
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 8, no. 3, pp. 241–273 (2004)

On the Cutting Edge:

Simplified O(n) Planarity by Edge Addition

John M. Boyer

PureEdge Solutions Inc.
vcard.acm.org/˜jboyer

jboyer@PureEdge.com; jboyer@acm.org

Wendy J. Myrvold

University of Victoria
www.cs.uvic.ca/˜wendym

wendym@cs.UVic.ca

Abstract

We present new O(n)-time methods for planar embedding and Kura-
towski subgraph isolation that were inspired by the Booth-Lueker PQ-tree
implementation of the Lempel-Even-Cederbaum vertex addition method.
In this paper, we improve upon our conference proceedings formulation
and upon the Shih-Hsu PC-tree, both of which perform comprehensive
tests of planarity conditions embedding the edges from a vertex to its de-
scendants in a ‘batch’ vertex addition operation. These tests are simpler
than but analogous to the templating scheme of the PQ-tree. Instead, we
take the edge to be the fundamental unit of addition to the partial em-
bedding while preserving planarity. This eliminates the batch planarity
condition testing in favor of a few localized decisions of a path traversal
process, and it exploits the fact that subgraphs can become biconnected
by adding a single edge. Our method is presented using only graph con-
structs, but our definition of external activity, path traversal process and
theoretical analysis of correctness can be applied to optimize the PC-tree
as well.

Article Type Communicated by Submitted Revised

regular paper P. Eades September 2003 October 2004

The work by Wendy J. Myrvold was supported by NSERC.



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 242

1 Introduction

A graph G contains a set V of vertices and a set E of edges, each of which
corresponds to a pair of vertices from V . Throughout this paper, n denotes
the number of vertices of a graph and m indicates the number of edges. A
planar drawing of a graph is a rendition of the graph on a plane with the
vertices at distinct locations and no edge intersections (except at their common
vertex endpoints). A graph is planar if it admits a planar drawing, and a
planar embedding is an equivalence class of planar drawings described by the
clockwise order of the neighbors of each vertex [9]. In this paper, we focus on
a new O(n)-time planar embedding method. Generating a planar drawing is
often viewed as a separate problem, in part because drawing algorithms tend to
create a planar embedding as a first step and in part because drawing can be
application-dependent. For example, the suitability of a graph rendition may
depend on whether the graph represents an electronic circuit or a hypertext web
site.

We assume the reader is familiar with basic graph theory appearing for
example in [11, 26], including depth first search (DFS), the adjacency list rep-
resentation of graphs, and the rationale for focusing on undirected graphs with
no loops or parallel edges. We assume knowledge of basic planarity definitions,
such as those for proper face, external face, cut vertex and biconnected com-
ponent. We assume the reader knows that the input graph can be restricted
to 3n − 5 edges, enough for all planar graphs and to find a minimal subgraph
obstructing planarity in any non-planar graph.

Kuratowski proved that a non-planar graph must contain a subgraph home-
omorphic to either K5 or K3,3 (subgraphs in the form of K5 (Figure 1(a)) or
K3,3 (Figure 1(b)) except that paths can appear in place of the edges). Just as a
planar embedding provides a simple certificate to verify a graph’s planarity, the
indication of a Kuratowski subgraph (a subgraph homeomorphic to K5 or K3,3)
provides a simple certificate of non-planarity. In some applications, finding a
Kuratowski subgraph is a first step in eliminating crossing edges in the graph.
For example, in a graph representing an integrated circuit, an edge intersection
would indicate a short-circuit that could be repaired by replacing the crossed
edge with a subcircuit of exclusive-or gates [17].

Figure 1: The planar obstructions K5 and K3,3.



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 243

The first O(n)-time planarity test algorithm is due to Hopcroft and Tarjan
[12]. The method first embeds a cycle C of a biconnected graph, then it breaks
the remainder of the graph into a sequence of paths that can be added either to
the inside or outside of C. Since a path is added to the partial embedding when
it is determined that planarity can be maintained, this method has sometimes
been called the path addition method. The method is known to be complex
(e.g. [6, p. 55]), though there are additional sources of information on this
algorithm [8, 19, 21, 27, 28]. Its implementation in LEDA is slower than LEDA
implementations of many other O(n)-time planarity algorithms [5].

The other well-known method of planarity testing proven to achieve linear
time began with an O(n2)-time algorithm due to Lempel, Even and Cederbaum
[15]. The algorithm begins by creating an s, t-numbering for a biconnected
graph. One property of an s, t-numbering is that there is a path of higher
numbered vertices leading from every vertex to the final vertex t, which has
the highest number. Thus, there must exist an embedding G̃k of the first k
vertices such that the remaining vertices (k + 1 to t) can be embedded in a
single face of G̃k. This planarity algorithm was optimized to linear time by a
pair of contributions. Even and Tarjan [10] optimized s, t-numbering to linear
time, while Booth and Lueker [1] developed the PQ-tree data structure, which
allows the planarity test to efficiently maintain information about the portions
of the graph that can be permuted or flipped before and after embedding each
vertex. Since the permutations and flips of a PQ-tree are performed to determine
whether a vertex can be added to the partial embedding while maintaining
planarity, this method has become known as a vertex addition method. Chiba,
Nishizeki, Abe and Ozawa [6] developed PQ-tree augmentations that construct
a planar embedding as the PQ-tree operations are performed. Achieving linear
time with the vertex addition method is also quite complex [14], partly because
many PQ-tree templates are left for the reader to derive [1, p. 362]. There
are also non-trivial rules to restrict processing to a ‘pertinent’ subtree of the
PQ-tree, prune the pertinent subtree, and increase the efficiency of selecting
and applying templates (more than one is often applied during the processing
for one vertex).

An inspired planarity characterization by de Fraysseix and Rosenstiehl [7]
leads to O(n)-time planarity algorithms, though the paper does not develop the
linear time methodology. However, the planarity characterization is particu-
larly interesting because it is the first to examine planarity in terms of conflicts
between back edges as seen from a bottom-up view of the depth first search
tree.

The planarity algorithm by Shih and Hsu [22, 23] was the first vertex addition
method to examine the planarity problem using a bottom-up view of the depth
first search tree. This represented a significant simplification over the PQ-tree.
The method is based on the PC-tree [23], a data structure replacement for
the PQ-tree which eliminates s, t-numbering, replaces Q-nodes with C-nodes,
and detects PC-tree reducibility by testing a number of planarity conditions on
P-nodes and C-nodes rather than the more complex PQ-tree templates.

The PC-tree method performs a post-order processing of the vertices ac-



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 244

cording to their depth first order. For each vertex v, a small set of paths are
identified as being pertinent to the planarity reduction in step v. The planarity
conditions are tested along these paths; if all the conditions hold, then the PC-
tree is reducible. The reduction has the effect of embedding all edges from v
to its DFS descendants while maintaining planarity. To be sure that the reduc-
tion maintains planarity, a correct PC-tree algorithm must test the planarity
conditions in [23] as well as the additional conditions identified in [3].

In 1996, the authors independently discovered that the PQ-tree could be
eliminated from vertex addition planarity testing by exploiting the relationship
between cut vertices, biconnected components and depth first search that were
originally presented by Tarjan [24]. Using only graph constructs (i.e. attributes
associated with vertices and edges of a graph data structure), we presented a
vertex addition planarity algorithm in [2]. First, the vertices and depth first
search (DFS) tree edges are placed into a partial embedding. Then, each vertex
v is processed in reverse order of the depth first indices. The back edges from v
to its DFS descendants are added to the partial embedding if it is determined
that they can all be added while preserving planarity in the partial embedding.
Our graph theoretic constructs for managing cut vertices and biconnected com-
ponents are similar to the P-nodes and C-nodes of a PC-tree. Our planarity
conditions are similar, though not identical due mainly to differences in low-level
definitions and procedures. A more complete exposition of our vertex addition
algorithm appears in [5], which also includes experimental results for a LEDA
implementation that show it to be very fast in practice.

The expressed purpose of both PC-tree planarity and our own vertex addi-
tion method work was to present a simplified linear time planarity algorithm
relative to the early achievements of Hopcroft and Tarjan [12] and Booth and
Lueker [1]. While it is often accepted that the newer algorithms in [2] and
[23] are simpler, the corresponding expositions in [5] and [3] clearly show that
there is still complexity in the details. This additional complexity results from
a ‘batch’ approach of vertex addition, in which back edges from a vertex to
its descendants are embedded only after a set of planarity condition tests have
been performed. These tests are simpler than but analogous to the templating
scheme of the PQ-tree (another vertex addition approach).

Instead, we take the edge to be the fundamental unit of addition to the
partial embedding while preserving planarity (just as vertex and path addi-
tion add a vertex or path while preserving planarity). Our new edge addition
method exploits the fact that subgraphs can become biconnected by adding a
single edge, eliminating the batch planarity condition testing of the prior ver-
tex addition approaches in favor of a few localized decisions of a path traversal
process. Non-planarity is detected at the end of step v if a back edge from v
to a descendants was not embedded. Our edge addition method is presented
using only graph constructs, but our graph theoretic analysis of correctness is
applicable to the underlying graph represented by a PC-tree. Thus, our proof
of correctness justifies the application of our definitions, path traversal process
and edge embedding technique to substantially redesign the PC-tree processing,
eliminating the numerous planarity conditions identified in [3, 23].



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 245

Section 2 describes the partial embedding data structure as a collection of
the biconnected components that develop as edges are added, and it presents
the fundamental operation of adding an edge to the partial embedding. Since
an edge may biconnect previously separated biconnected components, they are
merged together so that a single biconnected component results from adding the
new edge. Section 3 explains the key constraint on the fundamental operation
of adding an edge, which is that the external face must contain all vertices
that will be involved in further edge additions. Due to this constraint, some
biconnected components may need to be flipped before they are merged, and
Section 4 describes how our method flips a biconnected component in constant
time by relaxing the consistency of vertex orientation in the partial embedding.

Based on these principles, Section 5 presents our planar embedder, Section
6 proves that our planarity algorithm achieves linear time performance, and
Section 7 proves that it correctly distinguishes between planar and non-planar
graphs. The proof lays the foundation for our new Kuratowski subgraph isolator,
which appears in Section 8. Finally, Section 9 presents concluding remarks.

2 The Fundamental Operation: Edge Addition

The planarity algorithm described in this paper adds each edge of the input
graph G to an embedding data structure G̃ that maintains the set of biconnected
components that develop as each edge is added. As each new edge is embedded
in G̃, it is possible that two or more biconnected components will be merged
together to form a single, larger biconnected component. Figure 2 illustrates
the graph theoretic basis for this strategy. In Figure 2(a), we see a connected
graph that contains a cut vertex r whose removal, along with its incident edges,
separates the graph into the two connected components shown in Figure 2(b).
Thus, the graph in Figure 2(a) is represented in G̃ as the two biconnected
components shown in Figure 2(c). Observe that the cut vertex r is represented
in each biconnected component that contains it. Observe that the addition of a
single edge (v, w) with endpoints in the two biconnected components results in
the single biconnected component depicted in Figure 2(d). Since r is no longer
a cut vertex, only one vertex is needed in G̃ to represent it.

Indeed, Figure 2(d) illustrates the fundamental operation of the edge addi-
tion planarity algorithm. A single edge biconnects previously separable bicon-
nected components, so these are merged together when the edge is embedded,
resulting in a single larger biconnected component B. Moreover, the key con-
straint on this edge addition operation is that any vertex in B must remain on
the external face of B if it must be involved in the future embedding of an edge.
Hence, a biconnected component may need to be flipped before it is merged.
For example, the lower biconnected component in Figure 2(d) was merged but
also flipped on the vertical axis from r to w to keep y on the external face.



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 246

Figure 2: (a) A cut vertex r. (b) Removing r results in more connected compo-
nents. (c) The biconnected components separable by r. (d) When edge (v, w) is
added, r is no longer a cut vertex (by flipping the lower biconnected component,
y remains on the external face).

3 External Activity

One of the key problems to be solved in an efficient planarity algorithm is how to
add some portion of the input graph to the embedding in such a way that little
or no further adjustment to the embedding is necessary to continue adding more
of the input graph to the embedding. As described in Section 1, the PQ-tree
method exploits a property of an s, t-numbered graph that allows it to create
an embedding G̃k of the first k vertices such that the remaining vertices (k + 1
to t) can be embedded in a single face of G̃k. We observe that an analogous
property exists for a depth first search tree: Each vertex has a path of lower
numbered DFS ancestors that lead to the DFS tree root. Therefore, our method
processes the vertices in reverse order of their depth first indices (DFI) so that
every unprocessed vertex has a path of unprocessed DFS ancestors leading to
the last vertex to be processed, the DFS tree root. As a result, all unprocessed
vertices must appear in a single face of the partial embedding G̃, and the flipping
operations described in the prior section are designed to allow that face to be
the common external face shared by all biconnected components in G̃.

As described in Section 2, the fundamental operation of adding a back edge
may require merging of biconnected components, and some of those may need
to be flipped so that vertices with unembedded edge connections to unprocessed
vertices remain on the external face. Let w denote a DFS descendant of v in
a biconnected component B. We say that w is externally active if there is a
path from w to a DFS ancestor u of v consisting of a back edge plus zero or



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 247

more DFS descendants of w, none of which are in B. Thus, an externally active
vertex w will be involved in the future embedding of edges after the processing
of v, either as the descendant endpoint of a back edge or as a cut vertex that
will be a biconnected component merge point during the embedding of a back
edge to some descendant of w. Figure 3 illustrates these cases.

Figure 3: Externally active vertices are shown as squares and must remain on
the external faces of the biconnected component that contain them. Vertex
z is externally active because it is directly adjacent (in the input graph) to
an ancestor u of v. Both x and d are externally active because they have a
descendant in a separate biconnected component that is externally active.

The external activity of each vertex can be efficiently maintained as follows.
The lowpoint of a vertex is the DFS ancestor of least DFI that can be reached
by a path of zero or more descendant DFS tree edges plus one back edge, and
it can be computed in linear time by a post-order traversal of the depth first
search tree [24]. During preprocessing, we first obtain the least ancestor directly
adjacent to each vertex by a back edge, then we compute the lowpoint of each
vertex. Next, we equip each vertex with a list called separatedDFSChildList ,
which initially contains references to all DFS children of the vertex, sorted by
their lowpoint values. To do this in linear time, categorize the vertices into
ascending order by their lowpoint values, then add each to the end of the sep-
aratedDFSChildList of its DFS parent. To facilitate constant time deletion from
a separatedDFSChildList, it is made circular and doubly linked, and each vertex
is also equipped with a parameter that indicates the representative node for
the vertex in the separatedDFSChildList of its DFS parent. When a biconnected
component containing a cut vertex w and one of its children c is merged with
the biconnected component containing w and the DFS parent of w, then the
representative of c is deleted from the separatedDFSChildList of w. As a result,



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 248

the separatedDFSChildList of w still contains references the children of w that
remain in separate biconnected components from w. Thus, a vertex w is exter-
nally active during the processing of v if w either has a least ancestor less than
v or if the first element in the separatedDFSChildList of w has a lowpoint less
than v.

4 Flipping in Constant Time

Section 2 described the fundamental operation of adding a back edge to G̃ that
might biconnect previously separated biconnected components in G̃. This ne-
cessitated merging the biconnected components together as part of adding the
new edge to G̃. Then, Section 3 discussed the key constraint on the bicon-
nected component merging process, which was that externally active vertices
had to remain on the external face of the new biconnected component formed
from the new edge and the previously separated biconnected components. This
necessitated flipping some of the biconnected components.

The easiest method for flipping a biconnected component is to simply invert
the adjacency list order, or orientation, of each of its vertices. However, it
is easy to create graphs in which Ω(n) vertices would be inverted Ω(n) times
during the embedding process. To solve this problem, we first observe that
a biconnected component B in which vertex r has the least depth first index
(DFI) never contains more than one DFS child of r (otherwise, B would not
be biconnected since depth first search could find no path between the children
except through r). We say that vertex r is the root of B, and the DFS tree
edge connecting the root of B to its only DFS child c in B is called the root
edge of B. In a biconnected component with root edge (r, c), we represent r
with a virtual vertex denoted rc to distinguish it from all other copies of r
in G̃ (and r′ denotes a root whose child is unspecified). Next, we observe that
there are O(n) biconnected component merge operations since each biconnected
component root r′ is only merged once and is associated with one DFS child
of the non-virtual vertex r. Thirdly, we observe that a flip operation can only
occur immediately before a merge. Therefore, a strategy that achieves constant
time performance per flip operation will cost linear time in total. Finally, we
observe that it is only a little more difficult to traverse the external face of a
biconnected component if some vertices have a clockwise orientation and others
have a counterclockwise orientation. Therefore, we flip a biconnected component
by inverting the orientation of its root vertex.

A planar embedding with a consistent vertex orientation can be recovered in
post-processing if an additional piece of information is maintained during em-
bedding. We equip each edge with a sign initialized to +1. When a biconnected
component must be flipped, we only invert the adjacency list orientation of the
root vertex rc so that it matches the orientation of the vertex r with which
it will be merged. Then, the sign of the root edge (rc, c) is changed to −1 to
signify that all vertices in the DFS subtree rooted by c now have an inverse
orientation. Since all of the edges processed by this operation were incident to



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 249

a root vertex beforehand and a non-root vertex afterward, only constant work
per edge is performed by all merge and flip operations during the embedding
process. Moreover, a planar embedding for any biconnected component can be
recovered at any time by imposing the orientation of the biconnected compo-
nent root vertex on all vertices in the biconnected component. If the product of
the signs along the tree path from a vertex to the biconnected component root
vertex is -1, then the adjacency list of the vertex should be inverted. This is
done with a cost commensurate with the biconnected component size by using
a depth first search over the existing tree edges in the biconnected component.

Figure 4 helps to illustrate the biconnected component flip operation. Each
vertex has a black dot and a white dot that signify the two pointers to the edges
that attach the vertex to the external face (if it is on the external face). Observe
the dots of each vertex to see changes of vertex orientation. Vertices 2 and 6
are square to signify that they are externally active due to unembedded back
edges to vertex 0. The goal is to embed the edge (1, 4).

In Figure 4(a), consistently following the black dot pointers yields a coun-
terclockwise traversal of the external face of any biconnected component. In
Figure 4(b), the biconnected component with root 34 is flipped so that edge
(1, 4) can be embedded along the left side while the externally active vertices 2
and 6 remain on the external face. Note that the orientations of vertices 4, 5
and 6 did not actually change relative to Figure 4(a). For example, the black
dot in vertex 5 still leads to vertex 4, and the white dot in vertex 5 still leads
to vertex 6. The result of embedding edge (1, 4) appears in Figure 4(c).

Finally, we observe that the only new problem introduced by this technique
is that extra care must be taken to properly traverse the external face of a
biconnected component. In Figure 4(c), it is clear that following the black
dots consistently no longer corresponds to a counterclockwise traversal of the
external face of the biconnected component rooted by 12. The black and white
dots signify links from a vertex to nodes of its adjacency list. A typical adjacency
list representation has only one link or pointer from a vertex to a node its its
adjacency list. In G̃, we use two link pointers so that we may indicate the nodes
representing both edges that hold a vertex on the external face (if indeed the
vertex is on the external face). These links can be traversed to obtain the edge
leading to the next neighbor along the external face. However, the order of the
links to the external face edges is reflective of the orientation of a vertex, and the
orientation of vertices in a biconnected component can vary between clockwise
and counterclockwise. Hence, whenever our method traverses an external face,
it keeps track of the vertex w being visited but also the link to the edge that
was used to enter w, and the opposing link is used to obtain the edge leading
to the successor of w on the external face.

5 Planar Embedding by Edge Addition

Based on the key operations and definitions of the prior sections, this section
presents our planar embedding algorithm. In the prior sections, we equipped the



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 250

Figure 4: (a) G̃ before embedding edge (1, 4). Vertices 2 and 6 are square to
indicate they are externally active. (b) The biconnected component rooted by
34 is flipped, without altering the orientations of vertices 4 to 6, whose black
and white dots indicate the same edges as they did before the flip. (c) Edge
(1, 4) is embedded, and vertices 2 and 6 have remained on the external face.
The orientations of vertices 4 to 6 are not consistent with those of vertices 1
to 3, but the external face can still be traversed by exiting each vertex using
whichever edge was not used to enter it.

vertices and edges of the embedding structure G̃ with some simple parameters
and lists. In this section, only a few more additions are made as needed, and
the full definition of G̃ appears in Appendix A.

The input graph G need not be biconnected nor even connected. The embed-
ding algorithm begins with preprocessing steps to identify the depth-first search
tree edges and back edges, to compute the least ancestor and lowpoint values,
and to initialize the embedding structure G̃ so that it can maintain the notion
of external activity as defined in Section 3. Then, each vertex v is processed in
reverse DFI order to add the edges from v to its descendants. Figure 5 presents
pseudocode for our planarity algorithm.

The DFS tree edges from v to its children are added first to G̃, resulting in
one biconnected component consisting solely of the edge (vc, c) for each child c of
v. Although not necessary in an implementation, each biconnected component
containing only a tree edge can be regarded as if it contained two parallel edges
between the root vertex vc and the child c so that the external face forms a
cycle, as is the case for all larger biconnected components in G̃.

Next, the back edges from v to its descendants must be added. It is easy to
find graphs on which Ω(n2) performance would result if we simply performed



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 251

Procedure: Planarity
input: Simple undirected graph G with n ≥ 2 vertices and m ≤ 3n − 5 edges

output: PLANAR and an embedding in G̃, or

NONPLANAR and a Kuratowski subgraph of G in G̃

(1) Perform depth first search and lowpoint calculations for G

(2) Create and initialize G̃ based on G, including creation of
separatedDFSChildList for each vertex, sorted by child lowpoint

(3) For each vertex v from n − 1 down to 0

(4) for each DFS child c of v in G

(5) Embed tree edge (vc, c) as a biconnected component in G̃

(6) for each back edge of G incident to v and a descendant w

(7) Walkup(G̃, v, w)

(8) for each DFS child c of v in G

(9) Walkdown(G̃, vc)

(10) for each back edge of G incident to v and a descendant w

(11) if (vc, w) /∈ G̃

(12) IsolateKuratowskiSubgraph(G̃, G, v)

(13) return (NONPLANAR, G̃)

(14) RecoverPlanarEmbedding(G̃)

(15) return (PLANAR, G̃)

Figure 5: The edge addition planarity algorithm.

a depth first search of the DFS subtree rooted by v to find all descendant
endpoints of back edges to v. Therefore, we must restrict processing to only the
pertinent subgraph, which is the set of biconnected components in G̃ that will
be merged together due to the addition of new back edges to v. Our method
identifies the pertinent subgraph with the aid of a routine we call the Walkup,
which is discussed in Section 5.1. Once the pertinent subgraph is identified, our
method adds the back edges from v to its descendants in the pertinent subgraph,
while merging and flipping biconnected components as necessary to maintain
planarity in G̃ and keeping all externally active vertices on the external faces of
the biconnected components embedded in G̃. This phase is performed with the
aid of a routine we call the Walkdown, which is discussed in Section 5.2.

Embedding a tree edge cannot fail, and the proof of correctness in Section
7 shows that the Walkdown only fails to embed all back edges from v to its
descendants if the input graph is non-planar. When this occurs, a routine



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 252

discussed in Section 8 is invoked to isolate a Kuratowski subgraph. Otherwise,
if all tree edges and back edges are embedded in every step, then the planar
embedding is recovered as discussed in Section 4.

The remainder of this section discusses the Walkup and Walkdown. To under-
stand their processing, we make a few more definitions, mostly to set the notion
of a pertinent subgraph into the context of our embedding structure G̃, which
manages a collection of biconnected components. A biconnected component
with root wc is a child biconnected component of w. A non-virtual (hence non-
root) vertex w descendant to the current vertex v is pertinent if G has a back
edge (v, w) not in G̃ or w has a child biconnected component in G̃ that contains
a pertinent vertex. A pertinent biconnected component contains a pertinent ver-
tex. An externally active biconnected component contains an externally active
vertex (our definition of an externally active vertex, given above, applies only to
non-virtual vertices). Vertices and biconnected components are internally ac-
tive if they are pertinent but not externally active, and vertices and biconnected
components are inactive if they are neither internally nor externally active.

5.1 The Walkup

In this section, we discuss a subroutine called Walkup. Pseudo-code for the
Walkup appears in Appendix C. As mentioned above, the Walkup is invoked
by the core planarity algorithm once for each back edge (v, w) to help identify
the pertinent subgraph. This information is consumed by the Walkdown, which
embeds back edges from v to its descendants in the pertinent subgraph.

Specifically, the purpose of the Walkup is to identify vertices and biconnected
components that are pertinent due to the given back edge (v, w). Vertex w is
pertinent because it is the direct descendant endpoint of a back edge to be
embedded. Each cut vertex in G̃ along the DFS tree path strictly between v
and w, denoted Tv,w, is pertinent because the cut vertex will become a merge
point during the embedding of a back edge.

To help us mark as pertinent the descendant endpoints of back edges to v,
we equip each vertex with a flag called backedgeFlag , which is initially cleared
during preprocessing. The first action of the Walkup for the back edge (v, w) is
to raise the backedgeFlag flag of w. Later, when the Walkdown embeds the back
edge (v, w), the backedgeFlag flag is cleared. To help us mark as pertinent the
cut vertices in G̃ along the DFS tree path Tv,w between v and w, we equip the
vertices with an initially empty list called pertinentRoots . Let r be a cut vertex
in G̃ along Tv,w with a DFS child s also in Tv,w. Then, rs is a biconnected

component root along Tv,w in G̃. When the Walkup finds rs, it adds rs to the
pertinentRoots of r. Later, when the Walkdown merges r and rs, then rs is
removed from the pertinentRoots list of r. Thus, a vertex is determined to be
pertinent if its backedgeFlag flag is set or if its pertinentRoots list is non-empty.

Although not necessary, the Walkdown benefits if the Walkup places the roots
of externally active biconnected components after the roots of internally active
biconnected components. Thus, a biconnected component root rs is prepended



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 253

to the pertinentRoots list of r unless rs is the root of an externally active bicon-
nected component (i.e. if lowpoint(s) < v), in which case it is appended.

A few strategies must be employed to efficiently implement the traversal
phase of the Walkup that sets the pertinentRoots lists of cut vertices in G̃ along
Tv,w. The goal is to ensure that the work done by all invocations of Walkup
in step v is commensurate with the sum of the sizes of the proper faces that
will be formed when the back edges from v to its descendants are added to
G̃. Therefore, we do not simply traverse the tree path Tv,w in G̃ looking for
biconnected component roots. Instead, our method traverses the external face
of each biconnected component that contains part of Tv,w to find the root. If
w is the point of entry in a biconnected component, there are two possible
external face paths that can be traversed to obtain the root rs. Since the path
must become part of the bounding cycle of a proper face, it cannot contain
an externally active vertex between w and rs. However, it is not known which
path is longer, nor if either contains an externally active vertex. Therefore, both
paths are traversed in parallel to ensure that rs is found with a cost no greater
than twice the length of the shorter external face path. Once rs is located, it
is added to the pertinentRoots of r, then r is treated as the entry point of the
biconnected component, and the Walkup reiterates until rs = vc.

By traversing external face paths in parallel, rather than simply searching
the tree path Tv,w, a Walkup can find the roots of biconnected components made
pertinent by the back edge (v, w). However, the intersection of Tv,w1

and Tv,w2

for two back edges (v, w1) and (v, w2) can be arbitrarily large, so the Walkup
must be able to detect when it has already identified the roots of pertinent
biconnected components along a path due to a prior invocation for another
back edge of v. To solve this problem, we equip each vertex with a flag called
visited , which is initially cleared. Before visiting any vertex, the Walkup checks
whether the visited flag is set, and ends the invocation if so. Otherwise, after
visiting the vertex, the Walkup sets the visited flag (all visited flags that were set
are cleared at the end of each step v, an operation that can be done implicitly
if visited is an integer that is set when equal to v and clear otherwise). Figure
6 illustrates the techniques described here. Appendix C contains a complete
pseudo-code description of this operation.

5.2 The Walkdown

In this section, we discuss the Walkdown subroutine (see Appendix D for the
pseudo-code). As mentioned above, the Walkdown is invoked by the core pla-
narity algorithm once for each DFS child c of the vertex v to embed the back
edges from v to descendants of c. The Walkdown receives the root vc of a bi-
connected component B. The Walkdown descends from vc, traversing along the
external face paths of biconnected components in the pertinent subgraph (iden-
tified by the Walkup described in Section 5.1). When the Walkdown encounters
the descendant endpoint w of a back edge to v, the biconnected components vis-
ited since the last back edge embedding are merged into B, and the edge (vc, w)
is then added to B. As described in Section 4, each biconnected components



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 254

Figure 6: In this example, the Walkup is invoked first for back edge (v, w) then
for (v, y). The first Walkup sets the backedgeFlag for w, then it proceeds from
w in both directions around the external face, setting the visited flag for each
vertex. The clockwise traversal finds the biconnected component root first, at
which point c′ is recorded in the pertinentRoots of c, and the Walkup begins
simultaneous traversal again at c and terminates at v′. The second Walkup sets
the backedgeFlag of y, then begins the simultaneous traversal phase. This time
the counterclockwise traversal finds the biconnected component root first after
passing around an externally active vertex (only the Walkdown embeds edges, so
only the Walkdown must avoid passing over an externally active vertex). Once
r′ is recorded in the pertinentRoots of r, the Walkup resets for simultaneously
traversal at r and is immediately terminated because the first Walkup set the
visited flag of r (so any ancestor biconnected component roots have already been
recorded in the pertinentRoots members of their non-root counterparts).

that is merged into B may be flipped if necessary to ensure that externally ac-
tive vertices remain on the external face of B. The external face paths traversed
by the Walkdown become part of the new proper face formed by adding (vc, w).

To embed the back edges, the Walkdown performs two traversals of the exter-
nal face of B, corresponding to the two opposing external face paths emanating
from vc. The traversals perform the same operations and are terminated by the
same types of conditions, so the method of traversal will only be described once.

A traversal begins at vc and proceeds in a given direction from vertex to ver-



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 255

tex along the external face in search of the descendant endpoints of a back edges.
Whenever a vertex is found to have a pertinent child biconnected component,
the Walkdown descends to its root and proceeds with the search. Once the de-
scendant endpoint w of a back edge is found, the biconnected component roots
visited along the way must be merged (and the biconnected components flipped
as necessary) before the back edge (vc, w) is embedded. An initially empty
merge stack is used to help keep track of the biconnected component roots to
which the Walkdown has descended as well as information that helps determine
whether each biconnected component must be flipped when it is merged.

A biconnected component must be flipped if the direction of traversal upon
entering a cut vertex r changes when the traversal exits the root rs. For example,
in Figure 4(a), vc is 12, and the first traversal exits 12 on the black dot link and
enters vertex 3 on the white dot link. The traversal then descends to the root 34,
where it must exit using the white dot link to avoid the externally active vertex
6. Since entry and exit are inverse operations, opposite colored links must be
used to avoid a flip. When the same link color is used for both, the direction of
traversal has changed and a flip is required. Note that once the orientation of the
root vertex 34 is inverted in Figure 4(b), the traversal exits from the black dot
link to reach vertex 4. As the above example shows, in order to be able to merge
and possibly flip a biconnected component, the following pieces of information
must have been stored in the merge stack when a Walkdown traversal descended
from a vertex r to the root of one of its pertinent child biconnected components:
the identity of the root rs (from which the non-root r is easily calculated), the
direction of entry into r, and the direction of exit from rs.

A Walkdown traversal terminates either when it returns to vc or when it
encounters a non-pertinent, externally active vertex, which we call a stopping
vertex. If it were to proceed to embed an edge after passing a stopping vertex,
then the stopping vertex would not remain on the external face, but it must
because it is externally active. Note that a pertinent externally active vertex
may become a stopping vertex once the Walkdown embeds the edges that made
the vertex pertinent.

Prior to encountering a stopping vertex, if a vertex w is encountered that has
more than one pertinent child biconnected component, then the Walkdown must
descend to an internally active child biconnected component if one is available.
Note that the Walkdown traverses the entire external face of an internally active
child biconnected component and returns to w, but once the Walkdown descends
to a pertinent externally active child biconnected component, it will encounter
a stopping vertex before returning to w (traversal cannot proceed beyond the
first externally active vertex in the child biconnected component). So, to ensure
that all back edges that can be embedded while preserving planarity are in fact
embedded, the Walkdown enforces Rule 1.

Rule 1 When vertex w is encountered, first embed a back edge to w (if needed)
and descend to all of its internally active child biconnected components (if any)
before processing its pertinent externally active child biconnected components.



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 256

If the Walkup uses the strategy from Section 5.1 of always putting externally
active child biconnected component roots at the end of the pertinentRoots lists,
then the Walkdown can process the internally active child biconnected compo-
nents first by always picking the first element of a pertinentRoots list.

A similar argument to the one above also governs how the Walkdown chooses
a direction from which to exit a biconnected component root rs to which it has
descended. Both external face paths emanating from rs are searched to find
the first internally or externally active vertices x and y in each direction (i.e.
inactive vertices are skipped). The path along which traversal continues is then
determined by Rule 2.

Rule 2 When selecting an external face path from the root rs of a biconnected
component to the next vertex, preferentially select the external face path to an
internally active vertex if one exists, and select an external face path to a per-
tinent vertex otherwise.

Finally, if both external face paths from rs lead to non-pertinent externally
active vertices, then both are stopping vertices and the entire Walkdown (not
just the current traversal) can be immediately terminated due to a non-planarity
condition described in the proof of correctness of Section 7. Figure 7 provides
another example of Walkdown processing that corresponds to the example of
Walkup in Figure 6.

With two exceptions, the operations described above allow the total cost
of all Walkdown operations to be linear. Traversal from vertex to vertex and
queries of external activity and pertinence are constant time operations. Merge
and flip operations on biconnected components cost constant time per edge.
The data structure updates that maintain external activity and pertinence are
constant time additions to the biconnected component merge operation. Finally,
adding an edge takes constant time. Thus, the cost of all Walkdown operations
performed to add an edge can be associated with the size of the proper face that
forms when the new edge is added, except that when Walkdown descends to a
biconnected component root, it traverses both external face paths emanating
from the root, but only one of those paths becomes part of the proper face
formed when the new edge is added. It is possible to construct graphs in which a
path of length Ω(n) is traversed but not selected Ω(n) times. A second problem
is that the cost of traversing the path between the last embedded back edge
endpoint and the stopping vertex is not associated with a proper face.

Both of these costs can be bounded to a linear total by the introduction
into G̃ of short-circuit edges, which are specially marked edges added between
vc and the stopping vertex of each Walkdown traversal (except of course when
the traversal is terminated by the above non-planarity condition). The short-
circuit edge forms a new proper face, which removes the path from the last back
edge endpoint to the stopping vertex from the external face. Moreover, this
method reduces to O(1) the cost of choosing the path to proceed along after
desdending to a biconnected component root. In step v, the immediate external
face neighbors of a pertinent root rs are active because the interceding inactive



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 257

Figure 7: (a) The Walkdown embedded the edge (v, w). It descended from v′

to c, and then from c to c′. The first active vertices along the external face
paths emanating from c′ are w and r. Arbitrarily, w is chosen. (b) Once (v, w)
is added, w becomes a stopping vertex, so a second traversal begins at v′ and
traverses the external path through c, i, and down to r. Since r is pertinent,
the Walkdown descends to r′ and finds the active vertices. In part (a), the
counterclockwise direction gives y and the clockwise direction gives z. Since z
is not pertinent, the path toward y is selected, but the direction of traversal
entering r was clockwise. Thus, the biconnected component rooted by r′ must
be flipped when r′ is merged with r during the addition of back edge (v, y).

vertices are removed from the external face by short-circuit edges embedded in
step r. Since only two short-circuit edges are added per biconnected component,
and each can be associated with a unique vertex (the DFS child in its root edge),
at most 2n short-circuit edges are added. Short-circuit edges are also specially
marked, so they can be easily removed during the post-processing steps that
recover a planar embedding or Kuratowski subgraph of G from G̃.

5.3 A More Global View

The proof of correctness in Section 7 shows the essential graph structures that
occur when the Walkdown fails to embed a back edge, but an indication of the
original pertinent subgraph is not essential to proving that the graph is non-
planar when the Walkdown fails to embed an edge. Yet, it is instructive to see
an example of the overall effect of a Walkdown on the entire pertinent subgraph.
Figure 8 shows the state immediately before the Walkdown of an example set
of biconnected components (ovals), externally active vertices (squares), and de-
scendant endpoints of unembedded back edges (small circles). The dark ovals
are internally active, the shaded ovals are pertinent but externally active, and



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 258

the light ovals are non-pertinent. Figure 9 shows the result of the Walkdown
processing over the example of Figure 8.

Figure 8: Before the Walkdown on v′.

Figure 9: After the Walkdown on v′.

The first traversal Walkdown descends to vertex c, then biconnected compo-
nent A is selected for traversal because it is internally active, whereas B and G
are pertinent but externally active. The back edges to vertices along the exter-
nal face of A are embedded and then the traversal returns to c. Biconnected
component B is chosen next, and it is flipped so that traversal can proceed
toward the internally active vertex in B. The back edge to the vertex in B is
embedded, and the root of B is merged with c. Then, the traversal proceeds to
the non-virtual counterpart of the root of D, which is externally active because
D is externally active. The traversal continues to the root of D then to the



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 259

non-virtual counterpart of the root of E rather than the non-virtual counter-
part of the root of F ; both are externally active, but the path to the former
is selected because it is pertinent. Traversal proceeds to the internally active
vertex in E to embed the back edge, at which time D and E become part of the
biconnected component rooted by v′. Finally, traversal continues along E until
the first traversal is halted by the stopping vertex x.

The second Walkdown traversal proceeds from v′ to c to the biconnected
component G, which is flipped so that the internal activity of H, I and J can
be resolved by embedding back edges. The back edges to I and J are embedded
between the first and second back edges that are embedded to H. The bounding
cycles of the internally active biconnected components are completely traversed,
and the traversal returns to G. Next, the roots of M , N and O are pushed onto
the merge stack, and N is also flipped so that the traversed paths become part
of the new proper face that is formed by embedding the back edge to the vertex
in O. Finally, the second traversal is halted at the stopping vertex y.

Generally, the first traversal embeds the back edges to the left of tree edge
(v′, c), and the second traversal embeds the back edges on the right. As this
occurs, the externally active parts of this graph are kept on the external face
by permuting the children of c (i.e. selecting A before B and G) and by bicon-
nected component rotations. The internally active biconnected components and
pertinent vertices are moved closer to v′ so that their pertinence can be resolved
by embedding back edges. The internally active vertices and biconnected com-
ponents become inactive once their pertinence is resolved, which allows them to
be surrounded by other back edges as the Walkdown proceeds.

Overall, our algorithm proceeds directly from the simple task of identifying
the pertinent subgraph directly to the edge embedding phase, which the vertex
addition methods perform during the ‘planarity reduction’ phase. Essentially,
we prove in Section 7 the sufficiency of augmenting the reduction phase with
Rules 1 and 2, avoiding the intermediate phase in vertex addition methods that
first tests the numerous planarity conditions identified in [3, 23] for the PC-tree,
in [5] for our prior vertex addition method, and in [1] for the PQ-tree.

6 Linear Time Performance

In this section we consider the strategies used to make our planarity algorithm
achieve O(n) performance. The result is stated as Theorem 1.

Theorem 1 Given a graph G with n vertices, algorithm Planarity determines
whether G is planar in O(n) time.

Proof. The depth first search and least ancestor and lowpoint calculations
are implemented with well-known linear time algorithms. Section 3 described
a linear time method for initializing the data structures that maintain external
activity, which consists of creating a separatedDFSChildList for each vertex, each
sorted by the children’s lowpoint values. During the run of the main edge em-
bedding loop, the cost of embedding each tree edge is O(1), resulting in linear



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 260

time total cost. Section 5.1 describes a method for implementing the Walkup to
identify the pertinent subgraph with a cost commensurate with the sizes of the
proper faces that will be formed by back edges when they are embedded. Simi-
larly, Section 5.2 describes a method for implementing the Walkdown to embed
the back edges within the pertinent subgraph with a cost commensurate with
the sizes of the proper faces that will be formed by back edges and short-circuit
edges. Since the sum of the degrees of all proper faces is twice the number of
edges, a total linear cost is associated with all Walkup and Walkdown opera-
tions. The cost of the loops that invoke Walkup and Walkdown are associated
with the back edges and tree edges, respectively, for which the functions are
invoked, yielding constant cost per edge. At the end of the main loop, the test
to determine whether any back edge was not embedded by the Walkdown results
in an additional constant cost per back edge, for a total linear cost. ✷

Corollary 2 Given a planar graph G with n vertices, algorithm Planarity pro-
duces a planar embedding of G in O(n) time.

Proof. First, the edges of G are added to G̃ by the main loop of Planarity in
O(n) time by Theorem 1. The short-circuit edges added to optimize the Walk-
down (see Section 5.2) are specially marked, so their removal takes O(n) time.
Then, the vertices in each biconnected component are given a consistent vertex
orientation as described in Section 4. This operation can do no worse than invert
the adjacency list of every non-root vertex for a constant time cost per edge, or
O(n) in total. Finally, G̃ is searched for any remaining biconnected component
roots in O(n) time (there will be more than one if G is not biconnected), and
they are merged with their non-root counterparts (without flipping) for a cost
commensurate with the sum of the degrees of the roots, which is O(n). ✷

7 Proof of Correctness

In this section, we prove that the algorithm Planarity described in Section 5
correctly distinguishes between planar and non-planar graphs. It is clear that
the algorithm maintains planarity of the biconnected components in G̃ as an
invariant during the addition of each edge (see Corollary 4). Thus, a graph G
is planar if all of its edges are added to G̃, and we focus on showing that if the
algorithm fails to embed an edge, then the graph must be non-planar.

For each vertex v, the algorithm first adds to G̃ the tree edges between v and
its children without the possibility of failure. Later, the back edges from v to its
descendants are added by the routine called Walkdown described in Section 5.2.
The main algorithm Planarity invokes the Walkdown once for each DFS child
c of v, passing it the root vc of a biconnected component B in which it must
embed the back edges between vc and descendants of c.

For a given biconnected component B rooted by vc, if the two Walkdown
traversals embed all back edges between v and descendants of c, then it is
easy to see that B remains planar and the algorithm continues. However, if
some of the back edges to descendants of c are not embedded, then we show



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 261

that the input graph is non-planar. The Walkdown may halt if it encounters
two stopping vertices while trying to determine the direction of traversal from
a pertinent child biconnected component root, a condition depicted in Figure
10(a). Otherwise, if the Walkdown halts on B without embedding all back edges
from vc to descendants of c, then each Walkdown traversal was terminated by a
stopping vertex on the external face of B, a condition depicted by Figure 10(b).

Figure 10: Walkdown halting configurations. Square vertices are externally
active, all edges may be paths, and dashed edges include an unembedded back
edge. All ancestors of the current vertex v are contracted into u. (a) The
Walkdown has descended from the current vertex v to the root r of a biconnected
component, but the pertinent vertex cannot be reached along either external face
path due to stopping vertices x and y. (b) Each Walkdown traversal from v has
encountered a stopping vertex in the biconnected component B that contains a
root copy of v. The Walkdown could not reach the pertinent vertex w due to the
stopping vertices. Although this configuration is planar, Theorem 3 proves the
existence of additional edges that form one of four non-planar configurations.

In Figure 10(a), u represents the contraction of the unprocessed ancestors
of v so that (u, v) represents the DFS tree path from v to its ancestors. The
edge (v, r) represents the path of descent from v to a pertinent child biconnected
component rooted by a root copy of r. Square vertices are externally active. The
Walkdown traversal is prevented from visiting a pertinent vertex w by stopping
vertices x and y on both external face paths emanating from r. The cycle
(r, x, w, y, r) represents the external face of the biconnected component. The
dotted edges (u, x), (u, y) and (v, w) represent connections from a descendant
(x, y or w) to an ancestor (u or v) consisting of either a single unembedded
back edge or a tree path containing a separated DFS child of the descendant
and an unembedded back edge to the ancestor of v. Similarly, Figure 10(b)
shows stopping vertices x and y that prevent traversal from reaching a pertinent
vertex w in a biconnected component rooted by a root copy of v.

Both diagrams depict minors of the input graph. Since Figure 10(a) depicts
a K3,3, the input graph is non-planar. However, Figure 10(b) appears to be
planar, so it is natural to ask why the Walkdown did not first embed (v, w) then



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 262

embed (v, x) such that (v, w) is inside the bounding cycle of B. In short, there is
either some aspect of the connection represented by edge (v, w) or some aspect of
the vertices embedded within B that prevents the Walkdown from embedding the
connection from w to v inside B. An examination of the possibilities related to
these aspects yields four additional non-planarity minors, or five in total, which
are depicted in Figure 11. Theorem 3 argues the correctness of our algorithm
by showing that one of the non-planarity minors must exist if the Walkdown
fails to embed a back edge, and the absence of the conditions that give rise to
the non-planarity minors contradicts the assumption that the Walkdown failed
to embed a back edge.

Theorem 3 Given a biconnected connected component B with root vc, if the
Walkdown fails to embed a back edge from v to a descendant of c, then the input
graph G is not planar.

Proof. By contradiction, suppose the input graph is planar but the Walkdown
halts without embedding a back edge. To do so, the Walkdown must encounter
a stopping vertex. If this occurs because stopping vertices were encountered
along both external face paths emanating from the root of a pertinent child bi-
connected component, then the Walkdown terminates immediately, and the K3,3

depicted in Figure 11(a) shows that the input graph is non-planar. Hence, the
Walkdown must halt on stopping vertices on the external face of the biconnected
component containing vc.

Figure 11(b) results if the pertinent vertex w has an externally active perti-
nent child biconnected component. Embedding the connection from a separated
descendant of w to v inside B would place an externally active vertex z inside
B. Thus, the input graph is non-planar since Figure 11(b) contains a K3,3.

Otherwise we consider conditions related to having an obstructing path in-
side B that contains only internal vertices of B except for two points of attach-
ment along the external face: one along the path v, . . . , x, . . . , w, and the other
along the path v, . . . , y, . . . , w. The obstructing path, which is called an x-y
path, contains neither v nor w. If such an x-y path exists, then the connection
from w to v would cross it if the connection were embedded inside B. We use
px and py to denote the points of attachment of the obstructing x-y path.

In Figure 11(c), the x-y path has px attached closer to v than x. Note that
py can also be attached closer to v than y. In fact, Figure 11(c) also represents
the symmetric condition in which py is attached closer to v than y (but px is
attached at x or farther from v than x). In all of these cases, the input graph
is non-planar since Figure 11(c) contains a K3,3.

In Figure 11(d), a second path of vertices attached to v that (other than v)
contains vertices internal to B that lead to an attachment point z along the x-y
path. If this second path exists, then input graph is non-planar since Figure
11(d) contains a K3,3.

In Figure 11(e), an externally active vertex (possibly distinct from w) exists
along the lower external face path strictly between px and py. If this condition
occurs, then input graph is non-planar since Figure 11(e) represents a K5 minor.



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 263

Figure 11: Non-planarity minors of the input graph.

Finally, suppose for the purpose of contradiction that the Walkdown failed
to embed a back edge and none of the non-planarity conditions described above
exist. As mentioned above, due to the absence of the condition of Figure 11(a),
the two Walkdown traversals must have ended on stopping vertices along external
face paths in the biconnected component B rooted by vc. By the contradictive
assumption, B has a pertinent vertex w along the lower external face path
strictly between stopping vertices x and y. We address two cases based on
whether or not there is an obstructing x-y path.

If no obstructing x-y path exists, then at the start of step v all paths between
x and y in G̃ contain w. Thus, w is a DFS ancestor of x or y (or both), and it
becomes a merge point when its descendants (x or y or both) are incorporated
into B. When the Walkdown first visits w, it embeds a direct back edge from w
to v if one is required and then processes the internally active child biconnected
components first (see Rule 1), so the pertinence of w must be the result of an
externally active pertinent child biconnected component. Yet, this contradicts
the pertinence of w since the condition of Figure 11(b) does not exist.

On the other hand, suppose there is an obstructing x-y path, but non-
planarity minors C to E do not apply. The highest x-y path is the x-y path
that would be contained by a proper face cycle if the internal edges to vc were
removed, along with any resulting separable components. The highest x-y path



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 264

and the lower external face path from px to py formed the external face of a
biconnected component at the beginning of step v. Let r1 denote whichever of
px or py was the root of that biconnected component, and let r2 denote one of
px or py such that r1 �= r2. Since the condition of Figure 11(c) does not exist,
r2 is equal to or an ancestor of x or y and was therefore externally active when
the Walkdown descended to rs

1
(a root copy of r1, where s is equal to or a DFS

ancestor of r2). Moreover, the first active vertex along the path that is now the
highest x-y path was r2 because the condition of Figure 11(d) does not exist.
Descending from rs

1
along the path that is now the lower external face path

between px and py, the existence of a pertinent vertex w implies that there are
no externally active vertices along the path due to the absence of the condition
of Figure 11(e). Thus, we reach a contradiction to the pertinence of w since the
Walkdown preferentially selects the path of traversal leading from the root of a
child biconnected component to an internally active vertex (see Rule 2). ✷

Corollary 4 Algorithm Planarity determines whether a graph G is planar.

Proof. For each vertex v in reverse DFI order, the edges from v to its de-
scendants are embedded. The embedding of tree edges cannot fail, and if the
Walkdown fails to embed a back edge from v to a descendant, then Theorem 3
shows that the graph is not planar. Hence, consider the case in which Planarity
embeds all edges from v to its descendants in each step. The edges from v to
its ancestors are therefore embedded as those ancestors are processed. When a
tree edge is added to G̃, planarity is maintained since the tree edge is added into
a biconnected component by itself. When a back edge is added, the preceding
merge and flip of biconnected components maintain planarity, and the new back
edge is added in the external face region incident to two vertices currently on
the external face. Thus, planarity is maintained in G̃ for all edges added, so G
is planar if all of its edges are added to G̃. ✷

8 Kuratowski Subgraph Isolator

The non-planarity minors of Figure 11 can be used to find a Kuratowski sub-
graph in a non-planar graph (or a subgraph with at most 3n−5 edges). Because
the method is closely associated with the back edges, external face paths and
DFS tree paths of the input graph, the linear time performance and correctness
of the method are clear from the discussion.

The first step is to determine which non-planarity minor to use. Minors A to
D can be used directly to find a subgraph homeomorphic to K3,3. Minor E is a
K5 minor, so a few further tests are performed afterward to determine whether
a subgraph homeomorphic to K3,3 or K5 can be obtained. To determine the
minor, we first find an unembedded back edge (v, d), then search up the DFS
tree path Tv,d in G̃ to find the root vc of a biconnected component on which the
Walkdown failed. The Walkdown can then be reinvoked to determine whether
the merge stack is empty (unless the merge stack is still available from the



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 265

Walkdown that halted). Either way, the short-circuit edges should be deleted
and G̃ should be properly oriented as described in Section 4 before proceeding.

If the merge stack is non-empty, then the desired biconnected component
root r can be found at the top of the stack. Otherwise, we use vc. The two
external face paths from the selected root are searched for the stopping vertices
x and y, then we search the lower external face path (x, . . . , y) for a pertinent
vertex w that the Walkdown could not reach. Then, if the merge stack was
non-empty, we invoke the minor A isolator (the isolators are described below).

If the merge stack is empty, then we must choose between minors B to E. If
w has a pertinent externally active child biconnected component (check the last
element of the pertinentRoots list), then we invoke the minor B isolator. Oth-
erwise, we must find the highest x-y path by temporarily deleting the internal
edges incident to vc, then traversing the proper face bordered by vc and its two
remaining edges. Due to the removal of edges, the bounding cycle of the face
will contain cut vertices, which can be easily recognized and eliminated as their
cut vertices are visited for a second time during the walk. Once the x-y path is
obtained, the internal edges incident to vc are restored.

If either px or py is attached high, then we invoke the minor C isolator.
Otherwise, we test for non-planarity minor D by scanning the internal vertices
of the x-y path for a vertex z whose x-y path edges are not consecutive above
the x-y path. If it exists, such a vertex z may be directly incident to vc or it
may have become a cut vertex during the x-y path test. Either way, we invoke
the minor D isolator if z is found and the minor E isolator if not.

Each isolator marks the vertices and edges to be retained, then deletes un-
marked edges and merges biconnected components. The edges are added and
marked to complete the pertinent path from w to v and the external activity
paths from x and y to ancestors of v. Minors B and E also require an additional
edge to complete the external activity path for z. Finally, the tree path is added
from v to the ancestor of least DFI associated with the external activity of x,
y and (for minors B and E) z. Otherwise, we mark previously embedded edges
along depth first search tree paths, the x-y path and v-z path, and the external
face of the biconnected component containing the stopping vertices.

To exemplify marking an external activity path, we consider the one attached
to x (in any of the non-planarity minors). If the least ancestor directly attached
to x by a back edge (a value obtained during the lowpoint calculation) is less
than v, then let ux be that least ancestor, and let dx be x. Otherwise, ux is the
lowpoint of the first child χ in the separatedDFSChildList of x, and let dx be the
neighbor of ux in G with the least DFI greater than χ. We mark the DFS tree
path from dx to x and add and mark the edge (ux, dx). The external activity
paths for y and, when needed, z are obtained in the same way.

Marking the pertinent path is similar, except that minor B requires the
path to come from the pertinent child biconnected component containing z.
In the other cases, the backedgeFlag flag tells whether we let dw be w. If the
backedgeFlag flag is clear or we have minor B, then we obtain the last element
wχ in the pertinentRoots list of w, then scan the adjacency list of v in G for the



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 266

neighbor dw with least DFI greater than χ. Finally, mark the DFS tree path
dw to w and add the edge (v, dw).

To conclude the K3,3 isolation for minor A, we mark the DFS tree path from
v to the least of ux and uy and we mark the external face of the biconnected
component rooted by r. For minor B, we mark the external face path of the bi-
connected component rooted by vc and the DFS tree path from max(ux, uy, uz)
to min(ux, uy, uz). The path from v to max(ux, uy, uz), excluding endpoints, is
not marked because the edge (u, v) in minor B is not needed to form a K3,3. For
the same reason, minors C and D omit parts of the external face of the bicon-
nected component rooted by vc, but both require the tree path v to min(ux, uy).
Minor C omits the short path from px to v if px is attached high, and otherwise
it omits the short path from py to v. Minor D omits the upper paths (x, . . . , v)
and (y, . . . , v). In all cases, the endpoints of the omitted paths are not omitted.

Finally, the minor E isolator must decide between isolating a K3,3 home-
omorph and a K5 homeomorph. Four simple tests are applied, the failure of
which implies that minor E can be used to isolate a K5 homeomorph based on
the techniques described above. The first test to succeed implies the ability to
apply the corresponding minor from Figure 12.

Figure 12: (a) Minor E1. (b) Minor E2. (c) Minor E3. (d) Minor E4.

Minor E1 occurs if the pertinent vertex w is not externally active (i.e. a
second vertex z is externally active along the lower external face path strictly
between px and py). If this condition fails, then w = z. Minor E2 occurs if
the external activity connection from w to an ancestor uw of v is a descendant
of ux and uy. Minor E3 occurs if ux and uy are distinct and at least one is a
descendant of uw. Minor E4 occurs if either px �= x or py �= y.

As with minors A to D, there are symmetries to contend with and some
edges that are not needed to form a K3,3. For minors E1 and E2 it is easy to
handle the symmetries because they reduce to minors C and A, respectively.
Minor E3 does not require (x, w) and (y, v) to form a K3,3, and minor E4 does
not require (u, v) and (w, y) to form a K3,3. Moreover, note that the omission
of these edges must account for the fact that px or py may have been edge



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 267

contracted into x or y in the depiction of the minor (e.g. eliminating (w, y) in
minor E4 corresponds to eliminating the path (w, . . . , py) but not (py, . . . , y)).

As for symmetries, minor E1 in Figure 12(a) depicts z between x and w
along the path (x, . . . , z, . . . , w, . . . , y), but z may instead appear between
w and y along the path (x, . . . , w, . . . , z, . . . , y). Also, Figure 12(c) depicts
minor E3 with ux an ancestor of uy, but uy could instead be an ancestor of ux.
For minor E4, Figure 12(d) depicts px distinct from x (and py can be equal to
or distinct from y), but if px = x, then py must be distinct from y. Finally, the
symmetric cases have different edges that have to be deleted to form a K3,3.

9 Conclusion

This paper discussed the essential details of our new ‘edge addition’ planarity
algorithm as well as a straightforward method for isolating Kuratowski sub-
graphs. These algorithms simplify linear time graph planarity relative to prior
approaches. Our implementation has been rigorously tested on billions of ran-
domly generated graphs and all graphs on 12 or fewer vertices (generated with
McKay’s nauty program [18]). Our implementation, as well as independent
implementations such as [16, 25], have required only a few weeks to implement.

Our implementation of the edge addition method as well as a LEDA im-
plementation of our earlier vertex addition formulation in [2] have both been
found to be competitive with implementations of the well-known prior methods,
including being several times faster than LEDA’s Hopcroft-Tarjan and PQ-tree
implementations [5]. Although some PC-tree implementations exist [13, 20],
none that are suitable for empirical comparisons are currently available pub-
licly. Yet the empirical results in [5] suggest that PC-tree planarity can be
quite fast, with a similar performance profile to our own earlier vertex addition
method (based on the similarities of the algorithms).

However, in [5], edge addition methods were found to be faster, and only
our ‘edge addition’ implementation was found to be competitive with the Pigale
implementation of an algorithm based on the planarity characterization by de
Fraysseix and Rosenstiehl [7]. At the 11th International Graph Drawing Sym-
posium, Patrice Ossona de Mendez noted that some of the many optimizations
applied to the underlying graph data structures of Pigale could be applied to
further speed up our implementation. Even without these optimizations, our
implementation was found to be just as fast with a Gnu compiler and about 35
percent faster with a Microsoft compiler [4, 5].

Future research shall include reporting extensions of our method to outer-
planarity and three instances of the subgraph homeomorphism problem as well
as investigation of a fourth subgraph homeomorphism problem, the consecutive
ones problem and interval graph recognition, and the generation of maximal pla-
nar subgraphs, visibility representations, and alternate planar embeddings. Our
methods may also assist in the development of simplified, efficient embedders
for the projective plane and the torus.



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 268

References

[1] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ–tree algorithms. Journal of
Computer and Systems Sciences, 13:335–379, 1976.

[2] J. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simplified
O(n) planar embedding algorithm. Proceedings of the Tenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 140–146, 1999.

[3] J. M. Boyer. Additional PC-tree planarity conditions. In J. Pach, editor,
Proceedings of the 12th International Symposium on Graph Drawing 2004,
to appear in Lecture Notes in Computer Science. Springer-Verlag, 2004.

[4] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop mind-
ing your P’s and Q’s: Implementing a fast and simple DFS-based planarity
testing and embedding algorithm. Technical Report RT-DIA-83-2003, Di-
partimento di Informatica e Automazione, Universitá di Roma Tre, Nov.
2003.

[5] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop minding
your P’s and Q’s: Implementing a fast and simple DFS-based planarity
testing and embedding algorithm. In G. Liotta, editor, Proceedings of the
11th International Symposium on Graph Drawing 2003, volume 2912 of
Lecture Notes in Computer Science, pages 25–36. Springer-Verlag, 2004.

[6] N. Chiba, T. Nishizeki, A. Abe, and T. Ozawa. A linear algorithm for em-
bedding planar graphs using PQ–trees. Journal of Computer and Systems
Sciences, 30:54–76, 1985.

[7] H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs by
trémaux orders. Combinatorica, 5(2):127–135, 1985.

[8] N. Deo. Note on Hopcroft and Tarjan planarity algorithm. Journal of the
Association for Computing Machinery, 23:74–75, 1976.

[9] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle
River, NJ, 1999.

[10] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Com-
puter Science, 2:339–344, 1976.

[11] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.

[12] J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the
Association for Computing Machinery, 21(4):549–568, 1974.

[13] W.-L. Hsu. An efficient implementation of the PC-trees algorithm of shih
and hsu’s planarity test. Technical Report TR-IIS-03-015, Institute of In-
formation Science, Academia Sinica, July 2003.



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 269

[14] M. Jünger, S. Leipert, and P. Mutzel. Pitfalls of using PQ-trees in au-
tomatic graph drawing. In G. Di Battista, editor, Proceedings of the 5th
International Symposium on Graph Drawing ‘97, volume 1353 of Lecture
Notes in Computer Science, pages 193–204. Springer Verlag, Sept. 1997.

[15] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing
of graphs. In P. Rosenstiehl, editor, Theory of Graphs, pages 215–232, New
York, 1967. Gordon and Breach.

[16] P. Lieby. Planar graphs. The Magma Computational Algebra System,
http://magma.maths.usyd.edu.au/magma/htmlhelp/text1185.htm.

[17] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem.
SIAM Journal of Computing, 9(3):615–627, 1980.

[18] B. D. McKay. Practical graph isomorphism. Congressus Numerantium,
30:45–87, 1981.

[19] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and
Tarjan planarity testing algorithm. Algorithmica, 16:233–242, 1996.

[20] A. Noma. Análise experimental de algoritmos de planaridade. Master’s
thesis, Universidade de São Paulo, May 2003. in Portuguese.

[21] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms:
Theory and Practice. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1977.

[22] W.-K. Shih and W.-L. Hsu. A simple test for planar graphs. In Proceedings
of the International Workshop on Discrete Mathematics and Algorithms,
pages 110–122, 1993.

[23] W.-K. Shih and W.-L. Hsu. A new planarity test. Theoretical Computer
Science, 223:179–191, 1999.

[24] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
of Computing, 1(2):146–160, 1972.

[25] A.-M. Törsel. An implementation of the Boyer-Myrvold algorithm for em-
bedding planar graphs. University of Applied Sciences Stralsund, Germany,
2003. Diploma thesis, in German.

[26] D. B. West. Introduction to Graph Theory. Prentice Hall, Inc., Upper
Saddle River, NJ, 1996.

[27] S. G. Williamson. Embedding graphs in the plane- algorithmic aspects.
Annals of Discrete Mathematics, 6:349–384, 1980.

[28] S. G. Williamson. Combinatorics for Computer Science. Computer Science
Press, Rockville, Maryland, 1985.



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 270

A Graph Structure for Embedding

class Graph

n: integer, number of vertices
m: integer, number of edges
V: array [0 . . . n − 1] of Vertex
R: array [0 . . . n − 1] of RootVertex
E: array [0 . . . 6n − 1] of HalfEdge
S: stack of integers, the merge stack

class Vertex

link: array [0 . . . 1] of AdjacencyListLink
DFSparent: integer
leastAncestor: integer
lowpoint: integer
visited: integer
backedgeFlag: integer
pertinentRoots: list of integers
separatedDFSChildList: list of integers
pNodeInChildListOfParent: pointer into separatedDFSChildList

of DFSParent

class RootVertex

link: array [0 . . . 1] of AdjacencyListLink
parent: integer, index into V

class HalfEdge

link: array [0 . . . 1] of AdjacencyListLink
neighbor: integer
sign: 1 or -1

class AdjacencyListLink

type: enumeration of {inV, inR, inE }
index: integer, index into V, R or E



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 271

B Low-Level Operations

inactive(w) ::= not pertinent(w) and not externallyActive(w)
internallyActive(w) ::= pertinent(w) and not externallyActive(w)
pertinent(w) ::= backedgeFlag of w set or pertinentRoots of w is non-empty

externallyActive(w) ::=
leastAncestor of w less than v or
lowpoint of first member of w’s separatedDFSChildList is less than v

GetSuccessorOnExternalFace(w, win)
e ← link[win] of w
s ←neighbor member of e
if w is degree 1, sin ←win

else sin ← (link[0] of s indicates HalfEdge twin of e) ? 0 : 1
return (s, sin)

MergeBiconnectedComponent(S) ::=
Pop 4-tuple (r, rin, rc, rc

out) from S
if rin = rc

out,
Invert orientation of rc (swap links in rc and throughout

adjacency list)
Set sign of (rc, c) to -1
rc
out ← 1 xor rc

out

for each HalfEdge e in adjacency list of rc

Set neighbor of e’s twin HalfEdge to r

Remove rc from pertinentRoots of r
Use c’s pNodeInChildListOfParent to remove c from r’s

separatedDFSChildList

Circular union of adjacency lists of r and rc such that
HalfEdges link[rin] from r and link[rc

out] from rc are consecutive
link[rin] in r ← link[1 xor rc

out] from rc



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 272

C Walkup Pseudo-Code

Procedure: Walkup

this: Embedding Structure G̃
in: A vertex w (a descendant of the current vertex v being processed)

(1) Set the backedgeFlag member of w equal to v

(2) (x, xin) ← (w, 1)
(3) (y, yin) ← (w, 0)

(4) while x �= v
(5) if the visited member of x or y is equal to v, break the loop
(6) Set the visited members of x and y equal to v

(7) if x is a root vertex, z′ ←x
(8) else if y is a root vertex, z′ ← y
(9) else z′ ←nil

(10) if z′ �= nil
(11) c ← z′ − n
(12) Set z equal to the DFSParent of c
(13) if z �= v
(14) if the lowpoint of c is less than v
(15) Append z′ to the pertinentRoots of z
(16) else Prepend z′ to the pertinentRoots of z
(17) (x, xin) ← (z, 1)
(18) (y, yin) ← (z, 0)

(19) else (x, xin) ←GetSuccessorOnExternalFace(x, xin)
(20) (y, yin) ←GetSuccessorOnExternalFace(y, yin)



Boyer and Myrvold, Simplified Planarity , JGAA, 8(3) 241–273 (2004) 273

D Walkdown Pseudo-Code

Procedure: Walkdown

this: Embedding Structure G̃
in: A root vertex v′ associated with DFS child c

(1) Clear the merge stack S

(2) for v′

out in {0, 1}
(3) (w,win) ←GetSuccessorOnExternalFace(v′, 1 xor v′

out)
(4) while w �= v′

(5) if the backedgeFlag member of w is equal to v,
(6) while stack S is not empty,
(7) MergeBiconnectedComponent(S)
(8) EmbedBackEdge(v′, v′

out, w, win)
(9) Clear the backedgeFlag member of w (assign n)

(10) if the pertinentRoots of w is non-empty,
(11) Push (w,win) onto stack S
(12) w′ ← value of first element of pertinentRoots of w
(13) (x, xin) ←GetActiveSuccessorOnExternalFace(w′, 1)
(14) (y, yin) ←GetActiveSuccessorOnExternalFace(w′, 0)

(15) if x is internally active, (w,win) ← (x, xin)
(16) else if y is internally active, (w,win) ← (y, yin)
(17) else if x is pertinent, (w,win) ← (x, xin)
(18) else (w,win) ← (y, yin)

(19) if w equals x, w′

out ← 0
(20) else w′

out ← 1
(21) Push (w′, w′

out) onto stack S

(22) else if w is inactive,
(23) (w,win) ←GetSuccessorOnExternalFace(w, win)

(24) else assertion: w is a stopping vertex
(25) if the lowpoint of c is less than v and stack S is empty,
(26) EmbedShortCircuitEdge(v′, v′

out, w, win)
(27) break the ‘while’ loop

(28) if stack S is non-empty, break the ‘for’ loop


