WEW.

Now, to prove (6.1) for & = 0, we take v = w in (6.5), ¥ = ¢ in (6.4) multiply by two
and add. Using (6.3b) we then obtain

a(w, w) + 2D(p, p) = (8,, w) + w, g,) + (&5, 0),
and thus (cf. [6])

Wi + el ey < CLAE Ny + 1851 y0)Iwlly + 16151851551

This proves (6.1) in the case k = 0. For k > 1 we parallel the argument in [8] using
the W x W!(R?)-ellipticity of the form

D(W, b) = a(w, v) + 2D(p, ¥), W=(w, ), v=@ ¥IEW x Wy(R?). O
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