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Because of an importance of the particle creation (especially, its possible fulfilment of 
the black-body law with a definite temperature) in an early universe to various other 
cosmological problems, we study how the creation of scalar particles occurs in the Bianchi
type I anisotropic universe adopted in our previous works on the quantized scalar field. It 
is shown that, as in a special isotropic case dealt with in recent papers, the creation may 
occur at the sacrifice of the requirement that the quantization procedure should reproduce 
the usual theory for a free field in the limit when the anisotropic universe changes into the 
Minkowski space-time. It is further shown that the creation occurs in accordance with the 
black-body law only in a 2-dimensional hyper-surface relating to the anisotropic cosmic 
expansion, provided that we fix two arbitrary constants appearing in a general expression 
for the Feynman propagator in terms of a procedure similar to that in the isotropic case. 
A speculation on the isotropization of our model-universe is also made from the standpoint 
of seeking the attainment of the thermal equilibrium in the whole universe. 

§ 1. Introduction 

Since the pioneering works of Zel'dovichn and Parker,2> the creation of particles 
m an early universe becomes one of the most fascinating problems in cos
mology, because it may serve to elucidate the origin of a large specific entropy 
(the number of photons per baryon) in the present-day universe as well as its 
reaction effect to make the early universe with a large anisotropy (if it existed) 
isotropic. According to Parker's2> canonical approach to the quantization of a scalar 
field, the creation of those particles in an isotropic universe with flat 3-space occurs 
in accordance with the black-body law, provided that the cosmic expansion began 
from an initial adiabatic state (whose existence is not necessarily permissible). 
To remedy the last defect in the above interesting result, on the basis of the 
path-integral quantization procedure, Chitre and Hartle3> derived the Feynman prop
agator K(x, x') for a massive (m>O) scalar field in a special universe with the 
metric 

(so that the scalar curvature is of the form R=gpvRt<v=6/t\ and to=const) to 
show that the black-body temperature is given by kBT(t)=(n:t)- 1 (cf. h=c=l 
and kB is the Boltzmann constant). 
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On the Creation of Scalar Particles in Some Anisotropic Universe 1533 

On the other hand, for examining the relation between De Witt's4> configuration

space approach and Parker's2> momentum-space one to a cosmological gravitational 

field interacting with quantized matter fields, the author5> studied the propagation 

behavior of a quantized scalar field in a special Bianchi-type I anisotropic universe 

adopted for mathematical simplicity. It is an easy matter to transfer the formalism 

into the one in a general isotropic universe with flat 3-space. In the light of this 

formalism, we6> examined Chitre and Hartle's result to show that their quanti

zation procedure cannot reproduce the usual theory for a free field in the limit 

when the universe changes into the Minkowski space-time. To resolve this com

plexity, we have to study in more detail how the vacuum state (without a unique 

physical meaning7>) and the associated particle state at an initial epoch in the 

isotropic universe should be fixed, but there is at present no prospect to do so 

in a successful manner. Therefore, we prefer to accumulate other examples having 

a similar complexity to look for a clue for solving this difficult but important 

problem. 
The purpose of this paper is to present such an example which is derivable 

from our quantization procedure in Ref. 5) by its replacement with another one 

similar to Chitre and Hartle's, i.e., an anisotropic version of the example dealt with 

in Ref. 6). In § 2 we summarize several geometric properties of the Bianchi-type 

I universe (which incidentally resemble those of the isotropic universe with the 

metric (1·1)), in addition to the discussion (for later usefulness) about the world 

line of a test particle in the universe. In § 3, by making use of the 4-dimensional 

commutation function G (x, x') and the elementary solution G(!) (x, x') derived 

in Ref. 5), we construct the Feynman propagator GF (x, x') which depends in 

general upon two complex constants. A minor mistake in the fixation of those 

constants in Ref. 5) is first corrected, so that the pair-creation does not occur. 

Next we tend to another fixation in terms of which the pair-creation may occur 

in a 2-dimensional hyper-surface relating to the anisotropic cosmic expansion. Sec

tion 4 is devoted to the verification that the particle creation obeys a black-body law 

resembling closely the one in the isotropic case. In § 5 we speculate on the 

isotropization of the Bianchi-type I universe due to the creation of particles thus 

found. We show in the Appendix that, by virtue of the correction in § 3, our ele

mentary solution is changed into the pseudo-elementary solution defined by Eq. 

(A·1) in Ref. 5). 

§ 2. Geometric properties of the Bianchi-type I universe 

According to Ref. 5), the Bianchi-type I universe is specified by the metric 

(2·1) 

so that the metric determinant, the Ricci tensor and the scalar curvature are of the 

form 
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1534 H. Nariai 

{( -gY12 = (t/toY, Ro0 =Ra3 =0, 

R=g""R".=2/t2 , 

(2·2) 

where t 0 is a constant. The geodesic hi-scalar (J (x, x') m the above universe 
is given by 

(2· 3) 

which, together with g (x, x') = {g (x) g (x')} 112 = (tt' /t02) 2, leads to another bi-scalar 

(2· 4) 

where ~.L={(x1-x/) 2 + (x2 -x/) 2} 112/t0 and z=x8 -x/. As already shown,5>.s> 
these hi-scalars play a significant role in the discussion of various hi-scalar prop
agators such as the 4-dimensional commutation function G (x, x') and the elemen
tary solution G(ll (x, x') for a quantized scalar field in the universe. The fact 
that both hi-scalars can be represented in the above explicit forms is the reason 
why we adopted such a special and unrealistic universe, like Chitre and Hartle's3> 
adoption of the metric (1·1). 

If we designate the proper time of a test particle in the universe by dr 
= (- ds2) 112, its geodesic equations of motion are given by 

{
dxafdr=caCto/tY (a=1, 2), dxa/dr=cs, 

dtj dr = {1 + (c12 + C22) Cto/tY + Cs2P12 , 
(2·5) 

where ci (i = 1, 2, 3) are integration constants. However, Eq. (2 ·1) shows that the 
test particle has the physical 3-velocity defined by Va= (t/t0) (dxa/dt) and 
v 3=dx3/ dt. Accordingly the corresponding Lorentz-like velocity is of the form 

{
Va=Va/ (1- V .L2- Vs2)112 = Ca (toft), 

Vs=Vs/(1-v.L2-v/)112=c3 , 

where V.L 2=V12 +vt 

(a= 1, 2) 
(2·6) 

Moreover, it would not be useless to point out that, if we stand on general 
relativity, both Chitre-Harlte's isotropic universe and our anisotropic one consist 
of such a fictitious fluid as 

{
p= -3p=3j8nGt2, (Chitre-Hartle) 

p= -3p=wjt=1j8nGt2, (Ours) 
(2·7) 

where G is Newton's gravitation constant, and p, P and w stand for the density, 
pressure and coefficient of shear viscosity, respectively. The relation p = - 3p in 
Eq. (2 · 7) shows an unrealistic nature of both universes. 

§ 3. Propagators for a quantized scalar field in the universe 

Let us represent the 4-dimensional commutation function G (x, x') and the 
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On the Creation of Scalar Particles in Some ilnisotropic Universe 1535 

elementary solution G'D (x, x') for a quantized scalar field (with mass m) in the 

universe under consideration as follows :5) 

and 

GCll (x, :c') = {g (xC;~~/ -J;z Sdk ei,,.,. {fk (t) fk * (t') + fk (t') fk * (t)}, (3 · 2) 

where {g (x, x')} 112 = (tt') / t 02 as before, and r:===x -- x'. Here, the time-dependent 

functions fk (t) and fk * (t) are given by 

(3. 3) 

with 

(3·4) 

where kj_'=k/+1.:/, and A=1 or 0 according as the scalar field (when m=O) 1s 

conformally invariant or not. Both propagators satisfy one and the same homoge

neous vvave equation, e.g., 

CD- U)G(x, x') 

- {- r'a, (t'a,) + (t/ t 0) - 2 (a;,+ a;) +a;,- U} G (x, x') = 0, (3 · 5) 

where U-m'+;(R/6. Then the Feynman propagator defined by 

GF (x, x') =- HO (t- t') - (} (t'- t)} G (x, x') + (i/2) c<J) (x, x') (3. 6) 

satisfies the correct inhomogeneous wave equation 

(3. 7) 

where (} (t- t') is the step function. 

For simplicity, we shall assume that A= 1. Then it follows from Eqs. (3 · 3) 

and (3 · 4) that 

J fk (t) = .J;t {Bk e<''-i)rrf4H)~l (Jit) + C k e-<''-i)rrf4H);l (ttt)}' 

l fk * (t) = -j;t {B k * e-(2>-i)ncf4H)~l (;it) + C k * e(2>-i)rrf4H);l (fit)} 

(3. 8) 

with 

[Bk[ 2 -[Ck['=1, (Bk and Ck are complex constants) (3·9) 

where ;t and V are an abbreviation of f13 and V j_ defined by 

fls= (m' + f.:s') v 2 , V j_ = { (/?j_t0) 2 + 1/12} 112 , (3 ·10) 
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1536 H. Nariai 

and H;~a) (pt) (a= 1, 2) stand for the Hankel functions. It is noticeable that Eqs. 
(3 · 8) and (3 · 9) closely resemble Eqs. (6) and (7) in Ref. 6). Inserting Eqs. 
(3 ·1) and (3 · 2) into Eq. (3 · 6) and making use of Eq. (3 · 8) and the expression 
for {g (x, x') } 112, we obtain 

with 

GF (x, x') = (;;) 3 Sdk eik·r (~~;) {8 (t- t') Ak (!lt, pt') 

+ e (t'- t) Ak (pt', pt)} 

+ Bk *CkeiCiv+ 112>~ Hi~) (pt) HN) (pt') 

+ BkCk *e-iciv+ 1'2>~ H;~2) (pt) HlJl (pt'), 

(3 -11) 

(3 -12) 

where f.l and v are the abbreviation of p 3 and li .L given by Eq. (3 ·10) as before. 
It is easily seen that an arbitrariness of the propagator GF (x, x') given by 

Eq. (3 ·11) (because of its dependence upon the complex constants BkrvCk *) has 
solely originated from the expression for G(l) (x, x') derivable from Eqs. (3 · 2) 
and (3 · 8). In Ref. 5), the arbitrariness was fixed by a suitable procedure which 
makes the propagator G 0 > (x, x') reduce to its Minkowski counterpart J(l) (x -x') 
in the limit when the cosmic expansion disappears. However, as will be shown in the 
Appendix, the paper included a minor mistake and the correct result is found to be 
Ck = Ck * = 0 or lBk 1

2 = 1. Accordingly we can simplify Eq. (3 -12) as follows: 

(3 -13) 

which prohibits the occurrence of the pair-creation process in the sense of Chitre 
and Hartle.3> 

In view of this, we shall tend to another fixation satisfying the requirement 
that the coefficient BkCk*exp{(v-i/2)7r} of the term Hi~2l(pt)H;~2l(pt') in Eq. 
(3 -12) is unity, just like the one in Ref. 6). Then, by virtue of Eq. (3 · 9), 
we obtain 

{1Bkl 2 -1 ~ 1Ckl 2 =t{(1 +4e.-2""Y12 -1}, 

BkCk*=ze-"", Bk*Ck= -ze-"". 
(3 -14) 

A substitution of Eq. (3 -14) in Eq. (3 -12) gives 

Ak (pt, pt') = 2Hi~) (pt) Jiv (pt') + e- 2"" HN) (pt) H2) (pt') 

+ H (1 + 4e- 2"") 1' 2 -1}{H2) (pt) Hi~) (pt') + HN) (pt) H~~) (pt')}, (3 -15) 

where Jiv (z) = {H2l (z) + H;~) (z)} /2. Equation (3 ·15) is derivable from Eq. (11) 
in Ref. 6) by replacing ik and mt in HiCfl (mt) (a= 1, 2) and e-krr with iv, pt and 
e-•rr, respectively. 
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On the Creation of Scalar Particles in Some Anisotropic Universe 1537 

§ 4. Pair-creation of particles described by Eqs. (3 ·11) and (3 ·15) 

Equation (3 · 8) shows that, if Ck = 0, the time-dependent function f< (t) oscil
lates in proportion to exp (- illst) when /is('?> 1 (where we shall use the original 
symbols /is and v J. in what follows). Accordingly we can define a positive-fre
quency solution of the homogeneous wave equation (0- U) ¢; (x) = 0 by 

(4 ·1) 

where we have dropped the operator part in the integrand. Then its Fourier 
component ¢;k (t) may be represented as follows: 

(when /1st~1) (4·2) 

with the proviso that VJ (kJ.) should obey the normalization condition f dkJ.[f (kJ.) [2 

= 1 with dkJ. =dk1dk2• 

Now it is an easy matter to follow Chitre and Hartle's procedure31 for descri
bing the pair-creation in question. In fact, by the use of the above ¢;k (t) and 
the Feynman propagator GF (x, x') given by Eqs. (3 ·11) and (3 ·15), we can 
represent the amplitude that a pair of particles whose wave-number are kJ. (with 
state i) and - k J. (with state j) are created in the form 

Aij = -Ao S dkJ.fi* (kJ.)f/ ( -kJ.)e-"'• (4· 3) 

(just like Eq. ( 4 · 6) in Ref. 3)), where A 0 stands for the amplitude that no 
particle is created. On the other hand, Eqs. (4·2) and (4·3) in Ref. 3) hold in 
the present case, too: They represent the amplitude Ai1 ... i,n for producing n-pairs and 
the unitarity condition satisfied by those amplitudes. Accordingly we obtain the 
probability that n-pairs with the wave-numbers kJ. and -kJ. are created as follows: 

(4· 4) 

so that the average number of pairs in the mode kJ. becomes 

00 

N (kJ.) = 'L: nPn (kJ.) = (e 2~'• -1) -l, (4·5) 
n=O 

where v J. = { (kJ.t0 ) 2 + 1/12r12 as before. Then the number density <NJ.) (i.e., the 
number of pairs per unit area in the 2-dimensional hyper-surface relating to the 
anisotropic cosmic expansion) is defined by 

where fJa=ka/ a (t) (a= 1, 2) stand for physical momenta of a particle in the k1-

and k2-directions, and P J. ~ (P12 + pz") 112• 

The appearance of the numerical constant 1/12 (when A= 1) in the expression 
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1538 H. Nariai 

for v j_ = { (/~ j_ t 0) 2 + 1/12} 112 makes Eq. ( 4 · 4) ~ ( 4 · 6) deviate from the black-body 

formulas, like in the case of gaseous matter with a non-vanishing chemical potential. 

However, the validity of Eq. (4·4) would become worse for small v-alue of lzj_t0• 

Accordingly we shall discard the numerical constant 1/12 in the expression for 

vj_, i.e., we shall put vj_=lzj_t0 =Pj_t, in what follows. If so, we can regard Eq. 

(4·5) as the black-body law specified by the temperature (in the c.g.s. unit) 

T j_ (t) = ft/ kBrct . (4·7) 

Similarly, vve can reduce Eq. ( 4 · 6) to 

<N,)=(cto)_z f= xdx (rr/12)(cto)-z. 
- 27r Jo (ex-1) 

(4 ·8) 

In contrast with the black-body temperature T(t) =fi/lzBrct given by Chitre and 

Hartle,3> our formula (4·7) for Tj_ (t) is formally the same as theirs, but the 

temperature in the /~3-direction does not exist or T 3 (t) = 0, because the pair-creation 

does not occur in that direction. Moreover, the counterpart of Eq. ( 4 · 8) in the 

Chitre-Hartle case is given by 

<N)= S N(k)dli= (rr/25.79) (ct0)- 3 , 

where we have used the relation 2:.:::'~ 1 r- 3 = 7r3/25.79. 
Here let us define the mass density o£ the created particles by 

(Chitre-Hartle) 

(Ours) 
(4. 9) 

Equations (2 · 7) and ( 4 · 9) show that both universes are dominated by the created 

particles (p,> p), provided that 

with 

{
0.990, (Chitre-Hartle) 

A= 
0.545, (Ours) 

(4·10) 

(4·11) 

where l.a=(Gfl/c3) 112~10- 33 cm is the Planck length and Am=h/mc the Compton 

wave length of a created particle. 

§ 5. Speculation on the isotropization of our model-universe 

It was first insisted upon by Zel'dovichD that the particle creation 111 an 

anisotropic universe would effectively serve to its isotropization, while his analysis 

did not take the reaction effect of those created particles to the background universe 

into consideration. The subject of this section is to speculate on the isotropization 

of our model-universe with the metric (2·1) in the level similar to Zel'dovich's. 
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011 the Creation of Scalar Particles in Some Anisotropic Universe 1539 

As already shown, the assemblage of created particles in the universe obeys 

the black-body law with the temperature T J_ (t) given by Eq. ( 4 · 7), but its temper

ature in the k3-direction, T 3 (t), is vanishing. In other words, those particles are 

in a state dev-iating strongly from thermal equilibrium, so that the thermal energy 

in the lz J_ -plane begins (at t = ti) to flow into the k3-direction till some epoch 

t=t1 (>ti) at which the equality T 3 (t1)=TJ_(t1) is established. Then we can 

regard the epoch t1 as the one at which the isotropization in question is attained. 

In order that the above picture may hold in spite of the unrealistic nature 

(cf. Eq. (2 · 7)) of our model-universe, we have only to impose the inequality 

condition (4 ·10) on t = ti. HoweYer, the resulting inequality for tj t0 is shown 

to be very severe as soon as we estimate it numerically, because the factor CAm/ }.0 ) 

on the right-hand side of Eq. ( 4 ·10) becomes as large as 1020 for the creation of 

particles with nucleon mass m"-./ 10-24g. (It is a matter of course that such a 

situation arises also in the isotropic case dealt with by Chitre and Hartle, as Eqs. 

( 4 ·10) and ( 4 ·11) show.) In view of this, we shall henceforth discard the 

inequality condition ( 4 ·10) on the assumption that the fictitious fluid specified by 

Eq. (2 · 7) is a mere ether without any effect to the created particles. 

Now let us describe the interaction among those created particles by means 

of such a collision time that 

r(t)=1/nuv(t), (5 ·1) 

where u is the collision cross-section defined by Am'= Cll/mc)', n=pc/m=(1\fJ_)312 

(cf. Eq. ( 4 · 9)) is the number density and v (t) stands for the r.m.s. of the 3-

velocities gi\-en by Eq. (2 · 6) for test particles in the universe, i.e., 

v (t) = {(VJ_ 2) + ( V32)} 112 = {(c J_ 2) (t0/ t) 2 + (cs')} 112 • (5· 2) 

Then we obtain 

r (t) =at/ {1 + ({3t/ t 0 ) 2} 112 , (5. 3) 

where 

(5· 4) 

The next task is to set up a suitable system of the dynamical equations for 

T J_ (t) and Ts (t) in which the collision time given by Eq. (5 · 3) would play a 

significant role. For simplicity, we shall adopt the following system: 

dTJ_/dt= -TJ_/r(t), dT3/dt= (T3 +T*)/r(t) (5·5) 

on the prescription that T 3 (ti) =0 and T*=TJ_(ti) =ll/kBTCti (cf. Eq. (4·7)). An 

integration of the aboYe differential equations gives 

J TJ_(t) =T* exp{- fdt/r(t)}, 

l Ts(t) =T*[exp{fdt/r(t)} -1]. 
(5·6) 
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1540 H. Nariai 

In order that both temperatures may be equal to each other at t = tf> i.e., T 3 (t1) 

=T.L(t1)=T(t1), we must have 

(5 ·7) 

and 

(5·8) 

where 

(5·9) 

The parameters a and {3 defined by Eq. (5 · 4) should satisfy the inequality 

(5 ·10) 

because 1-T.L(t)/T.L(t)l=r(t) when t>ti must not be smaller than its counter
part when ti>t, i.e., 1-T.L(t)/T.L(t)l=t (cf. Eq. (4·7)). 
Remark. It is clear that Eq. (5 · 5) ceases to be valid at t = t1, because it cannot 
assure the condition T 3 (t) =T.L (t) =T(t) for t>t1 (but not for a particular epoch 
t = t1). This is, of course, due to our disregard of any non-linear term in setting 
up the dynamical equations for T.L (t) and T 3 (t). In spite of such a defect, Eqs. 
(5 · 7) and (5 · 8) would provide us with some useful information at the instant 
when the thermal equilibrium (and, therefore, the isotropization of our model
universe) is attained. 

To estimate the numerical values of T* =ft/kB-rrti and t1/ti on the above pre
mise, let us tentatively assume that 

so that Eq. (5 · 4) gives a= 7.465. If m = 1.673 X 10-21 g (the nucleon mass) m 
particular, we obtain 

ti = 7.0 X 10- 25 sec, T * = 3.5 X 101'K. 

Then it follows from Eqs. (5 · 8) "-' (5 ·10) that 

for 

for 
/3=1 } 
/3= 1/5 . 

(5 ·11) 

(5 ·12) 

The numerical values given by Eqs. (5 · 7), (5 ·11) and (5 ·12) permit us to 
conclude that, so far as the creation of scalar particles with Jn"-' 10-24g and (c .L 2) 112 

"-'C is concerned, their assemblage reaches quickly to the thermal equilibrium. 

§ 6. Concluding remarks 

The umverse specified by the metric (2 ·1) is an anisotropic version of Chitre
Hartle's model-universe used in their discussion of the pair-creation of scalar parti-
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cles. These universes permit us to obtain not only an explicit form of the geodesic 

bi-scalar (5 (x, x'), but also the one for a quantized massive scalar field ¢ (x) on 

which the 4-dimensional commutation function G (x, x') and the elementary solution 

G<n (x, x') stand. Accordingly the example presented in this paper (together with 

the one in Ref. 6)) will play an important role in our future work on the relation 

between Chitre and Hartle's path-integral quantization procedure and our canonical 

one. 

Moreover, the example is also interesting from the standpoint of Zel'dovich's 

idea that the particle creation in an anisotropic universe will serve to its isotropiza

tion, because we can now deal with the problem in terms of the thermodynamical 

language. As regards the contents of § 5, however, there are several weak points, 

especially the linearity of Eq. (5 · 5) for T .L (t) and T 3 (t). A more reliable set of 

the dynamical equations for them will, therefore, be sought for in a separate paper. 

Appendix 

--Examination of the Procedure in Ref. 5) for Fixing the Arbitrary 

Constants Bk"'-'Ck* in Eq. (3·12)--

As m Ref. 5), let us put 

{
ak (t) = {fk (t) - fk * (t)} /i .j2, bk (t) = {fk (t) + fk * (t)} I .j2, 

. (A·1) 
ak (t) bk (t) - bk (t) tik (t) = 1, 

where fk (t) and fk * (t) are the time-dependent functions given by Eq. (3 · 8). 

Then we have 

and 

where 

- i {fk (t)fk * (t') - fk (t')fk * (t)} = ak (t) bk (t') - ak (t') bk (t) 

= (1/ /1.) {jiv (IJ.t) Yiv (IJ.t') - jiv (IJ.t') Yiv (IJ.t)} 

{fk (t)fk * (t') + fk (t')fk * (t)} = ak (t) ak (t') + bk (t) bk (t') 

= (1/ /1.) [ ( J Bk 12 + ICk 12) {jiv (IJ.t)jiv (/l.t') + Yiv (/l.t) Yiv (IJ.t')} 

- (Bk *Cke-"" + BkCk *e"") {jiv (IJ.t) Yiv (IJ.t') + jiv (IJ.t') Yiv (IJ.t)} 

(A·2) 

+ i (Bk *Cke-""- BkCk *e"") {j;. (IJ.t)j;. (IJ.t')- Yiv (IJ.t) Yiv (IJ.t')}], (A· 3) 

(A·4) 

Equation (A· 2) shows that the commutation function G (x, x') given by Eq. 

(3 ·1) is identical with the previous one, i.e., Eq. ( 4 · 9) in Ref. 5). On the other 

hand, the elementary solution G<n (x, x') given by Eq. (5 · 4) in Ref. 5) should be 
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1542 H. Nariai 

identical with the one derivable from Eqs. (3 · 2) and (A· 3) on the requirement 
that it must be symmetric with respect to jiv (tlt)jiv (!Lt') and Yiv (/it) Y;v (p.t'). In 
reality, however, we dropped (by a careless mistake) the factors exp ( + vn-) in Eq. 
(A· 3), so that the erroneous condition Bk *C~c = BkCk * (on which Eq. (5 · 4) in 
Ref. 5) stands) was obtained. As is easily seen, the correct condition derivable 
from the above symmetry requirement is Ck=C~e*=O or [Bk[ 2 =1 (cf. Eq. (3·9)) 
which corresponds to the case Pk (pt0) = 1 and Qk (pt0) = 0 in Ref. 5). In other 
words, the 2-point function G(l) (x, x') given by Eq. (A ·1) in Ref. 5) is the 
correct elementary solution to be derived from the symmetry requirement mentioned 
abo,-e. 
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