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Abstract. We study the complexity of realizing the “worst” functions
in several standard models of information-theoretic cryptography. In par-
ticular, for the case of security against passive adversaries, we obtain the
following main results.
– OT complexity of secure two-party computation. Every func-

tion f : [N ]× [N ] → {0, 1} can be securely evaluated using ˜O(N2/3)
invocations of an oblivious transfer oracle. A similar result holds for
securely sampling a uniform pair of outputs from a set S ⊆ [N ]×[N ].

– Correlated randomness complexity of secure two-party com-
putation. Every function f : [N ] × [N ] → {0, 1} can be securely

evaluated using 2
˜O(

√
logN) bits of correlated randomness.

– Communication complexity of private simultaneous mes-
sages. Every function f : [N ]× [N ] → {0, 1} can be securely evalu-
ated in the non-interactive model of Feige, Kilian, and Naor (STOC
1994) with messages of length O(

√
N).

– Share complexity of forbidden graph access structures. For
every graph G on N nodes, there is a secret-sharing scheme for N
parties in which each pair of parties can reconstruct the secret if and
only if the corresponding nodes in G are connected, and where each
party gets a share of size ˜O(

√
N).

The worst-case complexity of the best previous solutions was Ω(N) for
the first three problems and Ω(N/ logN) for the last one. The above
results are obtained by applying general transformations to variants of
private information retrieval (PIR) protocols from the literature, where
different flavors of PIR are required for different applications.

1 Introduction

How bad are the worst functions? For most standard complexity measures of
boolean functions, the answer to this question is well known. For instance, the cir-
cuit complexity of the worst function f : [N ] → {0, 1} is Θ(N/ logN) [53,49] and
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the two-party communication complexity of the worst function f : [N ]× [N ] →
{0, 1} is Θ(logN) in every standard model of communication complexity [48].1

In sharp contrast, this question is wide open for most natural complexity mea-
sures in information-theoretic cryptography that involve communication or ran-
domness rather than computation. Standard counting techniques or information
inequalities only yield very weak lower bounds, whereas the best known upper
bounds are typically linear in the size of the input domain (and exponential in
the bit-length of the inputs).

The only exceptions to this state of affairs are in the context of secure multi-
party computation where it is known that, when a big majority of honest par-
ties is guaranteed, the communication and randomness complexity can always
be made sublinear in the input domain size [5,40] (see Section 1.2 for discussion
of these and other related works). However, no similar results were known for
secure computation with no honest majority and, in particular, in the two-party
case.

In the present work we study the complexity of the worst-case functions in
several standard models for information-theoretic secure two-party computation,
along with a related problem in the area of secret sharing.

We restrict our attention to security against passive (aka semi-honest) ad-
versaries. We will usually also restrict the attention to deterministic two-party
functionalities captured by boolean functions f : [N ]× [N ] → {0, 1}, where the
output is learned by both parties.2 In the following, the term “secure” will refer
by default to perfect security in the context of positive results and to statistical
security in the case of negative results. In this setting, we consider the following
questions.

OT Complexity. The first model we consider is secure two-party computation
in the OT-hybrid model, namely in a model where an ideal oracle implementing
1-out-of-2 oblivious transfer [52,29] (of bits) is available. Secure computation in
this model is motivated by the possibility of realizing OT using noisy communi-
cation channels [22], the equivalence between OT and a large class of complete
functionalities [45,46], and the possibility of efficiently precomputing [4] and (in
the computational setting) extending [3,37] OTs. See [43] for additional moti-
vating discussion.

Viewing OT as an “atomic currency” for secure two-party computation, it
is natural to study the minimal number of OT calls required for securely com-
puting a given two-party functionality f . We refer to this quantity as the OT
complexity of f . Special cases of this question were studied in several previous
works (e.g., [25,3,56]), and a more systematic study was conducted in [12,51].

1 Here and in the following, we let [N ] denote the set {1, 2, . . . , N} and naturally
identify an input x ∈ [N ] with a �log2 N�-bit binary representation.

2 Using standard reductions (cf. [31]), our results can be extended to general (possibly
randomized or even reactive) functionalities that may deliver different outputs to the
two parties. While some of our results can also be extended to the case of k-party
secure computation, we focus here on the two-party case for simplicity.
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The GMW protocol [32,33,31] shows that the OT complexity of any function
f is at most twice the size of the smallest boolean circuit computing f . For most
functions f : [N ]× [N ] → {0, 1}, this only gives an upper bound of O(N2/ logN)
on the OT complexity.3

A simpler and better upper bound can be obtained by using 1-out-of-N OT
(denoted

(
N
1

)
-OT). Concretely, the first party P1, on input x1, prepares a truth-

table of the function fx1(x2) obtained by restricting f to its own input, and
using

(
N
1

)
-OT lets the second party P2 select the entry of this table indexed by

x2. Since
(
N
1

)
-OT can be reduced to N − 1 instances of standard OT [17], we

get an upper bound of N − 1 on the OT complexity of the worst-case f . This
raises the following question:

Question 1. What is the OT complexity of the worst function f : [N ]× [N ] →
{0, 1}? In particular, can every such f be securely realized using o(N) OTs?

Given the existence of constant-rate reductions between OT and any finite
complete functionality [35,42], the answer to Question 1 remains the same, up to
a constant multiplicative factor, even if the OT oracle is replaced by a different
complete functionality, such as binary symmetric channel. In particular, the
OT complexity of f is asymptotically the same as the “AND complexity” of f
considered in [12].

We will also be interested in a sampling variant of Question 1, where the goal
is to securely sample from some probability distribution over output pairs from
[N ] × [N ] using a minimal number of OTs. This captures the rate of securely
reducing complex correlations to simple ones, a question which was recently
studied in [51].

Correlated Randomness Complexity. The second model we consider is that of se-
cure two-party computation with an arbitrary source of correlated randomness.
That is, during an offline phase, which takes place before the inputs are known,
the two parties are given a pair of random strings (r1, r2) drawn from some fixed
joint distribution, where ri is known only to Pi. During the online phase, once the
inputs (x1, x2) are known, the parties can use their correlated random inputs,
possibly together with independent secret coins, to securely evaluate f . This
model can be viewed as a relaxation of the OT-hybrid model discussed above,
since each OT call is easy to realize given correlated randomness corresponding
to a random instance of OT [4]. The model is motivated by the possibility of
generating the correlated randomness using semi-trusted servers or a (computa-
tionally) secure interactive protocol, thus capturing the goal of minimizing the
online complexity of secure computation via offline preprocessing. See [14,41,24]
for additional discussion.

General correlations have several known advantages over OT correlations in
the context of secure computation. Most relevant to our work is a result from [41],

3 The GMW protocol can handle XOR and NOT gates for free, but it is not clear if
this can be used to significantly lower the complexity of the worst-case functions. A
negative result in a restricted computation model is given in [20].
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showing that for any f : [N ] × [N ] → {0, 1} there is a source of correlated
randomness (r1, r2) given which f can be realized using only O(logN) bits of
communication. However, the correlated randomness complexity of this proto-
col, namely the length of the random strings r1, r2, is O(N2). Minimizing the
correlated randomness complexity is desirable because the correlated random-
ness needs to be communicated and stored until the online phase begins. The
simple OT complexity upper bound discussed above also implies an O(N) up-
per bound on the correlated randomness complexity of the worst functions. No
better bound is known. This raises the following question:

Question 2. What is the correlated randomness complexity of the worst function
f : [N ]× [N ] → {0, 1}? In particular, can every such f be securely realized using
o(N) bits of correlated randomness?

Communication Complexity of Private Simultaneous Messages Protocols. Feige,
Kilian, and Naor [30] considered the following non-interactive model for secure
two-party computation. The two parties simultaneously send messages to an
external referee, where the message of party Pi depends on its input xi and a
common source of randomness r that is kept secret from the referee. From the
two messages it receives, the referee should be able to recover f(x1, x2) but learn
no additional information about x1, x2. Following [38], we refer to such a proto-
col as a private simultaneous messages (PSM) protocol for f . A PSM protocol
for f can be alternatively viewed as a special type of randomized encoding of
f [39,1], where the output of f is encoded by the output of a randomized function

f̂((x1, x2); r) such that f̂ can be written as f̂((x1, x2); r) = (f̂1(x1; r), f̂2(x2; r)).
This is referred to as a “2-decomposable” encoding in [36].

It was shown in [30] that every f : [N ]× [N ] → {0, 1} admits a PSM protocol
with O(N) bits of communication. While better protocols are known for func-
tions that have small formulas or branching programs [30,38], this still remains
the best known upper bound on the communication complexity of the worst-case
functions, or even most functions, in this model. We thus ask:

Question 3. What is the PSM communication complexity of the worst function
f : [N ]× [N ] → {0, 1}? In particular, does every such f admit a PSM protocol
which uses o(N) bits of communication?

Share Complexity of Forbidden Graph Access Structures. A longstanding open
question in information-theoretic cryptography is whether every (monotone) ac-
cess structures can be realized by a secret-sharing scheme in which the share
size of each party is polynomial in the number of parties. Here we consider a
“scaled down” version of this question, where the access structure only specifies,
for each pair of parties, whether this pair should be able to reconstruct the secret
from its joint shares or learn nothing about the secret.4 This type of graph-based

4 In contrast to the more standard notion of graph-based access structures, we make
no explicit requirement on bigger or smaller sets of parties. However, one can easily
enforce the requirement that every single party learns nothing about the secret and
every set of 3 parties can reconstruct the secret.
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access structures was considered in [54] under the name “forbidden graph” access
structures.

A simple way of realizing such an access structure is by independently shar-
ing the secret between each authorized pair. For most graphs, this solution
distributes a share of length Ω(N) to each party. This can be improved by
using covers by complete bipartite graphs implying that every graph access
structure can be realized by a scheme in which the share size of each party
is O(N/ logN) [18,16,28]. This raises the following question:

Question 4. What is share length required for realizing the worst graphs G? In
particular, can every forbidden graph access structure on N nodes be realized
by a secret-sharing scheme in which each party receives o(N/ logN) bits?

1.1 Our Results

For each of the above questions, we obtain an improved upper bound. Our
upper bounds are obtained by applying general transformations to variants of
information-theoretic private information retrieval (PIR) protocols from the lit-
erature (see Section 1.2), where different flavors of PIR are required for different
applications. At a high level, our results exploit new connections between 2-server
PIR and OT complexity, between 3-server PIR and correlated randomness com-
plexity, and between a special “decomposable” variant of 3-server PIR and PSM
complexity. The secret sharing result is obtained by applying a general transfor-
mation to the PSM result, in the spirit of a transformation implicit in [9]. More
concretely, we obtain the following main results.

OT Complexity of Secure Two-Party Computation. We show that every function
f : [N ] × [N ] → {0, 1} can be securely evaluated using Õ(N2/3) invocations of
an oblivious transfer oracle. In fact, the total communication complexity and
randomness complexity of the protocol are also bounded by Õ(N2/3). We also
obtain a similar result for securely sampling a uniform pair of outputs from a set
S ⊆ [N ]×[N ]. More generally and precisely, for any joint probability distribution
(U, V ) over [N ]× [N ] and any ε > 0, we obtain an ε-secure protocol for sampling
correlated outputs from (U, V ) using N2/3 ·poly(logN, log 1/ε) OTs. This can be
viewed as a nontrivial secure reduction of complex correlations (or “channels”)
to simple ones. These results apply the 2-server PIR protocol from [21]. See full
version for more details.

Correlated Randomness Complexity of Secure Two-Party Computation. We show
that every function f : [N ] × [N ] → {0, 1} can be securely evaluated using

2
˜O(

√
logN) bits of correlated randomness. In fact, the same bound holds also

for the total randomness complexity of the protocol (counting private indepen-
dent coins as well) and also for the communication complexity of the protocol.
This result applies the 3-server PIR protocol of [27]. It was previously observed
in [30,41] that secure two-party computation with correlated randomness gives
rise to a 3-server PIR protocol. Here we show a connection in the other direction.
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Communication Complexity of Private Simultaneous Messages. We show that
every function f : [N ] × [N ] → {0, 1} can be realized by a PSM protocol with
messages of length O(

√
N). The construction is based on a special “decompos-

able” variant of 3-server PIR which we realize by modifying a PIR protocol
from [21]. In the hope of improving our O(

√
N) upper bound, we reduce the

problem of decomposable 3-server PIR to a combinatorial question of obtaining
a decomposable variant of matching vector sets [58,26]. See full version for more
details. We leave open the existence of decomposable matching vector sets with
good parameters.

In the terminology of randomized encoding of functions, the above result
shows that every f : [N ] × [N ] → {0, 1} admits a 2-decomposable randomized
encoding of length O(

√
N). It is instructive to note that whereas previous PSM

protocols from [30,38] employ a universal decoder (i.e., referee algorithm), which
does not depend on the function f other than on a size parameter, the decoder in
our construction strongly depends on f . It follows by a simple counting argument
that this is inherent.

Share Complexity of Forbidden Graph Access Structures. We show that for every
graph G with N nodes, the corresponding forbidden graph access structure can
be realized by a secret-sharing scheme in which each party gets a share of size
Õ(

√
N). This result is obtained by applying a general transformation to our

new PSM protocols. Curiously, while our secret-sharing scheme is not linear, a
simple generalization of a result of Mintz [50] implies a lower bound of Ω(

√
N)

on the share complexity of any linear scheme realizing the worst forbidden graph
access structure. This extends a previous lower bound from [7] that applies to the
stricter notion of graph-based access structures. The existence of linear secret-
sharing schemes meeting this lower bound is left open.

1.2 Related Work

Prior to our work, the only previous context in which sublinear communication
was known is that of secure multiparty computation in the presence of an honest
majority. While the complexity of standard protocols [13,19] grows linearly with
the circuit size, it is possible to do much better when there is a sufficiently
large majority of honest parties. Beaver et al. [5] have shown that when only
logn parties are corrupted, any function f : {0, 1}n → {0, 1} can be securely
evaluated using only poly(n) bits of communication and randomness, namely
the complexity is polylogarithmic in the input domain size. Their technique
makes an ad-hoc use of locally random reductions, which are in turn related to
the problem of information-theoretic private information retrieval (PIR) [21].
A k-server PIR protocol allows a client to retrieve an arbitrary bit Di from a
database D ∈ {0, 1}N , which is held by k servers, while hiding the selection i
from each individual server. The main optimization goal for PIR protocols is
their communication complexity, which is required to be sublinear in N .

Ishai and Kushilevitz [40] present a general method for transforming
communication-efficient PIR protocols into communication-efficient secure
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multiparty protocols in which the number of parties is independent of the total
input length n. In contrast to our constructions, which require the underlying
PIR protocols to satisfy additional computational and structural requirements,
the transformation from [40] is completely general. On the down side, it does
not apply in the two-party case and it requires (information theoretic) PIR pro-
tocols with polylogarithmic communication, which are not known to exist for a
constant number of servers k.

Beimel and Malkin [12] put forward the general goal of studying the minimal
number of OTs/ANDs required for securely realizing a given two-party function-
ality f , observe that this quantity can be smaller in some cases than the circuit
size of f , and obtain several connections between this question and communica-
tion complexity. These connections are mainly useful for proving lower bounds
that are logarithmic in the domain size N or upper bounds for specific func-
tions that have low communication complexity. More results in this direction
are given in [44]. Prabhakaran and Prabhakaran [51] put forward the question
of characterizing the rate of secure reductions between sampling functionalities,
and strengthen previous negative results from [56] on the rate of secure reduc-
tions between different OT correlations. None of the above results give nontrivial
upper bounds for the worst (or most) functions f . Winkler and Wulschlegger [56]
prove an Ω(logN) lower bound on the correlated randomness complexity of se-
cure two-party computation. Except for very few functions, this lower bound is
very far from the best known upper bounds even when considering the results
of this work.

The complexity of secret sharing for graph-based access structures was ex-
tensively studied in a setting where the edges of the graph represent the only
minimal authorized sets, that is, any set of parties that does not contain an edge
should learn nothing about the secret. The notion of forbidden graph access
structures we study, originally introduced in [54], can be viewed as a natural
“promise version” of this question, where one is only concerned about sets of
size 2. It is known that every graph access structure can be realized by a (linear)
scheme in which the share size of each party is O(N/ logN) [18,16,28]. The best
lower bound for the total share size required to realize a graph access struc-
ture by a general secret-sharing scheme is Ω(N logN) [55,15,23]. The best lower
bound for total share size required to realize a graph access structure by a linear
secret-sharing scheme is Ω(N3/2) [7]. The problem of secret sharing for dense
graphs was studied in [8]. Additional references on secret sharing of graph access
structures can be found in [8].

2 Preliminaries

2.1 Models and Definitions

Notation. Let [n] denote the set {1, 2, . . . , n}. Let FN denote the set of all
boolean functions from [N ] × [N ] to {0,1}. We will interpret f ∈ FN as a 2-
party function from [N ] × [N ] to {0,1}. For an algorithm B, let τ(B) denote
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the size (measured as number of AND gates) of a boolean circuit, over the basis
{∧,⊕,¬}, that represents B.
Computational Model. Since our results refer to perfect security, we incorpo-
rate perfect uniform sampling of [m], for an arbitrary positive integer m, into
the computational model as an atomic computation step.

Protocols. A k-party protocol can be formally defined by a next message func-
tion. This function on input (i, xi, j,m) specifies a k-tuple of messages sent by
party Pi in round j, when xi is its input and m describes all the messages Pi

received in previous rounds. The next message function may also instruct Pi to
terminate the protocol, in which case it also specifies the output of Pi.

Protocols with Preprocessing. In the preprocessing model, the specification
of a protocol also includes a joint distribution D over R1×R2 . . .×Rk, where the
Ri’s are finite randomness domains. This distribution is used for sampling cor-
related random inputs (r1, . . . , rk) that the parties receive before the beginning
of the protocol (in particular, the preprocessing is independent of the inputs).
The next message function, in this case, may also depend on the private random
input ri received by Pi from D. We assume that for every possible choice of
inputs and random inputs, all parties eventually terminate.

OT Correlations and the OT-Hybrid Model. We will be interested in
the special case of the 2-party setting when the correlated random inputs (X,Y )
given to the two parties are random OT correlations, corresponding to a random
instance of oblivious transfer, in which the receiver obtains one of two bits held
by the sender. That is, X = (X0, X1) is uniformly random over {0, 1}2 and
Y = (b,Xb) for a random bit b. We refer to a model in which the correlated
randomness given to the parties consists of random OT correlations, as the OT
preprocessing model. Alternatively, we may consider a setting where (each pair
of) parties have access to an ideal (bit) OT functionality that receives from one
of the parties, designated as the sender, a pair of bits (x0, x1), and a choice bit b
from the other party, designated as the receiver, and sends back to the receiver
the value xb. We call this model the OT-hybrid model.

Security Definition. We use the standard ideal-world/real-world simulation
paradigm. We restrict our attention mainly to the case of semi-honest (passive)
corruptions. (In Appendix B, we show how to extend some of our results to
the malicious setting.) Using the standard terminology of secure computation,
the preprocessing model can be thought of as a hybrid model where the parties
have a one-time access to an ideal randomized functionality D (with no inputs)
providing them with correlated, private random inputs ri. For lack of space, we
omit the full security definitions (see, e.g., [41, App. A] adapted to the semi-
honest setting).
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2.2 Private Information Retrieval

The following is a somewhat non-standard view of PIR protocols, where the
index is thought of as a pointer into a two-dimensional table, which in turn is
thought of as a two-argument function.

Definition 1 (Private Information Retrieval). Let FN be the set of all
boolean functions f : [N ]×[N ] → {0, 1}. A k-server private information retrieval
(PIR) scheme P = (Q,A,R) for FN is composed of three algorithms: a random-
ized query algorithm Q, an answering algorithm A, and a reconstruction algo-
rithm R. At the beginning of the protocol, the client has an input x ∈ [N ]× [N ]
and each server has an identical input f representing a function in FN . Using
its private randomness r ∈ {0, 1}γ(N), the client computes a tuple of k queries
(q1, . . . , qk) = Q(x, r), where qi ∈ {0, 1}α(N), for all i ∈ [k]. The client then
sends the query qj to server Sj, for every j ∈ [k]. Each server Sj responds with
an answer aj = A(j, qj , f), with aj ∈ {0, 1}β(N). Finally, the client computes
the value f(x) by applying the reconstruction algorithm R(x, r, a1, . . . , ak). We
ask for the following correctness and privacy requirements:

Correctness. The client always outputs the correct value of f(x). Formally, for
every function f ∈ FN , every input x ∈ [N ]× [N ], and every random string r, if
(q1, . . . , qk) = Q(x, r) and aj = A(j, qj , f), for j ∈ [k], then R(x, r, a1, . . . , ak) =
f(x).

Client’s Privacy. Each server learns no information about x. Formally, for
every two inputs x, x′ ∈ [N ]× [N ], every j ∈ [k], and every query q, the server
Sj cannot know if the query q was generated with input x or with input x′; that
is, Pr[Qj(x, r) = q] = Pr[Qj(x

′, r) = q], where Qj denotes the jth query in the
k-tuple that Q outputs and the probability is taken over a uniform choice of the
random string r.

The communication complexity of a protocol P is the total number of bits
communicated between the client and the k servers (i.e.,

∑
j(|qj | + |aj |) =

k(α(N) + β(N))).

Every function f ∈ FN is represented by anN2-bit string y = (y1,1, . . . , yN,N),
where f(i, j) = yi,j . The string y is also called a database, and we think of the
client as querying a bit yi,j from the database.

Observe that the query received by each server is independent of the client’s
input x. In particular, this holds for the first query q1, which therefore, may
be thought of as depending only on the private randomness, say r, of the client,
and not on the client input x. That is, we may assume that the query generation
algorithm Q is expressed as the combination of two algorithms Q1,Q−1 and we
assume that the client, with private randomness r, computes a tuple of k queries
(q1, . . . , qk) as q1 = Q1(r), and q2, . . . , qk = Q−1(x, r).
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2.3 Private Simultaneous Messages

The Private Simultaneous Messages (PSM) model was introduced by [30] as a
minimal model for secure computation. It allows k players P1, . . . , Pk with access
to shared randomness, to send a single message each to a referee Ref, so that
the referee learns the value of a function f(x1, . . . , xk) (where xi is the private
input of Pi) but nothing else. It is formally defined as follows:

Definition 2 (Private Simultaneous Messages). Let X1, . . . , Xk, Z be finite
domains, and let X = X1 × · · · ×Xk. A private simultaneous messages (PSM)
protocol P, computing a k-argument function f : X → Z, consists of:

– A finite domain R of shared random inputs, and k finite message domains
M1, . . . ,Mk.

– Message computation function μ1, . . . , μk, where μi : Xi ×R → Mi.
– A reconstruction function g : M1 × · · · ×Mk → Z.

Let μ(x, r) denote the k-tuple of messages (μ1(x1, r), . . . , μk(xk, r)). We say that
the protocol P is correct (with respect to f), if for every input x ∈ X and every
random input r ∈ R, g(μ(x, r)) = f(x). We say that the protocol P is private
(with respect to f), if the distribution of μ(x, r), where r is a uniformly random
element of R, depends only on f(x). That is, for every two inputs x, x′ ∈ X such
that f(x) = f(x′), the random variables μ(x, r) and μ(x′, r) (over a uniform
choice of r ∈ R) are identically distributed. P is a PSM protocol computing f if
it is both correct and private.

The communication complexity of the PSM protocol P is naturally defined as∑n
i=1 log |Mi|. The randomness complexity of the PSM protocol P is defined as

log |R|.

3 Our Results

Secure Computation in the OT-hybrid Model. We show a connection
between secure computation in the (bit) OT-hybrid model and 2-server PIR.
More formally, we show:

Theorem 1. Let P = (Q,A,R) be a 2-server PIR scheme for FN as described
in Definition 1. Then, for any 2-party functionality f : [N ] × [N ] → {0, 1},
there is a protocol π which realizes f in the (bit) OT-hybrid model, and has the
following features:

– π is perfectly secure against semi-honest parties;
– The total communication complexity, and in particular the number of calls

to the OT oracle, is O(τ(Q) + τ(R)).

Plugging in parameters from the best known 2-server PIR protocol [21] in
Theorem 1, we obtain:
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Corollary 1. For any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a
protocol π that realizes f in the (bit) OT-hybrid model; this protocol is perfectly
secure against semi-honest parties, and has total communication complexity (in-

cluding communication with the OT oracle) Õ(N2/3).

Prior to our work, the best upper bound on the communication complexity of
an information-theoretically secure protocol in the OT-hybrid model for evaluat-
ing arbitrary functions f : [N ]× [N ] → {0, 1} was Ω(N). This can, for instance,
be achieved by formulating the secure evaluation of f : [N ]× [N ] → {0, 1} as a
1-out-of-N OT problem between the two parties, where party P1 participates as
sender with inputs {f(x1, i)}i∈[N ] and party P2 participates as receiver with in-
put x2. An instance of 1-out-of-N OT can be obtained information theoretically
from O(N) instances of 1-out-of-2 OT by means of standard reductions [17].

Secure Computation in the Preprocessing Model. Since OTs can be
precomputed [4], the protocol implied by Theorem 1 yields a perfectly secure
semi-honest protocol in the OT-preprocessing model where the communication
complexity of the protocol and number of OTs required are both O(τ(Q)+τ(R)).

Our next theorem shows that it is possible to obtain much better communi-
cation complexity in a setting where we are not restricted to using precomputed
OT correlations alone. We show this by demonstrating a connection between se-
cure computation in the preprocessing model and 3-server PIR. More formally,

Theorem 2. Let P = (Q,A,R) be a 3-server PIR scheme for FN as described
in Definition 1. Then, for any 2-party functionality f : [N ]× [N ] → {0, 1}, there
is a protocol π that realizes f in the preprocessing model, and has the following
features:

– π is perfectly secure against semi-honest parties;
– The total communication complexity is O(τ(Q) + τ(R));
– The total correlated randomness complexity is O(τ(Q) + τ(R)).

Remark 1. We point out that a transformation in the other direction (i.e., con-
structing 3-server PIR protocols from protocols in the preprocessing model) was
shown in [41]. In more detail, they show that a semi-honest secure protocol in
the preprocessing model for f : [N ] × [N ] → {0, 1} with correlated randomness
complexity s(N) implies the existence of a 3-server, interactive PIR protocol,

with communication complexity s(N̂1/2) +O(log N̂), where N̂ is the size of the
database held by the servers. Taken together with our Theorem 2, this shows
a two-way connection between the communication complexity of 3-server PIR
protocols and the correlated randomness complexity of protocols in the prepro-
cessing model.

Plugging in parameters from the best known 3-server PIR protocols [27,11]
in Theorem 2, we obtain:
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Corollary 2. For any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a
protocol π that realizes f in the preprocessing model; this protocol is perfectly
secure against semi-honest parties, and has total communication complexity and

correlated randomness complexity 2
˜O(
√

logN).

While we mainly focus here on efficiency of 2-party secure computation, we
show how to construct protocols in the multiparty setting, and also for the setting
with honest majority in Appendix A. We summarize our results on t-private k-
party semihonest secure computation in Table 1. In Appendix B we show how
to extend our results on secure computation to the malicious setting.

Table 1. Summary of upper bounds on different complexity measures of t-private
k-party semihonest secure computation of the worst function f : [N ]k → {0, 1}

Complexity measure (t, k) This work Reference

OT complexity in the
OT-hybrid model

(1, 2) O(N2/3) Cor. 1

(t, k ≤ 2t) Nk/�2k−1/t� · poly(k) Cor. 5

Correlated randomness
complexity in the
preprocessing model

(1, 2) 2
˜O(

√
logN) Cor. 2

(t > 1, k ≤ 2t) Nk/�2k+1/t� · poly(k) Cor. 4

Communication
complexity in the
plain model

(t, 2t < k < 3t) Nk/�2k−1/t� · poly(k) Cor. 4

(t, k ≥ 3t) 2
˜O(

√
k logN) · poly(k) Cor. 5

Private Simultaneous Messages (PSM) Model. We obtain the following
upper bound for 2-party protocols in the PSM model.

Theorem 3. For any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a
PSM protocol π that realizes f , and has the following features:

– π is perfectly secure against semi-honest parties;
– The total communication complexity and the randomness complexity are

O(N1/2).

This improves upon the best known upper bound of O(N) on the communi-
cation and randomness complexity of PSM protocols [30].

Secret Sharing for Forbidden Graph Access Structures. Consider a
graph G = (V,E). We are interested in the following graph access structure AG

in which the parties correspond to the vertices of the graph and (1) every vertex
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set of size three or more is authorized, and (2) every pair of vertices that is not
connected by an edge in E is authorized. Such an access structure is called a
forbidden graph access structure [54] since pairs of vertices connected by an edge
in G are forbidden from reconstructing the secret. We obtain the following upper
bound on the share size for a secret-sharing scheme realizing AG, for all G.

Theorem 4. Let G = (V,E) be a graph with |V | = N , and let AG be the
corresponding access structure. Then, there exists a perfect secret-sharing scheme
realizing AG with total share size O(N3/2 logN).

4 Secure Computation in the OT-Hybrid Model

In this section, we construct a 2-party secure computation protocol realizing
f : [N ]×[N ] → {0, 1} in the (bit) OT-hybrid model from a 2-server PIR protocol

P = (Q,A,R). The resulting protocol has communication complexity Õ(N2/3)

and makes Õ(N2/3) calls to the ideal OT functionality, improving over prior
work whose worst-case complexity (both in terms of communication and calls to
the ideal OT functionality) was Ω(N) [17,25].

Let P = (Q,A,R) be a 2-server PIR protocol. Let the truth table of the
function f : [N ]× [N ] → {0, 1} that we are interested in, serve as the database
(of length N2). The high level idea behind our protocol is that the two par-
ties P1 and P2, with their respective inputs x1, x2, securely emulate a virtual
client with input x = x1‖x2, and two virtual servers holding as database the
truth table of f , in the PIR protocol P . In more detail, parties P1 and P2, with
inputs x1 ∈ [N ], r(1) ∈ {0, 1}γ(N) and x2 ∈ [N ], r(2) ∈ {0, 1}γ(N) respectively,
emulate a PIR client by securely evaluating the query generation algorithm Q
on input x = x1‖x2 ∈ [N2] and randomness r = r(1)⊕r(2), such that party P1

obtains query q1 and party P2 obtains query q2. Then, using the PIR queries
as their respective inputs, the parties locally emulate the PIR servers by run-
ning the PIR answer generation algorithm A and obtaining PIR answers a1 and
a2, respectively. Finally, using the answers a1, a2, the inputs x1, x2, and the
randomness r(1), r(2), parties P1 and P2 once again participate in a secure com-
putation protocol to securely evaluate the PIR reconstruction algorithm R to
obtain the final output z. The protocol is described in Figure 1. It is easy to see
that the communication complexity as well as the number of calls to the ideal
OT functionality is O(τ(Q) + τ(R)), that is, the complexity is proportional to
the circuit size of the query and reconstruction algorithms. For a detailed proof,
see full version.

Intuitively, the protocol is private because (1) each individual PIR query does
not leak any information about the query location and the reconstruction algo-
rithms outputs nothing but the desired bit (both follow from the definition of
PIR schemes); and (2) emulation of the algorithms run by the PIR client is done
via secure computation protocols.

Instantiating the protocol in Figure 1 with the 2-server PIR protocol of Chor
et al. [21] yields a perfectly secure protocol in the OT-hybrid model whose
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communication complexity is Õ(N2/3) and which makes Õ(N2/3) calls to the
ideal OT functionality. This proves Corollary 1.

Preliminaries: Let P = (Q,A,R) be a 2-server PIR protocol where servers hold
as database the truth table of a function f : [N ] × [N ] → {0, 1}. Parties P1, P2

have inputs x1, x2 ∈ [N ] respectively. At the end of the protocol, both parties
learn z = f(x1, x2).

Protocol:

1. P1, P2 choose uniformly random r(1), r(2) ∈ {0, 1}γ(N), respectively (where

γ(N) is the size of the randomness required by algorithm Q). Let ˜Q de-
note an algorithm that takes as input (x1, r

(1)), (x2, r
(2)) and runs algo-

rithm Q(x1‖x2, r
(1)⊕r(2)). Party P1 with inputs (x1, r

(1)) and P2 with inputs
(x2, r

(2)) run a 2-party semi-honest secure GMW protocol in the OT-hybrid

model to evaluate circuit C( ˜Q). Let q1, q2 denote their respective outputs.
2. P1 and P2 locally compute a1 = A(1, q1, f) and a2 = A(2, q2, f) respectively.

3. Let ˜R denote an algorithm that takes as input (a1, x1, r
(1)), (a2, x2, r

(2)) and
runs algorithm R(x1‖x2, r

(1)⊕r(2), a1, a2). Party P1 with inputs (a1, x1, r
(1))

and P2 with inputs (a2, x2, r
(2)) run a 2-party semi-honest secure GMW pro-

tocol in the OT-hybrid model to evaluate circuit C( ˜R), where z denotes their
common output. Both parties output z and terminate the protocol.

Fig. 1. A perfectly secure protocol in the OT-hybrid model

5 Secure Computation in the Preprocessing Model

In this section, we construct a 2-party secure computation protocol realizing
f : [N ]× [N ] → {0, 1} in the preprocessing model from a 3-server PIR protocol
P = (Q,A,R). The resulting protocol will have communication and correlated

randomness complexity 2
˜O(

√
logN) improving over prior work whose worst-case

complexity was Ω(N) [17,25]. Note that we manage to emulate a protocol with
3 servers and one client by a protocol with 2 parties.

Let P = (Q,A,R) be a 3-server PIR protocol. We assume that the database
represents the truth table of the function f : [N ] × [N ] → {0, 1} that we are
interested in. The high level idea behind our protocol is that the two parties P1

and P2 with their respective inputs x1, x2 securely emulate a virtual client with
input x = x1‖x2, and two of the three virtual servers, say S2 and S3, holding
as database the truth table of f , in the PIR protocol P . The key observation is
that server S1’s inputs and outputs can be precomputed and shared between P1

and P2 as preprocessed input. This is possible because S1’s input, namely the
PIR query q1, is distributed independently of the client’s input, and thus can be
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computed beforehand. Similarly, a1, the answer of S1, is completely determined
by q1 and the truth table of the function f , and thus can be precomputed as
well. Thus, the preprocessed input along with the emulation done by P1 and P2

allow them to securely emulate all PIR algorithms Q, A, R of the 3-server PIR
protocol P . We provide a more detailed description of the protocol below.

Parties P1 and P2, are provided as preprocessed input, values (r(1),a
(1)
1 ) and

(r(2), a
(2)
1 ) respectively along with sufficient OT correlations (whose use we will

see later). The values r(1) and r(2) together determine the randomness used in
PIR query generation algorithm Q as r = r(1)⊕r(2). Given randomness r, the
first server’s query q1 (resp. answer a1) is completely determined as Q1(r) (resp.

A(1, q1, f)). The values a
(1)
1 and a

(2)
1 together form a random additive sharing

of a1.
In the online phase, when parties obtain their respective inputs x1 and x2, they

proceed to emulate the PIR client by securely evaluating the query generation
algorithm on input x = x1‖x2 ∈ [N2] and randomness r = r(1)⊕r(2), such
that party P1 obtains query q2 and party P2 obtains query q3. Then, using
the PIR queries as their respective inputs, the parties locally emulate the PIR
servers by running the PIR answer generation algorithm A and obtain PIR
answers a2 and a3 respectively. Recall that a random sharing of answer a1 is
already provided to the parties as preprocessed input. Using this random sharing
of answer a1, the locally computed answers a2, a3, the inputs x1, x2, and the
randomness r = r(1)⊕r(2), parties P1 and P2 once again participate in a secure
computation protocol to securely evaluate the PIR reconstruction algorithm R
to obtain the final output z. It is easy to see that the communication and
correlated randomness complexity of the protocol equals O(τ(Q) + τ(R)).

Intuitively, the protocol is private because (1) each party knows at most one
PIR query, and (2) each individual PIR query does not leak any information
about the query location (follows from the definition of PIR properties), and (3)
emulation of the algorithms run by the PIR client is done via secure computa-
tion protocols. Instantiating the protocol described above with the best known
3-server PIR protocol [58,27,11] we obtain a perfectly secure protocol in the pre-
processing model whose communication and correlated randomness complexity

is 2
˜O(

√
logN). The details are deferred to the full version.

6 Private Simultaneous Messages

In this section, we provide a new framework for constructing PSM protocols (cf.
Definition 2). Our proposed framework is based on a new variant of PIR proto-
cols that we call decomposable PIR protocols. We define decomposable PIR in
Section 6.1. We construct a 2-party PSM protocol using 3-server decomposable
PIR protocols in Section 6.2, and we present a concrete decomposable 3-server
PIR protocol in Section 6.3. The PSM protocol of Section 6.2, instantiated with
this concrete decomposable 3-server PIR protocol, has communication (and ran-
domness) complexity O(N1/2), for all f : [N ]× [N ] → {0, 1}.
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6.1 Decomposable PIR Schemes

A k-server decomposable PIR protocol allows a client with input x =
(x1, . . . , xk−1) ∈ [N ]k−1 to query k servers, each holding a copy of a database
of size Nk−1 and retrieve the contents of the database at index x while offering
(possibly relaxed) privacy guarantees to the client. Loosely speaking, decompos-
able PIR protocols differ from standard PIR protocols (cf. Definition 1) in two
ways: (1) the query generation and reconstruction algorithms can be decom-
posed into “simpler” algorithms that depend only on parts of the entire input.
(2) We change the privacy requirement and require that the query of server Sk

together with some information about the answers of the first k− 1 servers does
not disclose information about the input of the client. We note that the privacy
of the first k−1 queries follows from the decomposability of the query generation
algorithm. We provide the formal definition below.

Definition 3 (Decomposable PIR). Let FN,k−1 be the set of all boolean func-
tions f : [N ]k−1 → {0, 1}. A k-server decomposable PIR protocol P = (Q,A,R)
for FN,k−1 consists of three algorithms: a randomized query algorithm Q, an an-
swering algorithm A, and a reconstruction algorithm R. The client has an input
x = (x1, . . . , xk−1) ∈ [N ]k−1 (i.e., x is from the input domain of FN,k−1) and
each server has an identical input f representing a function in FN,k−1. Using
its private randomness r ∈ {0, 1}γ(N), the client computes a tuple of k queries
(q1, . . . , qk) = Q(x, r), where each qi ∈ {0, 1}α(N). The client then sends the
query qj to server Sj, for every j ∈ [k]. Each server Sj responds with an answer
aj = A(j, qj , f), with aj ∈ {0, 1}β(N). Finally, the client computes the value
f(x) by applying the reconstruction algorithm R(x, r, a1, . . . , ak). The query
generation algorithm Q and the reconstruction algorithm R satisfy the following
“decomposability” properties.

Decomposable Query Generation. The randomized query generation
algorithm Q can be decomposed into k algorithms Q1, . . . ,Qk−1,Qk =
(Q1

k, . . . ,Qk−1
k ), such that for every input x = (x1, . . . , xk−1) ∈ [N ]k−1, and

for every random string r ∈ {0, 1}γ(N), the queries (q1, . . . , qk) = Q(x, r)
are computed by the client as qj = Qj(xj , r) for j ∈ [k − 1], and qk =
(q1k, . . . , q

k−1
k ) = (Q1

k(x1, r), . . . ,Qk−1
k (xk−1, r)).

Decomposable Reconstruction. There exists algorithms R′,R′′ such that
for every input x = (x1, . . . , xk−1) ∈ [N ]k−1, and for every random string
r ∈ {0, 1}γ(N), if (q1, . . . , qk) = Q(x, r), and aj = A(j, qj , f) for j ∈
[k], then the output of the reconstruction algorithm R(x, r, a1, . . . , ak) equals
R′′(ak,R′(x, r, a1, . . . , ak−1)).

We ask for the following correctness and privacy requirements:

Correctness. The client always outputs the correct value of f(x). Formally, for
every function f ∈ FN,k−1, every input x ∈ [N ]k−1, and every random string r, if
(q1, . . . , qk) = Q(x, r) and aj = A(j, qj , f), for j ∈ [k], then R(x, r, a1, . . . , ak) =
f(x).
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Privacy. We require that qk, the query of Sk, and R′(x, r, a1, . . . , ak−1) do not
disclose information not implied by f(x). Formally, for every f ∈ FN,k−1, for
every two inputs x, x′ ∈ [N ]k−1 such that f(x) = f(x′), and every values q, b,
letting aj = A(j,Qj(x, r), f) and a′j = A(j,Qj(x

′, r), f) for j ∈ [k − 1], and
qk = Qk(x, r), q

′
k = Qk(x

′, r)

Pr
r
[qk = q ∧ R′(x, r, a1, . . . , ak−1) = b] = Pr

r
[q′k = q ∧ R′(x′, r, a′1, . . . , a

′
k−1) = b],

where the probability is taken over a uniform choice of the random string r.

As usual, the communication complexity of such a protocol P is the total
number of bits communicated between the client and the k servers (i.e.,

∑
j(|qj |+

|aj |) = k(α(N) + β(N))).

6.2 From 3-Server Decomposable PIR to 2-Party PSM

Given a function f : [N ]× [N ] → {0, 1}, we construct a 2-party PSM protocol for
f using a 3-Server Decomposable PIR protocol. We give an informal description
of the protocol. The shared randomness of the two parties is composed of two
strings, one string for the decomposable PIR protocol and one for a PSM protocol
π for computing R′. (We remark that R′ is “simpler” than f , and consequently
existing PSM protocols (e.g., [38,47]) can realize R′ very efficiently.) In the
protocol, P1, holding x1 and f , computes the query q1 and its part of the query of
server S3, namely q13 (party P1 can compute these queries by the decomposability
of the query generation). P1 also computes a1. Similarly, P2, holding x2 and f ,
computes q2, its part of the query of server S3, namely q23 , and a2. Parties
P1 and P2 send q13 and q23 to the referee, who uses this information and f to
compute a3. Furthermore, P1 and P2 execute a PSM protocol that enables the
referee to compute z′ = R′((x1, x2), r, a1, a2). The referee reconstructs f(x) by
computing R′′(a3, z′), where a3 is the answer computed by the referee for query
q3 = (q13 , q

2
3).

The correctness of the protocol described above follows immediately from the
definition of decomposable PIR. Furthermore, the information that the referee
gets is q3 and the messages of a PSM protocol computing R′. By the privacy
of the PSM protocol, the referee only learns the output of R′ from this PSM
protocol. Thus, the referee only learns q3 and the output of R′; by the privacy
requirement of the decomposable PIR protocol the referee learns only f(x). We
summarize the properties of our PSM protocol in the following lemma.

Lemma 1. Let P be a 3-server decomposable PIR protocol where the query
length is α(N) and the randomness complexity is γ(N). Furthermore, assume
that R′ can be computed by a 2-party PSM protocol π′ with communication com-
plexity α′(N) and randomness complexity γ′(N). Then, every function f ∈ FN

can be computed by a 2-party PSM protocol π with communication complexity
α(N) + α′(N) and randomness complexity γ(N) + γ′(N).
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6.3 A 3-Server Decomposable PIR Protocol

In this section, we show how to construct a decomposable 3-server PIR protocol.
Our construction is inspired by the cubes approach of [21]. We start with a high
level description of this approach, specifically for the case of 4-dimensional cubes
and of its adaptation to the decomposable case. In the following, for set S and
element i, let S⊕{i} denote the set S\{i} if i ∈ S, and S ∪ {i} otherwise.

The starting point of the CGKS [21] cubes approach (restricted here to di-
mension 4) is viewing the n-bit database as a 4-dimensional cube (i.e., [n1/4]4).
Correspondingly, the index that the client wishes to retrieve is viewed as a 4-
tuple i = (i1, . . . , i4). The protocol starts by the client choosing a random subset
for each dimension, i.e. S1, . . . , S4 ⊆R [n1/4]. It then creates 16 queries of the
form (T1, . . . , T4) where each Tj is either Sj itself or Sj ⊕{ij} (we often use vec-
tors in {0, 1}4 to describe these 16 combinations; e.g., 0000 refers to the query
(S1, . . . , S4) while 1111 refers to the query (S1 ⊕ {x1}, . . . , S4 ⊕ {x4})). If there
were 16 servers available, the client could send each query (T1, . . . , T4) to a dif-
ferent server (4 ·n1/4 bits to each), who would reply with a single bit which is the
XOR of all bits in the sub-cube T1⊗. . .⊗T4. The observation made in [21] is that
each element of the cube appears in an even number of those 16 sub-cubes, and
the only exception is the entry i = (i1, . . . , i4) that appears exactly once. Hence,
taking the XOR of the 16 answer bits, all elements of the cube are canceled out
except for the desired element in position i.

The next observation of the cubes approach is that a server who got a query
(T1, . . . , T4) can provide a longer answer (but still of length O(n1/4) bits) from
which the answers to some of the other queries can be derived (and, hence, the
corresponding servers in the initial solution can be eliminated). Specifically, it
can provide also the answers to the queries (T1 ⊕{
}, T2, T3, T4), for all possible
values 
 ∈ [n1/4]. One of these is the bit corresponding to 
 = i1 which is the
desired answer for another one of the 16 queries; and, clearly, the same can be
repeated in each of the 4 dimensions. Stated in the terminology of 4-bit strings, a
server that gets the query represented by some b ∈ {0, 1}4 can reply with O(n1/4)
bits from which the answer to the 5 queries of hamming distance at most one
from b can be obtained; further, it can be seen that 4 servers that will answer
the queries corresponding to {1100, 0011, 1000, 0111} provide all the information
needed to answer the 16 queries in the initial solution (this corresponds also to
the notion of “covering codes” from the coding theory literature).

Next, we informally describe how to turn the above ideas into a decompos-
able 3-server PIR protocol. We still view the database as 4-dimensional cube
and the client is still interested in obtaining the answers to the same 16 queries.
Moreover, we are allowed to use only 3 servers for this. However, the require-
ments of decomposable PIR give us some freedom that we did not have before;
specifically, we allow the answer of the first server to depend on x1 = (i1, i2)
and the answer of the second server to depend on x2 = (i3, i4). The query to the
third server should still give no information about i. Specifically, we will give the
first server the basic sets S1, . . . , S4 along with the values i1, i2. This server can
easily compute the answer to all 4 queries of the form (T1, . . . , T4) with T1 being



On the Cryptographic Complexity of the Worst Functions 335

either S1 or S1 ⊕ {i1} and T2 being either S2 or S2 ⊕ {i2} (in vectors notation,
those correspond to the queries 0000,0100,1000,1100). Moreover, using the idea
described above, even though the first server does not know the value of i3 it
can provide O(n1/4)-bit answer corresponding to all choices of i3 from which the
client can select the right ones (in vectors notation, those corresponding to the
queries 0010,0110,1010,1110). Similarly it can provide O(n1/4)-bit answer corre-
sponding to all choices of i4 from which the client can select the right ones (in
vectors notation, those corresponding to the queries 0001,0101,1001,1101). The
query to the second server consists of S1, . . . , S4 along with the values i3, i4. In a
similar way, this server provides an answer of O(n1/4) bits that can be used
to answer the queries 0000,0010,0001,0011 directly and 1000,1010,1001,1011,
0100,0110,0101,0111 by enumerating all values of i1 and then all values of i2
(some queries are answered by both servers; this small overhead can be eas-
ily saved – see full version). So, based on a1, a2, the only query that remained
unanswered is the 1111 query. For this, the client asks the third server the query
(S1 ⊕ {i1}, . . . , S4 ⊕ {i4}) (which is independent of i) and gets the missing bit,
denoted a3, back. Finally, note that the reconstruction has the desired “decom-
posable” form: the client output can be obtained by processing the answers of
the first two servers to get the sum v of the first 15 queries (this is the desired
R′) and then adding a3 to it. Moreover, the pair (q3, v) gives no information on
i beyond the output: q3 is independent of i (it is just a random sub-cube), and
v is just the exclusive-or of the output and a3 (which depends only on q3 and
hence independent of i).

7 Secret Sharing

We present a generic transformation from any 2-party PSM protocol to secret-
sharing schemes for forbidden graph access structures, and then use the results
from Section 6 to obtain efficient secret-sharing schemes for these access struc-
tures. Specifically, we obtain N -party secret-sharing schemes for forbidden graph
access structures whose total share size is O(N3/2). The best previous construc-
tions for these access structures had total share size O(N2/ logN) [18,16,28].

In Section 7.1, we demonstrate our transformation from PSM protocols to
secret-sharing schemes for forbidden graph access structures, for the simple case
when the graph is bipartite. For lack of space, our generalized construction is
presented in the full version. We start by formally defining forbidden graph
access structures.

Definition 4. Let G = (V,E) be an arbitrary graph. A forbidden graph access
structure, denoted AG, is an access structure where the parties are the vertices
in V and the only unauthorized sets are singletons (i.e., sets containing a single
vertex in V ), and sets of size 2 corresponding to edges on G (i.e., sets {x, y}
with (x, y) ∈ E).
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7.1 Secret Sharing Schemes for Forbidden Bipartite Graph Access
Structures

We first show how to realize forbidden graph access structures AG, where the
graph G is bipartite.

Definition 5. Let G = (L,R,E) be a bipartite graph, where |L| = |R| = N . We
label the vertices in L by 1, 2, . . . , N , and similarly, vertices in R by 1, 2, . . . , N .
We associate the bipartite graph G = (L,R,E) with a boolean function fG :
[N ]× [N ] → {0, 1}, where f(x, y) equals 0 iff there exists an edge between vertex
x ∈ L and vertex y ∈ R.

Lemma 2. Let G = (L,R,E) be a bipartite graph where |L| = |R| = N and
fG : [N ] × [N ] → {0, 1} be the function associated with G. Let P be a PSM
protocol for computing fG with communication complexity cP(N). Then, there
exists a secret sharing realizing AG with domain of secrets {0, 1} and total share
size O(N · cP(N)).

Proof. In a forbidden bipartite graph access structure the sets that can recon-
struct the secret are: (1) All sets of 3 or more parties, (2) all pairs of parties that
correspond to vertices from the same “side” of the graph (L or R), and (3) all
pairs of parties that correspond to vertices from different sides of the graph and
are not connected by an edge.

We construct a secret-sharing scheme for AG by dealing with the three types
of authorized sets. First, the dealer shares the secret with Shamir’s 3-out-of-
2N threshold secret-sharing scheme among the 2N parties of the access struc-
ture. Next, the dealer independently shares the secret with Shamir’s 2-out-of-
N threshold secret-sharing scheme among the parties in L, and independently
among the parties in R.

The interesting case is how to share the secret for sets {x, y} such that x ∈
L, y ∈ R, and (x, y) /∈ E. Let μ1, μ2 represent the message computation functions
of the PSM protocol P (as defined in Definition 2). To share a secret s ∈ {0, 1},
the dealer chooses the randomness r, required for P . Then, depending on the
value of s, it distributes the shares to the parties as follows:

– If s = 0, then the dealer chooses arbitrary x0, y0 ∈ [N ] such that fG(x0, y0) =
0, and gives the share mx = μ1(x0, r) to each party x ∈ L, and the share
my = μ2(y0, r) to each party y ∈ R.

– Else, if s = 1, then the dealer gives the share mx = μ1(x, r) to each party
x ∈ L, and the share my = μ2(y, r) to each party y ∈ R.

Any two parties x ∈ L and y ∈ R that are not connected by an edge in
G reconstruct the secret by returning the output of the PSM reconstruction
function s′ = g(mx,my) (cf. Definition 2). Correctness of this reconstruction for
(x, y) /∈ E follows from the correctness of the PSM protocol P . Specifically, (1)
when s = 0, the parties x and y reconstruct f(x0, y0) = 0 = s, and (2) when
s = 1, the parties x and y reconstruct fG(x, y) = 1 = s.
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For the privacy, consider a pair of parties x, y such that x ∈ L, y ∈ R, and
(x, y) ∈ E. When s = 0, these parties hold shares μ1(x0, r) and μ2(y0, r) respec-
tively. When s = 1, these parties hold shares μ1(x, r) and μ2(y, r) respectively.
Since fG(x, y) = fG(x0, y0) = 0, the shares do not reveal any information about
s (by the privacy of the PSM protocol). ��

Using the PSM protocols described in Theorem 3 in Lemma 2, we get the
following corollary.

Corollary 3. Let G = (L,R,E) be a bipartite graph where |L| = |R| = N .
There exists a secret sharing realizing AG with domain of secrets {0, 1} and
total share size O(N3/2).

In the full version, we show how to construct secret-sharing schemes realizing
AG for general graphs, using the secret-sharing scheme for forbidden bipartite
graph access structures.
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A Multiparty Secure Computation

Notation. Let Fk
N denote the set of all boolean functions from [N ]k to {0, 1}.

We will interpret f ∈ Fk
N as a k-party function. Also, we consider t-private k-

server PIR for Fk
N , a natural generalization of 1-private k-server PIR for FN

defined in Section 2.
The following theorems summarize the connections between t-private k-server

PIR, and multiparty secure computation in the plain model, OT-hybrid model,
and the preprocessing model. The protocols implied by the theorems are straight-
forward extensions of the ideas behind the protocols of Sections 4 and 5.

Theorem 5. Let P = (Q,A,R) be a t-private k-server PIR scheme for Fk
N .

Then, for any k-party functionality f : [N ]k → {0, 1}, the following hold:

– There is a perfectly secure k-party protocol π that realizes f in the plain
model, tolerates t < k/2 passively corrupt parties, and has communication
complexity O(k2 · (τ(Q) + τ(R))).

– There is a perfectly secure k-party protocol π that realizes f in the OT-hybrid
model, tolerates t < k passively corrupt parties, and has communication
complexity O(k2 · (τ(Q) + τ(R))).

Theorem 6. Let P = (Q,A,R) be a t-private (k + 1)-server PIR scheme for
Fk

N . Then, for any k-party functionality f : [N ]k → {0, 1}, there is a perfectly
secure k-party protocol π that realizes f in the preprocessing model, and tolerates
t < k passively corrupt parties, and has correlated randomness complexity (and
communication complexity) O(k2 · (τ(Q) + τ(R))).

Plugging in parameters from the best known t-private k-server (resp. (k+1)-
server) PIR protocols [10,57] in Theorem 5 (resp. Theorem 6), we obtain the
following corollary.

Corollary 4. Let f : [N ]k → {0, 1} be any k-party functionality. Then,

– There is a perfectly secure k-party protocol π that realizes f in the plain
model, tolerates t < k/2 passively corrupt parties, and has communication
complexity Nk/�2k−1/t� · poly(k).

– There is a perfectly secure k-party protocol π that realizes f in the OT-hybrid
model, tolerates t < k passively corrupt parties, and has communication
complexity Nk/�2k−1/t� · poly(k).

– There is a perfectly secure k-party protocol π that realizes f in the preprocess-
ing model, tolerates t < k passively corrupt parties, and has correlated ran-
domness complexity (and communication complexity) Nk/�2k+1/t� · poly(k).

We point out that for the specific case of t = k − 1 our protocol in the OT-
hybrid model has communication complexity Nk/2 ·poly(k) which improves over
prior work which had complexity Nk−1 · poly(k) [34].
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For the case of honest majority, it is possible to obtain better results for t-
private k-party computation when k ≥ 3t via the best known t-private 3t-server
PIR protocols obtained by boosting (via [2]) the PIR protocols of [58,27,11].

Corollary 5. For any t ≥ 0, and for any k ≥ 3t-party functionality f : [N ]k →
{0, 1}, there is a protocol π that realizes f in the plain model, and has the fol-
lowing features:

– π is perfectly secure, and tolerates t passively corrupt parties;

– The total communication complexity is 2
˜O(

√
k logN) · poly(k).

B Extension to the Malicious Setting

In this section, we show how to compile our semihonest secure protocols for se-
cure computation in the OT-hybrid/preprocessing/plain model in to malicious
secure protocols for secure computation in the respective models. The high level
idea is to use the IPS compiler [43], which is parameterized by an outer malicious
secure protocol (that helps computing the target function) and an inner semi-
honest secure protocol (for simulating the next message function of the outer
protocol). The main challenge is in implementing the compiler while somewhat
preserving the complexity of the underlying semihonest secure protocol.

To this end, the outer protocol that we employ is inspired by the instance
hiding scheme of Beaver et al. [6]. If f represents the target function that we
need to realize, then we set the target function of the outer protocol, say g
to be, for parameter m, an m-variate degree-d polynomial over F obtained by
arithmetizing f . To evaluate a function g, our outer protocol will use k parties
(where k depends on the size of the input domain N), that evaluate g on shares
of the actual input. Note that (1) the actual parties need to distribute shares
computed from the joint input of both parties to the k virtual parties, and (2)
each of the k virtual parties compute their next message which is the evaluation
of g on the share they received. The share computation step depends only on
the length of g’s input, and the number of virtual parties. To evaluate g, the
actual parties first interpret g as a boolean function g∗ (with multi-bit output),
and then use our semihonest secure protocol multiple times to evaluate each
output bit of g∗. In other words, our semihonest secure protocol acts as the IPS
compiler’s inner protocol. The final output is obtained as in the scheme of [6]
via polynomial interpolation, which in our compiled protocol will be performed
using a secure computation protocol.

We summarize the discussion by stating the final theorems that we obtain,
and defer the proofs to the full version.

Theorem 7. Let σ be a statistical security parameter. For all ε > 0, and for any
2-party functionality f : [N ] × [N ] → {0, 1}, there is a protocol π that realizes
f in the OT-hybrid model; this protocol is statistically secure against malicious
parties, and has total communication complexity (including communication with

the OT oracle) Õ(N
2
3+ε) + poly(σ, logN, 1/ε).
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Theorem 8. Let σ be a statistical security parameter. For any 2-party func-
tionality f : [N ]× [N ] → {0, 1}, there is a protocol π that realizes f in the pre-
processing model; this protocol is statistically secure against malicious parties,
and has total communication complexity and correlated randomness complexity

2
˜O(

√
logN) + poly(σ, logN).

Theorem 9. Let σ be a statistical security parameter. For any 3-party func-
tionality f : [N ]× [N ]× [N ] → {0, 1}, there is a protocol π that realizes f in the
plain model; this protocol is statistically secure against a single malicious party,

and has total communication complexity 2
˜O(

√
logN) + poly(σ, logN).
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