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On the Cross-sectional Relation 
between Expected Returns and Betas 

RICHARD ROLL and STEPHEN A. ROSS* 

ABSTRACT 

There is an exact linear relation between expected returns and true "betas" when 
the market portfolio is on the ex ante mean-variance efficient frontier, but empirical 
research has found little relation between sample mean returns and estimated 
betas. A possible explanation is that market portfolio proxies are mean-variance 
inefficient. We categorize proxies that produce particular relations between ex- 
pected returns and true betas. For the special case of a zero relation, a market 
portfolio proxy must lie inside the efficient frontier, but it may be close to the 
frontier. 

CONTRARY TO THE PREDICTIONS of the Sharpe, Lintner, and Black Capital 
Asset Pricing Model (hereafter the SLB CAPM or SLB Model; see Sharpe 
(1964), Lintner (1965), and Black (1972)), a decade of empirical studies has 
reported little evidence of a significant cross-sectional relation between aver- 
age returns and betas. Yet it is well known (Roll (1977), Ross (1977)) that a 
positive and exact cross-sectional relation between ex ante expected returns 
and betas must hold if the market index against which betas are computed 
lies on the positively sloped segment of the mean-variance efficient frontier. 
Not finding a positive cross-sectional relation suggests that the index proxies 
used in empirical testing are not ex ante mean-variance efficient. 

Some of the empirical studies have uncovered variables other than beta 
that have power in explaining the sample cross-sectional variation in mean 
returns. But the true cross-sectional expected return-beta relation is exact 
when the index is efficient, so no variable other than beta can explain any 
part of the true cross-section of expected returns. Conversely, if the index is 
not efficient, the ex ante cross-sectional relation does not hold exactly and 
other variables can have explanatory power. Indeed, any variable that hap- 
pens to be cross-sectionally related to expected returns could have discernible 
empirical power when the index proxy is ex ante inefficient. Again, the 
empirical evidence supports an inference that market index proxies used in 
testing are not on the ex ante efflcient frontier. 

But the puzzle in the empirical work is not so much that the cross-sectional 
mean return-beta relation is imperfect nor that other variables have empiri- 

* Roll is from the Anderson School of Management, University of California, Los Angeles, and 
Ross is from the Yale School of Management, Yale University. We are grateful for comments 
from T. Daniel Coggin, Mark Grinblatt, John E. Hunter, Chi-Cheng Hsia, Andrew Lo, Simon 
Wheatley, three referees, the coeditor of the Journal, David Mayers, and the editor, Rene Stulz. 
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cal power. This is to be expected given that direct tests reject mean-variance 
efficiency for many market index proxies.' Instead, the surprising thing is 
that the cross-sectional mean-beta relation appears to be virtually zero. 
Intuitively, it would seem that there should be some nonzero cross-sectional 
relation if the index is not too far inside the ex ante efficient frontier, even if 
it is statistically reliably inside. Why should we not anticipate at least a 
modest connection between expected returns and betas even on indices that 
are unmistakably inefficient?2 

Yet the recent paper by Fama and French (1992) forcefully resurrects an 
old finding that there is virtually no detectable cross-sectional beta-mean 
return relation. They state, .... . the relation between market 3 and average 
return is flat, even when ,3 is the only explanatory variable" (Abstract). 
Earlier papers report the same result. For instance, Reinganum (1981), using 
two different indices, concludes, .... . cross-sectional differences in portfolio 
betas estimated with common market indices are not reliably related to 
differences in average portfolio returns" (p. 460). Lakonishok and Shapiro 
(1986), after an extensive series of empirical tests, conclude, "... . neither the 
traditional measure of risk (beta) nor the alternative measures (variance or 
residual standard deviation), can explain-again, at standard levels of signif- 
icance-the cross-sectional variation in returns; only size appears to matter" 
(p. 131).3 

Fama and French find no cross-sectional mean-beta relation after control- 
ling for size and the ratio of book-to-market value, variables which do play 
statistically significant roles. Similar findings are reported by others, for a 
variety of different explanatory variables. For instance, Chen, Roll, and Ross 
(1986) conclude, "Although stock market indices 'explain' much of the in- 
tertemporal movements in other stock portfolios, their estimated exposures 
(their betas) do not explain cross-sectional differences in average returns 
after the betas of the economic state variables have been included" (p. 399).4 

1'Among the papers that reject efficiency for various market index proxies are Ross (1980), 
Gibbons (1982), Jobson and Korkie (1982), Shanken (1985), Kandel and Stambaugh (1987) and 
(1989, pp. 134, 135), Gibbons, Ross, and Shanken (1989), Zhou (1991), and MacKinlay and 
Richardson (1991). 

2 Note that the puzzle has no bearing on market efficiency. It is purely a mathematical and 
statistical problem. Whatever the distribution of returns, however well or poorly the market is 
operating, there exists an ex ante efficient frontier of portfolios. Any market index is located 
somewhere, either on the frontier or inside. The cross-sectional relation between expected return 
and beta, whether it is exact, imperfect, or zero, is completely determined by the position of the 
index. 

3 Coggin and Hunter (1985) find a negative relation between beta and mean return for large 
firms. 

4 Unlike Fama and French (1992), however, Chen, Roll, and Ross (1986) do find a nonzero 
cross-sectional mean return-beta relation in a univariate test. They use the value-weighted and 
the equally weighted New York Stock Exchange-listed indices. Similarly, Lakonishok and 
Shapiro find that "the coefficient of beta generally has the correct sign" (p. 131) across various 
subperiods, though it is not statistically significant. 
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The Fama and French paper made us wonder where an index would have 
to be located to produce a set of true betas that had no relation whatever to 
true expected returns. We soon discovered that such indices exist and that 
they lie within a set whose boundaries can be directly calculated from basic 
parameters (expected returns and covariances of returns). More generally, for 
any arbitrary cross-sectional linear slope coefficient between betas and ex- 
pected returns, there is a bounded set of possible indices. 

In Section I of this paper, we derive the analytic characterization of indices 
that produce an arbitrary cross-sectional relation between expected return 
and beta. Section II presents some "back-of-the-envelope" calculations of 
plausible locations for widely used market index proxies, i.e., how far inside 
the ex ante efficient frontier do such proxies lie? This section also discusses 
the implications of the empirical findings for the CAPM both as a scientific 
theory and as a practical tool for financial analysis. Sampling error, the other 
major possible explanation of the empirical findings, is analyzed briefly. 
Section III provides a summary and conclusion. 

I. Indices That Produce a Given Ordinary Least Squares Slope 
Coefficient in the Cross-sectional Relation between Expected 

Return and Beta 

To characterize market index proxies that produce particular cross-sectional 
mean-beta relations, we derive the boundary of the set of possible indices by 
finding members of the set with minimum return variance. This involves 
minimizing portfolio return variance subject to three constraints: (1) that 
the index portfolio's expected return is a given value, (2) that the index port- 
folio's investment proportions (weights) sum to unity, and (3) that a cross- 
sectional regression of expected returns on betas computed against the 
resulting index portfolio has a particular slope. Our derivation applies to any 
universe or subuniverse of assets provided that the index portfolio is com- 
posed only of stocks in the same group. 

We employ the following notation:5 

R = Expected returns vector for N individual assets in the universe, 
V = N x N Covariance matrix of returns, 
1 = Unit vector, 
q = Portfolio weights vector, 
r = Scalar expected portfolio return, q'R, 
a 2 = Scalar portfolio return variance, q'Vq, 
(Jj= Cross-sectional or time series variance of j, 
,tu = Cross-sectional mean of expected returns, R' 1/N, 
,T = Vector of scaled expected return deviations from the cross-sectional 

mean, (R - Al)IN, 
= Beta vector, ,-Vq/q'Vq, 

5 Vectors and matrices are denoted in boldface. 
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k = The cross-sectional covariance of R and ,; i.e., the numerator of the 
ordinary least squares (OLS) slope from regressing individual ex- 
pected returns on betas computed with an index-portfolio having 
weights q.6 

The appendix proves that any portfolio that is a solution to this problem must 
lie within a mean-variance region whose boundary is given by the equation 

Bu4 + Cro-2 + Dr2 +F 2 + Gr + H = 0, (1) 

where the upper case constants are, B = k 2(ac - b 2), C = - 2 dkc, D = gc, 
F = 2dkb - g(ac - b2) + cd2, G = -2gb, and H = ag - d2, and where the 
lower case constants and parameters are as follows: three of these scalar 
elements, a R'V-1R, b R'V11, c 1'V-11, are the efficient frontier 
information constants (cf. Roll (1977), appendix). The two elements new in 
this paper are, d R'R/N - /pA , which is the cross-sectional variance of 
expected returns, (d o--R2), and g-- pR_1, where R21 denotes the time 
series variance of the difference in returns between two portfolios, one 
weighted proportionately to the vector of expected returns and the second one 
equally weighted. 

Equation (1) is the general form of a second-degree equation in r/of2 
space. It is a parabola, a circle, an ellipse, or a hyperbola, depending on the 
value of C2 - 4BD. The Appendix shows that C2 - 4BD is either zero (for 
k = 0) or negative. For k 0 0, equation (1) is an ellipse in r/of2 space. The 
axes of the ellipse are oblique, i.e., not parallel to the r/o-2 axes. In the 
special case k = 0 (a zero cross-sectional slope between expected returns and 
betas), equation (1) describes a parabola with an axis parallel to the Of 2 axis. 
Figures 1 and 2 illustrate these two cases, Figure 1 for k = 0 and Figure 2 for 
k 7k 0. 

Portfolios that produce a zero cross-sectional slope, Cov(R, ,) = k = 0, lie 
within a parabola that is tangent to the efficient frontier at the global 
minimum variance point. It has long been known that the global minimum 
variance portfolio used as an index produces /3 = 1 for every asset, and, of 
course, Cov(R, 1) = 0. No other mean-variance efficient portfolio produces 
k = 0. 

The minimum distance between the efficient frontier and a market index 
proxy with Cov(R, ,) = 0, measured along the return dimension at a given 
portfolio variance o- 2 iS 

M=r* -r 

= {[(Cu2 - 1)(ac - b2)]l/2 - [(cou2 - 1)(ac -b2 - cd2/g)] 1/2}c, (2) 

where r is the expected return on the market proxy and r* is the return on 
an efficient portfolio with the same variance as the proxy. In Figure 1, M is 

6 The parameter k is one measure of the relation between expected returns and 13's. In the 
cross-sectional OLS regression, R = yo + Yl S + v,, (with ?, the residual), the slope coefficient is 

ym = k/lo,-2, where Co-2 is the cross-sectional variance of P. 
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Figure 1. Market index proxies that produce betas having no relation to expected 

returns. These proxies are located within a restricted region of the mean-variance space, a 

region bounded by a parabola that lies inside the effilcient frontier except for a tangency at the 

global minimum variance point. The distance, M, between the bounded region and the efficient 

frontier is proportional to the cross-sectional standard deviation of expected returns, CR. The M 

depicted is for CR = 3%/annum and a market index proxy with expected return 9.78%/annum. 

The proxy is located on the boundary at a distance of M = 22 basis points below the efficient 

frontier. While betas against this market proxy have zero cross-sectional correlation with 

expected returns, a market proxy on the efficient frontier just 22 basis points above it would 

produce betas that are perfectly positively collinear with expected returns. 

plotted for the case CR= 3, oR- 1 = 5, ,u = 10, and a proxy corresponding to 
an efficient portfolio with r* = 10%. 

A useful and particularly tractable variant of (2) can be obtained by 
dividing both sides by r* - ro where rO = b/c is the expected return of the 
global minimum variance portfolio. The result is 

M = W - rO) 1 - 1 - g(ac - b 2 )] '(3) 

i.e., the return distance of the proxy from the efficient frontier is a constant 
multiple (the term in large brackets) of the excess return r * - ro of the 
efficient portfolio over the global minimum variance portfolio return, ro. The 
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Figure 2. Market index proxies that produce betas having particular cross-sectional 

relations with expected returns. To produce a particular nonzero cross-sectional relation 
between betas and expected returns, a market index proxy must lie within a closed region of the 
mean-variance space. The regions are bounded by ellipses that may or may not have a tangency 
with the efficient frontier. If there is no tangency, then no mean-variance efficient market proxy 
can produce that particular relation. The major axes of the ellipses have positive (or negative) 
slopes when the resulting betas are positively (or negatively) related to expected returns. Ellipses 
are depicted for several values of k, the cross-sectional covariance between beta and expected 
return. The bounded region becomes smaller as this covariance increases. There is a maximum 
value of k beyond which the region vanishes; i.e., no market index proxy can produce a larger k. 

term in large brackets in (3) is invariant with respect to the cross-sectional 
dispersion of expected returns.7 

Index proxies that happen to lie within the sliver of space between the 
upper branch of the efficient frontier and the upper branch of the parabola, 

7To see this, use the concept of a "mean-preserving spread" in the cross-sectional distribution 
of expected returns; i.e., R --o-RZ + pd, where Z is a standardized vector of expected returns 
(mean zero and cross-sectional standard deviation of unity). Define standardized counterparts to 
the efficient set parameters (a and b) as a* Z'V- 1Z and b* Z'V 11. It is straightforward to 
show that ac - b' = cr2(a*c - b*2), d = (cr2/N)Z'Z, and g - (cr2/N2)Z'VZ. Thus, the expres- 
sion in (3), cd2/[g(ac - b2)] = c(Z'Z)2/[Z'VZ(a*c - b*2)], which is independent of oR. A similar 
development shows that M = r* - r in (2) is proportional to oCR; thus, the standardized 
difference, (r* - r)/oR, between the efficient frontier and the inner k = 0 parabola is invariant 
with respect to the cross-sectional dispersion of expected returns. 



Cross-sectional Relation between Expected Returns and Betas 107 

produce positive cross-sectional slopes. To prove this, note that if some index 
within the upper sliver had a negative slope, then by choosing appropriate 
weights the index could be combined with the corresponding efficient portfo- 
lio having the same mean such that the resulting combination had a zero 
slope. But, such a combined portfolio must lie under the k = 0 parabola of 
minimum variance portfolios with zero cross-sectional slopes, a contradiction. 

The situation of k 0 0 is more complex. The Appendix shows that the set of 
indices producing Cov(R, I) = k, is bounded by an ellipse which may or may 
not be tangent to the efficient frontier. For any k greater in absolute value 
than formula (A9) in the Appendix, there is no tangency between the efficient 
frontier and the ellipse bounding the set of all index proxies that produce a 
cross-sectional covariance of k. 

In Figure 2, ellipses have been plotted for several choices of the cross- 
sectional covariance k. The major axes of the ellipses have slopes in r/lu2 
space with the same sign as their associated k and they all intersect the 
return axis at ro, the expected return of the global minimum variance 
portfolio. Notice that as k becomes larger, the ellipse becomes more concen- 
trated about its center (which, incidentally, lies at the point 02 = 2glk , 

r = rO + id/k). The collapse becomes complete at k = ? 2cXg. For larger 
absolute values of k, the ellipse becomes imaginary; i.e., there are no market 
index proxies that produce a larger cross-sectional covariance between R and 
IP. 

Our results are reminiscent of those in two papers by Kandel and 
Stambaugh (1987, 1989) and in a paper by Shanken (1987). In their first 
paper, Kandel and Stambaugh derive the correlation between an arbitrary 
portfolio and a portfolio on the efficient frontier. They prove that this correla- 
tion is maximized when the two portfolios have the same expected return and 
they use this result to derive tests for the efficiency of an unknown market 
proxy that has a given correlation with the observed proxy. The idea is that 
an observed proxy may not be the true market index whose mean-variance 
efficiency is required by CAPM theory, but if one is willing to assume that the 
unobservable true market index has a given level of correlation with the 
observable proxy, an unambiguous test of the CAPM can still be conducted 
(conditional on the assumed correlation).8 

A section of their paper deduces the boundary of the set of all portfolios 
that possess a particular minimum correlation with any given index. These 
sets may be closed. As the minimum correlation approaches 1.0, the set 
collapses to the single point coincidental with the index. At low correlations, 
however, the sets may be unbounded. For instance, when the index is 
inefficient, zero-beta portfolios (portfolios possessing zero correlation with the 
index) exist at all levels of expected return, a result derived by Roll (1980). 
Kandel and Stambaugh show that intermediate correlations can produce 

8 Using a similar approach, Shanken (1987) presents evidence that the SLB Model is invalid 
unless each of the several market proxies he employs is only weakly correlated (multiple 
correlation less than 0.7) with the true market portfolio. 
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bounded but open sets, e.g., with a minimum or maximum expected return 
but no limit on variance. 

These Kandel-Stambaugh (1987) sets contain portfolios with a given mini- 
mum correlation to the original index proxy, whereas the sets we derive here 
contain index proxies that produce a given cross-sectional relation between 
expected return and beta. Thus, they are formally distinct, but they do 
possess some common properties. Perhaps the most important to emphasize 
is that the sets (the regions are graphed in our Figures 1 and 2 and in Kandel 
and Stambaugh's Figure 1) are not exclusive. There are other portfolios lying 
within these regions which do not produce the same result. Within the 
Kandel-Stambaugh regions are portfolios with higher correlations to the 
index proxy than the specified minimum correlation. Within our regions are 
portfolios that produce other values of the cross-sectional mean-beta relation. 
For both types of regions, no portfolio lying outside can produce the given 
relation, but an infinite number of portfolios inside can produce some other 
relation. 

Figure 2 provides an intuitive depiction of nonexclusivity. Notice that some 
ellipses plotted there fall entirely within others. Thus, within the k = 1 
ellipse, [k = Cov(R,4)], are market proxies producing k = 0.9, k = 0.5, etc., 
although there are no market proxies prodficing k = 1.1 or k = -1.06 unless 
they lie also within their respective ellipses. 

In contrast, the later paper by Kandel and Stambaugh (1989) derives 
exclusive regions of mean-variance space, but for a different purpose. Kandel 
and Stambaugh (1989) develop likelihood ratio tests for the ex ante mean- 
variance efficiency of a given index proxy. They show that the rejection region 
(or a given significance level) is bounded by a "critical hyperbola" in sample 
mean-variance space. Portfolios that lie away from the sample efficient 
frontier beyond this critical hyperbola should be judged inefficient. One only 
needs to plot the position of proxy being tested in order to conduct the test. 

It is instructive to understand intuitively why a statistical test for proxy 
efficiency might lead to an exclusive rejection region while correlation sets 
and mean-beta relation sets would not be exclusive. In the first case, the 
further a proxy lies below the sample efficient frontier, the less likely it lies 
on the true ex ante frontier, provided that one is willing to assume stationar- 
ity of the expected return vector and the covariance matrix. However, there 
is only an indirect connection between the position of the proxy in mean- 
variance space and either its correlation with other portfolios or its cross- 
sectional mean-beta relation. For example, take correlation: if the covariance 
matrix is nonsingular and the number of assets is finite, there is no other 
portfolio perfectly positively correlated with the index proxy. Thus, a correla- 
tion of 1.0 implies a single position in mean-variance space. But if the index 
proxy is inefficient enough, there are other distinct portfolios with the same 
mean and variance having zero correlation with the proxy! Thus, two uncor- 
related portfolios can lie at exactly the same point in mean-variance space. 
Clearly, there are an infinite number of portfolios, all lying at exactly the 
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same mean-variance position, yet possessing an infinite number of different 
correlations with the index proxy. 

The nonexclusivity of our sets makes it impossible to determine the cross- 
sectional mean-beta relation simply by plotting the position of the proxy in 
the mean-variance space. We wish this were possible. It is not. We know only 
that particular cross-sectional mean-beta relations cannot be produced by 
index proxies that lie outside the boundaries of the sets we derive here. Each 
set places an upper or a lower bound on the cross-sectional covariance 
between R and P. 

II. The Cross-sectional Return-Beta Relation and Tests of the CAPM 

A. The Plausibility of Test Sensitivity to the Choice of a Market Proxy 

The SLB Model implies mean-variance efficiency of the market index; this 
efficiency is equivalent to a perfect cross-sectional relation between expected 
returns and betas computed against the market index. But, when the market 
index is proxied by an inefficient portfolio, these two representations of the 
same theory are no longer strongly related. We have shown that the cross- 
sectional slope can have any absolute value below a certain maximum 
(including zero) depending on the index proxy's position inside the ex ante 
mean-variance efficient frontier. This implies that an index proxy can con- 
ceivably be substantially inefficient and still produce a strong cross-sectional 
regression between expected returns and betas or it can conceivably be close 
to the efficient frontier and yet produce a zero cross-sectional relation. What 
actually is produced in the empirical cross-sectional regression depends on 
the ensemble of expected returns, variances, and covariances. 

This suggests that the slope of the cross-sectional return-beta relation may 
be of little direct use in assessing the distance of the index proxy from the ex 
ante efficient frontier and, therefore, it may not be useful for determining 
how inefficient is the true market index. An inefficient proxy with a zero 
cross-sectional slope may be quite close to the true market portfolio and the 
true market portfolio may be efficient. 

The plausibility of such possibilities can be examined with back-of-the- 
envelope calculations using reasonable guesses of parameter values. For 
instance, given current levels of inflation, it seems reasonable to assume an 
expected return on the global minimum variance portfolio of 6 percent (per 
annum) and a minimum standard deviation of 10 percent; ro = 6%, and 
00 = 10%. Similarly, an expected return of, say, 11 percent, seems reasonable 
for the efficient portfolio located where a ray from the origin through the 
global minimum variance position intercepts the efficient frontier, r1 = 11%. 
These values are sufficient to determine the equation of the efficient frontier. 
We also need to guess the values of three other parameters: ,u, the average 
expected return on risky assets; oCR, the cross-sectional dispersion of expected 
returns; and oR- 1' the time series standard deviation of the difference 
between an expected return-weighted portfolio and an equally weighted 
portfolio. Reasonable values might be: ,t = 10%, CR = 3%, and CR-1 = 5%. 
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Notice that the last value is relatively small, but this is appropriate given 
that two well-diversified portfolios are likely to be significantly correlated.9 

Using these parameter values in equation (3) gives M = 0.055542(r* - ro) 
as the expected return distance of a market index proxy from the efficient 
frontier. If we happened to select a proxy whose corresponding mean-variance 
efficient portfolio with equal variance had the same mean as the global 
average mean, r* = 10% and since rO = 6%, M = 0.2222%. Thus, given 
these parameter values, the mean return of an index proxy that produces a 
cross-sectional mean-beta relation of zero could lie only about 22 basis points 
below the efficient frontier; its expected return would be 9.78 percent while 
the efficient portfolio with the same variance would have an expected return 
of 10 percent. These positions are plotted in Figure 1; see the arrows below 
"M." Thus, the index proxy could produce a zero cross-sectional mean-beta 
slope while the corresponding efficient portfolio, if used as a proxy, would 
produce a perfect cross-sectional relation with a positive slope. 

The presence of sampling error only strengths the caution with which we 
must approach cross-sectional empirical tests. If expected returns and betas 
could be measured with little or no error, then we could reject index mean- 
variance efficiency by finding a flat cross-sectional relation. But, with mea- 
surement error we can only say that we cannot reject a flat relation. For that 
matter, we probably also cannot reject that the slope is, say, 3 percent. With 
60 years of observations on an index with an annual standard deviation of 20 
percent, the standard error of the sample mean would be 20%/ 60 = 2.6%. 

With a standard error of, say, 3 percent in the measurement of index 
expected returns, the power of cross-sectional tests is suspect. If the true 
market portfolio is, in fact, efficient, index proxies that produce a flat sample 
cross-sectional relation may be positioned well within a 3 percent interval of 
the ex post efficient frontier. Thus, the probability of not rejecting a flat slope 
when the slope is actually not flat, may be quite high.10 

It is perplexing, then, that some authors relate the absence of a detectable 
cross-sectional slope for a particular market index proxy to a general condem- 
nation of the SLB CAPM model. Fama and French (1992) include a section 
entitled "Can the SLB Model be Saved?" (p. 459), where they state, "We are 
forced to conclude that the SLB model does not describe the last 50 years of 
average stock returns" (p. 464). We would add, "for this particular market 
index proxy." 

9 The assumed value of o- 1 is one-half the standard deviation of the global minimum 
variance portfolio; larger values of OR- 1 would cause the index proxy to lie closer to the efficient 
frontier. 

10 Cross-sectional mean-beta tests are different from direct tests of the mean-variance effi- 
ciency of a given index (cf. Gibbons, Ross, and Shanken (1989)). The null hypothesis of cross- 
sectional tests is that the theory is not true. In contrast, the null hypothesis of direct tests is that 
the index is efficient. The power of cross-sectional tests is the probability of accepting a 
cross-sectional relation when there really is one. The power of direct tests is the probability of 
rejecting index efficiency when the index really is not on the efficient frontier. Thus, these two 
index efficiency tests have the null and alternative hypotheses reversed. 
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An alternative interpretation of their results is that the SLB Model may be 
of little use in explaining cross-sectional returns no matter how close the 
index is to the efficient frontier unless it is exactly on the frontier. Since such 
exactitude can never be verified empirically, we would endorse (again, as we 
have in the past when we first asserted the proposition; see, e.g., Roll (1977), 
and Chen, Roll, and Ross (1986)), that the SLB is of little practical use in 
explaining stock returns. 

In a different section of their paper, Fama and French argue that 

different approaches to the tests are not likely to revive the Sharpe- 
Lintner-Black model. Resuscitation of the SLB model requires that a 
better proxy for the market portfolio (a) overturns our evidence that the 
simple relation between 8 and average stock returns is flat and (b) 
leaves 8 as the only variable relevant for explaining average returns. 
Such results seem unlikely, given Stambaugh's (1982) evidence that 
tests of the SLB model do not seem to be sensitive to the choice of a 
market proxy. Thus, if there is a role for /3 in average returns, it is 
likely to be found in a multi-factor model that transforms the flat simple 
relation between average return and p into a positively sloped condi- 
tional relation (p. 449). 

This essentially alleges that no reasonable market proxy can produce a 
nonzero cross-sectional expected return/beta relation in which beta is the 
sole relevant explanatory variable. 

But, viewed in the context of our analysis, such a statement seems at least 
questionable. It appears that a proxy can be quite close to the ex ante frontier 
and still produce a cross-sectional beta-return relation with a slope near zero, 
and a proxy that is far from the frontier can still have a significant cross- 
sectional relation. In particular, another proxy can be close to the ones used 
now and have a positive cross-sectional relation or a zero one. An empirical 
slope near zero tells us little, if anything, about whether the SLB Model 
describes "average stock returns," but it does tell us something about the 
market index proxies we are using. As for whether an inefficient proxy can be 
found with betas that alone explain average returns, there is no a priori 
reason to reject such a possibility." 

B. Plausibility and Short Positions 

Several readers of a previous version of this paper speculated that the 
central results may be driven by short positions in market index proxies that 
produce a particular mean-beta cross-sectional slope. Indices with short 
positions have not been used in the empirical tests. Yet the indices we 

11 This can be true notwithstanding the observation that size, for example, appears to be a 
significant explanatory variable in cross-sectional studies. Given the hundreds of parameters 
that have been used in such studies, it would be astonishing if the best performing of them were 
not significant by chance alone. 
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characterize in Section I have no restrictions against short positions and thus 
may not be empirically relevant. 

We have not yet been able to assess this objection in a completely general 
context, but a limited assessment is possible given a few more assumptions 
about the process generating asset returns. The objection is valid for some 
relatively simple asset return structures including the example represented 
by a limited version of the single-factor arbitrage pricing theory (APT) model. 
If there is just one priced APT factor and every asset has positive sensitivity to 
that factor, any well-diversified market index proxy without short positions 
will produce a positive cross-sectional expected return-CAPM beta relation if 
the market risk premium is positive.12 

However, this simple example fails to generalize into a more complicated 
world. For instance, there need be no necessary relation between expected 
return and beta, even when there is only a single generating factor, when the 
APT is not true. Suppose there is cross-sectional variability in expected 
returns that is unrelated to the asset's factor sensitivity. Although this would 
admit the potential for arbitrage cash flows (with virtually no risk and no 
investment),13 it permits any variety of cross-sectional relation between 
expected return and CAPM beta even when the market index proxy has 
nonnegative weights on all assets. 

In the absence of arbitrage opportunities but with a multiple factor asset 
return structure, totally positive well-diversified market index proxies may 
produce an insignificant cross-sectional mean-beta relation. A simple numeri- 
cal example is provided by the two-factor hypothetical economy described in 
Table I. In this economy, the APT holds exactly but some positively weighted 
portfolios produce betas that have no cross-sectional relation to expected 
returns; even an equally weighted market index proxy produces a slightly 
negative but statistically insignificant cross-sectional slope.14 The hypotheti- 
cal economy in Table I represents a counterexample to the objection that our 
results are driven by short positions. There are, of course, other possible asset 

12 In a single-factor APT model, every asset j has returns in time t given by p t = r? + bj8t + ?jt 
where r- is the asset's expected return, at is the mean-zero single factor, b. (> 0 by assumption) 
is the asset's factor sensitivity, and 8jt is an idiosyncratic white noise disturbance. If the APT 
holds perfectly, there exist constants yo and yi such that r. = yo + y1bj. A well-diversified 
market proxy M is simply a portfolio with negligible idiosyncratic disturbance, i.e., PMt 

rM + bM 8t. If M has nonnegative investment proportions in all individual assets, then since 
bj > 0 Vj, bM > 0. In this situation, the CAPM beta is approximately /3j = bj/bm. Thus, the 
cross-sectional slope coefficient between individual asset expected returns and CAPM betas is 

Cov(r,, I3J)/Var( pj3) = ylbM, which is positive if the market price of risk, Y1, is positive. 
13 Pure arbitrage cash flows, zero risk and no investment, would technically be feasible only 

with an infinite number of assets. 
14 Note that an equally weighted index is not likely to be on the boundary of one of our sets. 

The equally weighted index is 200 basis points below the frontier but there are positively 
weighted proxies closer to the efficient frontier that produce roughly the same cross-sectional 
mean return-beta relation. 
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Table I 

A Simulated Two-Factor APT Economy 

Number of Assets: 25 
Every asset j has return pt in time t generated by a two-factor model, 

pjt = rj + blj8lt + b2J82t + 8jt, 

where rj is j's expected return, the b's are factor sensitivities, the 8's are mean-zero factors, 
and e is a disturbance independently distributed across assets and over time. 

The APT holds exactly: rj = yo + ? yblj + Y2 b2i. 
In the simulated economy, y0 = 5% and ym = Y2 = 8% per period. Each of the two factors is 

independently and normally distributed over time with a standard deviation of 13% per period. 
The 25 values of b1 are randomly selected from a normal distribution with mean 1.0 and 
standard deviation 0.4. Twenty-three of the 25 values of b2 are zero, but b2l = -b22 = 3.34. 
Finally, each asset's generating equation is fully specified by selecting a random R-square from 
a uniform distribution between 0.15 and 0.30 (this conforms roughly to actual stock returns). 

Once the R-square is selected, the asset's total return variance is readily calculated from the 
generating equation. It is also possible to calculate the exact composition of the Markowitz 
efficient frontier, to determine the mean-variance position of any potential market index proxy, 
and to calculate true values of each asset's CAPM betas. Here are the resulting calculations 
when the market index proxy is an equally weighted portfolio. 

True Parameters 

Mean Return (%) Std. Dev. (%) 

Equally weighted portfolio 13.0 14.8 
Efficient portfolio, same mean 13.0 12.0 
Efficient portfolio, same standard deviation 15.0 14.8 

Global minimum variance portfolio 8.74 8.77 

The cross-sectional OLS regression of true expected returns on CAPM betas computed with 
the equally weighted portfolio as a market index proxy is (t-statistics in parentheses): 

r1 = 13.1 - 0.215,fj 
(4.12) (-0.0761) 

The adjusted R-square of the cross-sectional regression is - 0.0432. 

structures that would bring about our results, but one counterexample is 
sufficient to dispel the notion that the objection is valid in general. 

C. The Potential Sensitivity of CAPM Tests to the Econometric Method 

Although the superiority of generalized least squares (GLS) to OLS is 
well-recognized by finance empiricists, our results above depend on the 
cross-sectional regressions being OLS. Most of the existing literature relies on 
this technique. There are, however, some exceptions. A recent paper by 
Amihud, Christensen, and Mendelson (1992), for instance, replicates the 
Fama and French tests while employing the more advanced econometric 
techniques of GLS and pooled time series-cross-section analysis. Although 
Amihud et al. find the same results as Fama and French using OLS, their 
results are reversed when using either pooled time series-cross-section meth- 
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ods or when using GLS; the estimated impact of beta on expected return is 
particularly strong when both methods are employed.15 They conclude that 
"beta is still alive and well" (p. 1). 

One might be tempted to conclude that more powerful econometric tech- 
niques and better estimation reveal that the market index proxy is not too far 
from the efficient frontier after all. But our analysis above is based on true 
expected returns, variances, and covariances; estimation problems are as- 
sumed away. We show above that the OLS definition of the cross-sectional 
mean-beta coefficient can be truly zero if the market index is sufficiently 
mean-variance inefficient. This result does not depend on statistical misesti- 
mation of any relevant parameter, but it does assume that the cross-sectional 
mean-beta regression coefficient is calculated with the OLS formula. 

Thanks to a private communication from Simon Wheatley in 1992, we 
learned that using a GLS calculation rather than OLS can have a significant 
effect on the resulting true cross-sectional coefficient. GLS produces a posi- 
tive cross-sectional relation between true expected returns and true betas 
regardless of the inefficiency of the market index proxy so long as its expected 
return exceeds the expected return, ro, of the global minimum variance 
portfolio!16 

Intuitively, the GLS method diagonalizes the covariance matrix of regres- 
sion residuals. It is equivalent to using OLS when the covariance matrix of 
returns, V, is proportional to the identity matrix. But if V is proportional to 
the identity matrix I, 1 = Iq/q'q. Thus, to obtain a portfolio with expected 
return r = R'q and with Cov(R, I) = 0, we must have R'1 - Al'o = 0, 
which implies r = ,u. There is no solution to the problem k = 0 unless the 
portfolio's expected return, r, is the cross-sectional mean of the expected 
returns of all assets, ,u. And when V a I, the expected return, ro, of the 
global minimum variance portfolio is also the cross-sectional mean expected 
return, ,u. 

The use of GLS is likely to overturn the Fama and French empirical result 
of a zero cross-sectional slope. Unless the index proxy is grossly inefficient, 
with expected return less than or equal to ro, a GLS regression would almost 
certainly find a significant and positive mean-beta relation in large samples. 
But what would this really imply about the validity of the CAPM, about 
whether the true market portfolio of all assets is ex ante mean-variance 
efficient? If the mean return-beta relation is positive for every possible 
market proxy whose mean return exceeds ro, what conceivable set of empiri- 
cal results would cause us to reject the CAPM? 

Kandel and Stambaugh (1993) derive a goodness-of-fit statistic, expressed 
as an R-square, for the true cross-sectional GLS relation between expected 
returns and betas. They show that R-square decreases (or increases) as the 
index proxy lies farther (or closer) to the efficient frontier. Thus, if the true 

15 However, the strength of beta as an explanatory factor is much greater in the 1953 to 1971 
sample period than in the 1972 to 1990 sample period. In the later period, beta is not significant. 

16 A formal proof is in the GLS section of the Appendix. Kandel and Stambaugh (1993) derive 
and elaborate the same result. 
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parameters were known, the Kandel and Stambaugh R-square is a metric of 
the index proxy's degree of inefficiency. The problem is that the true parame- 
ters are not known; thus, any observed empirical GLS R-square consists both 
of sampling error and (possibly) true ex ante scatter. It is not immediately 
clear how an empirical investigator can tell the difference. Perhaps it will 
prove best to employ a direct test of the index proxy's efficiency, such as the 
Kandel and Stambaugh (1989) likelihood ratio test which depends only on the 
proxy's location relative to the sample efficient frontier. 

We don't want to leave the impression that the Wheatley-Kandel and 
Stambaugh result fully explains the differences between the findings of Fama 
and French and of Amihud, Christensen, and Mendelson. The GLS proof 
as-sumes knowledge of all true parameters in the spirit of this paper. The 
empirical researchers have only estimates. Also, the GLS method used by 
Amihud et al. is somewhat different than that assumed by Wheatley and 
Kandel and Stambaugh. Nonetheless, we think it is appropriate to bring 
attention to the bizarre idea that the very range of possible findings can be 
affected by the econometric technique. Shanken (1992) provides a thoughtful 
analysis of the different inferences that might be obtained with various 
econometric techniques. He investigates not only OLS versus GLS but also 
the impact of errors in the variables on familiar two-pass tests of beta pricing 
models. In the context of factor models, he also shows that autocorrelation in 
the underlying factors can lead to problems of inference. 

III. Summary and Conclusion 

The empirical absence of a detectable relation between average returns and 
betas is an indictment of the SLB Model, at least for use with the most widely 
employed market index proxies. If the SLB Model cannot tell us about 
average returns, then it is not of practical value for a variety of applications 
including the computation of the cost of capital and the construction of 
investment portfolios. 

As we have seen, though, the empirical findings are not by themselves 
sufficient cause for rejection of the theory. The cross-sectional OLS relation is 
very sensitive to the choice of an index and indices can be quite close to each 
other and to the mean-variance frontier and yet still produce significantly 
different cross-sectional slopes, positive, negative, or zero. The finding that a 
market index proxy does not explain cross-sectional returns is consistent with 
even a very close, but unobserved, true market index being efficient. 

The almost pathological knife-edged nature of the expected return-beta 
OLS cross-sectional relation, even without measurement error, is a shaky 
base for modern finance. Surely the idea of a tradeoff between risk and 
expected return is valid and meaningful. Whatever model is eventually used 
to measure and apply that basic idea will have to be considerably more 
robust. 

As proved by Wheatley (1992) and Kandel and Stambaugh (1993), using a 
GLS cross-sectional fit between true expected returns and betas renders the 
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relation less subject to these knife-edged properties. The GLS slope is positive 
so long as the expected return on the index proxy exceeds the expected return 
of the global minimum variance portfolio. This implies that virtually any 
proxy for the market index that is not grossly inefficient will produce a 
positive cross-sectional relation between mean returns and betas in large 
samples. But since every conceivable proxy candidate produces a positive 
relation, an empirical finding of a positive slope by itself implies very little 
about whether the proxy is ex ante efficient. Such a finding must be abetted 
by other direct tests of efficiency. 

Sampling error makes these problems all the more troublesome. Since 
estimates of the efficient frontier and of the index proxy's mean and variance 
are subject to serious sampling error, the proxy itself may have a true 
positive cross-sectional expected return-beta OLS relation that cannot be 
detected in the sample mean return-estimated beta relation. For the GLS 
version, one is obliged to detect the difference between sampling scatter and 
ex ante scatter about the true cross-sectional relation. Again, it seems likely 
that cross-sectional tests of the mean-beta relation will take a back seat to 
direct tests of portfolio efficiency. 

Despite these problems with the SLB Model, market value weighted index 
proxies are of considerable interest in their own right because they reflect 
averages of investor holdings. Whether or not such indices produce betas that 
are cross-sectionally related to average returns, their own returns serve as a 
benchmark for investment comparisons. Beating or trailing a value-weighted 
index has become the most widely accepted criterion of investment perfor- 
mance. It is an appropriate criterion relative to the wealth-weighted average 
returns of other investors. 

Appendix: Derivation of Index Proxies That Produce a Given 
Cross-sectional Slope between Expected Returns and Betas 

Notation:17 

R = Expected returns vector for N individual assets, 
V = N x N Covariance matrix of returns, 
1 = Unit vector, 
q = Portfolio weights vector, 
r = Scalar expected portfolio return, q'R, 
('= Scalar portfolio return variance, q'Vq, 
(j2 = Cross-sectional or time series variance of j, 

= Cross-sectional mean of expected returns, R' 1/N, 
, = Vector of scaled expected return deviations from the cross-sectional 

mean, (R - ,u1)/N, 
k = Scalar slope from cross-sectionally regressing R on betas computed 

for individual assets against portfolio q. 

17 Vectors and matrices are denoted in boldface. 
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The mathematical problem is to find a minimum variance portfolio-index 
proxy that satisfies three conditions: (1) that the portfolio's expected return 
is a fixed value r, (2) that its weights q sum to unity, and (3) that a cross- 
sectional regression of expected returns R on betas ,8 Vq/q'Vq has a given 
slope. 

Formally, 

minimize q'Vq with respect to q, 

subject to 

q'R = r 

q'l = 1 

q'Vrr = kq'Vq. 

The parameter k in the last constraint fixes the cross-sectional relation 
between expected returns and ,B's. In the cross-sectional regression, R = 

Yo + ylp + F, the slope coefficient is yi = k/ou,2, where u.2 is the cross- 
sectional variance of .18 

The first-order condition for a minimum is 

Vq - A1R - A21 - A3(V'a - 2kVq) = 0, 

where the A's are Lagrange multipliers. 
To eliminate the Lagrange multipliers, define the 3 x 3 matrix 

A= [R 1 V I'V-1[R 1 Var], (Al) 

collect terms and simplify the first-order condition Ato 

q=V-1[R 1 VT]A-1[r 1 kur2]' (A2) 

The equation of the boundary of the set of permissible indices in the r/o-2 
space can be obtained by using q from (A2) in the definition Or 2 = q'Vq and 
then simplifying to obtain, 

j2 = [r 1 kua2]A-'[r 1 k r2]'. (A3) 

Note that (A3) is not yet a functional relation since o--2 appears on both sides. 
To reduce the solution further, we are obliged to pay some attention to the 

structure of A-'. From (Al), the matrix A is a quadratic form in V and thus 
positive definite if V is positive definite (which we will assume); thus AI > O. 
However, since (A3) is nonlinear in o 2 A being positive definite does not 
guarantee that every solution to the first-order conditions is a minimum. 
Inspection of the cross-sectional beta constraint, 

4'Vn = kq'Vq, 

18 The constraint may be slightly confusing because only the expected return is de-meaned 
(while beta is not de-meaned). But when calculating a covariance, it is necessary to de-mean only 
one of the two random variables; i.e., Cov(x, y) = E{x[ y - E(y)]} = E(xy) - E(x)E(y). 
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reveals that q is bounded from above; this implies that the constraint will 
provide both a maximum and a minimum. For our problem the appropriate 
second-order condition is the definiteness of 

(1 + 2kA3)V, 

which depends on the sign of (1 + 2k A3) since V is positive definite. The 
first-order equation (A3) is a quadratic and has two roots corresponding to 
the minimum when the above expression is positive and the maximum when 
it is negative. 

A can be written 

a b d 
A= b c e 

-d e g- 
where three of the scalar elements, a = R' V-1 R, b = R'V-11, c = 1'V-1, 
are the familiar efficient frontier information constants (cf. Roll (1977), 
appendix). The other three elements can be expanded and interpreted as 
follows: 

d = Ra = R'(R- ,ul)/N = R'R/N- L2. (A4) 

Thus, d can be recognized as the cross-sectional variance of expected returns, 
d = oR2. Similarly, 

e = 1'sa = 1'(R - ,l)/N = 0. 
Finally, 

g= Tr'Va = [R'VR- 2,uR'V1 + 1t21'V1]/N2, (A5) 

and since ,t = R'1/N, 

=- 
20 

2_ g R- 1~ 

where o--R2 1 denotes the time series variance of the difference in returns 
between two portfolios, one weighted proportionately to the vector of expected 
returns and the second one equally weighted. 

Since the scalar element e is zero, the matrix inversion is simplified 
slightly and 

cg - bg - cd 1 
A-'= -bg ag-d2 bd 

-cd bd ac - b2 2A 

where IAI = g(ac - b2) - cd 2. Using this expression for A- 1, the formula 
describing the boundary of possible indices, equation (A3), can be written as 

BR4 + Cru2 + Dr2 + Fu2 + Gr + H = 0 (A6) 
where 

B = k2(ac - b2), C = -2dkc, D = gc, 

F = 2dkb - g(ac - b2)+ cd2, G = -2gb, and H = ag - d2. 
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Equation (A6) can be recognized as the general form of a second-degree 
equation in r/o- 2 space. From analytic geometry, it is a parabola, a circle, an 
ellipse, or a hyperbola, depending on the value of C2 - 4BD. Examining this 
expression, 

C2 - 4BD = 4d2k2c2 - 4k2(ac - b2)gc = -4k2C A, 

and since c and AI are positive, C2 - 4BD is either zero (for k = 0) or 
negative. For k 0 0, equation (A6) is an ellipse in r/o-2 space. The axes of 
the ellipse are oblique, i.e., not parallel to the r/o-2 axes. In the special case 
k = 0, (a zero cross-sectional slope between expected returns and betas), 
equation (A6) describes a parabola with an axis parallel to the or 2 axis. 

The situation for k =# 0 is complex; the set of k-slope-producing indices 
is bounded by an ellipse that may or may not have a tangency point to 
the efficient frontier, depending on the value of k. To prove this assertion, 
note that the cross-sectional slope between expected returns and betas 
computed against a mean-variance efficient portfolio has the value A r* 
-rz, where r* is the portfolio's expected return and rz is the return on 
its companion "zero-beta" portfolio. It is straightforward to show19 that rz = 

(br* - a)/(cr* - b). Thus, 

A/ddr* = 1 - |(ac - b2)/(cr* - b)21 

= 0 =O r* = rO ? (ac - b2)1/ /c, (A7) 

where rO = b/c is the return on the global minimum variance portfolio. 
Equation (A7) indicates the presence of two local extrema. Checking the 
second-order conditions, 

d2A/dr*2 > 0 =: r* > rO- 

Thus, the positive root of (A7) is a local minimum above which A > 0 while 
the negative root is a local maximum below which A < 0. There is a disconti- 
nuity at ro, at which point A is undefined. There is no efficient portfolio with 
a "risk premium," A, between the two extrema. By direct substitution, the 
values of A at the extrema are, 

Amax = -Amin = 2(ac - b2)/2 /c. (A8) 

For a mean-variance efficient portfolio, there is an exact cross-sectional linear 
relation between expected returns and betas, 

R- rzl + (r*-z). 

Thus, oR2 = (r*-rz)2 "2, and since k = up2(r*-rz) => k = oR2/(r* - rz). 
This implies that 1k I has a maximum determined by the two extrema in (A8), 

1 <2/u2( 

2 (ac - b 2 )1/2 ( 

19 Cf. Roll (1977), appendix. 
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where o-2 = 1/c is the global minimum variance. For any value of k greater 
in absolute value than the expression above, there is no tangency between 
the efficient frontier and the ellipse bounding the set of all index proxies that 
produce a cross-sectional slope of k. 

Notice, too, that since 0Ju2 is endogenous to the problem, constraining k is 
not the same as constraining Yi = k/or 32, the cross-sectional slope coefficient, 
in the case where k # 0. This more complex problem introduces nonlineari- 
ties that will change the shapes of our boundaries but will not alter the 
qualitative properties we report. 

A. Using GLS in the Cross-sectional Mean-Beta Regression 

Begin with the familiar cross-sectional model, R = yol + yli BF, where 
B [1 PI and F = (yo yi)Y. Since V is the covariance matrix of returns, it 
is natural to consider a GLS estimator based on the sample mean returns and 
a consistent estimator of V. In large samples, the maximum likelihood 
consistent GLS estimator of F will be 

[B'V- 1B] -1B'V- 'R. 

By expanding this expression, it is straightforward to show that the sign of 
the resulting estimator of Yi depends on the sign of 

("'V - 1 R) (1'V- 1 1) - (1'V - p) (l'V - 'R). 

But since j = Vq/q'Vq, where q is the vector of investment proportions of 
the market index proxy, the above expression is proportional to 

q'R - (1'V-1R)/(1'V-11) = r - rO. 

Thus, regardless of the position of the market index proxy, as the sample size 
grows larger, the sign of this particular GLS estimator of Yi will converge to 
a positive (or negative) value when the proxy's expected return, r, is greater 
(or less) than the expected return, ro, of the global minimum variance 
portfolio.20 
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