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ON THE CUBIC L-FUNCTION

N. V. PROSKURIN

Abstract. The cubic L-function is related to the cubic Kubota–Patterson theta
function via the Mellin transformation. The cubic L-function obeys a functional
equation of the Riemann type (with two gamma factors), but admits no expansion in
an Euler product. In the paper, the cubic L-function is studied, and the distribution
problem for the real parts of its zeros is considered. Some conjectures based on
calculations are stated.

Introduction

The cubic theta function ΘK-P of Kubota–Patterson is defined on the hyperbolic space
H =

{
(z, v) ∈ C × R | v > 0

}
and takes values in the complex field C. We have the

Fourier expansion

(1) ΘK-P (z, v) = v2/3 + (6πv)2/3
∑
ν

rτ (ν)Ai
(
(6π|ν|v)2/3

)
e(νz),

where Ai is the Airy function and e(q) = exp
(
2πi(q+ sq)

)
for q ∈ C. For the coefficients,

we have the Patterson formulas (15) expressing rτ (ν) in terms of the cubic Gauss sums.
Put ω = exp(2πi/3) = (−1 +

√
−3)/2. Summation in (1) extends over all ν of the form

(
√
−3)−3l with l ∈ Z[ω], l �= 0. Here Z[ω] = {a + bω | a, b ∈ Z} is the ring of integers

of the field Q(
√
−3 ). The function ΘK-P was discovered by Kubota [1], see also [2, 3].

It is an automorphic function of a fairly special type, namely, it is a metapectic form.
In particular, this means that ΘK-P admits some transformation formulas. One of them
looks like this:

(2) ΘK-P (0, v) = ΘK-P (0, v
−1) for all v ∈ R, v > 0.

We put

(3) L(τ ; s) =
∑
ν

τ (ν)

‖ν‖s , s ∈ C, Re s > 1,

where summation is over the same ν as in (1),

(4) τ (ν) = rτ(ν)‖ν‖1/6

and ‖ · ‖ : Q(
√
−3 ) → Q is the norm map, ‖z‖ = zsz for all z ∈ Q(

√
−3 ). The series (3)

converges absolutely and yields an analytic function in the domain Re s > 1. The function
L(τ ; ·) is related to ΘK-P via the Mellin transformation. We shall see that this function
extends meromorphically to the entire complex plane C and admits a functional equation
of the Riemann type, which relates its values at the points s and 1 − s. Namely, it will
be shown that the function

(5) s �→ (2π)−2s Γ(s− 1/6) Γ(s+ 1/6)L(τ ; s)
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is invariant with respect to the change of s by 1−s. We call L(τ ; ·) the cubic L-function.
We are interested in the distribution of zeros of L(τ ; ·), and especially, in the distribution
of their real parts on the real line R. The function τ is not multiplicative, so that L(τ ; ·)
admits no expansion in an Euler product, and it would be too optimistic to expect that
all the nontrivial zeros1 lie on the critical line Re s = 1/2. Observe that the nontrivial
zeros of L(τ ; ·) are located on the complex plane C symmetrically relative to the real line
R and to the critical line Re s = 1/2. Therefore, we may restrict ourselves to considering
the zeros that lie on the half-line

(6) Re s = 1/2, Im s ≥ 0

and those in the quadrant

(7) Re s > 1/2, Im s ≥ 0.

Our computations show that within the limits Im s ≤ 9002 there are 27914 zeros on the
half-line (6) and 8724 zeros in the quadrant (7). The lists of zeros can be found on the
site http://www.pdmi.ras.ru/~np. All these zeros are simple. The zeros ρ1, ρ2, ρ3, . . .
of L(τ ; ·) lying in the quadrant (7) will be enumerated in the order of increasing of their
imaginary parts. In the figure at the end of the paper, we depict the histogram of the
distribution of the points σn = Re ρn. In §1, we state several conjectures based on
computational data. The main properties of the cubic L-function are listed and proved
in §3. All facts we can prove about its zeros are presented in §4. Some preliminaries are
collected in §2. We do not touch upon computational methods for calculating values and
zeros of L-functions; see [4, 5, 6, 7] on this issue.

There is an extensive literature devoted to the distribution of zeros of L-functions with
Euler products. In agreement with the general Riemann conjecture, the zeros are only
found on the critical lines. In connection with the Montgomery conjectures [8] and their
generalizations, much attention is paid to statistical aspects of the zeros distribution
problem on the critical lines, i.e., the distribution of the imaginary parts of zeros. On
the other hand, the problem of zero distribution for L-functions without Euler products
remains open. Besides the cubic L-function, it would be of interest to study also other
L-functions, in order to know to what extent the discovered phenomena are typical or
unique2.

§1. On the distribution of zeros

In this section we collect our conjectures about the zeros of the function L(τ ; ·). The
statements are printed in italic and supplied with brief comments.

(I) All nontrivial zeros of L(τ ; ·) are simple and lie in the critical strip, i.e., in the
strip {s ∈ C | 0 ≤ Re s ≤ 1}.

In §4, we shall prove that every nontrivial zero ρ of the function L(τ ; ·) satisfies −0.2 <
Re ρ < 1.2 and present some additional arguments in favor of our conjecture. Except
for a single zero, within our calculations the real parts of all zeros are less than 0.98.
The real part of the exceptional zero is equal to 0.9948596 . . . , and its imaginary part is
147.1889196 . . . .

For real σ and T , we define N(σ, T ) as the number of zeros ρ of L(τ ; ·) satisfying
Re ρ ≥ σ, 0 < Im ρ < T .

1i.e., all zeros excluding the trivial ones, see Theorem 1 in §3.
2For example, this concerns the Epstein zeta-function of quadratic forms. The papers [9] by Siegel

and [10] by Fomenko deliver the theoretic basicals. From the viewpoint of computations, the Epstein
zeta-functions are substantially simpler than the cubic L-function.
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(II) Let q be the smallest real number such that

(8) N(σ, T ) 
 T as T → ∞
for each real σ > q (the constant meant in 
 depends on σ only). Then q = 7/12.

This conjecture is in good agreement with the calculations of N(σ, T ) and the mean
values of the functions t �→ |L(τ ;σ + it)|2. However, we are only able to prove that
q ≤ 3/4, see Theorems 10 and 11 in §4. Apparently, the number q is also the exact lower
bound of the set of all reals σ such that∫ T

1

|L(τ ;σ + it)|2 dt 
 T as T → ∞.

Let J = (1/2, 7/12] be the half-open interval in R formed by all x with 1/2 < x ≤ 7/12,
and let J ′ = (7/12,∞) be the open interval in R consisting of x > 7/12. For a real
T > 0, consider the zeros ρ of the function L(τ ; ·) such that 0 < Im ρ < T . Let N(T ) be
the number of all such zeros ρ. We put

P (T ) to be the number of zeros ρ with Re ρ = 1/2, 0 < Im ρ < T, and

PI(T ) to be the number of zeros ρ with Re ρ ∈ I, 0 < Im ρ < T,

where I is an arbitrary interval in R. Obviously,

N(T ) = P (T ) + 2PJ(T ) + 2PJ′(T ).

Also, we have N(T ) ∼ (2/π)T log T as T → ∞, see Theorem 9 in §4.
(III) For some reals δ, γ, γ′ > 0, we have

P (T ) ∼ δT log T, PJ(T ) ∼ γT log T, PJ′(T ) ∼ γ′T log T

as T → ∞, and δ + 2γ + 2γ′ = 2/π.
Now we consider the distribution of the real parts of the zeros of L(τ ; ·) in the intervals

J and J ′ in more detail.

(IV) Let I be an interval contained in J = (1/2, 7/12]. As T → ∞, we have

PI(T ) ∼
(∫

I

f(x) dx
)
PJ (T )

where

f(x) = 2534(x− 1/2)(2/3− x).

This conjecture is in good agreement with calculations. We can introduce a probability
measure ι on the set of all intervals I ⊂ J by putting

ι(I) = lim
T→∞

PI(T )/PJ(T ),

and treat f as the density of ι with respect to Lebesgue measure. A few words are in
order about where the function f stems from. This function is monotone increasing on
J and vanishes at 1/2, while its derivative vanishes at 7/12. Our calculations show that
these properties must be shared by any function that can, conjecturally, be the density
of the measure ι. Imposing the natural normalization condition∫

J

f(x) dx = 1,

we see that our function f is a unique quadratic polynomial with the properties listed
above.

(V) Let I be an open interval contained in J ′ = (7/12,∞), say, I = (α, β). As T → ∞,
we have

PI(T )/PJ′(T ) → 0,
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provided I is separated away from the point 7/12, i.e., α > 7/12. On the other hand, if
I = (7/12, β) with some β > 7/12, then as T → ∞ we have

PI(T ) ∼ PJ′(T ).

This conjecture is a consequence of (II) and (III).

(VI) The nontrivial zeros of L(τ ; ·) that lie off the critical line are concentrated most
densely near the two “semicritical” lines, Re s = 7/12 and Re s = 1 − 7/12, while these
lines themselves pass through no zeros.

Here, the first claim follows from (IV), (V), and (5), and the second statement is based
on direct calculations.

Now we turn once again to the distribution of the real parts of zeros of L(τ ; ·) in the
interval J ′ = (7/12,∞). The claim stated in (V) is not quite satisfactory. Considering
the ratio PI(T )/T in place of PI(T )/PJ′(T ), we find a more substantial statement.

(VII) Let I be an open interval lying in J ′ = (7/12,∞) and separated away from the
point 7/12. As T → ∞, we have

PI(T ) ∼
(∫

I

g(x) dx
)
T,

with a real-valued and continuous function g on J ′ (independent of I and T ) such that
g(x) → ∞ as x → 7/12. Let q′ be the infimum of the set of all reals σ such that
N(σ, T ) = o(T ) as T → ∞. The function g is monotone decreasing on the interval
(7/12, q′) and g(x) = 0 for all x > q′.

We cannot suggest a sharper conjecture. Apparently, q′ is very close to 1. However,
our calculations do not suffice for determining q′ and the behavior of g near the points q′

and 7/12.

§2. Arithmetic of the field Q(
√
−3 )

The ring Z[ω] of integers of the field Q(
√
−3 ) ⊂ C is an Euclidean principal ideals

ring. Each nonzero element in Z[ω] is a product of prime elements, and this product
is unique up to multiplication by units. The units of this ring Z[ω] are ±1, ±ω, ±ω2

with ω = exp(2πi/3) = (−1 +
√
−3)/2. Observe that the units are distinct mod3 and

represent all classes mod3 relatively prime to 3. It follows that each nonzero element k
of the ring Z[ω] can be factored uniquely as k = λ(

√
−3)mc, where λ is a unit, m ∈ Z,

m ≥ 0, and c ∈ Z[ω], c ≡ 1 (mod 3).
In a well-known way, we can define the cubic residue symbol

( ·
·
)
on Z[ω]. For c ≡ 1

(mod 3), we put

(9) G(c) =
∑
k

(k
c

)
e(k/c)

with summation on k running over a reduced system of residues modc; this is the Gauss
cubic sum with module c. In particular, G(1) = 1. The main properties of such sums
are as follows:

|G(c)|2 =

{
‖c‖ if c is square free,

0 otherwise;
(10)

G(c) = G(sc);(11)

G(c1c2) =
(c1
c2

)(c2
c1

)
G(c1)G(c2)(12)

if c1 and c2 are relatively prime. In the case where c is prime, we also have

(13) G(c)3 = −c2sc.
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Let p be a positive prime in Z. If p ≡ 2 (mod 3), then c = −p is a prime congruent to
1 (mod 3) in Z[ω], G(c) = p, and ‖c‖ = p2. If p ≡ 1 (mod 3), then p admits a unique
decomposition in Z[ω] of the form p = csc with c ≡ sc ≡ 1 (mod 3). In this case, the
numbers c and sc are prime, ‖c‖ = ‖sc‖ = p, and

(14) G(c) +G(sc) =
∑

j=0,1,...,p−1

cos(2πj3/p).

For the properties of the cubic residue symbol and the Gauss sums, see [11].
For ν ∈ Q(

√
−3 ), put

(15) rτ (ν) =
G(c)

‖c‖2/3

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3−1/3
(
3
c

)
if ν = ± (

√
−3)3n−1cd3,

3−1/3
(
3ω
c

)
ξ−1 if ν = ±ω(

√
−3)3n−1cd3,

3−1/3
(
3ω2

c

)
ξ if ν = ±ω2(

√
−3)3n−1cd3,

1 if ν = ± (
√
−3)3n−3cd3,

0 for all other ν,

where c, d ∈ Z[ω], c ≡ d ≡ 1 (mod 3), c is square free, n ∈ Z, and ξ = exp(2πi/9).
The fact that formula (4) determines the coefficients in the expansion (1) of the function
ΘK-P was proved by Patterson in [2]. It can be seen that rτ (ν) does not depend on d
and n occurring in (4). We prefer to work with the function τ related to rτ as in (4).
Obviously, τ (1) = 1. Formula (11) and the well-known properties of the residue symbol
imply that

(16) τ (sν) = τ (ν)

for all ν ∈ Q(
√
−3 ). Moreover, we have

(17) τ (ab) =
(a
b

)
τ (a)τ (b),

provided a ∈ (
√
−3)−3Z[ω], b ∈ Z[ω], b ≡ ±1 (mod 3), and a and b have no common

prime divisors. Relation (17) is deduced with the help of the definition (4), the well-known
property (12) of the Gauss sums, and the reciprocity law. We see that the function τ is
not multiplicative, but τ3 is multiplicative.

The Dedekind zeta function ζQ(
√
−3 ) of the field Q(

√
−3 ) is holomorphic everywhere

on C, except for the point 1, where it has a simple pole. We have ζQ(
√
−3 )(−n) = 0 for

every n ∈ Z, n ≥ 1. All other zeros of the Dedekind zeta function ζQ(
√
−3 ) are not real,

lie in the strip {s ∈ C | 0 < Re s < 1}, and, conjecturally, only on the line Re s = 1/2.
The function

(18) s �→ (2π/
√
3)−sΓ(s)ζQ(

√
−3 )(s)

is invariant under the change of s by 1− s. We have

(19) ζQ(
√
−3 )(s) = ζ(s)L(s, χ), s ∈ C,

where ζ is the Riemann zeta function and L(·, χ) is the classical Dirichlet series with the
quadratic character χ mod 3 (see [12]). Sometimes, it is more convenient to deal with
the function

(20) ζ∗(s) =
(
1− 1

3s

)
ζQ(

√
−3 )(s), s ∈ C,

for which, in the domain Re s > 1, we have

(21) ζ∗(s) =
∑
m

1

‖m‖s ,
ζ∗(s)

ζ∗(2s)
=

∑
n

1

‖n‖s

with summation over m ≡ 1 (mod 3) and over square free n ≡ 1 (mod 3) in the ring Z[ω].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



358 N. V. PROSKURIN

For n > 0, n ∈ Z, let V (n) be the number of all c ∈ Z[ω] with ‖c‖ = n, and let Z(n) be
the number of all such c satisfying c ≡ 1 (mod 3). It is easily seen that Z(n) ≤ V (n)/6
(because there are 6 units in Z[ω] pairwise distinct mod 3). We write c ∈ Z[ω] as
c = x + yω, x, y ∈ Z. Then ‖c‖ = x2 − xy + y2. Consequently, V (n) is equal to the
number of representations of n by the quadratic form x2 − xy + y2, x, y ∈ Z, and (see
[13]) we have

(22) Z(n) ≤ V (n)/6 =
∑
m

(−3

m

)
≤ d(n),

where
( ·

·
)
is the quadratic residue symbol on Z, summation extends over all positive

divisors m of n, and d(n) is the number of such divisors. If n �≡ 0 (mod 3), then we
can view Z(n) as the number of ideals of norm n in the ring Z[ω]. Let n = 3mn′ with
m,n′ ∈ Z, m ≥ 0, n′ ≥ 1, n′ �≡ 0 (mod 3). The number of ideals of norm n in Z[ω]
equals Z(n′). Thus, for any n ∈ Z, n ≥ 1, the number of ideals of norm n in Z[ω] does
not exceed d(n).

§3. The main properties of the function L(τ ; ·)
Some properties of L(τ ; ·) have been mentioned earlier. Now we give precise formula-

tions and proofs. Put

(23) Ω(s) = (
√
3/2) (2π)−2sΓ(s− 1/6)Γ(s+ 1/6), s ∈ C.

For s with Re s > 1/6, we have

(24) Ω(s) = (6π)1−2s

∫ ∞

0

Ai(x2/3)x2s−4/3 dx.

Information about the Airy function can be found in [14]. In the half-plane Re z ≥ 0 we
have the asymptotic formula

(25) Ai(z2/3) =
1

2π1/2z1/6
exp(−2z/3)

(
1 +O

( 1

|z|
))

, |z| → ∞.

Theorem 1. The Dirichlet series (3) that determines L(τ ; ·) converges absolutely and
yields a holomorphic function in the domain Re s > 1. Next, L(τ ; ·) extends meromor-
phically to C. The only singularity of L(τ ; ·) is a simple pole at the point 5/6. The points
s = −1/6− n and s = −5/6− n, n ≥ 0, are simple zeros of L(τ ; ·); these zeros are said
to be trivial. The function Λ(s) = Ω(s)L(τ ; s), s ∈ C, satisfies the functional equation
Λ(s) = Λ(1−s) and has no singularities except for simple poles with the residues 1/2 and

−1/2 at the points 5/6 and 1/6. For any s ∈ C we have L(τ ; ss) = L(τ ; s); in particular,
the zeros of L(τ ; ·) are located symmetrically relative to the real axis.

Proof. Each ν in (3) is represented uniquely as the product of one of the six units by
(
√
−3)ncd3 with n ≥ −3, n ∈ Z, with a cube free c ≡ 1 (mod 3) in Z[ω], and with d ≡ 1

(mod 3) in Z[ω]. We have |rτ (ν)| ≤ ‖c‖−1/6, see (4) and (10), and τ (ν) can be nonzero
only if c is square free. Consequently, the series (3) is dominated by the series

(26) 6
∑
n,c,d

1

3(σ−1/6)n‖c‖σ‖d‖3σ−1/2

with σ = Re s, which converges for σ > 1. This ensures that the series (3) converges
absolutely and that L(τ ; ·) is holomorphic in the domain Re s > 1.

Now we consider the integral

(27) Λ(s) =

∫ ∞

0

{
ΘK-P (0, v)− v2/3

}
v2s−2 dv,
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which converges absolutely for Re s > 5/6. Assuming that Re s > 1, we plug the Fourier
expansion (27) in (1) and integrate termwise:

Λ(s) = (6π)2/3
∑
ν

rτ (ν)

∫ ∞

0

Ai
(
(6π|ν|v)2/3

)
v2s−4/3 dv

= (6π)1−2s
∑
ν

rτ(ν)

‖ν‖s−1/6

∫ ∞

0

Ai(x2/3)x2s−4/3 dx = Ω(s)L(τ ; s).

(28)

On the other hand, the integral in (27) is the sum of the integral from 0 to η and the
integral from η to ∞, with an arbitrary η > 0. We have Λ(s) = Xη(s) + Yη(s), where

Xη(s) =

∫ ∞

η

{
ΘK-P (0, v)− v2/3

}
v2s−2 dv,(29)

Yη(s) =

∫ η

0

{
ΘK-P (0, v)− v2/3

}
v2s−2 dv.(30)

In the last-written integral, we put v = u−1 and make use of (2), obtaining

Yη(s) =

∫ ∞

η−1

{
ΘK-P (0, u)− u−2/3

}
u−2s du

=

∫ ∞

η−1

{
ΘK-P (0, u)− u2/3

}
u−2s du+

∫ ∞

η−1

{
u2/3 − u−2/3

}
u−2s du

= Xη−1(1− s) +
η2s−5/3

2s− 5/3
− η2s−1/3

2s− 1/3
.

Therefore, in the domain Re s > 1 we have

(31) Λ(s) =
η2s−5/3

2s− 5/3
− η2s−1/3

2s− 1/3
+Xη(s) +Xη−1(1− s).

The integral on the right in (29) represents an entire function, see (1) and (25). Since Xη

and Xη−1 are entire functions, formula (31) yields a meromorphic extension of Λ and,
by (28), also of L(τ ; ·) to the complex plane C. Clearly, Λ is holomorphic everywhere
except the points 5/6 and 1/6, where this function has simple poles. Recall that the real
number η > 0 on the right-hand side of (31) is arbitrary. Looking at this right-hand
side with η = 1, we conclude that Λ is invariant under the change s �→ 1 − s and that
the residues at the poles 5/6 and 1/6 are 1/2 and −1/2. Now, observe that the function
Ω has no zeros, and has only simple poles only at the points ±1/6 − n with integral
n ≥ 0. This justifies our claims about zeros and poles of L(τ ; ·). The last statement of
the theorem follows from (3) and (16) for s with Re s > 1 and extends to all s ∈ C by
the analytic continuation principle. �

Let s, z ∈ C and Re z > 0. Put

(32) Ω(s, z) = (6π)1−2s

∫ ∞

z

Ai(x2/3)x2s−4/3 dx,

where the integration path runs in the half-plane Rex > 0 from the point z to the real
axis and then along the real axis to ∞. In the half-plane Rex > 0 the integrand in (32)
is holomorphic, so that the integral is independent of the remaining arbitrariness in the
choice of the path. The function Ω is holomorphic everywhere in its domain. Note that
the convergence of the integral follows from (25). We fix an arbitrary compact set V ⊂ C

and a real number ε > 0. If z tends to ∞ within the sector | arg(z)| ≤ π/2 − ε, then
|Ω(s, z)| decays faster than |z|−n with any integer n, uniformly in s ∈ V . This is an easy
consequence of (25).
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Theorem 2. Let s, η ∈ C, Re η > 0. We have

Ω(s)L(τ ; s) =
η2s−5/3

2s− 5/3
− η2s−1/3

2s− 1/3
+
∑
ν

τ (ν)

‖ν‖s Ω(s, 6π|ν|η)

+
∑
ν

τ (ν)

‖ν‖1−s
Ω(1− s, 6π|ν|η−1)

(33)

where Ω is as in (23), (32), and summation is over all ν of the form (
√
−3)−3l with

l ∈ Z[ω], l �= 0 (i.e., over the same ν as in (1) and (3)). The series on the right in (33)
converge absolutely and locally uniformly.

Proof. Let s ∈ C be fixed arbitrarily. The series on the right in (33) converge absolutely
and locally uniformly in η and represent holomorphic functions in the domain Re η > 0.
The functions η �→ η2s−5/3 and η �→ η2s−1/3 are also holomorphic in that domain.
Therefore, if (33) is true for all positive η ∈ R, then so it is for all η ∈ C with Re η > 0.

Now let η ∈ R, η > 0. By (31), (28), we have

(34) Ω(s)L(τ ; s) =
η2s−5/3

2s− 5/3
− η2s−1/3

2s− 1/3
+Xη(s) +Xη−1(1− s).

We know that this identity is valid not only for s with Re s > 1, but also for all s ∈ C. To
calculate Xη(s), we substitute the Fourier expansion (1) in (29) and integrate termwise:

Xη(s) = (6π)2/3
∑
ν

rτ (ν)

∫ ∞

η

Ai
(
(6π|ν|v)2/3

)
v2s−4/3 dv.

Putting x = 6π|ν|v, we obtain

Xη(s) =
∑
ν

τ (ν)

‖ν‖s Ω(s, 6π|ν|η)

with Ω as in (32). Also, for Xη−1(1 − s) we have an expansion of the same form with
η−1 and 1 − s in place of η and s. To get (34), now it suffices to plug these expansions
in (33). �

An important advantage of (33) is the possibility to control the behavior of the series
in (33) by choosing the free parameter η. We have used (33) for calculating the values of
the function L(τ ; s). By transforming the integral in (32) properly, it can be shown that
equation (33) belongs to the class of functional equations described in [15]. After that,
the general result obtained in [16] implies the following statement.

Theorem 3. Let a, b, c, d, ε be positive real numbers. For all s ∈ C and all positive real
x, y satisfying

|Re s| ≤ a, | Im s| ≥ b, xy = (4/π4)| Im s|4, c ≤ x/y ≤ d,

we have

(35) L(τ ; s) =
∑

‖ν‖≤x

τ (ν)

‖ν‖s +
Ω(1− s)

Ω(s)

∑
‖ν‖≤y

τ (ν)

‖ν‖1−s
+O

(
| Im s|1−2Re s+ε

)
,

where the constant in O only depends on a, b, c, d, ε, and summation is over all ν as in
(1), (3) with the indicated restrictions on ‖ν‖.

To deduce Theorem 3, the parameter η in Theorem 2 should be chosen so that

arg η =
(π
2
− 1

| Im s|
)
sign(Im s), c ≤ |η|2 ≤ d,

and x = (2/π2)| Im s|2|η|, y = (2/π2)| Im s|2/|η|.
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Theorem 4. For all s ∈ C satisfying 0 ≤ Re s ≤ 1, | Im s| ≥ 1, we have

L(τ ; s) 
 | Im s|2−2Re s+ε

where ε > 0 is arbitrarily small (the constant in 
 depends on ε only).

Proof. We use Theorem 3 with x = y = (2/π2)| Im s|2 and a = b = 1. Let δ be a positive
real number. We know (see Theorem 1) that the series (3), which determines L(τ ; ·),
converges absolutely on the line Re s = 1 + δ. Put σ = Re s. We estimate the sums on
the right in (35): ∑

‖ν‖≤x

|τ (ν)|
‖ν‖σ =

∑
‖ν‖≤x

|τ (ν)|
‖ν‖1+δ

‖ν‖1−σ+δ 
 x1−σ+δ,

∑
‖ν‖≤y

|τ (ν)|
‖ν‖1−σ

=
∑

‖ν‖≤y

|τ (ν)|
‖ν‖1+δ

‖ν‖σ+δ 
 yσ+δ,

where the constants in 
 depend on δ. Next, the Stirling formula [17] yields

Ω(1− s)

Ω(s)

 | Im s|2−4σ

with an absolute constant in 
. Substituting our estimates in (35) and taking δ = ε/2,
we obtain

L(τ ; s) 
 x1−σ+δ + | Im s|2−4σyσ+δ + | Im s|1−2σ+ε 
 | Im s|2−2σ+ε,

as required. �

The next theorem can be proved by the standard method based on the Perron formula,
see [18, 19]. We do not need this theorem, presenting it here without proof only for
completeness.

Theorem 5. The series (3), which determines L(τ ; s), converges for all s ∈ C with
Re s > 5/6. For any real ε > 0 and x ≥ 1, we have∑

‖ν‖≤x

τ (ν) = Cx5/6 +O(x3/5+ε),

where C = (2π)2/3(6/5)Γ(1/3), summation is over all ν as in (1), (3) satisfying ‖ν‖ ≤ x,
and the constant in 
 depends on ε only.

Let n ≥ 1, n ∈ Z. If n �≡ 0 (mod 9), we put

(36) rn =
∑
c

G(c)

‖c‖1/2

where summation is over all square free c ≡ 1 (mod 3) in Z[ω] satisfying ‖c‖ = n. In the
case where n ≡ 0 (mod 9), we put

(37) rn =
∑
c

G(c)

‖c‖1/2 κ(c),

where summation is over all square free c ≡ 1 (mod 3) in Z[ω] satisfying ‖c‖ = n/9, and

κ(c) =
(3
c

){
1 +

(ω
c

)
ξ−1 +

(ω2

c

)
ξ
}
, ξ = exp(2πi/9).

Clearly, |κ(c)| ≤ 3, and it is easy to check that κ(sc) = κ(c). Observe also that all rn
are real number, because together with the term corresponding to c, in (36) and (37) we
have the complex conjugate term corresponding to sc, see (11). Obviously, r1 = 1. The
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absolute value of each term in (36) is equal to 1, while in (37) it does not exceed 3, see
(10). Now, from (22) we deduce that3

(38) |rn| ≤ d(n) for all n ≥ 1, n ∈ Z.

For s ∈ C with Re s > 1, put

(39) E(s) =
∑
n

rn
ns

,

where summation is over all n ≥ 1, n ∈ Z. We may restrict ourselves to summation over
the cube free n, because rn = 0 for all other n. More precisely, if rn �= 0, then n = uv2,
where u is a product of distinct primes congruent to 1 (mod 3), v is square free, and
gcd(u, v) = 1 (for all other n the sums in (36) and (37) are empty).

Besides E, we shall need the function Ê defined by the Dirichlet series inverse to the
series (39). Namely, we put

(40) Ê(s) = 1/E(s), s ∈ C.

We define fn ∈ C, n ≥ 1, n ∈ Z, by the recurrence relations

(41) f1 = 1, fn = −
∑
m

rmfn/m

with summation over m ∈ Z satisfying m |n, m ≥ 2. Then

(42)

(∑
n

fn
ns

)(∑
n

rn
ns

)
= 1, s ∈ C,

where summation is over all n ≥ 1, n ∈ Z, and the product is understood as the formal
product of Dirichlet series. Of course, also we have

(43) Ê(s) =
∑
n

fn
ns

with summation over all n ≥ 1, n ∈ Z, provided the series on the right converges
absolutely.

Theorem 6. The Dirichlet series (39) converges absolutely and represents a holomorphic
function in the domain Re s > 1. The function E extends holomorphically to C, and

(44) L(τ ; s) = (2/
√
3) 27sζQ(

√
−3 )(3s− 1/2)E(s), s ∈ C.

In the domain Re s > 1/2, the function E is holomorphic everywhere excluding the
point 5/6, where it has a simple pole. In the domain Re s > 1/2, the zeros of E are the
same and have the same orders as those of L(τ ; ·).

Proof. Recall that summation in (3) is over all ν = (
√
−3)−3l with l ∈ Z[ω], l �= 0. Every

such ν can be written uniquely as

(45) ν = λ(
√
−3)−m+3ncd3,

where λ is one of the six units of the ring Z[ω], m ∈ {1, 2, 3}, n ∈ Z, n ≥ 0, and
c, d ∈ Z[ω], c ≡ d ≡ 1 (mod 3), c is cube free. By (4) and (15), the coefficients τ (ν) can
be nonzero only if the number c is square free and either m = 3, λ ∈ {1,−1}, or m = 1.
We put

(46) R(s) =
∑
ν

τ (ν)

‖ν‖s , s ∈ C, Re s > 1,

3Recall that d(n) is the number of positive divisors of n.
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with summation over all

(47) ν = λ(
√
−3)−mc,

where c is a square free number in Z[ω], c ≡ 1 (mod 3), and ether λ = 1, m = 3, or
λ ∈ {1, ω, ω2}, m = 1. We know that the series (3) converges absolutely in the domain
Re s > 1. The series (46) is built from (3) by dropping some terms, so that (46) also
converges absolutely in this domain. Collecting in (15) the terms that correspond to ν
with equal norm and using formulas (15) and (4), we see that

(48) R(s) = 33s−1/2E(s), s ∈ C, Re s > 1,

and that the series (39), which determines the function E, also converges absolutely for
Re s > 1. Let us explain the proof of formula (48). We split the sum on the right in (46)
into two sums: the first consists of the terms corresponding to m = 3, and the second
consists of the terms corresponding to m = 1, see (47). Using (15), we get

R(τ ; s) = 33s−1/2
{
A(s) +B(s)

}
,(49)

A(s) =
∑
c

G(c)

‖c‖s+1/2
, B(s) =

∑
c

G(c)

9s‖c‖s+1/2
κ(c)(50)

with summation over the square free c ≡ 1 (mod 3) in Z[ω]. It remains to compare (49)
and (50) with (36) and (37).

Next, by (3) and (4) we have

L(τ ; s) =
∑
ν

rτ (ν)

‖ν‖s−1/6
, s ∈ C, Re s > 1,

where summation is over all ν as in (45). Turning to (15), note that rτ (ν) is independent
of d, n and that rτ (−ν) = rτ(ν). We obtain the identity

L(τ ; s) = 2

(∑
ν

rτ(ν)

‖ν‖s−1/6

)(∑
n

1

33n(s−1/6)

)(∑
d

1

‖d‖3s−1/2

)
,

where summation is over ν as in (47), n ∈ Z, n ≥ 0, d ∈ Z[ω], d ≡ 1 (mod 3). Conse-
quently (see (21)), we have

L(τ ; s) = 2R(s)
(
1− 1

33s−1/2

)−1

ζ∗(3s− 1/2).

Combined with (20) and (48), this yields (44) for s with Re s > 1. The analytic contin-
uation principle delivers the meromorphic extension of E, with preservation of (44), to
the entire complex plane C. The function s �→ ζQ(

√
−3 )(3s−1/2) is holomorphic and has

no zeros in the domain Re s > 1/2. Therefore, in this domain the zeros and poles of E
are the same and of the same orders as the zeros and poles of L(τ ; ·). �

Theorem 7. Let s ∈ C and Re s > 1. Then

(51) L(τ ; s) =
2√
3
27s

∑
m

cm
ms

,

where summation is over all m ∈ Z, m ≥ 1, and cm ∈ R is the sum of the coefficients
τ (ν) in (3) over all ν satisfying ‖ν‖ = m/27. Suppose that a, b ∈ Z, a, b ≥ 1, a is cube
free, and let λb be the number of ideals of norm b in the ring Z[ω]. Then

(52) cab3 = raλb

√
b and |cab3 | ≤ d(a)d(b)

√
b,

where ra is as in (36), (37).
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Proof. Formula (51) is a direct consequence of (3), and the fact that all cm are real
follows from (16). Observe that each m ∈ Z, m ≥ 1, can uniquely be written in the form
ab3 with b ∈ Z, b ≥ 1, and with a cube free a ∈ Z, a ≥ 1. Comparing (51) with the
decomposition (44) in Theorem 6, we see that

(53)
∑
m

cm
ms

= ζQ(
√
−3 )

(
3s− 1

2

)
E(s),

with summation over m ∈ Z, m ≥ 1. Next, using (39) and (38), we obtain

(54) E(s) =
∑
a

ra
as

, |ra| ≤ d(a),

with summation over the cube free a ∈ Z, a ≥ 1. Also, we have

(55) ζQ(
√
−3 )

(
3s− 1

2

)
=

∑
b

λb

b3s

√
b, λb ≤ d(b),

where summation is over b ∈ Z, b ≥ 1. Multiplying (54) and (55) and comparing with
(53), we get (52). �

§4. On the zeros of L(τ ; ·)
In this section we prove several claims about zeros of the function L(τ ; ·). We start

with a theorem that bounds the domain where the zeros can lie.

Theorem 8. If L(τ ; s) = 0, then Re s < 1.2.

Proof. Instead of L(τ ; ·), consider the function E. By Theorem 6, E has the same zeros
as L(τ ; ·) in the domain Re s > 1/2.

Suppose Re s > 1. We have

(56) E(s) = 1 +
∑
n

rn
ns

,

where summation is over all n ≥ 2, n ∈ Z. If for some real σ we have

(57)
∑
n

|rn|
nσ

< 1,

where summation is as in (56), then the function E has no zeros in the half-plane Re s ≥ σ.
Calculations show that inequality (57) is valid for σ = 1.26, but not for σ = 1.25. To
get a better result, consider the product of the series (56) by the sum of several terms of
the series inverse to the series (56) (see (40)–(43) above) and expand this product in a
Dirichlet series. With some hk ∈ C we have

(58)

{
1 +

∑
m

fm
ms

}{
1 +

∑
n

rn
ns

}
= 1 +

∑
k

hk

ks
,

where summation is over m,n, k ∈ Z that satisfy Q ≥ m ≥ 2, n ≥ 2, k > Q. Here Q is a
free parameter to be chosen later. If for some real σ we have

(59)
∑
m

|fm|
mσ

< 1,
∑
k

|hk|
kσ

< 1

with summation as in (58), then the function E has no zeros in the half-plane Re s ≥ σ.
We take Q = 18. We have

r4 = 1, r7 = 1.7919064 . . . , r9 = 2.5320888 . . . , r13 = 0.5052408 . . . ,

and rn = 0 for all other n with 2 ≤ n ≤ 18. Relation (41) implies that

f4 = −r4, f7 = −r7, f9 = −r9, f13 = −r13, f16 = −r4f4 = r24,
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and fn = 0 for the other n with 2 ≤ n ≤ 18. The coefficients rn were defined for n ≥ 1,
n ∈ Z, in (36) and (37). We extend this definition: let rn = 0 for n �∈ Z. Then

(60) hk = rk + f4rk/4 + f7rk/7 + f9rk/9 + f13rk/13 + f16rk/16

for every k ∈ Z, k > 18. Our calculations show that inequalities (59) are valid for σ = 1.2,
as required. Of course, when calculating the sum over k in (59), we restrict ourselves to
the terms that correspond to k ≤ X for some large X. We explain how to control the
discrepancy, i.e., the sum

(61)
∑
k

|hk|
kσ

over k ∈ Z with k > X. With the help of (60), estimation of the sum (61) reduces to
that of the sum

(62)
∑
k

|rk|
kσ

over all k ∈ Z that satisfy k > Y = X/q with q = 1, 4, 7, 9, 13, 16. By (36) and (37),
estimation of (62) reduces to that of the sum

(63)
∑
c

|G(c)|
‖c‖σ+1/2

over all square free c congruent to 1 (mod 3) in Z[ω] such that ‖c‖ > Y . Finally, see (10)
and (21), the sum (63) is equal to

(64)
ζ∗(σ)

ζ∗(2σ)
−
∑
c

1

‖c‖σ ,

where summation is over all square free c congruent to 1 (mod 3) in Z[ω] such that ‖c‖ ≤
Y . Here the sum over c is finite, and the calculation of the values of ζ∗ reduces, by (20)
and (19), to calculating certain values of the Riemann zeta function and the Dirichlet L-
function L(·, χ) with a quadratic character χ mod 3. Thus, we have a method to obtain
a good estimate for the discrepancy in question. We omit the details for brevity. �

Consider the function Ê and the corresponding Dirichlet series, see (40) and (43). If
the series (43) converges absolutely in the half-plane Re s > 1, then E has no zeros in this
half-plane. Then (by Theorem 6) the function L(τ ; ·) also has no zeros ρ with Re ρ > 1,
as claimed in conjecture (I). The supposition that (43) converges absolutely for Re s > 1
looks fairly plausible. Direct calculations with the help of (41) do not detect any fast
growth of |fn| as n grows. It is not hard to calculate fn explicitly in the case of n = pk,
where p is a prime number and k ≥ 0, k ∈ Z. If p ≡ 2 (mod 3), then fn = 0 for k odd,
and fn = (−1)k/2 for k even. If p ≡ 1 (mod 3), then fn = xk

p + xk−2
p + · · ·+ x−k

p , where

xp = −2/
(
rp +

√
r2p − 4

)
. Since |xp| = 1, we have |fn| ≤ (k + 1) = d(n). If p = 3, then

fn = 0 for k odd and fn = (−r9)
k/2 for k even (r9 = 2.53 . . . ). However, it is unclear

how to estimate |fn| for all n ≥ 1, n ∈ Z.
For a real number T > 0, we define N(T ) as the number of the zeros ρ of L(τ ; ·)

(counted with multiplicities) such that 0 < Im ρ < T . In the next theorem we give an
asymptotic formula for N(T ) similar to the Riemann–Mangoldt formula. In the proof,
we apply the Bachlund method.

Theorem 9. Let A = 2/π, and let B = −
(
2 + log(4π2/27)

)
/π. For T ≥ 2 we have

N(T ) = AT log T +BT + S(T ) and S(T ) 
 log T.
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Proof. Like in Theorem 1, put Λ(s) = Ω(s)L(τ ; s), where Ω(s) is as in (23) and s ∈ C.
We have

L(τ ; s) = (2/
√
3)27sD(s) for all s ∈ C,

D(s) = 1 +
∑
m

cm
ms

for s with Re s > 1,(65)

∑
m

|cm|
m2

< 1(66)

where cm ∈ R are as in Theorem 7, and summation is over all m ≥ 2, m ∈ Z. To deduce
(66), we observe that c2 = c3 = 0, c4 = 1, c5 = c6 = 0 and apply (52) to estimate |cm|
with m ≥ 7. We omit technical details for brevity.

Suppose that none of the zeros of L(τ ; ·) has imaginary part equal to T . Consider the
closed contour C that consists of the line segment from the point 2 to the point 2 + iT ,
the line segment from 2+ iT to −1+ iT , the line segment from −1+ iT to −1, and some
curve passing from the point −1 to the point 2 slightly above the real axis so that there
are no zeros of L(τ ; ·) between the real axis and this curve. By Theorem 1, the function
Λ is holomorphic everywhere except for the points 5/6 and 1/6, which lie neither on C
nor in the domain bounded by C. Note also that the nonreal zeros of Λ are the same
and of the same multiplicity as those of L(τ ; ·). By Theorem 8, these zeros lie in the
strip −0.2 < Re s < 1.2. By the argument principle, the increment ΔC arg Λ(s) of the
argument of Λ along the contour C is equal to 2πN(T ). Let P be the part of C that
consists of the line segment from 2 to 2+iT and the line segment from 2+iT to 1/2+iT ,
and let P ′ be the part of C that consists of the line segment from 1/2 + iT to −1 + iT
and the line segment from −1+ iT to −1. We have ΔP ′ arg Λ(s) = ΔP arg Λ(s), because

Λ(s) = Λ(1− ss) for all s ∈ C, see Theorem 1. Next, the argument increment along
the lower part of the contour, i.e., along the curve connecting −1 and 2, is a constant
independent of T . Thus,

πN(T ) = ΔP arg Λ(s) +O(1)

with an absolute constant in O. The increment of the argument of Λ is equal to the
sum of the corresponding increments for the function D, the functions s �→ (2π)−2s and
s �→ 27s, and the functions s �→ Γ(s ± 1/6), see (23). The argument increments for
the functions s �→ (2π)−2s and s �→ 27s along P are equal, respectively, to −2T log(2π)
and T log(27). For the functions s �→ Γ(s± 1/6), the argument increments are equal to
Im log Γ

(
(1/2 + iT ) ± 1/6

)
and can be found with the help of the Stirling formula [17].

Thus, we get

πN(T ) = π (AT log T +B T ) + ΔP argD(s) +O(1).

Now we consider ΔP argD(s). Recall that P consists of two line segments from 2 to
2 + iT and from 2 + iT to 1/2 + iT . By (65), (66), the increment of the argument of D
along the first segment is within −π/2 and π/2. Next, let Q be the number of points s
on the second segment at which ReD(s) vanishes. The increment of the argument of D
along this segment lies between −(Q+ 1)π and (Q+ 1)π, this is a well-known fact. The
number Q can be viewed as the number of zeros of the function

FT (s) = D(s+ iT ) +D(s− iT )

on the segment I of the real axis from the point 2 to the point 1/2. Let Kr = {s ∈ C |
|s − 2| ≤ r} be the disk of radius r centered at 2, and let n(r) be the number of zeros
(counted with multiplicities) for the function FT inKr. Obviously, I ⊂ K3/2, Q ≤ n(3/2),
and to prove the theorem it suffices to show that n(3/2) 
 log T . Take a real number

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE CUBIC L-FUNCTION 367

R slightly larger than 3/2 and such that FT has no zeros on the boundary of KR. To
estimate n(3/2), we apply the Jensen formula:

(67)

∫ R

0

n(r)

r
dr =

1

2π

∫ 2π

0

log |FT (2 +Reiϑ)| dϑ− log |FT (2)|.

Note that FT (2) = 2ReD(2 + iT ). Formula (65) implies that FT (2) �= 0 and that
log |FT (2)| 
 1 with an absolute constant in 
. For some real h > 0, we have∣∣FT (2 +Reiϑ)

∣∣ ≤ ∣∣D(2 +Reiϑ + iT )
∣∣+ ∣∣D(2 +Reiϑ − iT )

∣∣ ≤ Th,

whence the integrand in (67) satisfies

log |FT (2 +Reiϑ)| ≤ h logT.

Thus, we arrive at the inequality

(68)

∫ R

0

n(r)

r
dr 
 log T.

On the other hand,

(69)

∫ R

0

n(r)

r
dr ≥

∫ R

3/2

n(r)

r
dr ≥ n(3/2)

∫ R

3/2

1

r
dr.

Estimates (68) and (69) show that n(3/2) 
 log T , which completes the proof. �
For real σ and T , define N(σ, T ) as the number of the zeros ρ of L(τ ; ·) (counted with

multiplicities) such that Re ρ ≥ σ and 0 < Im ρ < T . There is a certain relationship
between N(σ, T ) and the behavior in the mean of the functions t �→ |L(τ ;σ + it)|2.
In the general context of finite order functions given by Dirichlet series, this issue was
considered, e.g., in [18]. The following theorem is “extracted” from [18, 6.2.3].

Theorem 10. For any real σ ≥ 0, if

(70)

∫ T

1

|L(τ ;σ + it)|2 dt 
 T, then N(σ, T ) 
 T as T → ∞

(the constants meant in the symbols 
 depend on σ only).

If the estimate on the right in (70) is valid for some σ, then so it is with any larger σ.
We do not know the infimum of the set of all σ for which estimates in (70) are valid.

Theorem 11. If σ > 3/4, then N(σ, T ) 
 T as T → ∞.

Proof. It suffices to prove the claim for σ < 1. We apply Theorem 10. We need to check
that the estimate

(71)

∫ T

T/2

|L(τ ;σ + it)|2 dt 
 T

is valid with a constant in 
 depending only on σ, provided 1 > σ > 3/4, T ≥ 4. Clearly,
if we sum the estimates (71) that correspond to T , T/2, T/4, . . . , then we get an estimate
of the form 
 T for the integral on the left in (70). It remains to prove (71).

In the calculations below, it is assumed that 1 > σ > 1/2 and t ≥ 2. By the Stirling
formula [17], we obtain

(72)

∣∣∣∣Ω(1− σ − it)

Ω(σ + it)

∣∣∣∣ 
 t2−4σ

with an absolute constant in 
. Let ε > 0. Theorem 3 and estimate (72) imply

(73) |L(τ ;σ + it)|2 

∣∣∣∣∑

ν

τ (ν)

‖ν‖σ+it

∣∣∣∣2 + t4−8σ

∣∣∣∣∑
ν

τ (ν)

‖ν‖1−σ−it

∣∣∣∣2 + t2−4σ+2ε,
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where summation over ν is as in (1) and (3), under the condition ‖ν‖ ≤ (2/π2) t2, and
the constant in 
 depends only on ε. Consequently,

(74)

∫ T

T/2

|L(τ ;σ + it)|2 dt 
 A+ T 4−8σB + T 3−4σ+2ε,

where the constant in 
 depends only on ε, and

A =

∫ T

T/2

∣∣∣∣∑
ν

τ (ν)

‖ν‖σ+it

∣∣∣∣2dt, B =

∫ T

T/2

∣∣∣∣∑
ν

τ (ν)

‖ν‖1−σ−it

∣∣∣∣2dt
with summation as in (73). Consider the integral A. Theorem 7 yields

(75) A =
2√
3
27σ

∫ T

T/2

∣∣∣∣∑
a,b

cab3

(ab3)σ+it

∣∣∣∣2dt,
where summation is over all positive cube free a ∈ Z and all positive b ∈ Z satisfying
ab3 ≤ zt = (54/π2)t2. Let η ∈ R. The integrand in (75) can be written as

(76)

∣∣∣∣∑
b

1

bη

(
1

b3σ+3it−η

∑
a

cab3

aσ+it

)∣∣∣∣2
where summation is over all positive integers b ≤ z

1/3
t and all positive cube free integers

a ≤ zt/b
3. Applying the Cauchy inequality, we see that the expression in (76) does not

exceed the quantity

(77)

(∑
b

1

b2η

)(∑
b

1

b6σ−2η

∣∣∣∣∑
a

cab3

aσ+it

∣∣∣∣2),
with summation over a and b as in (76). Let η > 1/2. Then the first sum over b in (77)
is dominated by a constant depending only on η (not on zt). This leads to the estimate

(78) A 

∑
b

1

b6σ−2η

∫ T

T/2

∣∣∣∣∑
a

cab3

aσ+it

∣∣∣∣2 dt,
where summation is over all positive integers b ≤ z

1/3
T and all positive cube free integers

a ≤ zt/b
3. The integral in (78) is equal to

(79)
∑
a,a′

cab3ca′b3

(aa′)σ

∫ T

γa,a′
T,b

(a′
a

)it

dt,

where γa,a′

T,b = max
{
π
√
ab3/54, π

√
a′b3/54, T/2

}
≤ T , and summation is over a, a′ ∈ Z

from 1 to zT /b
3. Computing the integrals and using estimate (52) in Theorem 7, we find

that (79) is dominated by the expression

(80) T
∑
a

c2ab3

a2σ
+
∑
a 	=a′

|cab3ca′b3 |
(aa′)σ| log(a′/a)| 
 d(b)2b

{
T
∑
a

d(a)2

a2σ
+
∑
a 	=a′

d(a)d(a′)

(aa′)σ| log(a′/a)|

}
with summation over a, a′ ∈ Z running from 1 to zT /b

3, a′ �= a, and with an absolute
constant in 
. On the right in (80), the first sum (over a) is 
 1 because 2σ > 1 and,
for any real δ > 0, we have d(m) 
 mδ as m → ∞. To estimate the second sum (over a
and a′), we use the standard estimate4

(81)
∑

1≤m<n≤x

d(m)d(n)

(mn)ϑ log(n/m)

 x2−2ϑ+δ,

4Note that, in (81), summation is over all m,n ∈ Z with 1 ≤ m < n ≤ x, and that the constant in
� only depends on ϑ and δ, but not on x. See [19, 20].
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which is valid for all real x, ϑ, and δ satisfying ϑ ≤ 1, δ > 0. We apply (81) with ϑ = σ
and x = zT /b

3. Recall that zT = (54/π2)T 2. As a result, for the expression (80) and,
with it, for the integral (78), we get an estimate of the form

(82) 
 d(b)2b
{
T + (T 2/b3)2−2σ+δ

}
.

Plugging (82) in (78), we obtain

A 

∑
b

d(b)2b

b6σ−2η

{
T +

(T 2

b3

)2−2σ+δ}
=

(∑
b

d(b)2

b6σ−1−2η

)
T +

(∑
b

d(b)2

b5−2η+3δ

)
T 4−4σ+2δ

(83)

where δ > 0 is arbitrary and summation is over all positive integers b ≤ z
1/3
T . Taking

η > 1/2 sufficiently small, we see that 6σ − 1 − 2η > 1, 5 − 2η + 3δ > 1; consequently,
the sums over b in (83) are 
 1. Thus, we arrive at the final estimate

(84) A 
 T + T 4−4σ+δ

�

�
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
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Figure 1. The histogram of the distribution of the points σ1, σ2, . . . ,
σ8724. The segment [0.5, 1] is split into 50 segments of length 0.01. If
[a, b] is one of them, then the height of the column above it is equal to
the number of n such that a < σn ≤ b.
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with an arbitrary real δ > 0. Similarly, for B in (74) we find the estimate

(85) B 
 T 4σ+δ

with an arbitrary real δ > 0. Note that the constants in 
 in (84) and (85) only depend
on σ and δ, but not on T . Now, to obtain (71) it remains to substitute (84) and (85) in
(74) and to take δ sufficiently small. �
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