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The dynamic scaling functions for ferromagnets above and below the critical temperature 

are determined using mode coupling theory. Below the critical temperature we study 

isotropic ferromagnets taking into account the exchange interaction only and give the 

first numerical solution of the resulting mode coupling equations. In the paramagnetic 

phase we examine how the critical dynamics is modified by the addition of the dipole- 

dipole interaction. On the basis of this theory we are able to explain in a unifying 

fashion the results of different experimental methods; i.e.: neutron scattering, hyperfine 

interaction and electron-spin resonance. Predictions for new experiments are made. 

1. Introduction 

Ferromagnets in the vicinity of their Curie point were 

among the first systems where critical dynamical phe- 

nomena with nonclassical features were observed ex- 

perimentally. Theoretically a qualitative and increas- 

ingly quantitative understanding was provided by 

dynamical scaling theory, mode coupling and the re- 

normalization group theory. In the region where the 

exchange interaction dominates, the mode coupling 

theory was particularly successful for isotropic Heisen- 

berg ferromagnets. 

In the following we extend the mode coupling 

theory for isotropic exchange ferromagnets to the fer- 

romagnetically ordered phase and include dipole- 

dipole forces in the paramagnetic phase. In the or- 

dered phase we disregard dipolar forces. Hence the 

longitudinal and transverse scaling functions can be 

viewed as the analogues of the Resibois-Piette scaling 

function [1] for the paramagnetic phase. Clearly this 

part of our theory can be applied only to experiments 

not too close to T~ and for not too small wave vectors 

such that dipolar forces are negligible. Nevertheless 

it should allow to interpret and stimulate experiments 

below the Curie point. 

In order to avoid confusion we draw attention 

to the different connotation of the terms transverse 

and longitudinal. For the isotropic ferromagnet below 

T,. these refer to the direction of the magnetization, 

while for the dipolar ferromagnet they refer to the 

direction of the wave vector. 

Concerning the importance of the dipolar forces 

we note. Because of the long range character of the 

dipole-dipole interaction it dominates the critical 

behaviour in the immediate vicinity of the critical 

point and for small wavevectors. If the dipolar inter- 

action is weak compared to the exchange interaction 

there is a crossover from isotropic critical behaviour 

to dipolar critical behaviour [2]. The static crossover 

can be characterised by a wave vector qD. It turns 

out that the static critical exponents of the dipolar 

fixed point are very close to the isotropic [2]. The 

most significant crossover can be seen in the longitu- 

dinal susceptibility, which is equal to the transverse 

susceptibility for 4- i  and q,> qD and remains finite 

in the opposite limit. Here ~ is the correlation length 

and q the wave number. A widely held expectation 

was that also the dynamic quantities should show 

a crossover at qD- Indeed this crossover was found 

in the local relaxation time in N M R  experiments. On 

the other hand in neutron scattering experiments the 

dynamic crossover could not be detected. Right at 

T~ the critical behaviour was found to be isotropic 

down to almost a tenth of qD. What  made the situa- 

tion even more bewildering was the fact that neverthe- 

less neutron scattering data could not be fitted by 
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the Resibois-Piette scaling function. Recently the au- 

thors have developed a mode coupling theory for di- 

polar ferromagnets [3], on the basis of which one 

can explain the seemingly conflicting features of neu- 

tron scattering. Here we expose our theory in more 

detail and apply it to two more groups of experi- 

ments; i.e. local experiments as NMR characterised 

by the local relaxation rate and to electron spin reso- 

nance (ESR). 

The outline of the paper is as follows: In the rest 

of the introductory section we briefly describe the gen- 

eral structure of mode coupling equations. In Sect. 2 

we review the mode coupling theory for isotropic fer- 

romagnets with pure exchange interaction above and 

below the critical temperature. Furthermore we will 

give a numerical solution of the mode coupling equa- 

tions below the critical temperature. In Sect. 3 we de- 

rive the mode coupling equations for ferromagnets 

with both short range exchange and long range dipo- 

lar interactions in the paramagnetic phase. We apply 

the theory to neutron scattering, NMR and ESR ex- 

periments. In the final Chap. 4 we summarize the re- 

sults and propose further experiments. 

Now we give a brief outline of the general struc- 

ture of mode coupling equations. The quantity of in- 

terest is the Kubo relaxation matrix for the dynamical 

variables {X~(q)}, which is defined by 

oo 

qb~P(q, co)= S d t  eiOt 0b~/~(q, t) (1.1) 
0 

with 
(x3 

q)~(q, t)= ilim S dz e-~([X~(q, z), XP(q, 0)*]), (1.2) 
e ~ 0  

t 

where the dynamical variables are normalized with 

respect to the static susceptibility Z ~ -  (X ~, X ~) = ~ .  

Using a Mori projection formalism [4] one finds a 

generalized Langevin equation, which in terms of the 

Kubo relaxation matrix can be written as follows 

q~p(q, co) : (  1 )~' 
co-- C(q) + iF(q, o3) " (1.3) 

The frequency matrix CaP(q) is given by 

= 1 h ([X~(q), XP(--q)])  (1.4) C~(q)  

and the transport coefficients can be written in terms 

of the Kubo relaxation matrix 

UP(q, co)= ~(62~(q), 62~(q); q, co) (1.5) 

of the nonconserved parts of the currents 

62~(q) = 2~(q) + iC ~ (q) X '  (q). (1.6) 

The standard procedure of mode coupling theory 

consists in two steps [5] : ( i )  One considers only two- 

mode decay processes, which amounts to a factorisa- 

tion of the Kubo formulas (1.5) after insertion of the 

equations of motion. ( i i )  One makes a Lorentzian 

approximation for the relaxation matrix. In principal 

one can solve directly the set of self-consistent equa- 

tions for the shape functions resulting from step ( i) .  

For the isotropic ferromagnet this was achieved by 

Hubbard [6] in the paramagnetic phase. For most 

practical purposes an excellent approximation for the 

linewidth can be obtained from the mode coupling 

equations including the second approximation. 

2. Isotropic ferromagnets 

In this chapter we study the critical dynamics of an 

isotropic ferromagnet, where the spins are coupled 

only by the short range isotropic exchange interac- 

tion. The resulting mode coupling equations for such 

a system have been known for a long time [7]. But 

only above T~ these equations have been solved nu- 

merically [1]. 

The Hamiltonian for such a spin system is given 

by 

" d3q [(Jo +jq2) 6ij] Si(q) SJ(_q), (2.1) 

where Si(q) are the Fourier transforms of the cartesian 

components Si(x) of the spin operator 

S i (q) = f d 3 x e iqx S i(x). 

The coefficient J0 does not enter the equations of mo- 

tion explicitly and J denotes the strength of the ex- 

change interaction. It is convenient to use the opera- 

tors 

S • (q) = S ~ (q) + iS y (q) (2.2) 

and S ~(q) instead of the cartesian components of the 

spin operator. Then using the commutation relation 

for spin operators one finds the following- set of equa- 

tions of motion 

d3k 2 
~d S~(q)=dt - i J  J ( ~ ) 3  ( 2 k q - q )  S+(q -k )  S-(k) 

(2.3 a) 

d S+(q)= + i 2 J ~  d3k d t  - ~ ( 2 k q -  q2) S+ ( q - k )  SZ(k). 

(2.3b) 



2.1. Review of the mode coupling theory 

below the Curie temperature 

In this section we review the derivation of the mode 

coupling equations for the isotropic ferromagnet be- 

low the Curie point, which was given already by one 

of the authors in a previous work [71. 

Assuming that the spontaneous magnetization 

points along the z-axis the frequency matrix is given 

by 

C~r = co(q) + 1 , (2.4 a) 

0 1 

where c~, fl = z, + ,  - .  The frequency of the transverse 

modes is 

co (q) = m/z w (q), (2.4 b) 

where m=  (S~(q =0))  denotes the magnetization and 

zr(q) the static transverse susceptibility. Due to the 

rotational symmetry of the Hamiltonian the Kubo 

relaxation matrix ~'a(q, co) is diagonal 

izL(q) 
~ z ~  (q,  co) _ (2 .5  a)  

co + iF = (q, co) 

iz+(q) 
q~ • • (q' co) = co -T- co (q) + i F  +- +- (q, co)' (2.5 b) 

where zZ(q) is the longitudinal susceptibility and 

Z-+(q) are related to the transverse susceptibility 

Z + (q) = Z-  (q) = 2 Z r (q). 

Next we write down the Kubo formulas for the 

transport coefficients F~(q,  t); i.e.: 

r=(q,  t) = ~1,_, ~(~q(t), ~(0);  q, t ) - r ( q ,  t) (2.6a) 
Z tq) 

r + • (q, t) 

_ 1 q~(S~(t)+ico(q)Sf(t),S~(O)+ico(q)S~(O);q,t) 
2 zr  (q) 

= A  • (q, t) (2.6 b) 

Then we insert the equations of motion into these 

transport coefficients and make a factorisation ap- 

proximation, which gives the following set of integral 

equations [71 

j2 dv d3k 
r(q, co)=z~(~  kB T5 ~ ~ (2 ~z)3 

�9 [ 2 q k -  q212 ~b + + ( Iq-  k], co-v) 4~- - (k, v) 

(2.7a) 

357 

2 j2 k T " d v "  d3k 
A+(q, co) = ~ B J~J (2~z )3  

�9 [2qk--q2] a ~+- + (Iq--kl, co--v) ~=(k, v). 

(2.7b) 

Equations (2.7a, b) together with (2.5) constitute a 

complete set of self-consistent integral equations for 

the Kubo relaxation functions ~ ' ( q ,  co), which in 

principal could be solved numerically�9 For m = 0 and 

z z = x  r (2.7a, b) reduce to the mode coupling equa- 

tions for the paramagnetic phase, which were solved 

by Hubbard [6]. In the ferromagnetic phase (2.7a, 

b) have been solved in limiting cases [71. Here we 

proceed by making the additional approximation that 

the relaxation functions are Lorentzians 

izL(q) 
r ~= (q, co) - - -  (2.8 a) 

co + iF(q) 

~-+ -+ (q, 09) 2 izr(q) (2.8b) 
co -T- 09 (q) + iA +- (q) 

with 

V(q) = r(q, 0) and A (q) = A + (q) = A - (q)* = A + (q, co (q)). 

The frequency integrals can now be carried out 

readily and one finds the following set of coupled 

integral equations for the linewidths 

F(q) = id 2 k B T S d3 k gr(I q -  kl) zr(k) 
2re 3 zZ(q) 

[ 2 q k -  q212 
(2.9a) 

- c o ( I q - k l )  wco(k)+ iA([q- -k l )+iA*(k )  

A ( q ) = i j 2 k B T S  d3k Zr(Iq-kl)zZ(k) 
27Z 3 zT(q) 

[ 2 q k -  q212 

. co (q )_co(k )+iA( iq_k l )+iF(k ) �9  (2.9b) 

As is easily seen F(q) is real, but A (q) in general 

is complex. The imaginary part of the transverse 

damping function A (q) leads to a shift of the frequency 

of the transverse spin waves, which however is a negli- 

gible correction with respect to the frequency matrix 

(2.4) as will be seen later. In the hydrodynamic regime 

(2.9 a, b) can be solved analytically with the result 

r(q)oc ffq(q) and A(q)ozq4(cl ln(1/q~)+Co), (2.10) 

where Co and Cl are constants. 

With the well known scaling properties of the stat- 

ic susceptibilities neglecting the Fisher exponent 

z L ' T ( q ) = J - t  q 2~L'T(x) (2.11) 

(2.4 b) gives 
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co(q)= A qZ &(x) (2.12a) 

where the dynamical critical exponent z equals 5/2 

and the sealing variable x is given by x = 1/q 4. 
The scaling function for the bare frequency of the 

transverse modes can be written as 

[03/2 X 1/2 for T<T~ 
&(x) = - (2.12b) 

for T>T~. 

Hence (2.9 a, b) can be solved by 

F(q)=AqZy(x), A(q)=AqZ2(x), (2�9 

where the dynamical scaling functions 7 and 2 obey 

the following set of coupled integral equations 

+1 oc 

7(x)=(2rc)2i ~ dq I dpp-2(pq- �89  2 
- 1  o 2L( ) 

1 

_ pZ o3 (x/p) + pZ_ d) (x/p _) + i pZ 2 (x/p) + i pL 2" (x/p _) 

(2.14a) 
and 

2(x)=(2~) 2i I d~ ~ dpp-2(pq- �89  2 2T(x ) 
-1 0 

&(x)--pL &(x/p_)+ ipZ2(x/p)+ ip z_ 7(x/p-)" 
(2.14b) 

Here we have used the notation p = k/q, p_ = I q -  kl/q, 
q = cos(k, q) and the nonuniversal prefactor A is found 

to be 

A = a 5/2 (J k B T/4 Tg4) 1/2. 

The static correlation functions are known from 

renormalization group calculations�9 Neglecting Fish- 

er-Langer corrections the static correlation function 

in the paramagnetic phase is given by an Ornstein- 

Zernike expression 

1 
)?(x) = 1 + x  z" (2.15) 

For the ferromagnetic phase Mazenko [8] has 

computed the longitudinal static susceptibility to first 

order in e = 4 - d  using Wilson's matching technique 

z C ( q ) - l = j q 2 [ 1 - - n ~ 8  x2 { l  +(l +4x2)l/2 

�9 ln[  -(1 +4X2)1/2--2X 1_~ 

f n  + 8 + ( 5 -  n/2) e]] 
+x21.< 9 + ( n _ l ) x  , >']], 

(2. 1 6 a) 

where n is the number of spin components. The last 

term in Z L results from the presence of Goldstone 

modes below T~. To the same order the transverse 

correlation function is given by 

zT (q) = j -  1/q2. (2.16 b) 

2.2 Numerical solution 
of the mode coupling equations below T~ 

Introducing the static susceptibility (2.16 a, b) we have 

solved the set of coupled integral Eq. (2.14a, b) by 

a self-consistent numerical procedure. The results are 

shown in Fig. 1 a and b. 

One recognizes that the scaling function Im 2(x) 

for the frequency shift of the transverse modes is very 

small compared to cb(x). In the critical region Im 2(x) 

starts at the critical point with infinite slope and is 

negative in the hydrodynamical region. The scaling 

functions for the longitudinal and transverse line- 

widths split off linearly at the critical temperature and 

differ by orders of magnitude in the hydrodynamic 

region�9 This linear split-off of the longitudinal and 

transverse widths and the infinite slope of the fre- 

quency shift at the critical temperature below T~ is 

an immediate consequence of the presence of Gold- 

stone modes. This can be derived analytically from 

(2.14). Namely, by differentiating (2.14a, b) with re- 

spect to x and setting x = 0, we find 

07(X)0x x=o = al-t-a2 ~ Re~x2(X) x=o 

Re 2(x) ~ Re 2(x) +as' - -10~  (x) t 

~-x x=o = a 3 + a 4  ~-X ~=o ~x I~=o 

a Im 2(x) - 1/2 

~X x,~l =a6X 

where a i are constants. 

Above T~ the scaling function for the linewidth 

starts quadratically, as can be seen from 

~3X x=O 

�9 pZ 1 + p ! - i  ] 

[[l+(22~'~:SdqldppS-2(p~-1)aYt) PLUMP ~ -J=0, 

which implies 07(x) = 0. This analytic mode cou- 
~X x=O 

pling result above T~ is in agreement with a renormal- 

ization group calculation by Iro [9], but is in contrast 

to the numerically found infinite slope of Hubbard  

[6]. It disagrees also with a computation of Ferrell 
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Fig. 1. a Dynamical scaling functions for ferromagnets with short range exchange interaction only versus x=l/q~ below T~; 7 solid, 
Re2 point-dashed and 10,Im 2 dashed, b The same as Fig. 1 a on a larger scale including the hydrodynamic region 

and Bhattacharjee [10], who find, using Ward identi- 

ties, a linear dependence on 1/q 4. 

The numerical data can be fitted in the limits x >> 1 

(hydrodynamical region) and x ~ 1 (critical region) by 

simple functions as summarized in Table 1 (note that 

all functions are given in units of the value at critica- 

lity 7(0)= Re 2(0)= 5.1326) 

The critical dynamics below the transition temper- 

ature has been studied also by renormalization group 

methods. Ma and Mazenko [11] calculated the trans- 

port  coefficient for the longitudinal magnetization for 

small wave vectors in an e-expansion (e = d - 6 ) .  Their 

result was 

P t m  
r(q) = ~ qZ 

zLtq~ 

with 

(2.17) 

F(q) oc q(a- 6)/6. (2.18) 

With zr(q)ocl/q in d = 3  dimensions this would give 

F(q)ocq s/2 in contradiction to the mode coupling re- 

sult for small q (i.e. in the hydrodynamical limit [7]). 

However, Sasvfiri's [12] reanalysis of Ma and Mazen- 

ko's exponentiation method showed, that taking into 

account the regular parts of F(q) results in 

F ( q )  = q(d - 6 ) / 3 .  ( 2 . 1 9 )  

This leads to P(q)ocq 2 for d =3 ,  in agreement with 

the mode coupling result in Table 1. The 

q4-dependence of the transverse transport  coefficient 

in the hydrodynamical limit is also confirmed by the 

renormalization group calculations [11]. 

Experimental investigations of the critical dynam- 

ics below T~ have been performed by means of unpo- 

larized neutron scattering by Collins et al. [13] on 

iron, by Minkiewicz et al. [14] on Ni and by Dietrich 

et al. [15] on EuO. However, only the side-peaks orig- 

inating from the transverse spin waves have been ob- 

served, without any evidence for the central peak due 

to the longitudinal spin diffusion. This is plausible 

in the light of the mode coupling results. In the hydro- 

dynamical region (x = 1/q ~ >> 1) the width of the longi- 

tudinal peak is much wider than the separation of 

the transverse peaks [7]. Moreover, its intensity is 

smaller than that of the transverse magnons, which 

Table 1. Asymptotic behaviour of the scaling functions below the critical temperature in units of the 
value at criticality 7(0) 

7(x)/7(0) F(q) Re 2(x)/7(0) Im 2(x)/7(0 ) Im A(q) 
Re A (q) 

x-1/2 qZ ~-l/z 0.16x-1.s lnx -0.07x -1"5 lnx q4 ~3/z l n (1 )  x>>l 1.37+0.37 )~L (x-~ 

x,~l 1.0+0.55x @/2 1.0-1.34x 0.77xl/2 q2~-l/Z;qS/2 
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altogether implies that it may be very difficult to dis- 

tinguish the longitudinal peak from the background. 

In the critical region the linewidths are of the same 

order of magnitude. In this limit however the fre- 

quency of the transverse modes tends to zero. Using 

unpolarized neutrons one can only observe a super- 

position of the peaks. Lacking a theory for the line- 

width in the critical region below T~ it was impossible 

up to now to resolve the longitudinal and transverse 

peaks. 

A first observation of the longitudinal peak was 

reported recently by Mitchell et al. [16] using polar- 

ized neutrons. However, there are not enough data 

to compare with the theoretical predictions, also, the 

material is disordered (palladium with 10% iron). 

In Fig. 2 we show SX~(q, co):Srr(q, co) and 

S~Z(q, co) for parameters corresponding to EuO for 

a series of temperatures close to the Curie point ((T~ 

-T)/T~=O.150, 0.075, 0.050, 0.020, 0.005), where the 

wave vector is fixed to q = 0 . 2 ~  -~. In the presence 

of domains, such that the magnetization points with 

equal propability along the x, y and z-directions, one 

measures in neutron scattering experiments 

S,v (q, co) = �89 S ~ (q, co) + S z~ (q, co)), 

which is also shown in Fig. 2. 

5O 

.0 
e 

20 

20 

.0 

20 ' e 

.0 
. d 

.0 

.0 

Fig. 2 a-e. Dynamic structure functions S~X(q, co)=SYr(q, o9) (point- 
dashed), SZZ(q, co) (dashed) and 3.S,v(q,~o) (solid) for EuO at the 
wave vector q=0.2 A -I,  Tile reduced temperatures (T~-T)/T~ are: 
a 0.150, h 0.075, c 0.050, d 0.020, e 0.005 

The qualitative similarity of Sav(q , co) to Fig. 4 of 

[15] is striking. For a quantitative comparison the 

theory has to be convoluted with the instrumental 

resolution function. In addition Sav(q , co) has to be 

/~co 
multiplied by the detailed balance factor 1 - e  -p'~ 

And most important, close to T~ dipolar effects not 

contained in our theory for the ordered phase will 

be significant, as can be inferred from our analysis 

of the paramagnetic phase described in the next sec- 

tion. 

3. Dipolar ferromagnets 

Above T~ the critical dynamics of isotropic ferromag- 

nets such as EuO, EuS and Fe has been studied by 

various experimental methods, sampling different re- 

gions in q-space. These measurements indicate that 

the critical dynamics of isotropic ferromagnets cannot 

be explained solely on the basis of the short range 

exchange interaction. There were however apparent 

discrepancies for the following reasons. 

Hyperfine interaction experiments and electron 

spin resonance experiments show a distinct crossover 

in the dynamical exponent from the isotropic z = 5/2 

to the dipolar z = 2 as a function of the temperature 

[-17-22]. On the other hand the critical exponent de- 

duced from the wavevector dependence of the neutron 

scattering data right at the critical temperature is 5/2 

[23-26]. But nevertheless the data could not be fitted 

by the Resibois-Piette [1] scaling function for isotro- 

pic ferromagnets [23]. Those apparent discrepancies 

remained a puzzle up to now and prompted a variety 

of interpretations including suggestions that dipolar 

forces might not be relevant for the dynamics of these 

magnets and that the data showed signatures of ran- 

domness and additional relaxation mechanisms. 

It is the aim of this chapter to show that all these 

experiments can be explained on the basis of the mode 

coupling theory in a unifying fashion taking into ac- 

count the dipolar interaction, which is present in all 

real ferromagnets. 

3.1 Mode coupling equations 
for dipolar ferromagnets 

In this section we evaluate the dynamical scaling func- 

tions for weak dipolar ferromagnets in the paramag- 

netic phase. Part of the results have been already re- 

ported recently [3]. Here we present further details 

and extend the theory to ESR and NMR. 

The Hamiltonian for a spin system with both 

short range exchange and long range dipolar interac- 



tions is given by 

d 3 
H = ~ (~ )~3 [(Jo + d q2) (~ij + j qi qj] g q~-]  s ~ (q) s~(-  q), 

(3.1) 

where we have used the same notation as in Sect. 2. 
The parameter 

g = al (gL #B)2/2Ja3 (3.2) 

charaeterises the ratio of dipolar to exchange interac- 

tions. Here gL is the Land6 factor and the coefficient 
al depends on the lattice structure; i.e.: a~ =4rc(sc), 
33/2rc(bcc), 25/27c(fcc). In (3.1) we assumed that the 

dipolar forces are weaker than the exchange interac- 
tion [2] ; i.e. g ~ 1. 

Due to the symmetry of the Hamiltonian it is nec- 
essary to decompose the spin operators S(q) into a 
longitudinal and two transverse components with re- 

spect to the wavevector q 

S(q)= SL(q)q + sT'(q) {~(dl)+ST~(q) ?(q), (3.3) 

where the orthonormal set of unit vectors is defined 

by 

q = q/q, ? (0) = q x ea/(q ~ + q22) 1/2 

and 

? (q) = q x ? (q). 

For vanishing components of q the limits are taken 
in the order of increasing cartesian components�9 The 

Heisenberg equations of motion are found to be 

'~  = J f  d3k 1 

(2~) 3 k 

Eq(2k_q) 2 2 1/2 T 1 k3{Sq_k,S[2}] �9 [(k~ +k~)  {S ,_~ ,  S ~ } +  ~ 

+g(k~+ v2~I/2y~T~ sL}] (3.4a) 

X{, j~  d~k 1 

= -  J ( G ? k  

) [ - k l  1':3 T1 L f ~ T 1  ~T2"( 
�9 q ( 2 k - q  [ (k i+~y /2  {Sq_k, Sk}+klt~,q.k,~, k 

L L k2(k3q -k2)  r2 L 1 k2q {S,-k, Sk} 
-t [q_k[(k~+k~)l/2 {Sq-k, Sk}q 2 Iq -k l  

1 kzq ] 
2 Iq-kl {s{~_~, s2q 

I - k l  k3 {Sq_k, S L } 
+ g/(k U+ ~77i/2 r~ 

L t  1 21 

k2 (k3 q-- k2) Tz L 1] 
4 [q--k[ (k2+k~_) 1/2 {Sq-k, Sk}jj (3.4b) 
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and for Sq r2 correspondingly, where {, } denotes the 

anit-commutator. The terms proportional to g, result- 
ing from the dipolar term in the Hamiltonian remain 
finite as the wave vector q tends to zero, whereas 
all the other terms vanish in this limit�9 This reflects 
the fact that the dipolar forces lead to a relaxational 
dynamic in the limit of long wavelengths. 

Now we start with the first step of the mode cou- 
pling theory and make, after insertion of the equa- 

tions of motion (3.4 a, b) into the transport coefficients 

/-L (q, g, t)= ~ )  q~ (~L (q, t), ~L (q, 0);q, g, t) 

1 
F r (q, g, t)= ~r(~ q~ (sT1 (q, t), ~T1 (q, 0);q, g, t) 

_ 1 

_ zT(q--~ ~(~T2(q, t), ~T~(q, 0); q, g, t), 

the factorisation approximation. This leads to 

FL(q,g, t )=4j2kBT [ d 3k_ 
zL(q) ~ (2~r)3 

�9 [@r(k, q, g, 6)) ~r(k, g, t) ~T(Iq--kl, g, t) 

+V~T(k,q,g,O)~bL(k,g,t)~T(lq--kl, g,t)] (3.5a) 

4JZkB T . d3k 
rr(q, g, t )= ~ J (270 3 

�9 [vrr(k, q, g, O) ~T(k, g, t) ~T(lq-kl ,  g, t) 

+ vrr(k, q, g, O) ~L(k, g, t) ~T(Iq--k[, g, 0 

+ UrL(k, q, g, O) qjL(k, g, t) ~L(I q -- k[, g, t)], (3.5 b) 

where the vertex functions v}~ for the decay of the 

mode ~ into the modes fl and a are given by 

@r(k, q, g, q)=2 COS 2 0  q4( k COSq O 

v~r(k, q, g, ~l)=2 sin 2 0  q4 (k COSq O 

q2 
~ lq 2 [q-- k~)  

(k ;so 0,; 

0.5) 2 (3.6a) 

0.5+2gq~ f 

(3.6b) 

(3.6c) 

where q = cos O. 

k cos O 0.5+ (3.6d) 
q 

U[L(k,q,g, t l )=sin20q 4 2]q-k]  2 q 2  (k CqS O _  _ 0.5)2 

(3.6e) 
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In an attempt to derive mode coupling equations 

for dipolar ferromagnets Borckmans et al. [27] used 

a decomposition of the spin operator (see (3.3)) with 

one perpendicular direction u(q) only, which then is 

time dependent. Lacking an equation of motion for 

u(q), the vertices in the mode coupling equations nec- 

essary for the computation of the scaling functions 

could not be determined. 

The mode coupling result for the transport coeffi- 

cients (3.5 a, b) together with the expressions 

~L(q, g, co) = i za(q" g) (3.7a) 
co + iFL(q, g, CO) 

qbr(q, g, 09) = i zr(q' g) (3.7b) 
co + il"W (q, g, 09) 

for the Kubo relaxation functions constitute, as in 

Sect. 2, a complete set of self-consistent equations, 

which could in principal be solved numerically. If the 

transport coefficients vary only slowly with co we may 

approximate our relaxation functions by Lorentzians; 

i.e. we replace the transport coefficients in (3.7a, b) 

by their values at 09 = 0: 

F L (q, g) = I "n (q, g, m = 0) and F r (q, g) = fiT (q, g, co = 0). 

This additional approximation finally leads to the fol- 

lowing set of coupled integral equations for the trans- 

verse and longitudinal linewidth above the transition 

temperature 

j2kB T + 1 

Fr(q,g)=rczzL(q,g ) _~ dq o; dkk2 

:if(k, g) zr( lq-k l ,  g) 
�9 O}r(k, q, g, ~) rr(k  ' g)+rr( iq_k[  ' g) 

) z r (k 'g)zr ( [q-k l 'g )  ] 

+U~r(k,q,g,q FL(k,g)+Fr([q_k[,g)] (3.8a) 

j2  k~ T +2 oo 

FT(q'g)=Tz2zT(q,g) -!1 dtl o ~ dkkZ 

i f ( k ,  g) zr ( Iq-kl ,  g) 
�9 VYrr(k, q, g, q) r r ( k  ' g ) + r r ( l q _ k l  ' g) 

~L(k, g) ff(Iq--kl,  g) 
+ vrr(k, q, g, I/) FL(k, g)+Fr ( Iq -k [ ,  g) 

zL(k'g)zL(}q--kl'g) ] (3.8b) 
+ ~ (k, q, g, rl) Fr~-, g ~ - + ~  ~1 _ ~  ~-, g) j" 

The essential point now is that the mode coupling 

(3.8) are consistent with the generalised dynamical 

scaling law 

F=(q, g)= A q~y'(x, y), (3.9) 

where in the present case we have to introduce the 

two scaling variables 

x=l /q~  and y=g2/Z/q (3.10) 

and z = 5/2. The crossover of the critical dynamical 

exponent z is contained in the scaling functions 

7~(x, y). Two parameter scaling laws have been intro- 

duced by Riedel and Wegner [28] for anisotropic 

magnets. Introducing (3.9) and (3.10) as well as 

z~(q, g)= j -  1 q- 2 ~(x  ' y) (3.11) 

into (3.8 a, b), we find for the dynamical scaling func- 

tions 

2n2 dq dp ~O;~(y,p, tl) 

�9 (a~,r+ a~,r c56,L a~,L) 

(3.12) 

\P P/ \P-  p - /  

and the nonuniversal frequency scale of (3.9) 

A = a 5/2 (J k B T/2 ~4)1/2 = gL #B(kB Tal/4 7~4)1/2/qD. 

(3.13) 

If A is expressed by qD=gt/E/a, the lattice structure 

dependence of al has to be considered, which in- 

creases the theoretical A of Fe by a factor of 1.14 

as compared to [24]. We note that this is the same 

nonuniversal frequency scale as for isotropic ferro- 

magnets without dipolar interaction (A = A). In (3.12) 

we used the same notation as in Sect. 2 and intro- 

duced the scaled vertex functions 

(3.14a) 

6~,r=[2(1--~lZ d~,L)--(1--~12)(l +lK_ ) 6~,T] 

1 y2\2 

which are related to v~, by 

- -  4 ^ g  

For both longitudinal and transverse modes, the di- 

polar interaction enters only in vertices for decays 

into a longitudinal and a transverse mode. As summa- 

rized in Table 2 the mode coupling Eq. (3.12) can 

be solved analytically in the dipolar (D) and isotropic 



TabLe 2. Asymptotic  behaviour of the scaling functions in the para- 

magnetic phase 

,~T ~L 

DC yl/2 y5/2 

IC 1 1 
DH yi/2 x2 y5/2 

IH x i/2 x i/2 

"~0 
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(I) critical (C) and hydrodynamic (H) limiting regions. 

These are defined by DC: y >> 1, x ~ 1 ; IC: y ~ 1, x ~ 1 ; 

DH:  y>> x, x>>l; IH: y ~ x ,  x ~  l. 

Concerning the critical dynamical exponent one 

finds for the longitudinal linewidth a crossover from 

z=2 .5  in the isotropic critical region to z = 0  in the 

dipolar critical region, whereas for the transverse line- 

width the crossover is from z = 2.5 to z -- 2. The precise 

position of this crossover can only be determined nu- 

merically. As we shall see in the next section, the 

dynamic crossover for the transverse width is shifted 

with respect to the static crossover to a wavevector 

smaller by almost one order of magnitude, whereas 

the crossover for the longitudinal width occurs at the 

static crossover. 

As for the pure isotropic ferromagnet, the mode 

coupling equations do not account for effects of the 

critical exponent t/, which will be neglected in the 

following. In the numerical calculations we will use 

the Ornstein Zernike forms for the static susceptibili- 

ties 

z ~ ( q , g ) = j -  l(q2 + ~- 2 +~ ,Lg)  - ' (3.15) 

where ~=~o((T--T~)/T~) -* is the correlation length. 

The static crossover is contained in ~ through the 

effective exponent v = 7elf/2 [29]. 

For  the numerical solution of the coupled integral 

Eq. (3.12) it is convenient to introduce polar coordi- 

nates 

r = ( x 2 - } - y 2 )  a/2 and r  y (3.16) 
x 

with x and y defined in (3.10). The transverse and 

longitudinal scaling functions 7 r and 7 r are exhibited 

in Fig. 3 and Fig. 4, where all results are given in 

units of the value at criticality 7o - 7r(r)(0, 0) = 5.1326. 

For  ~o = 0, corresponding to vanishing g, the scaling 

functions coincide with the Resibois-Piette scaling 

function. The cut at (p=~z/2 corresponds to T--T~ 

with r reducing to gl/2/q. The physical content of the 

two parameter scaling surfaces is illustrated best by 

considering cuts for fixed g and various temperatures. 

This will be given below in conjunction with our pre- 

dictions for neutron scattering experiments. 

1.0 

.5 

Fig. 3. Scaling function yr for the transverse width of dipolar ferro- 

magnets  above T~ versus r = (q 4)- i (1 + g ~2)i/2 and ~o = arct g(gl/z 4) 

- 5 

o 

Fig. 4. Scaling function ])L for the longitudinal width of dipolar 

ferromagnets above T~ versus r and ~p defined in the caption to 

Fig. 3 

3.2 Predictions for experiments 

With the results of Sect. 3.1 we can now compare 

our theory with the various experimental results 

above the critical temperature. The most important  

experimental probes are neutron scattering, electron- 

spin resonance and hyperfine interaction experiments. 

With these methods one is able to investigate different 

regions in q-space. Hence all in all these experimental 
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studies give quite complete a picture of the critical 

dynamics. 

3.2.1 Neutron scattering. In neutron scattering experi- 

ments one measures the cross-section for inelastic 

magnetic scattering. Therefore one is able to deter- 

mine the dynamical scaling functions as functions of 

both  temperature and wavevector. 

In experimental studies it is convenient to plot 

the linewidth as a function of the single scaling vari- 

able x =  1/q~. In Figs. 5 and Fig. 6 we display the 

.5 

19 10 

~T 3.0 

u 
2.5 

2.0 

1.5 

1.0 

5 

0.1 

0 2 4 6 8 

x = l/q~ 

Fig. 5. Scaling function 7 r for the transverse width versus (qr 
for values of ~o = Nrc/40 with N indicated in the graph 

scaling functions versus x = 1/q ~ for different values 

of q~=arctg ga /2~=Nn/40  with N = 0 ,  1 . . . .  ,19. The 

curve N =  1 is indistinguishable from the Resibois- 

Piette function, N =  0. If  g is finite, the curves ap- 

proach the Resibois-Piette scaling function for small 

x and deviate therefrom with increasing x. For  a given 

material, g is fixed and the parametr isat ion by ~o cor- 

responds to a parametr isat ion by ( T -  T~). The experi- 

mental  results of Mezei on iron (Fig. 3 of [23] and 

Fig. 4 of [24]) taken at different temperatures show 

precisely the (q~)- i  dependence exhibited by the 

transverse scaling function (Fig. 4). We are convinced 

that the uncertainty in the value of 40, the improve-  

ment in the experimental analysis possible by taking 

into account the effective critical exponent [29] 

v-?ef f /2  and the limits of the experimental accuracy, 

altogether leave enough room for a complete quanti- 

tative agreement with the theory. 

To examine the dipolar crossover precisely at the 

Curie point, Fig. 7 displays the scaling functions for 

the transverse and longitudinal width for T=T~ 

against the wave number;  i.e.: y-  ~ =q/gl/2. These re- 

sults clearly show that the crossover from isotropic 

to dipolar critical dynamics in the transverse line- 

width (Fig. 7) occurs at a wave number  smaller than 

qo, the position of the static crossover, by almost 

an order of magnitude. This purely dynamical  shift 

of the crossover explains why, within the accessible 

wavevector region, this crossover escaped the detec- 

tion by neutron scattering experiments. There is, how- 

ever, an indication of an increase in the data for the 

transverse width at the smallest m o m e n t u m  transfer 

[30], as predicted by the theory. 

,,L 3.0 

2.5 

2.0 

1.5 

1.0 

.5 
2 4 6 8 

x : 1/q;~ 

5 

0.I 

Fig. 6. Scaling function 7 L for the longitudinal width versus (qr 
for values of q~ = Nrc/40 with N indicated in the graph 
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,~2 'T 

~o 

2.5 

2.0 

1.5 

1.0 
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2_ 
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2 q/~ 4 

0 2 ql~ 4 

Fig. 7. Scaling functions for the longitudinal (point-dashed) and 
transverse (solid) widths vs. qg-1/z at the critical temperature. Inset: 
Scaling functions for the longitudinal (point-dashed) and transverse 
(solid) Onsager coefficients versus q g-1/2 at the critical temperature 
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The crossover of the longitudinal width, from 

z=2.5 to z=0 ,  is more pronounced and occurs in 

the immediate vicinity of qD. It should be possible 

to test this prediction experimentally. The reason for 

the different location of the dynamic crossover is 

mainly due to the fact, that it is primarily the longitu- 

dinal static susceptibility which shows a crossover due 

to the dipolar interactions. Since the change in the 

static critical exponent is numerically small the trans- 

verse static susceptibility is nearly the same as for 

ferromagnets without dipolar interaction. Hence the 

crossover in the transverse width is purely a dynami- 

cal crossover, whereas the crossover of the longitudi- 

nal width being proportional to the inverse longitudi- 

nal susceptibility is enhanced by the static crossover. 

In order to exhibit these arguments we have plotted 

in the inset of Fig. 7 the scaling functions for the On- 

sager coefficients 2~7 ~ at the critical temperature vs. 

q/g~/2, showing only the dynamical crossover. 

3.2.2 Electron spin resonance (ESR) experiments. In 

ESR-experiments one measures the electronic re- 

sponse function at zero wavevector and determines 

therefrom the Onsager coefficient. Turning to our 

mode coupling Eq. (3.8) we find that the longitudinal 

and transverse linewidths (e = L, T) at zero wavevec- 

tot are given by 

/ . , . I  2 o~ 

Fo~(g)= 4 ~ . : ) k B  T ~ dk k 2 
J rc Zo tg) o 

zL(k, g) Zr(< g) 
(3.17) 

r~(k, g)+ r~(k, g)  

As before the temperature dependence of Fo~(g) 

entering via { is not indicated explicitly. Introducing 

polar coordinates as in Sect. 3.1 and using the scaling 

properties of the static and dynamic quantities this 

coefficient can be written as 

Fo~ (g) = B F(g~2) [)~(g~2)] - ,  = B  7o(g ~z). (3.18) 

The universal crossover function F of the Onsager 

coefficient following from (3.17) is 

F(g42)=(1 4 - F )  7/4~ dr r s/2 
0 

2L(r, (p) i f ( r ,  qo) 
(3.19) 

" 7L(r, (?)+?r(r, q)) 

and the scaling functions 2~)(g~ 2) for the susceptibili- 

ties at zero wave vector are given by 

1 for c~=L )?~(g ~2) = 1+(g~2) -* 

g~2 for c~= T. (3.20) 

Finally B denotes a nonuniversal constant 

B =  8 rCZ A q~/2. (3.21) 
3 

One has to be prepared for minor inaccuracies of 

constants as B, since the theory is not designed pri- 

marily for the determination of those nonuniversal 

constants. 

Because the Onsager coefficient F~Z ~ does not de- 

pend on the sample shape [31] and is the same for 

the transverse and the longitudinal mode this quan- 

tity is the most convenient for a comparison with 

experiment. The universal function F(g 42) is plotted 

in Fig. 8. Its shape is dominated by the first factor 

in (3.19) whereas the integral is almost a constant 

leading to small corrections only. Therefore E(q~ 2) 

is mainly determined by the static crossover. In the 

strong dipolar limit (very close to the critical tempera- 

ture) F approaches a constant in agreement with 

Finger's result [32] and in the crossover region we 

find a 47/2 behavior in agreement with a mode cou- 

pling calculation of Raghaven and Huber [33]. If 

there were no dipolar interaction (g= 0), one would 

simple find a vanishing Onsager coefficient due to 

the factor g2 in (3.17). With regard to the crossover 

function F it is natural to define the reduced crossover 

temperature by 

To .... - r~  
"/7 . . . . .  - -  ( g  ~ 2 ) 1 / ~  ( 3 . 2 2 )  

r~ 

where the crossover exponent �9 equals the suscepti- 

bility exponent 7 for a ferromagnet without dipolar 

interaction [23. If one neglects the dipolar crossover 

in the correlation length, the scaling variable gr can 

10 -I 

10 -2- 

1 0  -3 . . . . . . . . . . . . . . . . . .  

1 0  -a  1 0  - z  1 0  -1 1 0  ~ 

1//g~ 

F i g .  8 .  Scaling function for the Onsager coefficient at zero wavevec- 
tor versus (gileS) 1 
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be written as g r  ..... /'c) ~ and the crossover tem- 

perature in terms of the dipolar wavevector is given 

by 

qo r ..... = 1. (3.23) 

The crossover temperatures resulting from (3.23) can 

be found in [24]. With this approximation and 

? = 1.29 [-21] we have replotted our theoretical results 

for the crossover function F as a function of r / r  ..... 

in Fig. 9. The data points in Fig. 9 are experimental 

results from [21] for the Onsager coefficient in EuO, 

where we have used %ro~ = 0.119 [24] for the reduced 

crossover temperature. The nonuniversal constant B 

for EuO, determined from (3.21), is Bth=0.302 meV, 

where we have taken the values for A and qD from 

[243: A =7.1/5.1326 meV~ s/2 and qD=0.147 ~ - 1 .  In 

order to fit with the experimental data we have used 

in Fig. 9 B,~p = 0.248 meV, which is remarkably close 

to Bth. However, the most important  conclusion to 

be drawn from Fig. 9 is, that there is agreement of 

experiment and theory without any adjustable param- 

eter for the temperature variable. As can be seen from 

Fig. 6 of [21] our theoretical results agree also well 

with the longitudinal relaxation measurements of 

K6tzler et al. [17]. There are also experimental results 

by KStzler et al. for EuS and several other nearly 

isotropic ferromagnets [18 20] showing qualitatively 

the same behaviour for the Onsager coefficient. A 

quantitative comparison of the numerical data of 

these experiments with our theory would be of great 

interest. 

3.2.3 Relaxation time for hyperfine interaction experi- 
ments. In hyperfine interaction experiments one ob- 

[] 
JD I~HDQ n a 
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1 0  -2  1 0  -1  1 0  ~ �9 

~"/'~cr0ss 

Fig. 9. Scaling function for the zero wave vector Onsager coefficient 
versus z/z ..... as explained in the text. The data points are experi- 
mental results from [21] for the Onsager coefficient in EuO 

serves the nuclear relaxation rate due to the surround- 

ing fluctuating electronic magnetic moments. The 

standard experiments are performed in the motional 

narrowing regime [22]. Then assuming a contact in- 

teraction H(t)=A I.S(t) between I the nuclear and 

S the electronic spins, the nuclear relaxation rate z/~ 

is directly proportional  to the (averaged) spin-au- 

tocorrelation time Zc 

% - 2 _ ~  dtl-zG"(r=O't)'3 ~ (3.24) 

where G'=(r, t)=�89 t), S~(0,0)}} is the spin au- 

tocorrelation function. With 

~ q  + ~  G~(r, t )  --- I d3q eiq" ~ d t e i o t G ~ ( q  ,c~ (3.25a) 
BZ - oo 

and the fluctuation dissipation theorem between, 

which in the special case co = 0 reduces to 

z=(q' g) (3.25 b) G ~'= (q, co = 0) = 2 kB T V = (q, g), 

we find for the auto-correlation time 

kBT 1 ~  z'(q, g) (3.26) 
-c~= Vq Bz j" d3q3  ~ F~(q,g)" 

The q-integration extends over the Brillouin zone 

(BZ), the volume of which is Vq. Introducing the scal- 

ing functions (3.9) and (3.11) (3.26) can be written as 

%oc4rcSd k k -~ 1 Z )~=(k r k g -  1/2) 
3 ~ 7~(k~,kg-1/2)" 

(3.27) 

If there were no dipolar interaction, one could extract 

the temperature dependence from the integral in (3.27) 

with the result "ccoc~ z-1. We use this expression to 

define an effective dynamical exponent zefe(v), which 

depends on the reduced temperature v by 

T c OQ ~ zefr  -- 1 

In the presence of dipolar forces one finds after intro- 

ducing polar coordinates as in Sect. 3.1 

\ gg / to5 d r r - 2 + =  3 ~ v=(r, ~o)' (3.28) 

where z = 5/2 and the nonuniversal constant H is giv- 

en by 

H - (kB T)2 (qDa) 312. (3.29) 
2 rd (A a -  5/2)3 
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The lower cutoff r o is 

1 ]1/2 

r~ = qD [1 + g ~ - J q B z  L ' 
(3.30) 

where qBz is the boundary of the Brillouin zone. In 

the critical region it can be neglected (r o =0), since 

qBz>>Clo and the integrand in (3.28) is proportional  

to r ~/2 for small r. For  very small ~ (outside the critical 

region) the cutoff reduces the autocorrelation time 

with respect to the critical value. 

The autocorrelation time z~ is a sum of two parts 

z~ = (z L + 2 zr)/3 

which we call longitudinal and transverse relaxation 

times 

1 \ -  3/4 aO 2~(r, ~o) 
zL=H 1 + ~ )  f drr 1/z (3.31a) 

ro 7L( r' (P) 

/ 1 \-3/4 2r(r, ~o) (3.31 b) 
z r = H [ l + ~ )  ~drrt/27r(r,~o)" 

ro 

These two relaxation times are shown in Fig. 10 as 

functions of the scaling variable ( g l / 2 ~ ) - 1 ,  where we 

have neglected the lower cutoff %. As expected the 

longitudinal relaxation time is noncritical, whereas 

the transverse relaxation time diverges like zroc ~. 

This corresponds to an effective dynamical exponent 

Zef f : 2. If one leaves the dipolar critical region there 

is a crossover to the isotropic region, where both 

curves join and the relaxation times ZL=Zr=Z ~ are 

characterised again by a simple power law z~oc~ 3/2 

corresponding to an effective dynamical exponent 

Zef f = 2.5. 
Making the same approximations as in Sect. 3.2.2 

with 7=1.38 and z ..... =8.27-10 -3 for Fe [24], we 

10-12: 
0 

o 10 -la 

tD 
b~ 

O 
r)  

O 

< 10-14 

10 -I 10 ~ 101 

T/ ' [ 'c ross 

Fig. 11. Scaling function for the (averaged) auto-correlation-time 

versus z/Zeros ~ as explained in the text. The data points are experi- 

mental  results from [22] for the auto-correlation time of Fe 

have replotted our theoretical result for the auto cor- 

relation time in Fig. 11 as a function of z/~ ..... . The 

data points are experimental results for the spin-au- 

tocorrelation in t~176 [22]. The only fit parameter 

in this figure is the nonuniversal scale H, which we 

have set to H~xp= 6.0-10-13 s. This value is quite 

close to the theoretical value Hth=7.55-10 -13 s, de- 

termined from (3.26) with A = (1.14.94.0)/5.1326 meV 

A5/2, a=2 .87  * and qD=0.147 A-1  [24]. The differ- 

ence may be due to experimental uncertainties in the 

value of the coupling constant A. Furthermore (3.29) 

for the nonuniversal constant H may be plagued with 

minor inaccuracies in the same sense as B in 

Sect. 3.2.2. The main point however is that there is 

no adjustable parameter for the temperature variable. 

Hence we conclude, that the experimental data are 

well described within our theory. 

"t ' lH 

i0 ~ 

're/H ~ 

\ \ \  

1 0  -1 L 

i '0 -1 10 ~ . . . .  i '0 t 

Fig. 10. Scaling functions for the longitudinal, transverse and aver- 

aged auto-correlation-time versus (gl/2 4)- 1 

4. Summary and conclusions 

In this paper we have applied the mode coupling 

theory to study the critical dynamics of ferromagnets 

with both short range exchange interaction and long 

range dipolar interaction. 

We start with the discussion of dipolar ferromag- 

nets in the paramagnetic phase. On the basis of our 

theory we were able to explain the results of various 

experimental investigations on ferromagnets like 

EuO, EuS and Fe in a unified fashion. We have found 

that precisely at the critical temperature the crossover 

of the transverse width from z = 2.5 to z = 2.0 is shifted 

with respect to the static crossover to wave vectors 

smaller by almost one order of magnitude. This ex- 

plains why up to now this crossover escaped detection 
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by neutron scattering experiments. Concerning the 

longitudinal width, experiments are still lacking. Our 

prediction is that the crossover from z=2.5 to an 

uncritical behaviour z = 0  should be more pro- 

nounced in this case and, in contrast to the transverse 

width, it occurs in the immediate vicinity of the static 

crossover, characterized by qD. Hence it should be 

detectable in the experimentally accessible wavevector 

region. The experimental results of Mezei on Fe at 

T > T~ taken at a series of temperatures show precisely 

the (q 4)- 1 dependence of our theory. 

Applying our theory to ESR and hyperfine inter- 

action experiments we have found that in these cases 

the dynamical crossover is essentially determined by 

the static quantities. Up to minor uncertainties in the 

static crossover the theory is in excellent agreement 

with experiment. Concerning the hyperfine interac- 

tion experiments it would be interesting to devise ex- 

periments which allow to measure the longitudinal 

and transverse auto-correlation-time separately. 

What  seemed to be a rather contradictory and 

diverging field can be accomodated very naturally 

without adjustable parameters within our theory. 

In the ordered phase we studied ferromagnets with 

short range interaction only. The results may serve 

as a reference for the study of the critical dynamics 

below T~. More experimental data are needed for a 

comparison with the theory. We expect that in the 

immediate vicinity of Tc one will find experimentally 

similar dipolar crossover phenomena as above T~. 

If nessesary, the following refinements of the 

theory for the paramagnetic phase are possible. (i) 
One can compute the scaling functions and the line- 

widths directly from (3.5) and (3.7) without making 

the Lorentzian approximation [34]. (ii) One can use 

as static susceptibilities expressions more accurate 

than the Ornstein-Zernike susceptibility. Using the 

susceptibility of [35] a change of no more than several 

percent are found. (iii) One can perform a direct re- 

normalization group analysis, which is in progress. 

The inclusion of dipole-dipole forces in the ferromag- 

netic phase is complicated becaus e of two anisotropies 

(I) with respect to the direction of the magnetization 

(II) with respect to the wave vector. 

This work has been supported by the German Federal Minister 

for Research and Technology (BMFT) under contract number 03- 
SCITUM-0. 

References 

1. Resibois, P., Piette, C.: Phys. Rev. Lett. 24, 514 (1970) 

2. Aharony, A., Fisher, M.E.: Phys. Rev. BS, 3323 (1973) 

3. Frey, E., Schwabl, F.: Phys. Lett. A123, 49 (1987) 

4. Mori, H.: Progr. Theor. Phys. 33, 423 (1965); 34 399 (1965) 

5. Kawasaki, K.: Progr. Theor. Phys. 39, 285 (1968); Ann Phys. 

61, 1 (1970); In: Phase transitions and critical phenomena, 

Vol. 5a. Domb, C., Green, M. (eds.). New York, London: Aca- 

demic Press 1976 

6. Hubbard, J.: J. Phys. C4, 53 (1971) 

7. Schwabl, F.: Z. Phys. 246, 13 (1971) 

8. Mazenko, G.F.: Phys. Rev. B14, 3933 (1976) 

9, Iro, H.: Z. Phys. B - Condensed Matter 68, 485 (1987) 

10. Bhattacharjee, J.K., Ferrell, R.A.: J. Stat. Phys. 41, 899 (1985) 

11. Ma, S., Mazenko, G.F.: Phys. Rev. Bl l ,  4077 (1975) 

12. Sasvfiri, L.: J. Phys. C10, L633 (1977) 

13. Collins, M.F., Minkiewicz, V.J., Nathans, R., Passell, L., Shirane, 

G.: Phys. Rev. 179, 417 (1969) 

14. Collins, M.F., Minkiewicz, V.J., Nathans, R., Shirane, G.: Phys. 
Rev. 182, 624 (1969) 

15. Dietrich, O.W., Als-Nielsen, J., Passell, L.: Phys. Rev. B14, 4923 
(1976) 

16. Mitchell, P.W., Cowley, R.A., Pynn, R.: J. Phys. C17, L875 
(1984) 

17. K6tzler, J., Scheithe, W., Blickhan, R.: Solid State Commun 
26, 641 (1978) 

18. K6tzler, J., Kamleiter, G., Weber, G.: J. Phys. C9, L361 (1976) 

19. K6tzler, J., von Philipsborn, H.: Phys. Rev. Lett. 40, 790 (1978) 

20. K6tzler, J., Seheithe, W.: J. Magn. Magn. Mater. 9, 4 (1978) 

21. Dunlap, R.A., Gottlieb, A.M.: Phys. Rev. B22, 3422 (1980) 

22. Hohenemser, C., Chow, L., Snter, R.M.: Phys. Rev. B26, 5056 
(1982) 

23. Mezei, F.: Phys. Rev. Lett. 49, 1096 (1982) 

24. Mezei, F.: J. Magn. Magn. Mater. 45, 67 (1984) 

25. Mezei, F.: Physica 136B, 417 (1986) 

26. B6ni, P., Shirane, G.: Phys. Rev. B33, 3012 (1986) 

27. Borckmans, P., Walgraef, D., Dewel, G.: Physica A91, 411 (1977) 

28. Riedel, E., Wegner, F.: Phys. Rev. Lett. 24, 730 (1970) 

29. Bruce, A.D., Kosterlitz, J.M., Nelson, D.R.: J. Phys. C9, 825 
(1976) 

30. B6ni, P., Shirane, G., Bohn, H.G., Zinn, W.: J. Appl. Phys. 61, 
8 (1987) 

31. Finger, W.: Physica 90B, 251 (1977) 

32. Finger, W.: Phys. Lett. A60, 165 (1977) 

33. Raghavan, R., Huber, D.L. : Phys. Rev. B 14, 1185 (1976) 

34. Frey, E., Schwabl, F., Thoma, S.: Phys. Lett. A: (to be published) 

35. Santos, M.A.: J. Phys. C13, 1205 (1980) 

E. Frey, F. Schwabl 

Physik-Department 

Technische Universit~it Miinchen 

-Theoretische Physik- 

James-Franck-Strasse 

D-8046 Garching bei Miinchen 

Federal Republic of Germany 

Note added in proof 

The most interesting result of the solution of the complete mode 

coupling equations 1-34] concerns the transverse shape function. 

This becomes almost a Lorentzian. Thus it seems that dipolar forces 
are responsible also for this longstanding discrepancy between ex- 
periment and theories based solely on the short range exchange 
interaction 




