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Summary. We prove that the critical probabilities of site percolation on the 
square lattice satisfy the relation p c + p * = l .  Furthermore we prove the 
continuity of the function "percolation probability". 

1. Introduction 

It was conjectured in [1] that in any pair of dual graphs the critical probabilities 
of percolation, Pc and Pc*, satisfy the relation 

Pc + P* = 1. (1.1) 

If, in particular, as in the bond percolation in the square lattice, the graph is 
self-dual, so that Pc-Pc,- * (1.1) becomes 

pc=1/2. (1.2) 

In the case of bond percolation in the square lattice (1.2) has been recently 
proved by H. Kesten [2]. Here we extend his result by proving (1.1). The present 
paper deals only with site percolation in the square lattice, but it seems possible 
to extend his results to other regular planar graphs. 

We call #x the Bernoulli probability measure according to which each 
element of the graph is equal to +1 ("open" in the bond terminology) with 
probability x. In his paper Kesten determines the #x-probability of suitable 
events, whose #~-probability is known, by a sequence of modifications of the 
measure #~. In particular he uses the fact that, by self-duality, the #~-probability 
of the crucial events A + (defined in Sect. 2) for any L equals 1/2. The main new L, 1 

A + tool in our proof of (1.1) is an uniform bound on the functions #x(L,K), for x~[1 
--Pc, Pc]. This bound, proved in Sect. 3, allows us to prove also the continuity of 
the function "percolation probability" (we remark that in the self-dual case, 
conversely, this last statement is a simple consequence of (1.2)). Section4 
contains a remark which allows us to simplify thc main proof. The main result is 
proved in Sect. 5. 
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2. Definitions and Some Preliminary Results 

We shall employ the following terminology and notations. Two elements i, j of 
Z 2 are adjacent if I i l - j l [ + [ i 2 - j 2 l  =1, they are *adjacent if Max([ i l - j l [ ,  [i2 
- j 2 [ ) = l .  A finite sequence (i 1 . . . .  ,i,) of distinct elements of Z 2 is a (self- 
avoiding) chain [*chain] if i r and i s are adjacent [*adjacent] if and only if [r-s] 
= 1 (throughout this paper chains and *chains will always be understood to be 
self-avoiding, in the above specified sense). (iz, ..., in) is a circuit [*circuit] if for 
any r~(1 .... ,n) (ir, i~+D...,i,,i 1 .... ,i~_z) is a chain [*chain]. A set X c Z  2 is 
connected [*connected] if for any pair i, j of points in X there is a chain 
[*chain] made up of points in X having i, j as terminal points. 

We consider the configuration space ~2={-1,1} z2. We define in f2 the 
partial order __< by putting co 1 <co2 if and only if ViEZ 2 c01(i)<co2(i ) and we call 
positive [negative] an event A if this characteristic function is non-decreasing 
[non-increasing]. We put E[  [EF] = {co,Oleo(i)= 1[ -1]} .  For every K c Z  2, we 
call N~ the a-algebra generated by the events E +~, i~K. 

If co~f2 the (+)clusters [(+,)clusters] in co are the maximal connected 
[*connected] components of c0-1(1); (-)clusters and (- , )c lusters  are defined in 
the same way. We call (+)chain in coco any chain included in c0-1(1); 
(-)chains,  ( - , )chains ,  (+)circuits, and so on, are defined in an analogous way. 

For any x~[0, 1] v x is the measure on { -  1, 1} which assigns weights x and 1 
- x  respectively to 1 and - 1 .  We put #x= 1-[ Vx. P~+(x) [P+*(x)] is the #x- 

ieZ 2 

probability that a given element of Z 2 belongs to an infinite (+)cluster 
[(+ *)cluster]. P~(x) and P~-*(x) are defined in an analogous way. 

The critical points are defined by: 

Pc=Sup{xe[O, 1]]P~+(x) =0}, p* = Sup{xe[0, 1] IP~+*(x) = 0}. 

Note that 
1 - p* = Inf{x e [0, 1 ]IP~* (x) = 0}. 

Hence Harris' theorem [3] implies 

pc+p*> l. (2.1) 

We put, for any pair of positive integers L, K: 

AL, K={ieZ21 [ilI<KL, li2l<g}. 

We shall consider in particular the square AL. 1 and the rectangles AL, 2, 
AL3. For any rectangle A we call S(A) [S*(A)] the set of chains [*chains] 
contained in A starting on the "left side" of A and ending on its "right side". If 
ceS(A) [ceS*(A)] we call A(c) the set of elements of A which are "'above c" and 
we consider in S(A) [S*(A)] the partial order defined by putting c, >c  2 if A(cl) 
__A(c2). We call S+(co) [S~*(co)] the set of elements of S(A) [S*(A)J which are 
included in o9-1(1) [co- l (_  1)], and we put 

A + - { c o ~ l S L K ( c o ) * O } ,  A-*--{coeOIS22K(co)*r L , K - -  , L , K - -  , 

R ~ , ~ ( x ) =  A + - *  - -* #~(L,K), RL, K(X)--#~(AL, K)" 
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It is not too difficult to prove that if S~(6o)+r [$2"(6o)+0] there is in S~(co) 
[$2"(co)] one and only one minimal element (a formal proof of this statement is 
in [2]): we call it the lowest (+)chain  [ ( - , ) c h a i n ]  in S(A) [S*(A)] in the 
configuration co. 

The functions R + L.K(X), R[,}(x), introduced independently in [4] and in [5], 
play a considerable role in percolation theory. The following lemma contains 
some inequalities relating R § R § L, 2(X), L, 3(X) [R[*(x),  R /*(x) ]  with R+,l(x) 
[R/,~(x)]. These inequalities are very similar (but slightly stronger) to the 
analogous inequalities proved in [5] for bond percolation. We give an inde- 
pendent proof of them because our proof seems simpler than the one given in 
[5]. 

Lemma 1. For any positive integer L and for any x~[0, 1]: 

R[ 2(x)_>R [ l(X) [ 1 - ( 1  R § cx~16  (2.2) , - -  , - -  L, 1 ~, ]! 3 , 

R/2 ~ (x) > R L,* (x) [ 1 - (1 - Rs  (x))~] 6, (2.2 a) 

R[,3(x)> [R[  l(X)]3 [ 1 -t(1 - R +L,1 ~,txn~q 1 2 , ,  a , (2.3) 

R * [ - ,  3 - ,  ~ 12 RE, l(x)) ] . L, 3(X)> RL, I(X)] [1--(1--  (2.3a) 

Proof We consider, besides AL,,, the other square in Z2: 

A' ={ieZ210<-_il<-2L, 1i21<L}. L, 1 

Furthermore we put 

az--{i~Z21il=O, -L_<_i2 <0 }, au--{ieZ21il=O, 0<__i2<L}, 

A A ,  a l 2 = A L ,  I ~ A L ,  1 �9 

In other words a~ and a u are the lower and the upper halves of the left side a 
= a~ u a~ of A' We call A + the event "there exists at least one (+)chain  in L , I "  L, 3/2 

AL, 3/2, connecting its left side with its right side" and we put R +L, 3/2(x) 
=#~(A[, 3/2)- If s=(s 1, ...,s,) is a chain in S(AL,,) (ordered from the left side 
of AL, 1 to the right one) we call s a the last intersection of s with a and we put 
s~=s ", ...,s,). Furthermore we call S~ the set of chains s~S(AL, 1) such that 
sa~a, and s / the chain obtained by reflecting s ~ with respect to the line i~ =L.  

Now we consider the following events: 

E~= {s is the lowest (+)chain in S(AL,1)}, 
F~={there is in A'L, lc~A(KwK') a (+)chain starting on the upper side of 

A~, 1 and ending in s~}, 
G= ~ (E~F~), 

sENt 

H,[H~] = (there is in A~, 1 a (+)chain  starting in a,[a~] and ending on the right 
side of A~,I}. 

By using Harris' inequality [33 and the symmetry properties of g~ we get 

[ 1 - #x (H.)] 2 = [#~ (O \ H.)] 2 < #x ((~2 \ H.) c~ (f2 "-. Hi) ) = 1 - R + 
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Hence 
#x (H.) ~ 1 - (1 - R + 1 (x))k (2.4) L,. 

In an analogous way, by considering the event Q)E s and the event obtained by 
sESz 

reflecting it with respect to the line i 2 = 0 we get 

#x(Es)> 1 - ( 1  - R  + t , ,~  (2.5) L, 1 W~/] " 
s6Sl 

Furthermore it is easy to prove that #~(Fs[Es)>=#x(F~). Hence, by using once 
more the same argument, we get, for any s~S(AL,1): 

#x(VslE)__> 1_(1_R-~ L, 1 (X)) ~" (2.6) 

Since G and H~ are positive events Harris' inequality implies: 

#~(G c~ H.) > #~(H.) #~(G) = #~(H.) ~ #x(F~l E) #x(Es) 
s~Sl 

>- [1 - (1 - RE, I(X))~-] 3. 

By observing that G ~ H.  c A[, 3/2 we get 

R + L, 3/2 (X) => [1  - -  (1 - RLI (x ) )~]  3. (2.7) 

If we consider the rectangle A' = { i ~ Z 2 1 - 2 L < i a  <L, 1i21 <L},  it is easy to L, 3/2 
convince oneself that if there is in AL, 3/2 a (+)chain connecting left and right 
sides of/IL, 3/2, there is in A' L, 3/2 a (+)chain  connecting left and right sides of 
A'L,3/2, and there is a (+)chain  in AL, ~ connecting its upper side with its lower 
side, then the event A + L, 2 occurs. By using Harris' inequality we get 

RL2 (x) >= R~,~ (x) [RL~ 3/2 (x)] 2. (2.8) 

(2.7) and (2.8) imply (2.2); in the same way one can get (2.3) from (2.2). The proof 
of (2.2a) and (2.3a) is analogous. 

3. Continuity of the Percolation Probability 

In this section we prove the following proposition. 

Proposition 1. P~+(x) and Ps are continuous functions. 

The proof of Proposition 1 is based on the following lemma. 

Lemma2.  I f  for some L R + 3 ( x ) > l - 5  -4 [ R / ~ ( x ) > l - 5 - 4 ] ,  then P +(x )>0  L, 
I-PZ* (x) > 03. 

Proof. We suppose R[~,3(x)> 1 -  5-  4. The proof works in the same way under 
the hypothesis Rz~' ~ (x) > 1 - 5 -4 

Besides AL,3 we consider the other rectangle 

A' -{i~Z2lii l[<L, li2I=<3L}, L, 3 - -  
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and, for any iEZ 2, we define A(i~)3 by putting 

A(i) _ T 2 L ( i ~  + i z ) ~ 2 L ( i l  - i 2 )  et if i~ - i 2 is even L, 3 - -  2 1 " L, 3 

if i x - - i  2 is odd d(i) 3=T22L(il+i2)T2I~(il~i2)AL 3 

where T~, T 2 are the one-step translations along the two axes of Z 2. Further- 
more we call z~ the characteristic function of the event 

A(a+ = {there exists in A (~ (+)chain connecting its opposite L,  3 L ,  3 a 

smaller sides}. 

The hypothesis of the temma and the symmetry properties of the measu re /~  
imply: 

V i s Z  ~ 6- =- 1 - #~(A~)~-) < 5 -4. (3.1) 

Remark 1. If i, j e Z  2 are adjacent and zi(o9 ) = zj(co)= 1, the (+)chains connecting 
the opposite smaller sides of A~)a a n d  A~! 3 belong to the same (+)cluster. 
Hence if s=(ix . . . .  ,i,) is a chain in Z z and for any i~s z~(o)= 1, there is in co a 
(+)  chain starting in A(g~) and ending in A(~,) ~J-L, 3 ~ L ,  3 "  

Remark2. If i , j~Z  2 are not *adjacent, since A(~) ,-,A~) -c~ ~r,3 . . . .  L. 3--", Z~ and zj are 
independent. Hence we can divide Z 2 in four distinct subtattices such that the z's 
associated to each sublattice form a set of mutually independent random 
variables. 

Now we apply the Peierls~ argument to the variables z's. If I is a *circuit in 
Z z surrounding the origin, we put 

Bz= {o)~f2[Vi~l, zd~o)=0 }. 

elements of 1 belong to the same sublattice, (3.1) and Since at least [/1/4 
Remark 2 imply 

~(B~)< ~1~1/~ (3.2) 

where Ill is the number of elements of L Furthermore it is easy to check that the 
number of self-avoiding *circuits in Z 2 surroinding the origin and of length k is 
tess than k z 5 k (note that, since each point has eight *neighbors, each given open 
*chain can be prolonged in seven different ways, but at most five of them give 
rise to a still self-avoiding *chain). Hence for any integer k 
#x(z: II~ ~-) k Bz)<k2 5kfk/4" Using (3.1) and Borel-Cantelli lemma we get that #x-a.s. 

only a finite number of Bt occur. Hence #~-a.s. there is in Z ;  an infinite 
connected subset C such that Vi~C z~=l. Then Remark 1 implies that /G-a.s. 
there is in Z 2 an infinite (+)cluster. 

Proof of  Proposition I. Lemma 2 and the definition of Pc imply that for any L 
and for any x<p~ R ~ , 3 ( x ) < l - 5  -4. For  any L, since R[,3(x ) is a continuous 
function of x (namely a polynomial), in the limit x ~ G - O  we get R/~3(p~)<t 
- 5-  4. On the other hand P~+ (pc) > 0 implies tim R[, 3 (Pc) = 1 (see [4], Lemma 4). 

g ~  oo 

Hence we get P~+(G)=0. The last equality means that P~+(x) is left-continuous in 
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the point x = p~. Since it is known [4] that P~ (x) is a right-continuous function 
and that it is continuous in [0, 1] "-. {p~}, P~(x) is a continuous function. The 
continuity of Po2* (x) can be proved in the same way. 

We remark that Proposition I and (2.1) imply that the set of x such that 
P~ (x) = Pg*  (x) = 0 is the non-empty closed interval [ 1 - p~, p~]. 

4. A Remark on the Probability of Positive Events 

In this section we prove a simple equality which will be useful in the next 
section. 

Let A be a finite set and let ~2A={--1,1} a. For  any i~A we define Si: 
f2A~(2 A by putting 

v k  ~ i (s~ o~) (k) = co(k); (S~ co) (i) = - co(i). 

If ieA, Acf2A,  the event 6iA is defined by: 

(~i A = {coeAlS i co qL4} u {co(~A [S i co eA }. 

If co~3~A we call i a critical point of the configuration co for the event A. The 
number of critical points of the configuration co for the event A is, of course: 

n(A) (co)= 2 )Ca,A(CO), (4.1) 
l e A  

where we have used the symbol Ze for the characteristic function of the event E. 
(n(A))~  denotes the expectation value, for the measure #~, of n(A); if A is a 
positive event it has the simple meaning given by the following lemma. 

Lemma 3. I f  A is a positive event 

d 
d~ #x (A) = (n (A))ux. (4.2) 

Proof If x = (x, . . . .  , XlAt) we put #x = [q v~. For  any event A c Q a we have 
iaA 

#x(A) =/~(A ~3iA)+#x(A "-. b~ A); 

since A'-.31A~NA..{i}, we have 

0x~ a~(A) = u~(A c~ 3~ A). 

If A is positive, then 

4 -  . A ~ S i A = E  i c '~iA,  #~(Ac~5~A)=xi#~(SiA); 

furthermore 3 i A e~A \ {~}" Hence we get 

0 
Ox~ #~(A)-- #x(3~ A). 

If, in particular, we consider the vector x = (x, x, ..., x), and sum the last relation 
over i, we obtain (4.2). 
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5. Proof of the Relation p~ + p* = 1 

We consider the event 

DL= {there are in A Z L  ' a at least k disjoint (-*)circuits surrounding 
the origin}. 

The following lemma is a transcription, in the language introduced in the 
preceding section, of the main idea of the proof of Ref. 2. For convenience of the 
reader we insert here a short proof of it. The reader interested in further details 
is referred to [2]. 

Lemma 4. Vx~[O, 1], VL 

#~ (co ~ f2ln (A ~-L, 1) (co)__> k)__> R~, 2 (x) R~,* (x) #x (DE) �9 

Proof We consider the following events: 

Es= {s is the lowest (+)chain in S(A2L,1)}; 
Ns, t={t  is the left-most ( - , ) c h a i n  contained in A2L, lC~A(s ) starting in the 

upper side of A2L, 1 and ending in a point *adjacent to some point in s}; 

Ls, t=Es~Ns, t; 
k _ {at least k different points of s are *adjacent to the ending point of a M s ,  t - -  

( - , )chain  contained in R(s, t) and starting in a point *adjacent to some 
point in t}; 

Q~,t=Ls,t~M~,t; 

where R(s, t) is the set of points in A2L,1 which are "above s" and "on the right 
of t". 

Furthermore we put 

Al=A;L, lc~{ieZ21i2<O}, A2=AzL, l~{ieZ21il<=O}, Qk= U Q~,r 
s c A 1  
t c A 2  

It is easy to check that if coeQ k, then n(AfL" 1) (co)----> k; on the other hand we have 

# k #x(Qk) = ~ x(Qs,~) = ~ #x(M~,t[L~,t)#x(L~,t) 
s c A 1  s ~ A 1  
t ~ A 2  t ~ A 2  

= y~ #x(/~,,)#x(L~,,)>__ y~ #x(nf)#~(Ls,,) 
s c A 1  s ~ A 1  
t c A 2  t c A 2  

=#~(Df) ~ ~ #~(Ns,,IE.)#~(e.)>_--#.(Df) Y, ~ #x(Ns,~)#~(E.) 
s ~ A 1  t~A2 s ~ A I  t ~ A  2 

R-* x L >=#~(DE) ~ #x(E~)R~*2(x)>=R[,2(x) L, 2( )#x(Dk)" 
s ~  AI 

Lemma 5. There exists c~>O such that, VL, Vxe[1-P*,Pc]  

RF,~(x)>~, RL*(x)>=~. 
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Proof If x~[1-p*,p~], by proposition l, P~(x)=P~*(x)=O. Hence, by le- 
mma 2, R + _ . _ L. 3 (x)_< 1 - 5 - 4, R~ ~ (x) < 1 - 5 - 4; by using lemma 1 we get R/., l(x) < p, 
R[,~(x)<=fi, where fl is the root in [0, 11 of the equation x 3 [ 1 - ( 1 - x ) - ~ ] 1 2 = l  
- 5  -4 Since R+L,I+R/.*(x)=I, we have R[, l (x )>l -  ~, R ~ ( x ) > l - f l .  If we 
choose e = ( 1 - f l )  ( 1 -  ill)6, the statement of the lemma easily follows. 

Lemma 6. For any positive integer k, there exists Lo(k ) such that if x ~ [ 1 - p * ,  Pc], 
L~Lo(k), then L _ ~x(DD_>_ 1/2. 

Proof Since D~ is a negative event, for any x~[1 * -p~,p~], we have 
/~(D~)~#vr on the other hand since, by proposition 1, P+(p~)=0, #v-a.s. 
there are infinitely many disjoint ( - , )c i rcu i t s  surroinding the origin; hence, for 
any k, lira L _ #v~(Ok)-- 1. 

L~oo 

Now we can easily prove our main result. 

* - - 1 .  Theorem 1. Pc + P~ - 

Proof  Suppose p~> l - p * ;  then we can choose an integer k such that 

k>2[(p~ +p*- -  1) c~2] -1 (5.1) 

(where ~ is the number defined in the proof of Lemma 5). Furthermore we 
choose an integer L > L o ( k  ) (where Lo(k ) is the function defined in Lemma6). 
Then Lemmas 4, 5, 6 imply: 

Vxe[1-p~,p~] 

Hence (5.1) implies: 

Vx6[1 -p~,p~] 

~x(o~eaf n(A ;~,~) (o )_ ->E)>~V2.  

<n(A~L,1)>u >kcd/2>(p~+p*-l)-l. 

b) (f x=p~ 

c) l f  x>p~ 

Theorem 2. There 

a) If  x <pc 

exists pc~(O, 1) such that: 

P~+(x)=0, Ps S+(x)<~, S-*(x)<oc, 
lira R[,l(x ) =0,  lim R/,*(x) = 1. 

L~oo L--> oo 

Pg(x)=P2;*(x)=O; S+(x)=S-*(x)= o9. 

P+(x)>0,  P•*(x)=0, S+(x)<oo,  S -* (x )<o% 

lira R/, ~(x)= t, Iim R/,~ (x) = 0. 
L~oo L~oo 

The last inequality gives a contradiction, since Vx~[0, 1] #x(A2+L,1)~[0, I]. This 
proves Theorem I. 

We call S+(x) [-S-*(x)] the mean size, with respect to the measure #x, of the 
finite (+)clusters [ ( -  .)clusters]. Theorem 1, together with results of Refs. 4 and 
5 implies the following theorem 

By using Lemma 3 we get 

d 
p pc(A2+L, 1)--]~l_p2(A2+L, 1):>(pc+p * -  1) min : -  #x(A~L.1)> 1. 

x~[1 -p~, p~l d x  
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