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Abstract

Motivated by applications to the piston problem, to a manhole model, to blood flow and to
supply chain dynamics, this paper deals with a system of conservation laws coupled with a
system of ordinary differential equations. The former is defined on a domain with boundary
and the coupling is provided by the boundary condition. For each of the examples considered,
numerical integrations are provided.
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1 Introduction

This paper deals with a mixed problem consisting of a 1D system of hyperbolic conservation laws
coupled with a system of ordinary differential equations. The former is defined on the positive
half-line R

+ and the coupling is provided by the boundary condition, i.e.











∂tu+ ∂xf(u) = 0 (t, x) ∈ R
+ × R

+

b
(

u(t, 0)
)

= B
(

t, w(t)
)

t ∈ R
+

ẇ = F
(

t, u(t, 0), w
)

t ∈ R
+.

(1.1)

The boundary condition on the second line above is an algebraic relation acting as interface
between the two evolutionary differential equations. Recall that systems of conservation laws
admit solutions developing jump discontinuities and the sense in which the boundary condition
is attained can be critical. Here, we restrict our attention to the non characteristic case, which
allows us to require that the solution to (1.1) attains the value imposed at the boundary in the
strong sense of the trace, for a.e. time, see 2. in Definition (2.1). We refer to [2, 3, 15] for further
information on the analytical treatment of boundary value problems for systems of conservation
laws.

In recent years, there has been an increasing interest in systems composed by ordinary differ-
ential equations and partial differential equations interacting together. The most famous example
probably consists in the interaction of a fluid (liquid or gas) with a rigid body or with an elastic
structure, like a membrane, see [25, 26]. The evolution of the rigid body is described by a system
of ordinary differential equations, while the evolution of the fluid is subject to partial differential
equations like Navier-Stokes or Euler equations. Up to now, the focus was mainly on the study
of regular solutions and, hence, the phenomenon of the creation of discontinuities in finite time,
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typical of nonlinear conservation laws, was not considered. Among the first papers in the present
context dealing with shock waves we recall [17], in the case of particles in a fluid.

The analytical results below ensure the existence of solutions to the mixed system (1.1). The
technique used essentially relies on the classical theorems on the Cauchy problem for an ordinary
differential equation, see [14], and separately on more recent results on the initial – boundary value
problem for 1D systems of conservation laws [8]. We stress that in the analytical results, as well
as in the applications below, the relation on the second line of (1.1) may not be inverted, so that
system (1.1) may not be decoupled, see Remark 2.1.

As a first driving example for (1.1) we select the classical piston problem. Here, u is the pair of
the fluid specific volume and speed; w is the position of piston; f states the conservation of mass
and of linear momentum; F relates the fluid pressure, the outer pressure and the acceleration of
the piston; the pair b,B ensures that the piston remains adjacent to the fluid, see Section 3.1.

Then, in Section 3.2, we pass to the model recently presented in [5]. Aiming at the description
of a sewage system, it deals with the dynamics of water in a network of horizontal pipes receiving
water from a vertical manhole. Now, u is the vector of pairs (Ai, Qi), where Ai is the wet area of
the i–th pipe and Qi is the flow therein, with i ranging over all the tubes; w is the height of water
in the vertical pipe. The interface between the manhole and the horizontal pipes is described by
b,B, which are here physically justified, see [5].

In Section 3.3, we consider a supply chain model recently considered in the literature, see [4].
Now, u is the vector of the densities of goods in the processors and w are the loads of the processing
queues.

Finally, in Section 3.4 a further example is provided by a model for blood flow, often considered
in the present literature, see for instance [7, 13, 23]. In this case, u is the pair artery section, blood
flow in the artery; w is the pair consisting of the blood pressure and flow in a vessel.

A further example of a mixed ordinary differential equation – conservation law is found in [19],
where the motivating application is a traffic flow problem. There, no boundary is explicitely
present and the two equations interact in the interior of the spatial domain.

The technical details of the proofs are collected in Section 4, while the various numerical
integrations are presented in the paragraph of the model they are referring to.

2 Analytical Results

Throughout, we denote R
+ = [0,+∞[ and R̊

+ = ]0,+∞[. Let Ω ⊆ R
n be an open set.

On system (1.1) we require the following conditions, where we refer to [6, 11] for the standard
vocabulary about conservation laws.

(f) f ∈ C4(Ω;Rn) is smooth and such that Df(u) is strictly hyperbolic for all u ∈ Ω, each
characteristic field is either genuinely nonlinear or linearly degenerate.

Without loss of generality, we may assume that 0 ∈ Ω and for all u in Ω, Df(u) admits n
real distinct eigenvalues λ1(u), . . . , λn(u), ordered so that λi−1(u) < λi(u) for all u ∈ Ω and
i = 2, . . . , n, with right eigenvectors r1(u), . . . , rn(u). We also introduce the following conditions.

(NC) There exist a c > 0 and ℓ ∈ {1, 2, . . . , n − 1} such that for all u ∈ Ω, λℓ(u) < −c and
λℓ+1(u) > c.

The above Non Characteristic condition on f is coordinated with the following assumption on b,
which describes how the boundary data is assigned.

(b) b ∈ C1(Ω;Rn−ℓ) is such that det
[

Dub(0) rℓ+1(0) Dub(0) rℓ+2(0) · · · Dub(0) rn(0)
]

6= 0.

Remark 2.1. If the boundary condition is invertible, in the sense that it is equivalent to u(t, 0) =

b−1
(

B
(

t, w(t)
)

)

for a suitable B, then system (1.1) can be decoupled, solving first the o.d.e. ẇ =

F
(

t, b−1
(

B(t, w)
)

, w
)

and then, separately, the balance law with boundary (2.1). In the applica-

tions considered below, b is not invertible in this sense. Moreover, condition (b) above essentially
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imposes b to be not invertible. The case of an invertible b would formally correspond to ℓ = 0
in (b).

The two existence results below, theorems 2.7 and 2.8, rely on the following two different
assumptions on B, see Remark 3.2.

(B1) B ∈ C1(R+ × R
m;Rn−ℓ) is independent from the time variable, so that B = B(w).

(B2) B ∈ C1(R+ × R
m;Rn−ℓ) is locally Lipschitz, i.e. for every compact subset K̃ of Rm, there

exists a constant C̃K̃ such that, for every t > 0 and w ∈ K̃:

∥

∥

∥

∥

∂

∂t
B(t, w)

∥

∥

∥

∥

Rn−ℓ

+

∥

∥

∥

∥

∂

∂w
B(t, w)

∥

∥

∥

∥

Rn−ℓ

≤ C̃K̃ .

Finally, we impose to the ordinary differential equation in (1.1) to fit into the framework of
Caratheodory equations, introducing the following conditions.

(F) The map F : R+ × Ω× R
m −→ R

m is such that

1. For all t > 0 and u ∈ Ω, the function
R

m −→ R
m

w 7−→ F (t, u, w)
is continuous.

2. For all t > 0 and w ∈ R
m, the function

Ω −→ R
m

u 7−→ F (t, u, w)
is continuous.

3. For all u ∈ Ω and w ∈ R
m, the function

R
+ −→ R

m

t 7−→ F (t, u, w)
is Lebesgue measurable.

4. For all compact subset K of Ω, there exists a constant CK > 0 such that

∥

∥F (t, u, w1)− F (t, u, w2)
∥

∥

Rm ≤ CK ‖w1 − w2‖Rm .

(F1) There exists a function C ∈ L1

loc
(R+;R+) such that for all t > 0, u ∈ Ω and w ∈ R

m

∥

∥F (t, u, w)
∥

∥

Rm ≤ C(t) ‖w‖
Rm .

(F2) There exists a function C ∈ L1

loc
(R+;R+) such that for all t > 0 and u ∈ Ω and w ∈ R

m

∥

∥F (t, u, w)
∥

∥

Rm ≤ C(t)
(

1 + ‖w‖
Rm

)

.

Above, we used the notation C(t) and CK to denote quantities whose precise value is not relevant
in the sequel. The distinction between (F1) and (F2) leads to the two theorems 2.7 and 2.8. A
possible physical interpretation of the necessity of this distinction is provided by Remark 3.2.

First, we consider the conservation law with boundary











∂tu+ ∂xf(u) = 0 (t, x) ∈ R
+ × R

+

b
(

u(t, 0)
)

= B∗(t) t ∈ R
+

u(0, x) = uo(x) x ∈ R
+.

(2.1)

The above problem will be related to (1.1) setting B∗(t) = B
(

t, w(t)
)

. Following [8, Definition 3.1],
we slightly modify the definition given in [15] of solution to (2.1) in the non characteristic case,
see also [3]. Indeed, here we require the boundary condition to be satisfied by the solution only
almost everywhere.

Definition 2.2. Let T > 0. A map u = u(t, x) is a solution to (2.1) if

1. u ∈ C0
(

[0, T ];L1(R;Rn)
)

with u(t, x) ∈ Ω for a.e. t ∈ R
+, x ∈ R

+ and u(t, x) = 0 otherwise;

2. u(0, x) = uo(x) for a.e. x > 0 and limx→0+ b
(

u(t, x)
)

= B∗(t) a.e. t ≥ 0;
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3. for x > 0, u is a weak entropy solution to ∂tu+ ∂xf(u) = 0.

We refer to [6, Chapter 4] for the entropy admissibility criterion in balance laws. Below, we
construct solutions u such that u(t) ∈ BV(R+; Ω), which ensures the existence of the trace at 2.

Theorem 2.3. [8, Theorem 2.2] Let system (2.1) satisfy (f), (b) and (NC). Then, there exist
positive δ, ∆ and L such that for all B∗ ∈ BV(R+;Rn−ℓ) satisfying

∥

∥b(0)−B∗(0)
∥

∥

Rn−ℓ +TV(B∗) < δ , (2.2)

there exists a family of closed domains Dt with
{

u ∈ L1(R+; Ω) : TV(u) < δ
}

⊆ Dt ⊆
{

u ∈ L1(R+; Ω) : TV(u) < ∆
}

defined for all t ≥ 0, and a process

PB∗
(t, to) : Dto → Dto+t , for all to, t ≥ 0,

such that

1) for all to ≥ 0 and u ∈ Dto , PB∗
(0, to)u = u while for all t, s, to ≥ 0 and u ∈ Dto , it holds that

PB∗
(t+ s, to)u = PB∗

(t, to + s) ◦ PB∗
(s, to)u;

2) for any u ∈ Dto , v ∈ D̄t′o
and for all t′o ≥ to ≥ 0 and t ≥ t′ ≥ 0, we have the following Lipschitz

estimate:

∥

∥PB∗
(t, to)u−PB̄∗

(t′, t′o)v
∥

∥

L1
≤L

[

‖u− v‖
L1+

∣

∣t− t′
∣

∣+
∣

∣to − t′o
∣

∣+

∫ to+t

to

∥

∥B∗(τ)− B̄∗(τ)
∥

∥

Rn−ℓdτ

]

;

3) for all uo ∈ D0, the map u(t, x) =
(

PB∗
(t, 0)uo

)

(x) defined for t ∈ R
+ and x ∈ R

+, solves (2.1)
in the sense of Definition 2.2;

The proof amounts to an application of [8, Theorem 2.2], see Section 4.
Now we pass to the ordinary differential equation

{

ẇ = F∗(t, w) t ∈ R
+

w(0) = wo .
(2.3)

which is understood in the Caratheodory sense, see [14, § 1]. The link between (2.3) and (1.1) will
consist below in the relation F∗(t, w) = F

(

t, u(t, 0+), w
)

.

Definition 2.4. Let (2.3) be a Caratheodory equation in the sense of [14, § 1]. A function
w ∈ W1,1(R+;Rm) is a solution to (2.3) if, for a.e. t ∈ R

+,

w(t) = wo +

∫ t

0

F∗
(

τ, w(τ)
)

dτ .

The following standard result ensures the well posedness of (2.3), see similar results in [14, Chap-
ter 1], for instance.

Proposition 2.5. Let F∗ = F∗(t, w) be a map measurable in t and such that there exist A,B ∈
L1

loc
(R+;R+) such that

∥

∥F∗(t)
∥

∥

Rm ≤ A(t) +B(t)
∥

∥w(t)
∥

∥

Rm for all t ≥ 0 and w ∈ R
m (2.4)

and for any compact set K ⊂ R
m there exists a constant CK > 0 satisfying

∥

∥F∗(t, w1)− F∗(t, w2)
∥

∥

Rm ≤ CK ‖w1 − w2‖Rm for all t ≥ 0 and w ∈ K . (2.5)

Then, problem (2.3) admits a unique solution w in the sense of Definition 2.4. Given a sequence
of vector fields Fh

∗ all satisfying (2.4), (2.5) and converging a.e. to F∗, call wh the corresponding
solutions to (2.3). Then, we have the convergence limh→+∞ wh = w uniformly on any compact
time interval.
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The proof is elementary and is sketched in Section 4.
Now we pass to the full problem (1.1), providing a rigorous definition of solution to (1.1).

Definition 2.6. A pair (u,w) with u in C0
(

R
+;L1(R+; Ω)

)

such that u(t) ∈ BV(R+;R) for
a.e. t ∈ R

+ and w in W1,1(R+;Rm) is a solution to (1.1) with initial datum

u(0, x) = uo(x) for x ≥ 0 and w(0) = wo(t) for t ≥ 0

if u solves (2.1) with B∗(t) = B
(

t, w(t)
)

in the sense of Definition 2.2 and w solves (2.3) with

F∗(t) = F
(

t, u(t, 0+), w
)

in the sense of Definition 2.4.

We are now ready to state the main results of this paper. First we provide an existence result
that holds on any time interval [0, T ].

Theorem 2.7. Let (f), (NC), (b), (B1), (F) and (F1) hold. Assume that 0 ∈ Ω̊ and b(0) =
B(0). Then, for all T > 0, there exists δT > 0 such that, if the initial data uo ∈ L1(R+; Ω) and
wo ∈ R

m satisfy
TV(uo) + ‖wo‖Rm < δT (2.6)

then problem (1.1) admits a solution in the sense of Definition 2.6.

The above result can not be applied as soon as F (t, 0, 0) does not vanish, for in this case the
total variation of B

(

w(·)
)

on the time interval [0, T ] may exceed the bound (2.2) preventing the
solution to (1.1) to be defined on all [0, T ], see Remark 3.2. Therefore, the assumptions in the
next theorem are weakened substituting (F1) with (F2). An analogous observation holds for the
distinction between (B1) and (B2). Note however that in all the examples below, B does not
depend explicitly on time.

Theorem 2.8. Let (f), (NC), (b), (B2), (F) and (F2) hold. Assume that 0 ∈ Ω̊ and b(0) =
B(0, 0). Then, there exist δ > 0 and Tδ > 0 with the following property: for every initial data uo

and wo satisfying
TV(uo) + ‖wo‖Rm < δ (2.7)

problem (1.1) admits a solution in the sense of Definition 2.6 on [0, Tδ].

The proofs are deferred to Section 4.

3 Applications

As it is usual in applications, in the paragraphs below the role played by the state 0 in Ω will be
played by a fixed reference state, say ū, in a neighborhood of which the various assumptions of
Theorem 2.8 hold.

The numerical results are obtained with a local Lax-Friedrichs MUSCL scheme in case of the
conservation law and with an explicit Euler method for the ordinary differential equation. The
coupling is done after each time step. At the right boundary zero Neumann conditions are imposed.
The CFL number is 0.45 in all the examples given.

3.1 The Piston Problem

Consider a rectilinear tube filled with fluid to the right of a piston, see Figure 1. In the isentropic,
or isothermal, case this system can be described using Lagrangian coordinates, by the p-system
coupled with an ordinary differential equation governing the piston. More precisely























∂tτ − ∂xv = 0
∂tv + ∂xp(τ) = 0
V = v(t, 0+)

V̇ = α ·
(

P (t)− p
(

τ(t, 0+)
)

)

(3.1)
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where t is time, x the Lagrangian mass coordinate, τ the specific volume, v the Lagrangian speed
of the flow, p the pressure in the fluid, V the speed of the piston, P (t) the (given) pressure to the
left of the piston and α is the ratio between the section of the tube and the mass of the piston,
see Figure 1. This problem has been widely considered in the literature, but mainly with pistons
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τ

P
V

Figure 1: The notation used in the piston problem (3.1).

having assigned movements, see for instance [21, 22] or [18, § 99]. Here, on the contrary, the
acceleration of the piston is due to the difference between the pressure of the fluid on its right and
that of the outer environment on its left.

Below we prove that Theorem 2.8 can be applied to (3.1).

Proposition 3.1. Fix any (τ̄ , v̄) ∈ R̊
+×R. Let n = 2, ℓ = 1, m = 1 and, with reference to (1.1),

define

u =

[

τ − τ̄
v − v̄

]

f(u) =

[

−v
p(τ)

]

w = V − v̄ F (t, u, w) = α
(

P (t)− p(τ)
)

b(u) = v B(t, w) = V .

(3.2)

Then, problem (3.1) is of the type (1.1). Moreover, assume that

p ∈ C4(R̊+; R̊+) with p′(τ) < 0 and p′′(τ) > 0 for all τ ∈ R̊
+

P ∈ L1

loc(R
+; R̊+)

then, there exists a positive δ and a positive T such that for any initial datum (τo, vo) ∈ (τ̄ , v̄) +
L1(R+;R2) and Vo ∈ R with TV(τo, vo) +

∣

∣Vo − V̄
∣

∣ < δ problem (3.1) admits a solution on [0, T ]
in the sense of Definition 2.6.

Above, the requirement on p is a standard assumption on the pressure law for an ideal gas.
For instance, the standard γ–law p(τ) = k/τγ meets this requirement, for k > 0 and γ ≥ 1.

Remark 3.2. This example also shows the physical meaning of the difference between condi-
tions (F1) and (F2). Indeed, (F1) holds only at time t = 0 in the case where P is constant
and equal to p

(

τo(0+)
)

. Otherwise, consider, for instance, the case p(τ) = k/τγ with γ > 1, τo
constant, vo = 0 and P (t) = p(τo)− ε. Then, the piston accelerates to the left eventually creating
vacuum, preventing the existence of solution to (3.1) on an a priori fixed interval [0, T ].

As an example of solution to (3.1), we consider a case in which the piston’s movement is
determined by the fluid. Indeed, in (3.1) we choose the ratio between the pipe’s section and mass
to be α = 1, the γ–law p(τ) = τ−1.4 and P (t) = 0.61.4 as outer pressure. As initial datum we
choose a shock approaching a piston at rest, that is

τo =

{

1 if x∈ [0, 0.5[
1.429 if x∈ [0.5,+∞[

vo =

{

0 if x∈ [0, 0.5[
−0.441 if x∈ [0.5,+∞[

Vo = 0 . (3.3)

The results shown in Figure 2 refer to the time interval [0, 1.2]. At the beginning the outer
pressure pushes the piston to the right. When the shock hits the piston, its acceleration suddenly
changes sign. After that, the piston slows down, until it finally moves backwards.
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Figure 2: On the first line, the τ component and, on the second line, the v component of the solution
to (3.1)–(3.3) plotted as a function of the space variable x. On the third line, the piston’s speed, left, and
position, right, as a function of time. In the first two lines, on the left, the initial datum with a shock
approaching the piston; on the second column: due to the outer pressure on the piston, a rarefaction arises
and the pisyon’s speed changes sign; third column: the rarefaction and the shock are interacting; fourth
column: the interaction finished and the piston is decelerating. Last line: first, the piston accelerates to
the right. Then, when it is hit by the shock, its acceleration suffers a jump discontinuity and it slows
down, eventually starting moving leftward.
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3.2 Flow in a Sewer System with a Manhole

Consider a single junction in a sewer network. At x = 0, a junction joins k horizontal pipes
to one vertical manhole. All pipes start at the junction, so that each of them is referred to an
abscissa x ∈ R

+. The flow in the i–th tube, for i = 1, . . . , k, can be described by the Saint Venant
equations [12], see also [10] or [18, formula (108.1)],







∂tAi + ∂xQi = 0

∂tQi + ∂x

(

Q2
i

Ai
+ pi(Ai)

)

= 0
(3.4)

ensuring the conservation of mass and momentum. Ai is the wet cross sectional area, Qi the
flow in the x direction and pi ∈ C4(R+;R+) is a function representing the hydrostatic pressure,
with p′i > 0 and p′′i > 0. In the following we assume the flow in the pipes to be subsonic,
i.e.

∣

∣Qi/Ai

∣

∣ <
√

p′i(Ai), and far away from the dry state, so that Ai > 0. Following [20], as

hMA1
Q1

A2
Q2

Figure 3: A vertical manhole with two horizontal tubes that exit from it, with the notation used in (3.5).
The Preissmann slots are not shown.

boundary condition, we require the equality of all the hydraulic heads at the junction, that is

ĥ(t) =
1

2g

Qi(t, 0+)2

Ai(t, 0+)2
+ hi

(

Ai(t, 0+)
)

for all i = 1, . . . , k and all t ≥ 0

where hi(Ai) is the height of water in the i-th tube and g is the gravitational acceleration. The
conservation of mass at the junction is expressed by

QM

(

ĥ(t), hM (t)
)

+
k
∑

i=1

Qi(t, 0+) = 0

where QM (ĥ, hM ) is the flow into the manhole. The level hM , which is the height of the water
level inside the storage, changes according to

ḣM (t) =
QM

(

ĥ(t), hM (t)
)

+Qext(t)

AM

.

Here, AM is the horizontal cross section of the manhole and Qext(t) is a given external inflow into
the manhole. Finally, energy conservation gives

QM

(

ĥ(t), hM (t)
)

= sign
(

ĥ(t)− hM (t)
)

AM

√

2g
∣

∣

∣ĥ(t)− hM (t)
∣

∣

∣ .
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We are thus lead to study the system [5]















































































∂tAi + ∂xQi = 0 i = 1, . . . , k

∂tQi + ∂x

(

Q2
i

Ai

+ pi(Ai)

)

= 0 i = 1, . . . , k

ĥ(t) =
1

2g

Qi(t, 0+)2

Ai(t, 0+)2
+ hi

(

Ai(t, 0+)
)

i = 1, . . . , k

hM (t) = − 1

2g A2
M





k
∑

i=1

Qi(t, 0+)





∣

∣

∣

∣

∣

∣

k
∑

i=1

Qi(t, 0+)

∣

∣

∣

∣

∣

∣

+ ĥ(t)

ḣM (t) =
1

AM



Qext(t)−
k
∑

i=1

Qi(t, 0+)





(3.5)

which falls within the class (1.1). The next result shows that Theorem 2.8 applies also to (3.5).

Proposition 3.3. Let k ∈ N \ {0} and fix n = 2k, ℓ = k, m = 1. Choose, the strictly positive
areas Ā1, . . . , Āk, the flows Q̄1, . . . , Q̄k and the strictly positive height h̄M . Define

u =

















A1 − Ā1

Q1 − Q̄1

...
Ak − Āk

Qk − Q̄k

















f(u) =



















Q1
Q2

1

A1
+ p1(A1)

...
Qk

Q2
k

Ak
+ pk(Ak)



















w = hM − h̄M F (t, u, w) = sign(ĥ− hM )

√

2g
∣

∣

∣ĥ− hM

∣

∣

∣+ 1
AM

Qext(t)

B(t, w) =













0
...
0
hM













b(u) =

















1
2g

Q2
2

A2
2
+ h2(A2)− ĥ

...
1
2g

Q2
k

A2
k

+ hk(Ak)− ĥ

− 1
2g A2

M

(

∑k
i=1 Qi

) ∣

∣

∣

∑k
i=1 Qi

∣

∣

∣+ ĥ

















where ĥ = 1
2g

Q2
1

A2
1
+ h1(A1). Then, problem (3.5) is of type (1.1). Moreover, assume that

1

2g

Q̄2
1

Ā2
1

+ h1(Ā1) = · · · = 1

2g

Q̄2
k

Ā2
k

+ hk(Āk) = h̄M +
1

2g Ā2
M





k
∑

i=1

Q̄i





∣

∣

∣

∣

∣

∣

k
∑

i=1

Q̄i

∣

∣

∣

∣

∣

∣

∣

∣Q̄i

∣

∣ < Āi

√

pi(Āi) for i = 1, . . . , k (3.6)
∣

∣

∣

∣

∣

∣

k
∑

i=1

Q̄i

∣

∣

∣

∣

∣

∣

k
∑

i=1

Āi
√

p′i(Āi)
6= 1 (3.7)

pi ∈ C4(R̊+; R̊+) with p′i > 0 and p′′i > 0 for i = 1, . . . , k ,

hi ∈ C1(R+;R+) (3.8)

Qext ∈ L1

loc(R
+;R+) (3.9)

then, there exist positive δ and T such that for any initial datum

(

(Ao
1, Q

o
1), . . . , (A

o
k, Q

o
k)
)

∈
(

(Ā1, Q̄1), . . . , (Āk, Q̄k)
)

+ L1(R+;Rn) and ho
M ∈ R
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with
TV

(

(Ao
1, Q

o
1), . . . , (A

o
k, Q

o
k)
)

+
∣

∣ho
M − h̄M

∣

∣ < δ (3.10)

problem (3.1) admits a solution on [0, T ] in the sense of Definition 2.6.
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Figure 4: Integration of (3.5)–(3.11) with k = 2, as in Figure 3. On the first line, the water level h1 in
the left pipe is plotted vs. x at times 0, 2.5, 5 and 7.5. On the second line, the water level h2 in the right
pipe is plotted vs. x at the same times. On the third line, the water level hM in the manhole is plotted
vs. t. A shock from the left pipe hits the junction at about time t = 3.5. This interaction results in water
entering the manhole and in a compression wave propagating in the right pipe, eventually developing into
a shock. To ease the comparison, we plotted the water level hi and not the wet surface Ai.

The proof is deferred to Section 4.
As an example, we consider two horizontal pipes as in Figure 3 and plot the result in Figure 4.

We set g = 9.81, Qext = 0, the manhole area AM = 1, the pipe radius to r = 0.5, the width of the
Preissmann slot to d = 0.1 and

hi(A) =























√

2
π
A A ∈ [0, π

2 r
2]

2r −
√

2r2 − 2
π
A A ∈

]

π
2 r

2, πr2 − d2

2π

]

1
d
A− d

2π + 2r − π
d
r2 A ∈

]

πr2 − d2

2π ,+∞
[

pi(A) = g

∫ A

0

(

h(A)− h(a)
)

da

for i = 1, 2. At time t = 0, we impose the initial datum

A1 =

{

1
2πr

2 x ∈ [0, 2.5]
0.9πr2 x ∈ ]2.5,+∞[

Q1 = 0

A2 = 1
2πr

2 Q2 = 0 .

(3.11)
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3.3 Supply Chains

We now consider a single node of a network of supply chains, connecting n suppliers. Assume ℓ
incoming suppliers and n−ℓ outgoing ones. Each outgoing supplier is composed out of a processor
and a queue in front of it. For the incoming ones we consider only a processor, as in Figure 5.
The work done by a processor is modeled by

∂tρi(t, x) + ∂x
(

viρi(t, x)
)

= 0 x ∈ R
+, t ∈ R

+, i = 1, . . . , n

where ρi is the density of goods in the i-th processor and vi is the (constant) processing velocity.
To guarantee the correct orientation of flow, we have vj < 0 for j = 1, . . . , ℓ and vk > 0 for
k = ℓ + 1, . . . , n respectively. For the load qk of goods stored in the k-th queue, we impose the
conservation of mass:

q̇k(t) = f in
k

(

t, u(t, 0)
)

− fout
k (qk) k = ℓ+ 1, .., n

where f in
k is the inflow and fout

k is the outflow from the queue to the k-th processor. The distri-
bution matrix A(t) =

(

ajk(t)
)

, for j = 1, . . . , ℓ and k = ℓ+ 1, . . . , n, assigns the percentage ajk of
the goods exiting processor j and lining up into the k-th queue. Thus, the queue is filled by

f in
k

(

t, ρ(t, 0)
)

=
ℓ
∑

j=1

ajk(t) vj ρj(t, 0) . k = ℓ+ 1, . . . , n .

For the outflow we use the relaxed formulation, as presented in [4],

fout
k (qk) = min

(

qk(t)

ε
, µk

)

k = ℓ+ 1, . . . , n

with the relaxation parameter ε > 0 small and µk the maximal capacity of the k-th processor.
Existence and uniqueness for the non relaxed case were shown in [16], by directly using wave front
tracking. Summarizing the above equations, we are left with the following problem:

q1

q2
A(t)

Figure 5: One node in a network of supply chains



















∂tρi(t, x) + ∂x
(

viρi(t, x)
)

= 0 i = 1, . . . , n

vk ρk(t, 0+) = min
(

qk(t)
ε

, µk

)

k = ℓ+ 1, . . . , n

q̇k(t) =
∑ℓ

j=1 ajk(t) vk ρk(t, 0)−min
(

qk(t)
ε

, µk

)

k = ℓ+ 1, . . . , n .

(3.12)
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Proposition 3.4. Let n ∈ N, with n ≥ 2, ℓ ∈ {1, . . . , n− 1}, m = n− ℓ and define

u =









ρ1 − ρ̄1
...

ρn − ρ̄n









f(u) =









v1ρ1
...

vnρn









w =









qℓ+1 − q̄ℓ+1

...
qn − q̄n









F (t, u, w) =









∑ℓ
j=1 ajℓ+1(t) vj ρj −min

{

1
ε
qℓ+1, µℓ+1

}

...
∑ℓ

j=1 ajn(t) vjρj −min
{

1
ε
qn, µn

}









b(u) =









vℓ+1ρℓ+1

...
vnρn









B(t, w) =









min
{

1
ε
qℓ+1, µℓ+1

}

...
min

{

1
ε
qn, µn

}









.

Then, problem (3.12) is of type (1.1). Moreover, assume that

v1, . . . , vℓ < 0 and vℓ+1, . . . , vn > 0
n
∑

k=ℓ+1

ajk(t) = 1 for all j = 1, . . . , ℓ

aij ∈ L∞(R+;R) , i = l + 1, .., n j = 1, .., n (3.13)

then in a neighborhood of any initial state uo ≡ (ρo1, . . . , ρ
o
n) and wo ≡ (qoℓ+1, . . . , q

o
n) with ρoi > 0

for i = 1, . . . , n and qok > 0 for k = ℓ+ 1, . . . , n, Theorem 2.8 can be applied to (3.12).

The example for the numerical computation displayed in Figure 6 has two processors,n = 2
and a single queue,m = 1, ℓ = 1. One processor is incoming, e.g. v1 = −2, the second one has
v2 = 1. The remaining parameters have the following values µ2 = 1, a12 = 1 and ε = 0.01.

At t = 0, the outgoing supplier is empty, ρo2 = 0 and qo2 = 0, but the first processor contains an
incoming shock, ρo1 = 0 on (0, 1/2) and ρo1 = 1 elsewhere. The shock approaches the node. Clearly
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0.1

0.15

0.2

0.25

0.3

0.35

t

q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 6: Solution to (3.12). The queue length q2 is on the left, plotted against t. On the right: ρ1 on
top, ρ2 below, at three different times plotted as function of the space variable x. Note that the initial
load of processor 1 fills the queue and then passes to processor 2.

the second processor can not carry all the incoming load, thus some goods are stored in the queue.
While the second processor is running at maximum capacity, the first one is emptying. When the
inflow breaks, the queue begins to clear. Finally all goods are located in the second processor.

Clearly the numerical diffusion is remarkable, but the qualitative behavior is captured.
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3.4 Blood Flow

Following [13, formulæ (2.3), (2.12), (2.14)], [1, Section 2] and [7], we consider the following model
for blood flowing through an artery and a vessel, see also [23] and the references therein. The
former is described through a 1D conservation law, while an ordinary differential equation is used
for the latter.



































∂ta+ ∂xq = 0

∂tq + ∂x

(

q2

a
+ π(a)

)

= 0

a(t, 0+) = aS

(

1 +
√
as

β
P
)2

Ṗ = − 1
C
Q− 1

C
q(t, 0)

Q̇ = 1
L
P − R

L
Q− 1

L
Π(t)

(3.14)

where the minus sign in the third line above is due to our choice of the orientation of the x axis.
Here, we used the following notation:

Independent Variables: t time x length along the artery
Known Functions: p artery blood pressure π = (1/ρ)

∫ a

aS
α p′(α) dα

Π vessel external blood pressure
Known Constants: ρ blood density aS artery size at rest

β artery elasticity R vessel resistance
C vessel capacitance L vessel inductance

Unknown Functions: a area of artery section q artery blood flow
P vessel blood pressure Q vessel blood flow.

A typical choice for the artery blood pressure is

p(a) =
β√
aS

(

√

a

aS
− 1

)

,

see [1, Paragraph 2.3]. As it is standard in this context, we assume throughout that all constants
are real positive numbers. The above model fits in the framework constructed in Section 2.

Proposition 3.5. Let n = 2, ℓ = 1, m = 2. Choose (ā, q̄) ∈ R̊
+×R and (P̄ , Q̄) ∈ R̊

+×R. Define

u =

[

a− ā
q − q̄

]

f(u) =

[

q
q2

a
+ π(a)

]

w =

[

P − P̄
Q− Q̄

]

F (t, u, w) =

[

− 1
C
Q+ 1

C
q

1
L
P − R

L
Q+ 1

L
Π(t)

]

b(u) = a B(t, w) = aS

(

1 +
√
as

β
P
)2

.

Then, problem (3.14) is of type (1.1). Moreover, assume that

|q̄| < ā
√

ā p′(ā) (3.15)

ā = aS

(

1 +

√
as
β

P̄

)2

p ∈ C4(R̊+;R) with p′(a) > 0 and p′(a) + ap′′(a) > 0 for all a > 0 (3.16)

Π ∈ L1

loc(R̊
+; R̊+) , (3.17)

then, there exist positive δ and T such that for any initial datum (ao, qo) ∈ (ā, q̄) + L1(R+;R2),
(Po, Qo) ∈ R

+ × R with
TV(ao, qo) +

∥

∥(Po, Qo)− (P̄ , Q̄)
∥

∥

R2 < δ (3.18)

problem (3.14) admits a solution on [0, T ] in the sense of Definition 2.6.

Several numerical results about of (3.14) can be found in the current literature. We refer for
instance to [23] and to the references therein.
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4 Technical Details

For later use, we state here without proof the Gronwall type lemma used in the sequel.

Lemma 4.1. Let δ ∈ C0
(

[0, T ];R+
)

, α ∈ L∞
loc

(

[0, T ];R+
)

and β ∈ L1

loc

(

[0, T ];R+
)

. If

δ(t) ≤ α(t) +

∫ t

0

β(τ) δ(τ) dτ

then

δ(t) ≤ α(t) +

∫ t

0

α(τ)β(τ) e
∫

t

τ
β(s) ds dτ .

Proof of Theorem 2.3. We simply observe that [8, Theorem 2.2] is applicable. Indeed, con-
ditions (f) and (b) therein are the same as the ones here in Section 2. Condition (γ) is here
trivially satisfied, setting γ(t) = 0 for all t and thanks to (NC). Finally, we note that the upper
bound on the total variation of the functions in Dt follows from the definition of Dt in the proof
of [8, Proposition 4.6] and by [8, formula (4.9)]. �

Proof of Proposition 2.5. The existence and uniqueness of a global solution to (2.3) follow
from [14, § 1]. To prove the continuous dependence from the vector field, find first the a priori
estimate by means of (2.4)

∥

∥w(t)
∥

∥

Rm ≤ ‖wo‖Rm +

∫ t

0

∥

∥

∥
F
(

τ, w(τ)
)

∥

∥

∥

Rm
dτ ≤ ‖wo‖Rm +

∫ t

0

(

A(τ) +B(τ)
∥

∥w(τ)
∥

∥

Rm

)

dτ

so that by Lemma 4.1 with α(t) = ‖wo‖Rm +
∫ t

0
A(τ) dτ and β(t) = B(t),

∥

∥w(t)
∥

∥

Rm ≤ ‖wo‖Rm +

∫ t

0

(

A(τ) +

(

‖wo‖Rm +

∫ τ

0

A(s) ds

)

B(τ)e
∫

t

τ
B(s)ds

)

dτ .

Define

Rt = ‖wo‖Rm +

∫ t

0

(

A(τ) +

(

‖wo‖Rm +

∫ τ

0

A(s) ds

)

B(τ)e
∫

t

τ
B(s)ds

)

dτ .

Now, following usual procedures based on Gronwall Lemma

∥

∥wh(t)− w(t)
∥

∥

Rm ≤
∫ t

0

∥

∥

∥Fh
∗
(

τ, wh(τ)
)

− F∗
(

τ, w(τ)
)

∥

∥

∥

Rm
dτ

≤
∫ t

0

∥

∥

∥F∗
(

τ, wh(τ)
)

− F∗
(

τ, wh(τ)
)

∥

∥

∥

Rm
dτ

+

∫ t

0

∥

∥

∥
Fh
∗
(

τ, wh(τ)
)

− F∗
(

τ, w(τ)
)

∥

∥

∥

Rm
dτ .

Let K =
{

w : ‖w‖
Rm ≤ Rt

}

and call CRt
the corresponding constant in 4. of (F). Call Ah(t) the

latter summand above, apply 4. in (F) and Lemma 4.1 with α = Ah and β = CRt
to obtain

sup
t∈[0,T ]

∥

∥wh(t)− w(t)
∥

∥

Rm ≤ sup
t∈[0,T ]

(

Ah(t) + CRt

∫ t

0

Ah(τ) e
CRt

(t−τ) dτ

)

≤ Ah(T ) + CRT

∫ T

0

Ah(τ) e
CRt

(T−τ) dτ .

At the limit h → 0, by Lebesgue Dominated Convergence Theorem we have that Ah(t) → 0 on
any compact time interval and the proof is completed. �
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Proof of Theorem 2.7. The proof is obtained by an iterative method through several steps.

1. Definition of ũk and wk. By assumptions (B1) and (2.2), there exists a positive δ̃ such
that

∥

∥B(w)− b(0)
∥

∥

Rn−ℓ < δ/2 for every w such that ‖w‖
Rm < δ̃, where δ is the constant defined

in Theorem 2.3. Using ∆ as in Theorem 2.3 and C as in (F1), define

K1 =
{

w ∈ R
m : ‖w‖

Rm ≤ 1 + ‖C‖
L1([0,T ]) e

‖C‖
L1([0,T ])

}

δT = min











δ, δ̃,
δ

2
[

1 + ‖C‖
L1([0,T ]) e

‖C‖
L1([0,T ])

]

C̃K1
‖C‖

L1([0,T ])











. (4.1)

Fix uo ∈
(

L1 ∩BV
) (

R
+; Ω

)

and wo ∈ R
m satisfying (2.6). Define ũ0(t, x) = uo and w0(t) = wo

for t ∈ R
+ and x ∈ R

+. We easily get TV
(

B(wo)
)

< δ/2 and, by (4.1) and (2.6), ũ0(0, ·) ∈ D0.

Hence, by Theorem 2.3, there exists a solution ũ1(t, x) =
(

PB∗
(t, 0)ũ0(0, ·)

)

(x) defined on all [0, T ]
to











∂tu+ ∂xf(u) = 0
b
(

u(t, 0)
)

= B
(

w0(t)
)

u(0, x) = uo(x)

with
∥

∥u1(t, x)
∥

∥

Rn ≤ ∆ for a.e. t ∈ [0, T ] and x > 0. Hypotheses (F) and (F1) imply that there
exists a unique solution w1 to the Cauchy problem

{

ẇ = F
(

t, ũ1(t, 0), w
)

w(0) = wo .

By (F1), we get that, for every t ∈ [0, T ],

∥

∥w1(t)
∥

∥

Rm ≤ ‖wo‖Rm +

∫ t

0

∥

∥

∥F
(

s, ũ0(s, 0), w1(s)
)

∥

∥

∥

Rm
ds ≤ ‖wo‖Rm +

∫ t

0

C(s)
∥

∥w1(s)
∥

∥

Rm ds

and, by Lemma 4.1,

∥

∥w1(t)
∥

∥

Rm ≤ ‖wo‖Rm

[

1 +

∫ t

0

C(s)e
∫

t

s
C(r)dr ds

]

≤
[

1 + ‖C‖
L1([0,T ])e

‖C‖
L1([0,T ])

]

‖wo‖Rm . (4.2)

Introduce recursively, for k ≥ 2,

ũk as the solution of











∂tu+ ∂xf(u) = 0
b
(

u(t, 0)
)

= B
(

wk−1(t)
)

u(0, x) = uo(x)

wk as the solution of

{

ẇ = F (t, ũk(t, 0+), w)
w(0) = wo .

Note that the same estimate as (4.2) holds for all
∥

∥wk(t)
∥

∥

Rm (k ≥ 2), provided ũk exists and
∥

∥ũk(t, x)
∥

∥

Rn ≤ ∆. Moreover, by (B1) and (F1) and since the function t 7→ B
(

wk−1(t)
)

is
absolutely continuous, then

TV
(

B
(

wk−1(·)
)

)

=

∫ T

0

∥

∥

∥

∥

d

dt
B
(

wk−1(t)
)

∥

∥

∥

∥

Rn−ℓ

dt =

∫ T

0

∥

∥

∥

∥

∂

∂w
B
(

wk−1(t)
)

w′
k−1(t)

∥

∥

∥

∥

Rn−ℓ

dt

≤ C̃K1

∫ T

0

∥

∥w′
k−1(t)

∥

∥

Rm dt = C̃K1

∫ T

0

∥

∥F (t, ũk−1(t, 0), wk−1(t))
∥

∥

Rm dt
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≤ C̃K1

∫ T

0

C(t)
∥

∥wk−1(t)
∥

∥

Rm dt

≤ C̃K1

[

1 + ‖C‖
L1([0,T ]) e

‖C‖
L1([0,T ])

]

‖wo‖Rm‖C‖
L1([0,T ]) <

δ

2

and, by Theorem 2.3, also ũk is well defined.

2. The wk satisfy Ascoli–Arzelà Theorem. In this part we prove that the sequence wk ∈
C0
(

[0, T ];Rm
)

satisfies the hypotheses of Ascoli-Arzelà Theorem, see [24, Theorem A5]. In the
previous step, we proved that, for every k ∈ N,

∥

∥wk(t)
∥

∥

Rm ≤
[

1 + ‖C‖
L1([0,T ]) e

‖C‖
L1([0,T ])

]

‖wo‖Rm , (4.3)

see (4.2), which implies that the sequence wk is bounded. Moreover we easily get that, for every
k ∈ N and 0 ≤ s < t ≤ T ,

∥

∥wk(t)− wk(s)
∥

∥

Rm =

∥

∥

∥

∥

∥

∫ t

0

F (r, ũk(r, 0), wk(r)) dr −
∫ s

0

F (r, ũk(r, 0), wk(r)) dr

∥

∥

∥

∥

∥

Rm

≤
∫ t

s

∥

∥

∥
F
(

r, ũk(r, 0), wk(r)
)

∥

∥

∥

Rm
dr

and by (F1),
∥

∥wk(t)− wk(s)
∥

∥

Rm ≤
∫ t

s

C(r)
∥

∥wk(r)
∥

∥

Rm dr .

By (4.3), we deduce that, for every k ∈ N and 0 ≤ s < t ≤ T ,

∥

∥wk(t)− wk(s)
∥

∥

Rm ≤ ‖wo‖Rm

[

1 + ‖C‖
L1([0,T ]) e

‖C‖
L1([0,T ])

]

∫ t

s

C(r) dr

and we conclude that the sequence wk is equicontinuous. Thus Ascoli-Arzelà Theorem implies
that there exists a subsequence wkh

and a function w∗ ∈ C0
(

[0, T ];Rm
)

such that wkh
converges

to w∗ in C0
(

[0, T ];Rm
)

.

3. Definition of u With a slight abuse of notation, call wk the convergent subsequence con-
structed in the previous step. Define for k ≥ 1

uk as the solution of











∂tu+ ∂xf(u) = 0
b
(

u(t, 0)
)

= B∗(t)
u(0, x) = uo(x)

with B∗(t)=B
(

t, wk(t)
)

,

which is uniquely defined on all [0, T ] by Theorem 2.3. Observe that the sequence uk con-
verges in C0

(

[0, T ];L1(R+;Rn)
)

. Indeed, by 2 in Theorem 2.3, (4.3) and (B1), setting R =
[

1 + ‖C‖
L1([0,T ])e

‖C‖
L1([0,T ])

]

‖wo‖Rm ,

∥

∥uk(t)− uh(t)
∥

∥

L1
≤ L

∫ t

0

∥

∥

∥B
(

τ, wk(τ)
)

−B
(

τ, wh(τ)
)

∥

∥

∥

Rn−ℓ
dτ

≤ L sup
‖w‖≤R

∥

∥

∥

∥

∂B

∂w

∥

∥

∥

∥

Rm×(n−ℓ)

∫ t

o

∥

∥wk(τ)− wh(τ)
∥

∥

Rm dτ

≤ LT C{w : ‖w‖
Rm≤R} ‖wk − wh‖C0

which shows that the uk form a Cauchy sequence in C0
(

[0, T ];L1(R+;R)
)

. Let u = limk→+∞ uk.
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4. Definition of w. Let w̄ be the solution to (2.3) with F∗(τ, w) = F
(

τ, u(τ, 0+), w
)

. We

now prove that w∗ = w̄. Indeed, let F k
∗ (t, w) = F

(

t, uk(t, 0+), w
)

and apply the last part of
Proposition 2.5. This is possible, since uk(t, 0+) → u(t, 0+) for a.e. t ∈ [0, T ], which is shown as
in the proof of [2, Theorem 1.2], thanks to (NC). In the sequel we denote w = w̄ = w∗.

5. The Pair (u,w) Solves (1.1). Thanks to what was proved in the previous step, it is now
sufficient to verify that u satisfies (2.1) with B∗(t) = B

(

w(t)
)

. Indeed, with the notation of
Theorem 2.3,

∥

∥PB∗
(t, 0)uo − u(t)

∥

∥

L1
= lim

k→+∞

∥

∥PB∗
(t, 0)uo − uk(t)

∥

∥

L1

≤ L lim
k→+∞

∫ t

0

∥

∥

∥B
(

w(τ)
)

−B
(

wk(τ)
)

∥

∥

∥

Rn−ℓ
dτ

= 0

where we used (B1) and the uniform convergence of wk to w. �

Remark that in the previous proof we are not able to verify that limk ũk and w do solve (1.1).
Indeed, the extraction of a subsequence of the wk destroys the link between ũk−1 and wk.

We also note that the roles of u and w in the previous proof are symmetric. An entirely
analogous proof can be obtained beginning with the definition of the sequences uk and w̃k, using
Helly Compactness Theorem on the uk, define a new sequence wk and pass to the limit.

Proof of Theorem 2.8. The proof is similar to the one of Theorem 2.7. Therefore, below we
present only the relevant modifications.

Let δ1 be equal to the δ exhibited in Theorem 2.3. By (B2), there exists δ̃ > 0 such that
∥

∥B(0, w)− b(0)
∥

∥

Rm < δ1/2 for every ‖w‖
Rm < δ̃. Define

δ = min
{

δ̃, δ1

}

H =
[

1 + ‖C‖
L1([0,t])e

‖C‖
L1([0,t])

] [

δ̃ + ‖C‖
L1([0,t])

]

K1 =
{

w ∈ R
m : ‖w‖

Rm ≤ H
}

where ∆ is defined in Theorem 2.3 and C in (F2). Let C̃K1
be as in (B2). Choose Tδ ∈ ]0, 1[

such that

Tδ <
δ1

4C̃K1

and ‖C‖
L1(0,Tδ)

<
δ1

4 (1 +H) C̃K1

. (4.4)

Fix uo ∈
(

L1 ∩BV
) (

R
+; Ω

)

and wo ∈ R
m such that (2.7) holds. Define ũ0(t, x) = uo and

w0(t) = wo for t ∈ R
+ and x ∈ R

+.
By (2.7), we easily get wo ∈ K1, uo ∈ D0 and, since the function t 7→ B(t, wo) is absolutely

continuous, then

TV(B(·, wo(·))|[0,Tδ]) +
∥

∥B(0, wo)− b(0)
∥

∥

Rm <

∫ Tδ

0

∥

∥

∥

∥

∂

∂s
B(s, wo)

∥

∥

∥

∥

Rn−ℓ

ds+
δ1
2

≤ C̃K1
Tδ +

δ1
2

< δ1

by (4.4). Use now Theorem 2.3, for every t ∈ [0, Tδ], there exists ũ1(t, x) =
(

PB∗
(t, 0)ũ0(0, ·)

)

(x)
solving











∂tu+ ∂xf(u) = 0
b
(

u(t, 0)
)

= B
(

t, w0(t)
)

u(0, x) = uo(x)
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Note that
∥

∥ũ1(t, x)
∥

∥

Rn ≤ ∆ for a.e. t > 0 and x > 0. Hypotheses (F) and (F2) imply that there
exists a unique solution w1 on [0, Tδ] to the Cauchy problem

{

ẇ = F (t, ũ0(t, 0), w)
w(0) = wo .

By (F2), we get that, for every t ∈ [0, Tδ],

∥

∥w1(t)
∥

∥

Rm ≤ ‖wo‖Rm +

∫ t

0

∥

∥F (s, ũ0(s, 0), w1(s))
∥

∥

Rm ds

≤ ‖wo‖Rm + ‖C‖
L1([0,t]) +

∫ t

0

C(s)
∥

∥w1(s)
∥

∥

Rm ds

and so, by Lemma 4.1,

∥

∥w1(t)
∥

∥

Rm ≤
[

‖wo‖Rm + ‖C‖
L1([0,t])

]

[

1 +

∫ t

0

C(s)e
∫

t

s
C(r)dr ds

]

≤
[

1 + ‖C‖
L1([0,t])e

‖C‖
L1([0,t])

] [

‖wo‖Rm + ‖C‖
L1([0,t])

]

≤ H. (4.5)

Introduce recursively for k ≥ 2 on the time interval [0, Tδ]

ũk as the solution of











∂tu+ ∂xf(u) = 0
b
(

u(t, 0)
)

= B
(

t, wk−1(t)
)

u(0, x) = uo(x)

wk as the solution of

{

ẇ = F (t, ũk−1(t, 0), w)
w(0) = wo .

Note that the same estimate as (4.5) holds on
∥

∥wk(t)
∥

∥

Rm for all k ≥ 2, provided ũk exists and
∥

∥ũk(t, x)
∥

∥

Rn ≤ ∆. Moreover, by (B2), (F2) and since the function t 7→ B
(

t, wk−1(t)
)

is absolutely
continuous, we have

TV
(

B
(

·, wk−1(·)
)

|[0,Tδ]

)

=

∫ Tδ

0

∥

∥

∥

∥

d

ds
B
(

s, wk−1(s)
)

∥

∥

∥

∥

Rn−ℓ

ds

=

∫ Tδ

0

∥

∥

∥

∥

∂

∂s
B
(

s, wk−1(s)
)

+
∂

∂w
B
(

s, wk−1(s)
)

◦ w′
k−1(s)

∥

∥

∥

∥

Rn−ℓ

ds

≤ C̃K1

[

Tδ +

∫ Tδ

0

∥

∥w′
k−1(s)

∥

∥

Rm ds

]

= C̃K1

[

Tδ +

∫ Tδ

0

∥

∥

∥
F
(

s, ũk−2(s, 0), wk−1(s)
)

∥

∥

∥

Rm
ds

]

= C̃K1

[

Tδ +

∫ Tδ

0

C(s)
[

1 +
∥

∥wk−1(s)
∥

∥

Rm

]

ds

]

= C̃K1

[

Tδ + (1 +H) ‖C‖
L1(0,Tδ)

]

Then, by (4.4), we deduce that

TV
(

B
(

·, wk−1(·)
)

|[0,Tδ]

)

+
∥

∥B(0, wo)− b(0)
∥

∥

Rm < δ1

and so, by Theorem 2.3, ũk exists in the time interval [0, T ].
The proof is now completed following exactly the steps from 2. to 5. of the proof of Theo-

rem 2.7. �
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In this paragraph we verify that the examples, presented in Section 3, have the properties
required to apply Theorem 2.8.

Lemma 4.2. The eigenvalues and right eigenvectors of problem (3.1) are:

λ1 = −
√

−p′(τ)

λ2 =
√

−p′(τ)
r1 =

[

−1
−λ1(τ)

]

r2 =

[

1
λ2(τ)

] ∇λ1 · r1 = p′′(τ)/
(

2
√

−p′(τ)
)

∇λ2 · r2 = p′′(τ)/
(

2
√

−p′(τ)
)

so that the conservation law in (3.1) is strictly hyperbolic and both characteristic fields are gen-
uinely nonlinear.

The proof is immediate and hence omitted.

Proof of Proposition 3.1. We check that the assumptions of Theorem 2.8 are fulfilled.

(f): Holds by the standard properties of the p-system, see also Lemma 4.2.

(NC): Holds by Lemma 4.2.

(b): The determinant in (b) equals λ2(τ̄), by Lemma 4.2 and (3.2).

(B2): Note that B(w) = w + v̄, hence (B2) holds with C̃K̃ = 1 for any compact K̃.

(F): F does not depend on w, hence (F) holds by (3.2) with CK = 0 for any compact K.

(F2): Holds by (3.2) with C(t) = α
[

P (t) + sup|τ−τ̄ |<δo
p(τ)

]

for, say, δo ∈
]

0, τ̄ /2
[

.

�

Lemma 4.3. For i = 1, . . . , n, in the sewer problem (3.4) we have the following eigenvalues and
right eigenvectors:

λi,1=
Qi

Ai
−
√

p′(Ai)

λi,2=
Qi

Ai
+
√

p′(Ai)
ri,1 =

[

−1
−λi,1

]

ri,2 =

[

1
λi,2

] ∇λi,1 · ri,1= −p′′(Ai)

2
√

p′(Ai)
−

√
p′(Ai)

Ai

∇λi,2 · ri,2= p′′(Ai)

2
√

p′(Ai)
+

√
p′(Ai)

Ai

so that the conservation law in (3.5) is strictly hyperbolic and both characteristic fields are gen-
uinely nonlinear.

The computations for (b) are just technical, but lengthy, so we state the following lemma.

Proof of Proposition 3.3. We check that the assumptions of Theorem 2.8 are fulfilled.

(f): Along each pipe, the p-system is strictly hyperbolic, with both characteristic fields gen-
uinely nonlinear, see Lemma 4.3. However, as it is standard in the framework of net-
worked conservation laws, strict hyperbolicity may fail in (3.5). Indeed, in the simplest case
p1 = p2 = · · · = pk, the eigenvalues computed in Lemma 4.3 in the different pipes may
well coincide. Different rescalings of the x axis in the different pipes allow to recover strict
hyperbolicity, see [9, Lemma 4.1].

(NC): Follows from Lemma 4.3 and (3.6).

(b): The regularity of b follows from (3.8). The determinant in (b) is proportional to






−1 +

∣

∣

∣

∑k
i=1 Q̄i

∣

∣

∣

A2
M

k
∑

i=1

√

Āi

g h′(Āi)







k
∏

j=1





√

h′(Āj)

gĀj

λj,2(Āj)





and it does not vanish by (3.7).
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(B2): Here, B(w) = [0 · · · 0w + h̄M ]T , hence (B2) holds true with C̃K̃ = 1 for any compact K.

(F): The regularity conditions are fulfilled, by the definition of F and (3.9). The Lipschitz regu-

larity is immediate, since ĥ ≥ 0 by its definition and h̄M > 0 by assumption.

(F2): Sublinearity is ensured by (3.9) and by what was noted in the step above.

�

Proof of Proposition 3.4. We check that the assumptions of Theorem 2.8 are fulfilled.

(f): Clearly we have λi = vi , i = 1, .., n, so that the different conservation laws are decoupled
and linear.

(NC): Since vi 6= 0 , i = 1, .., n, this holds true for e.g. c = 1
2 min(|vi|).

(b): We directly see det
[

Dub(0) r1,2 · · · Dub(0) rn,2
]

=
∏n

i=l+1 vi > 0.

(B2): This we obtain immediately with e.g. C̃K̃(t) = 1/ε.

(F): The regularity condition is met by (3.13). The Lipschitz constant is 1/ε.

(F2): Here, C(t) = maxi,j
∣

∣aij(t)
∣

∣ ·maxi |vi| · supi ρi + supi µi.

�

Proof of Proposition 3.5. We check that the assumptions of Theorem 2.8 are fulfilled.

(f): The conservation law is a p-system, with eigenvalues λ1,2 = q/a±
√
π′, which are real thanks

to (3.16), see also Lemma 4.3.

(NC): Is immediate, since λ1 < 0 < λ2 by (3.15).

(b): The determinant takes the value π′(ā)/ā, which does not vanish by (3.16).

(B2): Is immediate since B is a second order polynomial.

(F): F is linear in w.

(F2): Immediate, by (3.17).

�
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