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ON THE CRITICAL RADIUS IN SHEET BENDING 

by J.A.G. Kals and P.C. Veenstra 

INTRODUCTION 

Actually it is very difficult to find a suitable experimental deforming 

limit for sheet bending operations. In many cases literature only pro

vides data for particular sheet materials and in general the criterion 

connected with the data is either not very well defined or not mentioned 

at all. Different values might be due to different criteria on which the 

experiments are based. 

The deforming limit could be defined to be the amount of strain which 

starts a remarkable granulation in the outer surface of the bending zone. 

In another case a visible orientation of this granulation or the start of 

surface cracks might be more relevant. In general, however, it is very 

difficult to carry out experiments based on direct visual observation. 

In this paper a simple theoretical model is proposed, which proved to be 

rather useful in a number of practical applications. It is based on the 

consideration that local strain effects like localized granulation, neck

ing, cracks etc. in a more or less uniformly stressed area arise from 

strain peaks which must have been preceded by a local instability. Since 

plastic instability can be calculated from tensile test data, it is pos

sible to derive a safe upper limit for the bending radius which can serve 

as a guideline for tool and product design. 

LOCAL SURFACE INSTABILITY 

Starting from the consideration that a peak strain will occur at the outer 

surface of the bending zone for homogeneous materials, we have to deal 

with a plane stress situation in a thin surface layer : 

(I) 
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where 01 ~s the bending stress. Then the stress-strain relations 

are 

de: J 
d). 

(2-i) = 2"" 0] 

(2) de:2 
dA (2i-J) = 2"" 0] 

de:3 
d)' 

(I +i) = - '2 °1 

Now, by subsfituting the strain increments given by Equations (2) into 

the general expression for the effective strain increment 

it is eas ily shown that 

(3) dE 
2 de:3 

I (de:3 ~ 0) = - J+i 

where 

(4) I = ~i2 - i + 1 

Consider a small (uniformly strained) surface element 

(5) dA r= 

when constancy of volume is assumed. 

= - de: 3 
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With Equation (5), Equation (3) can be written as follows 

(6) dE = 21 dA 
T+T A 

For a constant value of i we have a straight strain path and 

Equation (6) can be integrated to 

(7) - 21 In A
£ = l+i Ao 

whereAo is the initial value of A. Using the strain hardening equation 

according to Ludwik : 

_ )n 
(8) cr = c (£+£0 

where C denotes the characteristic flow stress and n is the strain 

hardening exponent, the work done per unit volume will be given by the 

equation 

(9) dW = cr de = C(e+e:)n dE 
s 0 

Considering Equations (6) and (7), this will give the result 

(10) 

If after a certain amount of strain, the dissipation of work per unit surface 

increaseshows,a maximum value the relevant surface element becomes a weakened 

spot, whilst the surrounding surface elements are strengthening further. Thus 

we see, that the stability limit is found by 

(I 1) d 
dA 

In other words 
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(12) 
AI' 

1 c +~ = 
n A + 2I Eo n 

o 

where c indicates the critical value of the surface element. 

For i = constant we find, considering Equations (2), (3) and (6), after 

integration 

(13) 

Curves representing these equations are shown in Fig. O. 

Actually Equations (13) are defining the forming limit diagram for the 

sheet material on the base of local instability, which is the 

first condition. for necking. 

In the case of simple sheet bending (i.e. bending in one plane) the sur

rounding surface material is not preventing the instable spot from strongly 

increasing its strain. 

BENDABILITY CRITERION 

In order to make a first step towards a solution of the practical problem 

the displacement of the neutral surface of bending is neglected. The dif

ference in the result is not very important for materials with a low degree 

of bendability. Further it is assumed that the resulting tension inthebending 

zone is zero and that bending takes place under plane-strain conditions 

(the average transverse strain being zero during the bending). 

So 

Using the last of the Equations (13) we find that i = i. Substitution of 

this value into the first of Equations (13) leads to 

( 15) E = n - € ~ 
Ic 0 Z 

As usual it is assumed that plane sections remain plane during the 
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bending. The distribution of elongation (or engineering strain) of 

fibres across the sheet is therefore linear. The bending strain in 

any fibre LS 

In (1 + Z) 
p 

where P is the radius to the central surface and y is the distance of 

the fibre from the central surface. 

So the bending strain in the outer surface of the bending zone is 

(16) E = In (1 +!-) 
L 2p 

as a first approximation. Thus, using Equation (15) and Equation (16) 

provides the bending geometry connected with an instable surface layer 

(17) 
Pc 
-- = ------------~~----s 

An easy practical approximation is achieved for 

£ = 0, S ~ s and eX ~ I+x . 
0 0 

. 

(18) 
Pc 

~ 

~ So 

The curves representing Equations (17) and (18) are shown in Fig. 1. The 

left part of the diagram is of practical importance and shows a neglectable 

difference between the curves. 

BENDING IN SUCCESSIVE STEPS 

For the sake of simplicity the following calculations are based on Equation 

(18). From Fig. 1 it becomes clear thats~heet materials with a small n-value 

difficulties can arise when a relatively sharp bending edge is wanted. 

Apart from choosing a more ductile sheet material, a sharp edge may be 

achieved by bending in steps applying an amnealing operation in between the 

steps. 
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The development of a practical guideline for the planning of the steps 

may start from the assumption, that the ductility of the material can 

be restored completely by annealing. So the increase in bending strain 

in the sheet surface 

(19) ~£I = In (1+ z!-) - In (1+ 2 s ) 
Pj Pj-l 

during any bending step j is restricted to the value given by Equation 

(15). So for £ = o,s=s and eX IX l+x we obtain the simple law o 0 

(20) (~) c. 2n + (n+l) 

which enables a successive calculation of the critical bending radius by 

each step using the value of the initial radius. From this formula 

Equation (21) can be derived, if powers of n are neglected. 

! (21) (f) = 
J c 

. -1 

2n (j + n 1: a) 
a=o 

This approximate formula gives the critical values of the bending radius 

directly for each step_ 

The curves representing Equation (20) are shown in Fig. 2. 

DISCUSSION 

Startingfrom an analysis of local plastic instability under biaxial stress 

Equation (20) is obtained. 

This is a very important result, since it allows us to determine a safe 

upper limit for the first bending operation of sheet and useful indication 

for planning the following steps. Since instability cannot be observed, a 

direct experimental verification was impossible. However, from a number of 

practical applications the criterion proved to be a very useful one. 

In addition to this the criterion developed is in agreement with a number 
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of recommandations in literature. For example: Oehler {I} mentions 

a value p ~ 2.5 s for steel. Since the average n-value for steel is 
c 0 

0.2 Equation (18) provides the same value. However, the strain-hardening 

exponent is not often mentioned in literature, therefore a comparison is 

difficult. 

Moreover a first investigation has been carried out in order to check the 

theoretical bending criterion in a mediate way. For that purpose three 

different steel sheets with a thickness of 12.0 mm and a polished 

surface have been subjected to bending operations in a V-tool. 

By watching changes of the surface appearance by eye very carefully the 

values of the bending radius have been measured for beginning mattness, 

for the start of perceptible directionality in the surface appearance and . 
finally for visible crack initation. The results of these tests are 

represented in Fig. 3. The observations come up to expectations : mattness 

is not connected with instability, but directionality of the surface struc

ture and crack' formation are obviously preceded by local instability. With 

this the practical significance of the theoretically developed criterion 

is provisionally established, although the relation between this and dif

ferent practical criteria has to be investigated in a more systematical 

way. Particularly, the effect of sheet thickness is of practical importance. 

Actually, practical values {2} of the bending radius exceed the minimum 

values given by the criterion very often. But the demands made on products 

differ considerably and generally are not defined very well. 

Especially in the case of dynamic loads or chemical treatment of the 

product after bending, the instability criterion seems to meet the needs 

in a proper way. Also for thick sheet materials, where the strain gradient 

in normal direction has a smaller value in connection with surface instabi

lity, it might be wise to restrict the bending radius according to the limit 

of surface instability. 

It is neither possible nor desirable to discuss all the practical bending 

processes here. It is only suggested that some bending problems can be 

analysed in a more systematical way. 

Especially in the case of additional drawing stresses in the plane of the 

sheet, it is necessary to take the shift of the neutral plane of bending 

into account. It can be calculated by equating the total tension to the 

difference between the bending tension and compression. 
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On the Critical Radius in Sheet Bending 
I. A. G. KaJs (2), and P. C. Veenstra (1) 

Introduction 

It is very difficult to find for sheet bending operations a suit
able experimental deforming limit. In many cases literature 
provides data only for particular sheet materials and, in general, 
the criterion connected with the data is either not very well 
defined or not mentioned at all. Different values might be due 
to different criteria on which the experiments are based. 

The deforming limit could be defined as the amount of strain 
which starts a noticeable granulation in the outer surfac~ of the 
bending zone. In another case a visible orientation of this 
granulation or the start of surface cracks might be more 
relevant. In general, however, it is very difficult to carry out 
experiments based on direct visual observation. 

In this paper a simple theoretical model is proposed, which 
has proved rather useful in a number of practical applications. 
It is based on the consideration that local strain effects such as 
localized granulation, necking, cracks, etc. in a more or less 
uniformly stressed area arise from strain peaks which must have 
been preceded by a local instability. Since plastic instability can 
be calculated from tensile test data, it is possible to derive a safe 
upper limit for the bending radius which can serve as a guideline 
for tool and product design. 

Loeal Surface Instability 

Starting from the consideration that a peak strain will occur at 
the outer surface of the bending zone for homogeneous 
materials, we have to deal with a plain stress situation in a thin 
surface layer: 

(1) 

where O! is the bending stress. Then the stress-strain relations 
are 

dEl = ~A a1 (2-1) 

dA 
dE2 = ~ a1 (21-1) 

dA 
- ~ a1 (1+1) 

(2) 

Now, by substituting the strain increments given by Equations 
(2) into the general expression for the effective strain 
increment 

it is easily shown that 

where 

2 dE 
di=-.::::....:..2. 1 1+1 (3) 

(4) 

Consider a small (uniformly strained) surface element A=X1X2, 
then 

and. 

when constancy of volume is assumed. 
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With Equation (5), Equation (3) can be written as follows: 

dt dA. 
r (6) 

For a constant value of i we have a straight strain path and 
Equation (6) can be integrated to 

£L In L 
1+1 Ao 

(7) 

where Ao is the initial value of A. Using the strain hardening 
equation according to Ludwik: 

(j C Cf+Eo)n (8) 

where C denotes the characteristic flow stress and n is the strain 
hardening exponent, the work done per unit volume will be 
given by the equation 

(9) 

Considering Equations (6) and (7), this will give the result: 

(10) 

If after a certain amount of strain, the dissipation of work per 
unit surface increase shows a maximum value the relevant 
surface element becomes a weakened spot, whilst the surround
ing surface elements are strengthened further. Thus the stability 
limit is found by 

(11) 

In other words 
A 

1 ..£ + 1+1 E n 
n A 21 0 

o 
(12) 

where c indicates the critical value of the surface element. For 
i = constant we find, considering Equations (2), (3) and (6), 
after integration 

2-1 ( _ 1+1 E ) 

! 
1+1 n 21 o· 

(13) 

E2c = (n _ 1+1 E ) 
21 0 

Actually Equations (13) define the forming limit diagram for 
the sheet material on the base of local instability, which is the 
first condition for necking. 

In the case of simple sheet bending (i.e. bending in one plane) 
the surrounding surface material does not prevent the instable 
spot from strongly increasing its strain. 

Beadability Criterioa 

In order to make a first step towards a solution of the practical 
problem the displacement of the neutral surface of bending is 
neglected. The difference in the result is not very important for 
materials with a low degree of bendability. Further it is assumed 
that the resulting tension in the bending zone is zero and that 
bending takes place under plane-strain conditions (the average 
transverse strain being zero during the bending). 

So 
(14) 

Using the last of the Equations (13) we find that i == l/Z. 

Substitution of this value into the first of Equations (13) leads to 

(15) 
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As usual it is assumed that plane sections remain plane during 
the bending. The distribution of elongation (or engineering 
strain) of fibres across the sheet is therefore linear. The bending 
strain in any fibre is 

1n (1 + ~) 

where Q is the radius to the central surface and y is the distance 
of the fibre from the central surface. 

So the bending strain in the outer surface of the bending zone 
is 

E. = 1n (1 + ~) 
1 2p 

(16) 

as a first approximation. Thus, using Equation (15) and Equa
tion (16) provides the bending geometry connected with an 
instable surface layer: 

1 (17) 

2 ! exp (n- EO ~)-1! 

An easy practical approximation is achieved for 

E 
o 

o and 

(18) 

The curves representing Equations (17) and (18) are shown 
in Fig. 1. The left part of the diagram is of practical importance 
and shows a neglectable difference between the curves. 

Bending in Successive Steps 

For the sake of simplicity the following calculations are based 
on Equation (18). From Fig. 1 it becomes clear that for sheet 
materials with a small n-value difficulties can arise when a rel
atively sharp bending edge is wanted. Apart from choosing a 
more ductile sheet material, a sharp edge maybe achieved by 
bending in steps, applying an annealing operation in between 
the steps. 

The development of a practical guideline for the planning of, 
the steps may start from the assumption that the ductility of the 
material can be restored completely by annealing. So the 
increase in bending strain in the sheet surface 

b.E = 1n (1+ _8_) - 1n (1+ _8_) (19) 
1 2pj 2pj_1 

during any bending step j is restricted to the value given by 
Equation (15). So forso = 0, s = So and e x ~ 1 + x we obtain the 
simple law 

'" c: 
"U 
c: .. 

10 

...c 6 

.~ 

.;: 
v 

.. 4 
> 

o 
~ 

t 

r-

( :~) '" 2n + (n+1) 8
0 

J c P j - 1 
(20) 

" \ 
\ 

1\ , J r-z. -- __ 

~ ~ --=:.:..::..:.. 
o 

o 0.1 0.2 0.3 

strain - hardening exponent n 

Fig. 1. Surface instability boundary in sheet bending. 
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which enables a successive calculation of the critical bending 
radius by each step using the value of the initial radius. From this 
formula Equation (21) can be derived, if powers of n are 
neglected. 

8 j-1 

( p~) =2no(j+n 1: a) (21) 
J c a=o 

This approximate formula gives the critical values of the 
bending radius directly for each step. 

The curves representing Equation (20) are shown in Fig. 2. 

Discussion 

Starting from an analysis of local plastic instability under bi
axial stress Equation (20) is obtained. 

This is a very important result, since it allows us to determine 
a safe upper limit for the first bending operation of sheet and 
useful indication for planning the following steps. Since instabil
ity cannot be observed, a direct experimental verification is 
impossible. However, from a number of practical applications 
the criterion proves to be a very useful one. In addition to this 
the criterion developed is in agreement with a number of 
recommendations in literature. For example: Oehler [1] men
tions a value Qe ~ 2.5 so for steel. Since the average n-value for 
steel is 0.2, Equation (18) provides the same value. However, 
the strain-hardening exponent is not often mentioned in litera
ture, therefore a comparison is difficult. 

Actually, practical values [2] of the bendingradius very often 
exceed the minimum values given by the criterion. But the 
demands made on products differ considerably and, generally, 
are not defined very well. 

Especially in the case of dynamic loads or chemical treatment 
of the product after bending, the instability criterion seems to 
meet the needs in a proper way. Also for thick sheet materials, 
where the strain gradient in normal direction has a smaller value 
in connection with surface instability, it might be wise to restrict 
the bending radius according to the limit of surface instability. 

It is neither possible nor desirable to discuss all the practical 
bending processes here. It is only suggested that some bending 
problems can be analysed in a more systematic way. 

Especially in the case of additional drawing stresses in the 
plane of the sheet, it is necessary to take the shift of the neutral 
plane of bending into account. It can be calculated by equating 
the total tension to the difference between the bending tension 
and compression. 

1. Oehler/Kaiser, Schnitt-, Stanz- und Ziehwerkzeuge. Sprin
ger Verlag, 1957, p. 189,537. 

2. W. P. Romanowski, Handboek voor de moderne Stanstech
niek. Kluwer, p. 77 (translated from Handbuch der 
Stanzereitechnik, VEB Verlag Technik, Berlin). 
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