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Consideration of crystallographic texture has lead to a much better understanding of anisotopic yielding
behavior than yield criteria postulated without regard to deformation mechanisms. Continuum anisotropic
yield criteria have been developed to simulate the results of calculations based on the crystallographic
nature of slip. These criteria, which involve high stress exponents, describe actual forming behavior
much better than the quadratic yield criterion postulated by Hill. Today it is possible to calculate
anisotropic yielding behavior directly from texture data, although for metal forming analyses, some other
means must be used to characterize the strain-hardening behavior.
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INTRODUCTION

A vyield criterion is simply a mathematical expression of the combination of stress
components that is satisfied at the initiation of plastic flow. For those interested in
crystals, Schmid’s law (1931) is the simplest yield criterion. It says slip (yielding) will
start when the shear stress, 7.4, in a potential slip direction on a potential slip plane
reaches a critical value, *7c.

Ta = . (D

ISOTROPY

More familiar to most engineers are two isotropic yield criteria. One is the Tresca (1864)
or maximum shear stress criterion. Expressed in terms of principal stresses with the
convention ¢, 2 G 2 G,

o -os=Y, 03]

where Y is the yield strength in a tension test. The other is the von Mises criterion
(1913)

(0 - &) + (05 — G + (61 — G) = 2Y". 3)

479



480 W. F. HOSFORD

Although widely accepted, neither has a fundamental basis and the little experimental
data tends to lie between the predictions of the two.

CRYSTALLOGRAPHIC BASIS

The work of Taylor (1938) and of Bishop and Hill (1951) laid the foundations for
an upper-bound method of calculating the shape of the yield surface for randomly
oriented polycrystals from a knowledge of the slip systems. In this approach, every
grain within the polycrystal is assumed to undergo the same strains (as referred to an
external coordinate system) and it is assumed that the shape change occurs with the
minimum expenditure of energy. To simulate isotropy, calculations are made for all
possible grain orientations and averaged. Details of how this approach can be used
to calculate yield loci are given elsewhere (Hosford, 1993). The method has been applied
to fcc metals deforming by {111}<1T0> slip (which is equivalent to bcc metals
deforming by {1T0}<111> slip) and to bce metals deforming by <111>-pencil glide.
Points on the resulting isotropic yield loci (Figure 1) lie between the Tresca and von
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Figure 1 Representative Section of Isotropic Yield Loci with o3 = 0. Tresca and von Mises are
compared with calculations based on the {111}<110> slip for fcc and <111>-pencil glide for bcc.
Note the 0/Y scale is expanded relative to the 0»/Y scale for ease of comparison. The dash and
dotted lines represent eq. 6 with exponents a = 8 suggested for fcc and a = 6.
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Mises predictions. A more critical test of yield criteria is the predicted relation between

the strains resulting from yielding and the stress state. Figure 2 shows the dependence

of the stress ratio, & = (0» — 03)/(01—03) on the ratio of plastic strains p = &/¢:.
The von Mises criterion (eq. 3) can be expressed as

(@ - o' + (o5 — o) + (01 - o)’ = 2Y". )
Similarly the Tresca criterion (eq. 2) can be expressed as

lo: — ail' + los - aif' + loy - o' = 2Y". ()
Furthermore the predictions of a generalized criterion (Hosford, 1972)

oy - oyl

+ los — o' + loy = o' = 2Y°, (6)

approach those of Tresca as a — oo,
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Figure 2 Stress Ratios, & = 62/0y, for Plane Stress (03 = 0) and Corresponding Ratios of Plasic Strains,
&/€). The solid lines represent the flow rules for the von Mises and Tresca criteria. The points are
from calculations based on the crystallography of slip. The dashed and dotted lines are from the flow
rules for eq. 6.
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Yielding behavior intermediate between von Mises and Tresca can be modeled by
equation 6 with either 1 £ a < 2 or 4 £ a < . The higher range of the exponent
a, is more convenient. The calculations based on the model of Taylor and of Bishop
and Hill are well represented by a = 8 for fcc {111}<170> slip (Hosford, 1979) and
a = 6 for bcc <111>-pencil glide (Logan and Hosford, 1980). Figures 1 and 2 show
the predictions of eq. 8 and its flow rules for a = 6 and a = 8. These provide much
better fits to the calculations based on fcc {111}<1T0> slip and bee <111>-pencil glide
than either Tresca or von Mises.

ANISOTROPY - CONTINUUM APPROACH

Polycrystalline materials usually have crystallographic textures and therefore the yielding
behavior is anisotropic. The first complete and reasonable anisotropic yield criterion
is that postulated by Hill (1948) without regard to deformation mechanism:

F(0, - 6,)" + G(0, - 0:)* + H(0x - 6,)* + 2L7,,” + 2M1%,° + 2N7,” = 1. @)

where F, G, H, L, M, and N are the constants that describe the anisotropy and x, y
and z are the principal symmetry axes (orthogonal axes of two-fold symmetry). This
criterion is a generalization of the Mises yield criterion. For the special case of plane-
stress (0, = T, = T = 0) loading, it simplifies to:

R(0, — 0,)’ + P(0, - 6.)° + RP(G, — G,)°+ 2Q + DR + P)1,,° = P(1+R)X%, (8)

where R, P and Q are the ratios of lateral contraction strains in tension tests along
the x, y, and 45° directions respectively. For planar isotropy (P = R = Q) and in-
plane loading this further simplifies to

o + 6’ + R(ci~06,)’ = (1 + R)Y?, )

Woodthorpe and Pierce (1970) reported that some aluminum alloy sheets in which
R, P and Q were all less than unity had yield strengths in balanced biaxial tension
higher than in uniaxial tension. Because this “anomalous” behavior was not consistent
with egs. 8 or 9, Hill (1979) proposed a further generalization
Im

Im

+ h|0'1 - O'z|m+
™+ clos — 00— "= 1, (10)

flo; — oI + gloy — Gy
a2o, — 0, — ™ + b2s - 05 - O

where a, b, ¢, f, g, h, and m are constants and the 1, 2, and 3 axes are the principal
symmetry axes. Hill suggested four simplifications of this criterion but only one of
the four is free of mathematical limitations (Zhu er al., 1987). For this case (a = b
= f = g = 0) the criterion can be simplified to:

(1 + 2Ry — o™ + 205 - 01 — "= 2R + Y™, an
where Y is the yield strength for tension tests in all directions in the 1-2 plane the

strain ratio R has the same value for all directions in the 1-2 plane. With this criterion,
the exponent, m, must be adjusted for sheets having different values of R.
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ANISOTROPY - CRYSTALLOGRAPHIC APPROACH

The approach of Taylor and of Bishop and Hill can also be used to caiculate anisotropic
yield loci of textured metals. Behavior is averaged over the orientations present in the
texture. A large number of such calculations were made for textures having rotational
symmetry about the 3-axis, assuming deformation by {111}<110> slip in fcc metals
(Hosford, 1979) and <1111>-pencil glide in bcc metals (Logan and Hosford, 1980).
Predictions were made of the strengths for several characteristic loading paths (biaxial
tension, plane-strain tension with & = 0 and ¢3 = 0, and plane strain with & = 0 and
o; = 0.) as well as the strength and strain ratios in uniaxial tension. Figure 3 show
calculated ratios of strength for several loading paths to the strength in uniaxial tension
plotted as a function of the calculated R values. Each point is for one texture. The
general trends clearly do not coincide with the predictions of the original Hill theory
(a =2).

Examination of such yield-locus calculations lead to the proposal of an anisotropic
criterion of the form

Rio; — a3* + Plos — o' + RPloy — o' = PR + DX* = RP + D)Y* 12)

with a = 8 for fcc metals and a = 6 for bcc metals. Here R and P have the same
meanings as above, X and Y are the yield strengths in x- and y-direction tension tests.
It should be noted that this criterion is both a generalization of the non-quadratic isotropic
yield criterion (eq. 6) and Hill’s original anisotropic yield criterion {eq. 8). It is also
specialization of Hill’s general yield criterion (eq. 10) with a = b = ¢ = 0. For even
integer exponents, no absolute magnitude signs are required in equation 12. For planar
isotropy (P = R) and in-plane loading (o, = O)this further simplifies to

6"+ o'+ R(oy — o) = (1 + R)Y?, 13)

The curves in Figure 3 correspond to this equation with several exponents. Lower-
bound caiculations (Galdos and Hosford, 1990), based on assuming the same stress
state is assumed in each grain instead of the same strain state resulted in similar
conclusions. Again, exponents of about a = 8 and about a = 6 gave the best fits for
fcc {111}<110> slip and bec <111>-pencil glide respectively.

One shortcoming of this criterion, like that of Hill’s 1979 criterion, is that it can
be used only for stress states in which the principal stress axes and the principal
symmetry axes coincide (i.e. shear stresses T3 = 73; = Ti2 = 0). Barlat and Lian (1989),
however, proposed a generalization which will accommodate shear stresses. In the
notation used here it can be expressed as,

2Y* = aK; + Ko + alK; - Ko™ + (2 — a)l2K,I",
where K, = (0; + hoy)/2, K» = {[0x— h6)/2) + pTy’}'” and m = 8. (14)

The constants, a, h, and p can be found from the strain ratios in tension tests. Lege
et al. (1989) used this equation to fit the yield loci calculated for textured aluminum
from measured texture data using a Bishop-and-Hill type analysis for fcc. Figure 5
is an example. In all cases the best fit was found with an exponent of about 8. For
more general stress states, Barlat and coworkers (1991) later proposed a more complex
six component yield criterion.
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Figure 3 Ratios of Strengths for Several Loading Paths Plotted as a Function of R-Values. The points
were calculated for textures with rotational symmetry about z for fcc metals using the Bishop and

Hill approach.

A. y is the ratio of biaxial strength 0 = o, with 0, = 0 to the uniaxial strength. B. 4 is the ratio
of plane-strain strength, a, with & = 0 and ©; = 0 to the uniaxial strength. C. & is the ratio of plane-
strain strength, 20, with & = 0 and ¢, = 0 to the uniaxial strength. The continuous curves are predictions
of eq. 13 with several values a. A value of a = 8 fits the points much better than a = 2 (original

Hill theory). From Hosford (1979).
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Another, more approximate, way has been suggested of accommodating loading
conditions in which the principal stress axes do not coincide with the symmetry axes
(Hosford, 1985). This approach uses a yield criterion in which the material constants
are expressed along the principal stress axes. For loading with 03 = 0 and the 1-axis
at an angle of 6,

Re0>" + Reuoo0i" + ReRawoo(01 — 02)" = Rawo(Re + 1Y (15)

Although this criterion violates the principle of normality, it does offer a simple way
of approximating the yielding behavior under off-axis loading.
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Figure 4 The (o; = 0) Yield Loci Predicted by Equation 6 for Several Values of a. The calculations,
based on the model of Taylor and of Bishop and Hill are well represented by a = 8 for fcc {111}
<1T0> slip and a = 6 for <111> pencil glide.
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Figure 5 (A) Comparison of the (¢, = 0) Yield Locus Calculated for Textured Aluminum from
Measured Texture Data using the a Bishop-and-Hill Type Analysis and (B) the Fit of Equation 16
with m = 8, a = 1.24, h = 1.15 and p = 1.02. From Barlat and Lian (1989)
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This criterion can be used to predict the angular variation of yield strength from
a knowledge of the angular variation of strain ratio, R.

Ye/Yo = {[Rouso(Rar + D/[RezssoRez + 1)1} (16)

Strain hardening must be considered to compare offset yield strengths (stress levels
measured at the same tensile strain, rather at than the same plastic work). With power-
law hardening, & = k", the ratio of the stress levels at any fixed offset strain, Gg/
O, is related to the strain ratios by

(Ca/0e) = {[RensRa + DV[Rasso(Rez + 1)])™. (17

In figure 6, ratio of Ow/0o is plotted as a function of {[P(R + 1)]/[R(P + D™ an
Os5/0p is plotted as a function of {[2P(R + DJ/[(Q + DR + P)]}™! for a wide range

of metals. While there is a great deal of scatter, it is clear that an exponent of 8

approximates the data much better than an exponent of 2.
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Figure 6 a, b Comparison of Experimental Offset-Yield Strength Ratios, 0w/0p and Ous/0 with Strain-
Ratio Measurements. The solid lines are the predictions of eq. 16. Despite the scatter is clear that
the data are represented better by a = 8 than a = 2 (original Hill theory). The data, from Meuleman
(1980), represent a wide range of both fcc and bee metals.
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APPLICATION TO METAL-FORMING ANALYSES

One of the most important uses of yield criteria is to predict sheet metal forming
behavior. Comparing actual and predicted behavior therefore can be used to test the
theories. Several examples are the limiting drawing ratio in cupping, the shape of forming
limit diagrams.

A critical paper by Whiteley (1960) first showed that the limiting drawing ratio (LDR)
in deep drawing of flat-bottom cylindrical cups depends on the normal anisotropy,
R. Figure 7 compares the R-dependence of LDR, calculated (Logan et al., 1987) using
the high exponent criterion (eq. 13) with the experimentally determined dependence
(Meuleman, 1980). Clearly the predictions based on a = 8 represent the experimental
trends much better than those calculated with R = 2.

Recently the approximate high-exponent criterion (eq. 16) was used to calculate the
variation of earing with texture (Logan, 1995). Calculations for a = 2 and a = 8§ are
shown in Figure 8. The experimental data are from Wilson and Butler (1962). Again
the experimental data are best represented by a = 8.

In sheet metal forming, failure occurs by localized necking if the strains in the plane
of the sheet are too large. A graphical representation of the strain levels at which such
failure occur is called a forming limit diagram. The left-hand side of these diagrams
fit the strain combinations that correspond to a constant level of thinning of the sheet.
However, the right-hand side was not understood until Marciniak and Kuczinski (1967)

&

n
N
¥

K

Limiting Drawing Ratio

{
05 {0 15 20
Average Strain Ratio, R

Figure 7 Comparison of the Calculated and Experimental Determined Dependence of the Limiting
Drawing Ratio on R. From Logan et al. (1987).
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Figure 8 The Variation Ear Height with AR/R. AR = (Ro + Rop~ 2Rus)/2 and R= (Ro + Rog + 2Ru4s)/
4. The finite element calculations for a = 2 and a = 8 are based on eq. 16. Adapted from Logan
et al. with data from Wilson and Butler (1962).

proposed that the final localized neck grows gradually out of an initial defect. They
outlined a procedure for calculating the shape of right-hand side based on this
assumption. Such calculations, (Marciniak and Kuczinski, 1967) and Parmar and Mellor,
1978) initially seemed to give reasonable results until they were applied to anisotropic
sheets using Hill’s quadratic yield criterion (eq. 9) which predicted a large effect of
the R on the level of the FLD (Figure 9a). However, no such effect was experimentally
observed. When the high exponent criterion (eq. 13) was used to make such calculations
(Graf and Hosford, 1990), the predicted effect of the R on the level of the FLD
disappeared (Figure 9b). Padwal and Chaturvedi (1993) also found good agreement with
experiment.

Padwal (1993) made finite difference calculations of the strain distribution in bulge
testing using Woo’s method (1965). The agreement between theory and experimental
measurements of Ilahi et al. (1981) was much better when the calculations were made
with the high exponent criterion (eq. 13) than with the Hill’s quadratic form. The
comparison of the calculated and measured distribution of thickness strain (Figure 10)
1s one example.

Results of finite element calculations of metal forming often depend greatly on the
yield criterion assumed in the calculations. Recently, D. Zhou and R. H. Wagoner (1991)
explored the use of several yield criteria in finite element calculations and found that
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Figure 9 Forming Limit Diagrams Calculated for Several Values of R. Calculations based on equation
9 (A) predict a large dependence on R, whereas calculations based on equation 13 do not. Experimentally
no appreciable R-dependence is observed. From Graf and Hosford (1990).
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Figure 10 Thickness Strains during Hydraulic Bulge Testing. The thickness variation calculated using
eq. 13 agrees much better with the measurements that the calculations based on eq. 9. Adapted from
Padwal (1993).

the results were very sensitive to the assumed yield criterion as well as the assumed
friction coefficient. They made finite element calculations of the strain distribution in
stretching a sheet over a hemispherical dome and adjusted the friction coefficient in
the calculations to obtain agreement with experiment. The value of friction coefficient
required for agreement was more reasonable with the high exponent criterion than with
the quadratic criterion, although in both cases the value seems high.

DIRECT USE OF TEXTURE DATA IN FORMING CALCULATIONS

It is possible to use x-ray textural data directly to predict forming behavior, without
a continuum yield criterion. Instead of deducing a continuum yield function from
crystallographic considerations and a few mechanical measurements (yield strengthened
and R-values.) Barlat (1987) and Barlat and Richman (1987) have successfully calculated
the shapes of forming limit diagrams directly from ODF textural data. However, in
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addition to the texture data, the work-hardening and strain-rate hardening behavior had
to be measured or assumed. While this approach is intellectually satisfying, its industrial
use in the near future would seem to be limited.

CONCLUSIONS

In analyses of many metal forming operations, the anisotropic yielding behavior of
textured metals is an important input. Choice of the anisotropic yield criterion has a
strong affect on the results of calculations. A high-exponent criterion seems to give
much more reasonable predictions than Hill’s quadratic criterion. While in principle,
anisotropic behavior can be calculated from texture data, it is usually simpler to assume
a continuum criterion and evaluate the constants from mechanical tests.
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