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Abstract— We consider the carrier frequency offset estimation
in a digital burst-mode transmission affected by phase noise.
The corresponding Cramer-Rao lower bound is analyzed for
linear modulations under a Wiener phase noise model and in
the hypothesis of knowledge of the transmitted data. Even ifwe
resort to a Monte Carlo average, from a computational point of
view the evaluation of the Cramer-Rao bound is very hard. We
introduce a simple but very accurate approximation that allows
to carry out this task in a very easy way. As it will be shown, the
presence of the phase noise produce a remarkable performance
degradation of the frequency estimation accuracy. In addition, we
provide asymptotic closed-form expressions of the Cramer-Rao
bound and we also gain some important hints on the estimators
to be used in this scenario.

I. I NTRODUCTION

The Cramer-Rao bound (CRB) is a fundamental lower limit
to the variance of any unbiased parameter estimator [1]. As
such, it gives the ultimate accuracy that can be achieved in
synchronization operations.

For the frequency offset estimation problem, this bound
was computed under different assumptions. The CRBs for
the frequency estimation of a single tone in the case of both
a known and an unknown constant phase were computed
in [2] based on a discrete-time observation model. These
results can be also directly applied to the case of phase-
shift keying (PSK) signals when transmitted data are perfectly
known, i.e., when a data-aided (DA) frequency estimation is
performed based on a known preamble. The CRBs in the case
of non-data aided (NDA) operations for binary and quaternary
PSK (BPSK and QPSK) were derived in [3] and extended
to quadrature amplitude modulations (QAM) in [4]. In these
papers, the phase offset was assumed known or the case of
joint phase and frequency estimation was considered. Finally,
for PSK signals, in [5] the CRBs for DA and NDA estimators
considering both the case of unknown phase offset uniformly
distributed in the interval[0, 2π) and the case of joint phase
and frequency estimation were computed. The comparison
between the discrete-time model commonly used and the true
continuous-time model was discussed in [5], showing that,
although the correct observation model yields the smaller
CRB, the difference between the CRBs resulting from the two
models is apparent only at very low values of the signal-to-
noise ratio (SNR).

All these papers, as well as the papers dealing with the
algorithms for frequency estimation (see for example [2],
[6]–[9], or [10] and references therein) refer to an idealized
situation in which the phase offset is constant. However, in
radio communications, and particularly in modern burst-mode
satellite communications, it is common to incur in a strong
time-varying phase noise due to the oscillator instabilities. In
this case, it is interesting to quantify the resulting performance

degradation. To this purpose, we consider the case of a
burst-mode transmission using a linearly modulated signal.
In this scenario, it is usual to have a first coarse carrier
frequency acquisition to reduce the frequency error followed,
after timing recovery, by a fine DA frequency estimator based
on a known preamble [11]. Phase estimation and tracking is
then performed after frequency compensation. Since we are
interested in the operations of the fine DA frequency estimator,
we consider this setting: known data, ideal timing, and a
discrete observation model. In addition, the phase noise has to
be considered as a nuisance parameter.

The computation of the resulting CRB is a formidable
task. In fact, the likelihood function necessary for the CRB
computation must be obtained by averaging over the phase
noise. A closed-form expression does not exist and even if we
resort to numerical methods, the computational effort is very
hard. In this paper, we introduce a simple but very accurate
closed form for the likelihood function and then we perform
the expectation necessary to obtain the CRB by means of
an arithmetical average over a number of computer-generated
received samples. The result is in perfect agreement with the
closed form asymptotic expressions of the CRB that we also
compute in this paper. The derived approximated likelihood
function can be also employed to derive new estimation
algorithms and to gain new hints on the existing algorithms
tailored for a constant phase offset.

II. SYSTEM MODEL AND THE CRB

We consider the transmission of a sequence of complex
modulation symbols{ak}K−1

k=0 , belonging to anM -ary con-
stellation of unit average energy, over an additive white Gaus-
sian noise (AWGN) channel affected by carrier phase noise
and a constant frequency offsetν. Symbolsak are linearly
modulated. Assuming Nyquist transmitted pulses, matched
filtering, a small frequency offset and phase variations slow
enough so as no intersymbol interference arises, the discrete-
time baseband received signal is given by

rk = akej(2πνkT+θk) + wk , k = 0, 1, . . . , K − 1 (1)

where T is the symbol interval and the noise samples
{wk}K−1

k=0 are independent and identically distributed (i.i.d.),
complex, circularly symmetric Gaussian random variables
(rvs), each with mean zero and variance equal to2σ2 =
N0/ES , N0 being the one-sided noise power spectral density
andES the received signal energy per information symbol. For
the time-varying channel phaseθk, we assume a random-walk
(Wiener) model:

θk+1 = θk + ∆k (2)



where{∆k} are real i.i.d. Gaussian rvs with mean zero and
standard deviationσ∆,1 and the rvθ0 is uniformly distributed.
The rvs {θk} are supposed unknown to the receiver, and
statistically independent of symbols and noise. Whenσ∆ = 0
we obtain the classical case of a constant and uniformly
distributed phase offset.

Some of the information symbols in the transmitted burst
are known to the receiver (pilot symbols) and the frequency
estimation is based on these symbols. For generality, we
assume that the insertedN pilot symbols are{ak(n)} where
{k(n)|0 ≤ n ≤ N − 1} is an index set for the sample times.
These symbols and the corresponding received and phase
samples are collected into three vectorsa

∆
= {ak(n)}N−1

n=0 ,

r
∆
= {rk(n)}N−1

n=0 , andθ
∆
= {θk(n)}N−1

n=0 .
The CRB for this estimation problem is defined as [1]

CRB−1
ν = Er

[

− ∂2

∂ν2
ln p(r|ν)

]

(3)

where p(r|ν) is the probability density function (pdf) ofr
givenν, the derivative is evaluated at the true value ofν, and
Er denotes statistical expectation with respect to the vectorr.
This pdf can be obtained as

p(r|ν) = Eθ{p(r|θ, ν)} =

∫

p(r|θ, ν)p(θ) dθ . (4)

As already mention, the likelihood functionp(r|ν) cannot
be expressed in a closed form. On the other hand, if the
expectation in (3) can be easily performed by means of a
Monte Carlo average, the computational effort required by the
numerical evaluation of the expectation in (4) is much more
intensive. In the next section, we describe an approximate but
very accurate closed-form expression for this pdf.

In the technical literature, there is an alternative lower
bound on the estimator error variance, the so-called modified
CRB [12], easy to compute but in general quite looser. For
the problem at hand, this bound is not useful, since it can be
easily shown that it gives the same result is obtained when the
phase noise is not present.

III. T HE L IKELIHOOD FUNCTION

In this section, we introduce an approximated closed-form
expression for the pdfp(r|ν) that will be used in the computa-
tion of the CRB, and also a couple of exact asymptotic closed-
form expressions, in the absence of phase noise (σ∆ = 0) and
in the absence of thermal noise (σ = 0), respectively.

A. Approximated Closed-Form Expression

Let us denote byg(η, δ2; x) a Gaussian distribution inx,
with mean valueη and varianceδ2, and byt(ζ; x) a Tikhonov
distribution in x characterized by the complex parameterζ,
i.e.,

g(η, δ2; x) =
1√

2πδ2
e−

(x−η)2

2δ2 (5)

t(ζ; x) =
1

2πI0(|ζ|)
eRe[ζe−jx ] (6)

1Note that, since the channel phase is defined modulo2π, the pdf of∆k

can be approximated as Gaussian only ifσ∆ ≪ 2π.

where I0(x) is the zero-th order modified Bessel function
of the first kind. By using these definitions and taking into
account the system model (1), we may express, discarding
irrelevant proportionality factors independent ofθk andν

p(r|θ, ν) =

N−1
∏

n=0

p(rk(n)|θk(n), ν)

∝
N−1
∏

n=0

exp

{

1

σ2
Re[rk(n)a

∗

k(n)e
−j(2πνk(n)T+θk(n))]

}

=

N−1
∏

n=0

t
(

zk(n); θk(n)

)

(7)

p(θ)= p(θk(0))

N−1
∏

n=1

p(θk(n))|θk(n−1)) (8)

having definedzk
∆
=

rka∗

k

σ2 e−j2πνkT . In (8), the pdfp(θk(0)) is
p(θk(0)) = 1/2π, since the rvθk(0) is uniformly distributed,
whereas the pdfsp(θk(n))|θk(n−1)) are Gaussian with zero
mean and standard deviationδ(n) = σ∆

√

k(n) − k(n − 1)
(we implicitly assume, for the adopted pilot distribution,
δ(n) ≪ 2π). By substituting (7) and (8) into (4), observing
that

t (z; θ) t (u; θ) =
I0(|z + u|)

2πI0(|z|)I0(|u|)
t (z + u; θ) (9)

and using the following approximation [13], [14]2

∫

t(ζ, x)g(x, δ2; y) dx ≃ t

(

ζ

1 + δ2|ζ| ; y
)

(10)

discarding irrelevant multiplicative terms, after some manip-
ulations we obtain the following expression of the likelihood
function [15]:

p(r|ν)
∼∝

N−2
∏

n=0

I0
(

|zk(n) + un|
)

I0 (|un|)
(11)

where coefficientsun can be recursively computed as

un =
un+1 + zk(n+1)

1 + [k(n + 1) − k(n)]σ2
∆|un+1 + zk(n+1)|

n = N − 2, . . . , 0 . (12)

with initial condition uN−1 = 0.

B. Absence of Phase Noise

Whenσ∆ = 0, i.e., when a constant unknown phase offset
is considered, we obtain anexact expression for the likelihood
function which is equivalent to that derived in [9]. In fact,in
this case (10) holds with equality and coefficientsun can be
expressed as

un =
N−2
∑

ℓ=n+1

zk(ℓ) . (13)

2Note that, whenδ = 0, (10) holds with equality.



Hence, we have

p(r|ν) ∝
N−2
∏

n=0

I0

(

|∑N−2
ℓ=n zk(ℓ)|

)

I0

(

|∑N−2
ℓ=n+1 zk(ℓ)|

) . (14)

C. Absence of Thermal Noise

We now consider the case of absence of thermal noise (i.e.,
σ = 0). This is an approximation of the case when the SNR is
large enough so as the effect of thermal noise is negligible with
respect to phase noise. In this case, an exact closed form of the
likelihood function can be computed. Through straightforward
manipulations, we find that [15]

p(r|ν) ∝ exp

{

− (2π)2D

2σ2
∆

[νT

− 1

2πD

N−1
∑

n=1

arg(rk(n)a
∗

k(n)r
∗

k(n−1)ak(n−1))]
2

}

(15)

having definedD = k(N − 1)− k(0). Hence, in this case the
likelihood function is Gaussian and does not depend on the
number and position of pilot symbols, but only on the distance
D between the first and the last pilot symbol.

IV. T HE CRAMER-RAO BOUND

We now describe the computation of the CRB for the
problem at hand.

As already mentioned, a first computationally intensive
method is based on a numerical evaluation, through Monte
Carlo average, of both the expectations in (3) and (4). The
corresponding result, denoted asCRBMC , is used to verify
the accuracy of the CRB obtained through the use of the sim-
plified approximated closed-form expression of the likelihood
function (11) and denoted asCRBsimp. In this latter case, the
Monte Carlo average is only used to compute the expectation
in (3). In the case of absence of phase noise, by using the
closed-form expression (14), theCRBsimp is exact and gives
the same result obtained in [5, eqn. (29)] for known data,
a constant and unknown phase offset, and the discrete-time
observation model.

The low and high SNR limits of the CRB can be also
computed in closed form. By observing that for low SNR
values the arguments of the Bessel functions in (11) assume
low values, we can use the limiting form for small arguments
ln I0(x) ≃ x2/4, obtaining [15]

CRBL =
σ4/

2π2T 2

N−2
∑

n=0

N−1
∑

ℓ=n+1

F (n, ℓ)

(16)

where

F (n, ℓ)
∆
= [k(ℓ) − k(n)]2|ak(l)|2|ak(n)|2e−

1
2 [k(ℓ)−k(n)]σ2

∆ .
(17)

For σ∆ = 0, PSK signals, andN consecutive pilots, i.e.,
k(n) = n, n = 0, 1, . . . , N , this result coincides with the
low SNR limit in [5]. For σ∆ > 0, the CRB increases and

this means that there is a performance degradation due to the
phase noise.

For high SNR values, by using (15) in (3) we obtain [15]

CRBH =
1

DT 2

(σ∆

2π

)2

. (18)

Note that this result is exact since no approximation (excepting
that of high SNR values) is involved in the derivation of
(15). This high SNR limit allows to draw some important
considerations. First of all, in the presence of a time-varying
phase, the CRB has a floor, i.e., it is not possible to reach
the desired estimation accuracy simply increasing the SNR
value. In addition, the asymptotic CRB only depends on the
positions of the first and last pilot symbols (as the asymptotic
likelihood function (15)) and is completely independent ofthe
actual pilot distribution. Let us now consider the particular
pilot distribution characterized byk(n) = nL, whereL ≥ 1
is an integer constant which plays the role of the distance
between two consecutive pilot symbols. It it worth noting that
L = 1 depicts the situation ofN consecutive pilot symbols. In
this case, beingD = (N − 1)L, the high SNR limit assumes
the form

CRBH =
1

(N − 1)LT 2

(σ∆

2π

)2

. (19)

Hence, for high SNR values, the CRB goes asN−1 in
the presence of phase noise whereas it goes asN−3 for a
constant phase offset [9]. As a consequence, an increase in
the estimation window has still a beneficial effect on the
estimation accuracy, mitigated by the fact that the presence
of a time-varying phase leads to almost independent received
samples if the window becomes larger.

Similarly, the CRB goes asL−1 for a time-varying phase
whereas it can be shown that it is goes asL−2 for a constant
phase offset. This behavior is due to the fact that increasing
the distance between two consecutive pilot symbols has the
same effect of increasing the phase noise variance.

V. ESTIMATION ALGORITHMS

By using the expressions for the likelihood function derived
in Section III we can design a couple of maximum likelihood
(ML) estimation algorithms for this scenario. We consider
the above mentioned pilot distributionk(n) = nL. In this
case, for the considered discrete-time signal model, values of
frequency offset which differ of1/LT are indistinguishable
since they produce the same received samplesrk(n) = rnL.
Hence, the likelihood functions are1

L
-periodic with respect to

the normalized frequency offsetνT . This means that the valid
estimation range must be small enough so as no more than
one global maximum appear in the likelihood function, that
is, the possible values of the frequency offset must be inside
the range[− 1

2LT
, 1

2LT
].

By considering the likelihood function (11), we obtain the
following estimator

ν̂ = argmax
ν

p(r|ν) = argmax
ν

ln p(r|ν)

= argmax
ν

N−2
∑

n=0

[ln I0(|znL + un|) − ln I0(|un|)] .

(20)



The search for the maximum of the log-likelihood function can
be accomplished, as for the Rife and Boorstyn algorithm [2],in
two steps. In a first coarse search, the log-likelihood function
is evaluated for some values of the frequency offset in the
range [− 1

2LT
, 1

2LT
] and the valueνcs which corresponds to

the maximum value is obtained. Then, with a fine search the
value ofν closest toνcs which maximizes the log-likelihood
function is located, for example by using the secant method.
This estimator will be denoted asEPN . Obviously, it is
quite complex for a receiver implementation. In the numerical
results it will be used as a term of comparison to evaluate the
performance that can be obtain with a practical estimator.

Let us now take into account the asymptotic expression of
the likelihood function. A ML estimator based upon (15) is
characterized by this simple estimation rule (D = (N − 1)L
for the above mentioned pilot distribution)

ν̂ =

∑N−1
n=1 arg

[

rnLa∗

nLr∗(n−1)La(n−1)L

]

2π(N − 1)LT
(21)

that is very similar to the Kay estimator excepting for the
weighting coefficients [6], [10]. We will denote this estimator
as Easymp. It is straightforward to show that, for high SNR
values, this estimator is unbiased.

In the numerical results we will compare the performance
of these two algorithms with that of some of the algorithms
designed in the literature in the absence of phase noise.

VI. N UMERICAL RESULTS

Although the results in the previous sections can be applied
to general linear modulations, in the numerical results we
considerM -PSK signals since in this case the performance
does not depend on the adopted pilot sequence. We show the
accuracy of the CRB computed by using the simplified closed-
form expression of the likelihood function. The performance
of the derived estimators is also shown and compared with
the CRB and with the performance of “classical” frequency
estimators.

In Fig. 1, forσ∆ = 0, 2, 6 degrees, we show theCRBsimp,
together with the derived low and high SNR asymptotic
expressions, as a function of the SNR in the case ofN = 64
consecutive pilot symbols (henceL = 1). TheCRBMC is also
shown. We may observe that the derived simplified method
has a very good accuracy since theCRBsimp coincides with
the CRBMC . The high SNR valueCRBH is reached for
values ofES/N0 around 10 dB, whereas the low asymptotic
value CRBL, which slightly depends on the value ofσ∆,
is reached only at very low SNR values. The performance
degradation for high SNR values due to the presence of phase
noise is significant already forσ∆ = 2 degrees, as shown by
the presence of the floor predicted by our high SNR asymptote.

We now consider the performance of the estimators de-
scribed in the previous section and compare it with the
performance of the best algorithm for frequency estimationin
the presence of constant phase offset, i.e., the Rife & Boorstyn
(R&B) algorithm, denoted in the figures asERB. Since we
verified that in the considered operating conditions all the
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Fig. 1. CRB in the case ofN = 64 consecutive pilot symbols and different
values ofσ∆.
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Fig. 2. Normalized estimator variance forN = 64 andσ∆ = 6 degrees.

estimators are unbiased, we show the estimator variance,
normalized to1/T 2, which coincide with the mean square
estimation error. All the following simulation results have been
obtained by generating a random frequency offset in the range
[−2 · 10−2, 2 · 10−2], independently frame by frame.

In Fig. 2 we show the normalized error variance as a
function of the SNR, forσ∆ = 6 degrees andN = 64 pilot
symbols. The cases ofL = 1 (consecutive pilots) andL = 20
have been considered. The R&B estimator, which is optimum
for a constant phase, does not seem to be able to reach the CRB
for high SNR. On the contrary, estimatorsEPN andEasymp,
designed taking into account the phase noise statistics, are
asymptotically optimal. At very low SNR, all the estimator
exhibits a larger variance with respect to the bound due to the
occurrence of outliers [2], [10]—the corresponding threshold
depending on the estimator and on the value ofL. In particular,
the estimatorEasymp has a very high threshold. However, we
would like to point out that forES/N0 larger than few dBs,
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it is convenient to use the estimatorEasymp, which is able to
reach the CRB and presents a noticeable smaller complexity
with respect to the other estimators.

The performance degradation due to phase noise is high-
lighted in Fig. 3, where the normalized estimation variance
for the considered estimators is reported, together with the
CRB, as a function of the phase noise standard deviation for
ES/N0 = 10 dB andN = 64 consecutive pilot symbols.

Finally, in Fig. 4, forES/N0 = 10 dB, L = 1, andσ∆ = 0
and6 degrees, we show the performance of the estimators as
a function of the number of pilotsN . We may observe that
in the presence of phase noise, the normalized error variance
decreases asN−1 as predicted by the high SNR asymptote of
the CRB.

VII. C ONCLUSIONS

In this paper, the Cramer-Rao lower bound for frequency
estimation in the presence of phase noise has been computed.

Although it is not possible to derive a closed-form expression,
we have shown an approximation that leads to a simple, fast
but very accurate evaluation of the bound by using a Monte
Carlo average. The asymptotic closed-form expressions of the
bound for low and high values of signal-to-noise ratio have
been also provided. These expressions are very useful to better
understand the effects of the phase noise on the frequency
offset estimation accuracy. In particular, we demonstrated that
in the presence of the phase noise it is not possible to reach the
desired estimation accuracy simply decreasing the signal-to-
noise ratio. These asymptotic expressions of the bound allow
also to quantify the effect of the pilot distribution parameters
and phase noise variance. Finally, a couple of ML-based
algorithms specifically tailored for this scenario have been
designed and compared with the algorithms designed in the
literature for the case of absence of phase noise.
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