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On the dangers of averaging across observers

when comparing decision bound models and

generalized context models of categorization
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Averaging across observers is common in psychological research. Often, averaging reduces the mea
surement error and, thus, does not affect the inference drawn about the behavior of individuals. How
ever, in other situations, averaging alters the structure of the data qualitatively, leading to an incorrect
inference about the behavior of individuals. In this research, the influence of averaging across ob
servers on the fits of decision bound models (Ashby, 1992a) and generalized context models (GCM;
Nosofsky, 1986) was investigated through Monte Carlo simulation of a variety of categorization condi
tions, perceptual representations, and individual difference assumptions and in an experiment. The re
sults suggest that (1) averaging has little effect when the GCMis the correct model, (2) averaging often
improves the fit of the GCM and worsens the fit of the decision bound model when the decision bound
model is the correct model, (3) the GCMis quite flexible and, under many conditions, can mimic the
predictions of the decision bound model, whereas the decision bound model is generally unable to
mimic the predictions of the GCM, (4) the validity ofthe decision bound model's perceptual represen
tation assumption can have a large effect on the inference drawn about the form of the decision bound,
and (5) the experiment supported the claim that averaging improves the fit of the GCM. These results
underscore the importance of performing single-observer analysis if one is interested in understand
ing the categorization performance of individuals.

The ability to categorize quickly and accurately is fun

damental to survival. Everyday, we make hundreds of

categorization judgments. Several detailed theories and

quantitative models have been proposed to account for the

perceptual and cognitive processes involved in categoriza

tion, the goal being to understand the categorization per

formance of individual behaving organisms. Despite the

emphasis on individuals, it is common to analyze aggre

gate data-that is, data averaged across observers.

The use ofaggregate data to inform us about the nature

of individual behavior is common in psychology. The ef

fects of averaging on psychological inquiry have been

studied in some domains (Ashby, Maddox, & Lee, 1994;

Estes, 1956; Massaro & Cohen, 1993; Siegler, 1987), but,

in general, it is assumed that averaging does not affect

the underlying structure of the data. Specifically, the im

plicit assumption is that the data represent a measure of
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some psychological construct plus measurement error,

which may be reduced by averaging. Under these condi

tions, averaging will affect only the measurement error,

and inferences about individual behavior can be drawn

meaningfully from the aggregate data.

However, another possibility exists. Averaging can alter

the structure of the data in such a way that the correct

model of individual behavior provides a poor account of

the aggregate data and an incorrect model of individual

behavior provides a good account of the aggregate data.

Under these conditions, one might infer (erroneously) that

the incorrect model provides a meaningful description of

individual behavior. For example, if several observers

show all-or-none learning but on different learning tri

als, each individual learning profile would be well de

scribed by a step function, and an all-or-none learning

model would provide the best description of individual

behavior. The aggregate profile, on the other hand, would

reveal a gradual increase in learning. The aggregate data

would be best described by an incremental learning model

and would be poorly described by an all-or-none model,

even though each individual showed all-or-none learning.

In this case, the analysis of aggregate data leads to an in

correct inference regarding individual behavior.

The main focus ofthe present research was to examine

the effects of averaging on two classes of categorization

models: decision bound models (Ashby, 1992a; Ashby &

Maddox, 1993; Maddox, 1995; Maddox & Ashby, 1993,

1996) and generalized context models (GCMs; McKinley

& Nosofsky, 1995, 1996; Nosofsky, 1986, 1989, 1992).
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MODEL ASSUMPTIONS

servers. The fourth and fifth sections are devoted to the

simulations. The sixth section describes an empirical ap

plication, and the final section summarizes the findings

and discusses the implications for future research.

(1)

(3)

where Xi represents the location in the MDS psycholog

ical space assigned to Stimulus i and xp i is the perceptual

effect on any given trial. In other words, repeated pre

sentations of the same stimulus yield the same percep

tual effect on each trial. Thus, the perceptual effect

acr?ss trials can be represented by a single point, Xi' In

a simple two-category problem, when required to cate

gorize a target exemplar, the probability of responding

Category A is given by the summed similarity of the tar

get exemplar to all Category A exemplars stored in mem

ory divided by the summed similarity to all relevant cat

egory exemplars stored in memory. In other words, the

probability that Stimulus i is classified as a member of

Category A, P(AI i), is given by

The models are outlined only briefly here. Detailed

discussions can be found in numerous articles (e.g., Ashby,

1992a; Ashby & Maddox, 1993, 1994; Maddox, 1992;

Maddox & Ashby, 1993, 1996, 1998; McKinley & Nosof

sky, 1995, 1996; Nosofsky, 1986, 1987, 1998).

Generalized Context Model

The GCM assumes that each exemplar is represented

by a point in some multidimensional scaling (MDS) psy

chological space. In other words,

where} E CJrepresents all stored exemplars ofCategory

J, 7"Jij is the similarity of Stimulus i to exemplar i. f3
(which ranges from 0 to 1) is the bias toward response A,

and y= 1 (the yparameter will be discussed shortly).

Similarity is assumed to be a monotonically decreasing

function of interpoint distance where

When e = 1, the exponential decay similarity function
results, and when e= 2, the Gaussian similarity function

results (Shepard, 1987). Assuming two perceptual di

mensions, XI and X2' the interpoint distance is given by

I

di j = c[w 1xli -xlj Ir +(l-w)1 x2i -X2j Ir
]" , (4)

where w (which ranges from 0 to 1) is a parameter that

represents the amount of selective attention to Dimen

sion 1,c is a scaling constant, and r determines the distance

These two model classes were chosen for three reasons.

First, these are two of the most successful models ofcat

egorization (see, e.g., Maddox & Ashby, 1993; McKin

ley & Nosofsky, 1995, 1996). Second, previous research

suggests that averaging may have a large effect on the

structure ofdata generated from these two models (Ashby,

Lee, & Balakrishnan, 1992; Ashby et aI., 1994; Maddox

& Ashby, 1993). Finally, the implications of this work

are extensive, because variants of the GCM have been ap

plied in perceptual and cognitive psychology (Lamberts,

1995; McKinley & Nosofsky, 1995, 1996;Nosofsky, 1986,

1987, 1989, 1991, 1992), social psychology (E. R. Smith

& Zarate, 1992), developmental psychology (L. B. Smith,

1989), and several other areas of psychology. Because

most of these studies used aggregate data, the present re

sults are extremely relevant.

Two factors have been identified that exert a large in

fluence on categorization performance. First, the form of

the categorization rule can have a large effect on perfor

mance. Inparticular, a distinction is often made between

categorization rules that require (decisional) selective at

tention I and those that require attention to all stimulus di

mensions (Ashby & Lee, 1991; Ashby & Maddox, 1994;

McKinley & Nosofsky, 1996; Nosofsky, 1986). Second,

the nature of the perceptual representation can have a

large effect on performance. Inparticular, a distinction is

made between stimulus dimensions that are perceptually

separable and those that are perceptually integral (see,

e.g., Ashby & Maddox, 1994; Ashby & Townsend, 1986;

Garner, 1974; Maddox, 1992; Shepard, 1964). In short,

perceptually separable dimensions are characterized by

fairly simple perceptual representations, whereas percep

tually integral dimensions yield complex perceptual rep

resentations (see details below). Interestingly, some re

search suggests an interaction between the nature of the

perceptual representation and the ability to attend selec

tively. For example, Nosofsky (1987; see, also, Garner,

1974; McKinley & Nosofsky, 1996) suggests that selec

tive attention is more difficult with integral-dimension

than with separable-dimension stimuli.

Monte Carlo simulations were used in the present study

to investigate the effects ofaveraging on fits ofthe decision

bound model and the GCM when perceptual separability

or perceptual integrality was satisfied and when selec
tive attention or attention to all dimensions was required.

Twosets of Monte Carlo simulations were performed. In

the first set, data were generated from a linear decision

bound model, and both the GCM and the decision bound

models were applied to the individual and aggregate ob

server data. In the second set, data were generated from

the GCM, and both the GCM and the decision bound

models were applied to the individual and aggregate ob

server data. An experiment was also conducted to test the

empirical validity of the simulation results.

The next (second) section briefly outlines the basic as

sumptions of the GCM and decision bound models and

outlines the separability-integrality distinction within

each framework. The third section reviews the previous

research devoted to the issue of averaging across ob-



sponse to be generated. The experienced observer uses the

following decision rule:

If h (x
p i

) + ec < 0; then respond "A";

where h determines the shape and location ofthe decision

bound, and ec (normally distributed with mean 0 and vari

ance aD represents the effects of criterial noise. Criterial

noise implies that the memory for the location of the de

cision bound can vary from trial to trial. For simplicity, no

criterial noise was assumed (i.e., ec= 0, and (J~ = 0). De

pending on the nature of the function h, the decision

bound can take on one of many forms. In this article, we

restrict attention to either a linear or a quadratic decision

bound. A case in which the decision bound is linear is de

picted in Figures lb and l d, A case in which the decision

bound is quadratic is depicted in Figures lc and l e.

Within the framework of the decision bound model,

the separability or integrality of the stimuli is determined

by the relationship among the perceptual distributions

for each stimulus (see, e.g., Ashby, 1988; Ashby & Lee,

1991; Ashby & Maddox, 1991, 1994; Ashby & Townsend,

1986; Maddox, 1992; Maddox & Ashby, 1996). Percep

tual separability is satisfied in Figures 1d and 1e. Specif

ically, perceptual separability holds along Dimension 1 if

the perceptual effects along Dimension 1 are unaffected

by the level along Dimension 2-in other words, if the

marginal perceptual distributions along Dimension I are

identical across levels of Dimension 2 (see Ashby &

Townsend, 1986, for details). Perceptual integrality de

notes a violation of perceptual separability and holds in

Figures lb and Ic.

Before proceeding, it is worth discussing briefly the

important, but often misunderstood, difference between

the operational definitions of integrality and separability

assumed by the GCM (see, e.g., Gamer, 1974) and per

ceptual separability and perceptual integrality as defined

in decision bound theory (Ashby & Townsend, 1986).

The integrality and separability of a set of stimuli, as op

erationally defined, is based on the results of a series of

experimental tests. For example, ifthe city-block distance

metric (r = 1) provides a better account of a set of simi

larity ratings than the Euclidean distance metric (r = 2),

the stimuli are defined as separable. If the Euclidean dis

tance metric provides a better account of a set of similar

ity ratings than the city-block distance metric, the stimuli

are defined as integral. Perceptual separability and per

ceptual integrality, on the other hand, are theoretically

motivated, rather than operationally defined (see Ashby

& Maddox, 1994; Ashby & Townsend, 1986, for details).

Ifa pair of stimulus dimensions have been found to be

separable, on the basis of a series of operational tests, in

the GCM and DEM a city-block distance metric (Equa

tion 4) and an exponential decay similarity function

(Equation 3) generally will be assumed (Nosofsky,

1984). If a pair of stimulus dimensions have been found

to be integral, on the basis ofa series ofoperational tests,

in the GCM and DEM a Euclidean distance metric and a
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metric.? When r = I, the city-block metric results, and

when r = 2, the Euclidean metric results.

Ashby and Maddox (1993) proposed the deterministic

exemplar model (DEM) that uses the Equation 2 response

rule but leaves yas a free parameter to be estimated from

the data. The yparameter allows the model to predict re

sponding that is more deterministic (i.e., less based on

probability matching) than that predicted by the GCM.

Notice that the GCM is a special case ofthe DEM in which

y= I. The GCM predicts probability matching because

the GCM response probabilities depend exclusively on the

relative strength ofevidence for the two categories. In the

DEM, when y > I, overmatching is predicted, and re

sponding is more like that predicted from an all-or-none

model. In other words, more extreme response probabil

ities (near 0 or 1) are predicted. When y < 1, under

matching is predicted, and responding is less determin

istic than that predicted by the GCM. In other words,

response probabilities near .5 are predicted.

Within the framework of the GCM (and the DEM), the

integrality or separability of the stimulus dimensions is

determined by the nature of the distance metric in Equa

tion 4. Specifically, stimulus dimensions are defined as

separable when a city-block distance metric (i.e., r = I) is

used and as integral when a Euclidean distance metric (i.e.,

r = 2) is used (Maddox, 1992).

Decision Bound Model

Decision bound models assume that, because of stim

ulus noise, sensory noise, and perceptual noise, there is

trial-by-trial variability in the perceptual representation

of all stimuli (Ashby & Lee, 1993). Thus, over trials, a

stimulus is represented by a multivariate probability dis

tribution ofperceptual effects. Let the vector Xi represent

the observer's mean perceptual effect for Stimulus i. Be

cause of these noise sources, the observer's percept of

Stimulus i, on any trial, is represented by

(5)

where ep i is generally assumed to be multivariate normally

distributed with mean vector 0 and covariance matrix

~ p i ' In other words, repeated presentations of the same

stimuli yield, as a rule, different perceptual effects. Thus,

over trials, the stimulus is represented by a distribution

of perceptual effects. The experienced observer divides

up the perceptual space into separate regions and assigns

a category response to each region. The partitions between

the separate category response regions are called decision

bounds. On each trial, the observer determines into which

region the perceptual effect falls and emits the associated

response. Notice that the information accessed on each

trial to be used to generate a categorization response is

very different from that postulated in the GCM. In the

GCM, a categorization response is generated by access

ing all exemplar information in memory on each trial. In

the decision bound model, trial-by-trial exemplar infor

mation is important in the assignment ofresponses to re

gions, but exemplar information stored in memory does

not need to be accessed in order for a categorization re-

otherwise, respond "B", (6)
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Figure 1. (a) A schematic representation of a typical catego
rization problem. The label "A" denotes stimuli assigned to Cat
egory A and the label "B" denotes stimuli assigned to Category B.
Hypothetical contours of equal likelihood for this categorization
problem when (b) a complex perceptual integrality and a linear
decision bound are assumed, (c) a complex perceptual integral
ity and a quadratic decision bound are assumed, (d) a stimulus
invariant, a 2 I perceptually separable representation and a lin
ear decision bound are assumed, and (e) a stimulus-invariant,
a 2 ( perceptually separable representation and a quadratic deci
sion bound are assumed. PS, perceptual separability; PI, per
ceptual integrality.
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Gaussian similarity function generally will be assumed.

If the marginal perceptual distributions along a stimulus

dimension are equal, perceptual separability is satisfied.

This requires that the means and variances be equal. If

the means or variances are not equal, perceptual separa

bility is violated.

Often, when applying the decision bound model to cat

egorization data, a simple perceptually separable repre

sentation is assumed. Specifically, it is often assumed that

the perceptual variance is equal across dimensions and stim

uli and that the covariance terms are zero. This is termed

a stimulus-invariant, (121 perceptually separable repre

sentation because the perceptual distribution is identical

for all stimuli (i.e., stimulus invariant), and the percep

tual covariance matrix is a scalar multiple ofthe identity

matrix (i.e., Lpi = Lp= (121, where I is the identity ma

trix). Under these conditions, and assuming two percep

tual dimensions, the contours ofequal likelihood that de

scribe the perceptual distributions are always circles with

a constant diameter, and perceptual separability is satis

fied. Consider, for example, the categorization problem

depicted in Figure 1a. In this problem, there are 10 two

dimensional stimuli, 6 assigned to Category A, and 4 to

Category B. In Figures 1dand Ie, a stimulus-invariant, (121

perceptually separable representation is assumed. Fig

ures 1band 1c depict a much more complex perceptual

representation in which stimulus invariance is violated

(i.e., the contours ofequal likelihood differ across stimuli)

and the perceptual variances differ for the two dimensions.

In this case, perceptual integrality holds.

Many (but not all) applications of the decision bound

model assumed a stimulus-invariant, (121 perceptually

separable representation. (For applications in which this

simple representation was not assumed, see Ashby & Lee,

1991; Maddox & Ashby, 1996.) This simple representa

tion has (at least) two important properties. First, without

additional evidence to suggest a more complex percep

tual representation, this is the most parsimonious initial

assumption. Second, and perhaps more important, this

very simple perceptual representation produces a simi

larity function that is equivalent to the measure used by

the GCM and DEM when equal amounts ofattention are

allocated to each stimulus dimension-that is, when w =

0.5 from Equation 4 (Ashby & Perrin, 1988; see, also,

Ashby & Maddox, 1993). It is important to note that this

assumption may be incorrect in some cases. In particular,

this representation may be inappropriate when the stimu

lus dimensions are characterized by complex perceptual

integralities, exposure duration is short, or response time

is emphasized over accuracy. Thus, it is important to un

derstand the effects ofcomplex perceptual integralities on

the ability ofthe models to account for categorization data.

EFFECTS OF AVERAGING

Recently, Ashby et al. (1994) examined the influence

of averaging on fits ofMDS models to similarity ratings

(see, e.g., Kruskal, 1964a, 1964b; Shepard, 1962a, 1962b;
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Torgerson, 1958) and on fits of the similarity choice
model (SCM) to identification data (Luce, 1963; Shepard,
1957). Similarity ratings were generated from a model
that was incompatible with the distance-based MDS model
(see, e.g., Shepard, 1957). Specifically, similarity ratings
were generated from a model for which the value ofr from
Equation 4 was less than 1. Distance-based models are
valid only when r ;;::: 1. When the value of r ;;::: 1, the tri
angle inequality holds. (The triangle inequality states
that the distance between two stimuli, i and), plus the dis
tance between the stimuli} and k must be greater than or
equal to the distance between stimuli i and k, for any three
stimuli, i.], and k.) When r < 1, the triangle inequality
is violated. As a result, the MDS model provided a poor
account of the individual observer data (generated from
a model incompatible with the MDS model). However,
when the similarity ratings were averaged, the model that
generated the individual observer data provided a poor

account of the averaged data, and the distance-based MDS
model provided an excellent account of the averaged data.
Ashby et al. (1994) concluded that this result was due to
the fact that the averaging operation artificially increased
the symmetry in the data (i.e., increased the likelihood
that the similarity between the stimuli i and) was equal,
or nearly so, to the similarity between the stimuli} and i),

thus eliminating violations of the triangle inequality. In
the individual observer data, there were 33 triangle in
equality violations on average (out of a possible 84 in
each data set). In the averaged data, on the other hand, there
were no violations of the triangle inequality. Similar re
sults were obtained for the identification analyses. Specif
ically, poor fits of the SCM were obtained for individual
observer data, but excellent fits of the SCM were obtained
for the averaged data (see, also, Ashby et aI., 1992).

Although clearly relevant to the study of similarity
and identification, these results also have important im
plications for categorization research, in particular ap
plications of the GCM, for two reasons. First, the GCM
assumes that category exemplars are represented percep
tually as points in some MDS psychological space, where
similarity is inversely related to interpoint distance. Sec
ond, the GCM utilizes the same response rule as does the

SCM. In fact, the GCM is a special case of the SCM in
which similarity is inversely related to distance in an MDS
psychological space. It is likely, then, that the GCM will
also benefit from averaging.

A study by Maddox and Ashby (1993) provides some
support for this claim. Maddox and Ashby (1993) ap
plied the GCM, and the linear and quadratic decision
bound models (both of which assumed the stimulus
invariant, a 2I perceptually separable representation, de
scribed above) to two data sets collected by Nosofsky
(1986, 1989). Both studies (Nosofsky, 1986, 1989) used
the same stimulus dimensions and approximately equiv
alent categorization conditions. The major difference be
tween the two studies was that the Nosofsky (1986) ob
servers were highly experienced, and the data were
analyzed separately for each observer, whereas the Nosof
sky (1989) observers were relatively inexperienced, and

the analyses were based on data collapsed across ob
servers. Decision bound models generally provided a
large improvement in fit over the GCM when applied to
the single, highly experienced observer data, but the
models provided nearly equivalent fits when applied to
the averaged, novice observer data. These data suggest
that the GCM might benefit from averaging. Weturn now
to a set of Monte Carlo simulations that test this hypoth
esis and attempt to outline the conditions under which av
eraging alters the structure of the data in this manner.

DECISION BOUND MODEL SIMULATIONS

This section summarizes the simulation approach
taken when the decision bound model was assumed to be

correct. A series of Monte Carlo simulations were con
ducted to examine the effects of averaging across ob
servers on the fits of the GCM, DEM, the linear decision

bound model, and the quadratic decision bound model.
Each simulated experiment utilized 10 hypothetical ob

servers who behaved in accordance with decision bound
theory. The "true" model (i.e., the model that accurately
described the individual observer performance) assumed
each observer compared the perceptual effect on each trial
with a fixed linear decision bound that partitioned the per
ceptual space into a Category A region and a Category B
region. Thus, each hypothetical observer used a single
fixed linear decision bound on every trial. However, each
observer used a different linear decision bound (i.e., the
slope and intercept of the linear decision bound was dif
ferent for each hypothetical observer). Two hundred per

cepts were sampled randomly from each perceptual dis
tribution. Across simulations, assumptions about the
categorization rule (selective attention or attention to
both dimensions), perceptual representation (perceptual
separability or perceptual integrality), and individual
differences in the observers' decision bound were varied
systematically. A summary ofthe conditions investigated
is outlined in Table 1. The first column denotes the cat
egorization condition, and the second and third columns
denote the decision bound assumptions.

Categorization Rules
and Perceptual Representations

This report focused on two qualitatively different cat
egorization rules. The (decisional) selective attention

(SA) rule required that the observer place no importance,
during the categorization decision process, on the dimen
sional value along one (irrelevant) stimulus dimension
and set a criterion along the other (relevant) stimulus di
mension. This is referred to as decisional selective atten
tion because, although the observer may be aware (per
ceptually) of the value along the irrelevant dimension, it
shouldnot enter into the categorization decision. The equal

attention (EA) rule required that the observer place ap
proximately equal importance, during the categorization
decision process, on each stimulus dimension.

Two different SA and EA categorization rules were
utilized. For the perceptually integral simulations, the
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Table 1
Decision Bound Assumptions for the Monte Carlo

Simulations ofthe Linear Decision Bound Model

Slope and Intercept Assumptions

Condition

Selective attention

Equal attention

Selective attention

Equal attention

(Approximately)

Optimal Decision Bounds Nonoptimal Decision Bounds

Perceptual Integrality Application

SA; intercept variability No SA; slope and intercept variability

Not applicable Slope = 1.25, intercept = - 24;

slope and intercept variability

Perceptual Separability Application

SA; intercept variability No SA; slope and intercept variability

Slope = I, intercept = 0; Slope < or > I, intercept < or > 0;

slope and intercept variability slope and intercept variability

Note-s-The slope and intercept values specified are population mean decision bound parameters. In

the perceptual integrality application the slope and intercept standard deviations were .4 and 4.0, re

spectively. In the perceptual separability application, the slope and intercept standard deviations were

.2 and.4, respectively. SA, (decisional) selective attention.

stimulus-response mappings for the SA and EA catego

rization rules were similar to those from a study by McKin

ley and Nosofsky (1996; Experiment 1). The stimulus

to-response mappings are depicted in Figures 2a and 2b,

where the "A" denotes stimuli assigned to Category A,

the "B" denotes stimuli assigned to Category B, and the

"T" denotes unassigned transfer items. The simulations

were modeled after experiments in which observers par

ticipated in a training phase followed by a transfer phase.

During the training phase, only the Category A and Cat

egory B exemplars were presented. During the transfer

phase, these original training items were supplemented

with a set of unassigned transfer items. These catego

rization problems were chosen not because they are spe

cial in any way, but rather because, in the original exper

iment, the stimuli were iso-hue Munsell color chips that

varied in saturation and brightness, which are highly in

tegral dimensions. As we will see shortly, knowledge of

the Munsell color system and other color systems will be

used to estimate perceptually integral representations for

these stimuli. For the perceptually separable simulations,

the stimulus-response mappings for the SA and EA cat

egorization rules were similar to those from a study by

Nosofsky (1989). The stimulus-to-response mappings

are depicted in Figures 2c and 2d. These categorization

problems were chosen because, in the original experi

ment, the stimuli were a semicircle with an embedded ra

dial line, which are thought to be separable (however, see
Ashby & Lee, 1991; Ashby & Maddox, 1990).

Perceptual integrality application. This application

focused on two category structures used by McKinley
and Nosofsky (1996). The stimuli were iso-hue Munsell

color chips that varied in saturation and brightness,

which are thought to be highly integral (Garner, 1974).

To simulate data from a perceptually integral represen

tation, one must define the nature of this representation.

Specifically, the parameters of each perceptual distribu
tion (i.e., the means, variances, and covariance) must be

defined. One approach would be to investigate arbitrary

representations (such as a mean shift or variance shift in-

tegrality; see Ashby & Maddox, 1994; Maddox, 1992)

that satisfy perceptual integrality, but this seems less

than satisfactory. Rather it would be advantageous to use

knowledge of the Munsell color system to guide the

choice of perceptual representations. The Munsell color

system was developed in an attempt to identify a set of

physical dimensions that correspond closely to possible

psychological dimensions ofcolor. The Munsell color sys

tem is a discrete (physical) system, whereas the possible

psychological dimensions ofcolor-hue, saturation, and

brightness-are continuous valued. Of course, other

psychological representations have been offered (e.g.,

Wandell, 1995). Unfortunately, the Munsell color system

is discrete, and, in order to specify a perceptual distribu

tion, a continuous-valued space is necessary. Fortunately,

several transformations have been developed that allow

one to transform from the discrete-valued Munsell space

to the continuous-valued CIE color space (Brainard,

1995; Wandell, 1995; Wyszecki & Stiles, 1982). The

transformations and all other details of the simulations

are outlined in detail in Appendix A.3 The resulting per

ceptual representations are depicted in Figures 3a and

3b. Notice that the stimulus coordinates for the EA con

dition (Figure 2b) show a generally negative trend, whereas

the means of the perceptual distributions for this condi
tion (Figure 3b) show a generally positive trend. This oc

curs for two reasons. First, the transformation from the
Munsell space to the color system in Figure 3 is nonlinear.

Second, as part of this transformation, a rotation was

performed to bring the Dimension 2 perceptual distribu

tion means in the SA condition (Figure 3a) in line with

the Dimension 2 stimulus coordinates in Figure 2a. This

rotation was also applied to the perceptual distributions
in Figure 3b. The nonlinearity ofthe color transformation

along with the rotation led to the different trends in Fig

ures 2b and 3b. (The details are outlined in Appendix A.)

Perceptual separability application. This applica

tion focused on two categorization conditions used by

Nosofsky (1989). The stimuli varied in the size ofa semi

circle and the orientation of an embedded radial line,
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Figure 2. Schematic illustrating the categorization problems for the (a) selective at
tention and (b) equal attention conditions of the perceptual integrality application for
the (c) selective attention and (d) equal attention conditions ofthe perceptual separa
bility application. The label "A" denotes stimuli assigned to Category A, the label "B"
denotes stimuli assigned to Category B, and the label "T" denotes unassigned trans
fer stimuli. SA, selective attention; EA, equal attention.

which are thought to be separable. To simulate data in this

application, the simple stimulus-invariant, a 2I percep

tually separable representation (discussed earlier) was

assumed. The resulting perceptual representations are

depicted in Figures 3c and 3d. One other stimulus

invariant, perceptually separable representation was ex

amined. In this representation, the variance along Dimen

sion 1 was larger than the variance along Dimension 2.

Nosofsky (1989) found discriminability differences

across dimensions, so this seemed to be a reasonable per

ceptual representation to investigate. The simulation re

sults were nearly identical to those for the stimulus

invariant, a 2I perceptually separable representation, so

this representation will not be discussed further.

Decision Bounds
The next step in the simulation approach was to spec

ify the slope and intercept of the linear decision bound

used by each hypothetical observer. For each categoriza

tion condition and perceptual representation, two types

of decision bound assumptions were investigated. The

first assumed that each observer used a linear decision

bound that was approximately optimal. The second as

sumed nonoptimal decision bounds. Although some ob

servers were assumed to use nonoptimal decision bounds,

all the observers with low accuracy rates were excluded.

Specifically, in the perceptual integrality application, all

the observers with accuracy rates lower than 85% were

excluded. In the perceptual separability application, all the

SA observers whose accuracy was lower than 80% and

all the EA observers whose accuracy was lower than 70%

were excluded. These values are similar to those used in

the literature (e.g., McKinley & Nosofsky, 1996; Nosof

sky, 1989). The second column ofTable 1 denotes the as

sumptions made when the decision bound was approxi

mately optimal, and the third column denotes the assump

tions made when the decision bound was non optimal. In

the EA condition of the perceptual integrality applica

tion, no linear decision bound was approximately opti

mal. In other words, nearly optimal performance (i.e.,

performance that maximized accuracy) required the use

of a nonlinear decision bound. Therefore, only nonopti

mal (linear) decision bounds were investigated. An illus

tration of the decision bound assumptions for the percep

tual integrality and perceptual separability applications

are depicted in Figures 4 and 5, respectively.

To summarize, when optimality was assumed, each

observer attended selectively in the SA condition and at

tended approximately equally to each dimension in the

EA condition. When optimality was violated, it was gen-
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Figure 3. Contours of equal likelihood for the (a) selective attention and (b) equal
attention conditions when perceptual integrality holds and for the (c) selective atten
tion and (d) equal attention conditions when perceptual separability holds. SA, selec
tive attention; EA, equal attention.

erally assumed that half of the observers used one type
of bound and half used another type of bound. The idea
that averaged categorization data contain a mixture of
data collected from individuals using different decision
strategies forms the basis for some recent categorization
models, such as Ashby, Alfonso-Reese, Turken, and Wal
dron's (1998) competition between verbal and implicit
systems (COVIS) model and Nosofsky, Palmeri, and
McKinley's (1994) rule-plus-exceptions (RULEX) model.

Because the goal ofthis research was to examine the in
fluence of averaging across observers, it was crucial that
reasonable individual differences exist among observers.
Although individual differences can be specified at one of
many levels, the strategy chosen here was to assume that
each observer used a slightly different decision bound.
The decision bound parameters specified in Table I and in
Appendix A (see also Figures 4 and 5) might be better
termed the population mean decision bound parameters.

In other words, the decision-bound slope and intercept
values outlined in Table I and in Appendix A represent
the mean (or average) slope and intercept from the popu

lation distribution of hypothetical observers. The deci
sion-bound slope and intercept for each observer is deter
mined by taking a random sample from the population
slope distribution and a random sample from the popula
tion intercept distribution. Both distributions are assumed

to be univariate normal, with the mean and variance out
lined in Appendix A. Notice that, although the exact lin
ear decision bound (i.e., slope and intercept) differs across
observers, each individual observer uses a fixed linear de
cision bound and thus yields responding that is highly de
terministic (i.e., all-or-none responding).

Models Tested
Several models were applied to the data from each ob

server and to the aggregate data. Three decision bound
models were applied to the data. One model was the
"true" decision bound model (denoted DBMTRUE).
This model assumed the correct perceptual representa
tion and a linear decision bound. The second model was
a linear decision bound model that assumed a stimulus
invariant, a 21perceptually separable representation (de
noted GLCSI for general linear classifier with stimulus
invariance). For the perceptual separability application,
the DBMTRUE and GLCSI models are equivalent, be
cause they make identical perceptual representation and
decision bound assumptions. Thus, when applied to the
data, the two models will yield identical fit values (see
Figure 7). For the perceptual integrality application, the
DBMTRUE and GLCSI models make different percep
tual representation assumptions but identical decision
bound assumptions. A comparison of these two models
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Figure 4. Decision bound assumptions for the perceptual inte
grality application when (a) selective attention and optimal
bounds, (b) selective attention and non optimal bounds, and
(c) equal attention and nonoptimal bounds are assumed. SA, se
lective attention; EA, equal attention.

in the perceptual integrality application will allow us to

explore the effects ofincorrect perceptual representation

assumptions on the ability ofthe decision bound model

to account for the data. The third model was a quadratic

decision bound model that assumed a stimulus-invariant,
(i21 perceptually separable representation (denoted

GQCSI for general quadratic classifier with stimulus in
variance). For the perceptual separability application,

this model makes the correct perceptual representation as

sumptions but assumes a quadratic decision bound. For

the perceptual integrality application, this model makes

an incorrect perceptual representation assumption but al

lows for a quadratic decision bound. A comparison ofthis

model with the DBMTRUE and GLCSI models in the

perceptual integrality application will allow us to explore

the ability of the extra decision bound parameters to ac

commodate for the incorrect perceptual representation

assumptions.
In order to apply the GCM and DEM to categorization

data, one must select a distance metric and similarity

function (see Equations 4 and 3, respectively). Within

the MDS literature, a city-block distance metric defines

separable-dimension stimuli, and a Euclidean metric de

fines integral-dimension stimuli. In the original formu
lation of the GCM, it was assumed that the city-block

metric should be paired with the exponential decay sim

ilarity function and that the Euclidean metric should be

paired with the Gaussian similarity function (see Nosof

sky, 1984, for details). Recently, these assumptions have

been relaxed, and the most common applications of the

GCM assume a Euclidean distance metric and an expo

nential decay similarity function. All three versions ofthe

GCM and DEM were applied to the data. In all cases, the

Euclidean/Gaussian version provided the best account of

the data. Thus, we restrict attention to this version of the

models. The models were applied to the data from each

individual observer, using a maximum likelihood esti

mation procedure (see Ashby, 1992b; Maddox & Ashby,

1993; Wickens, 1982, for details). The individual ob

server data were then averaged, and the models were ap

plied to the aggregate data, again using maximum likeli

hood. Specifically, the model parameters were estimated

by minimizing the negative of the natural log of the like

lihood function (i.e., -lnL). Because the decision bound

models and GCM are not nested (i.e., one model cannot

be derived from the other by setting some model param

eters to constants), it could be argued that Akaike's in

formation criterion (AIC; see Ashby, 1992b, for details),

which penalizes a model for each free parameter, would
be more appropriate. In the present application, however,

the goal was to have models that yield identical trial-by

trial predictions have identical fit values. This approach

simplified the qualitative model comparisons. For exam

ple, if the GQCSI and GLCSI models yielded exactly the
same trial-by-trial predictions, the -lnL values would be

identical. However, based on AIC, the GQCSI fit would

be worse simply because of the additional parameters.
Even so, all the general trends to be discussed shortly

would hold for both -lnL and AIC.

Results
The results for the perceptual integrality and percep

tual separability applications are depicted in Figures 6

and 7, respectively. In each case, the smaller the value

along the ordinate, the better the fit ofthe model. The five

bars on the left of each figure depict the averaged fits to

the individual observer data (denoted so ave), and the

five bars on the right depict the fits to the averaged data

(denoted ave obs).
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Figure 5. Decision bound assumptions for the perceptual separability application
when (a) selective attention and optimal bounds, (b) selective attention and nonopti
mal bounds, (c) equal attention and optimal bounds, and (d) equal attention and
nonoptimal bounds are assumed. SA, selective attention; EA, equal attention.

DBM versus the GCM and OEM. Two results stand

out when comparing the decision bound models with the

GCM and DEM. First, in general, when each observer

used a decision bound that was approximately optimal
(Figures 6a, 7a, 7c), the fits ofthe averaged data were very

similar to those of the individual observer data. If, in ad

dition, perceptual separability was satisfied (Figures 7a,

7c), the fits ofall the models were nearly equal. These re

sults were expected, because previous research suggests

that, under certain conditions, the equivocality contour

(i.e., the set of coordinates for which the summed simi

larity to Category A is equal to the summed similarity to

Category B) predicted by the GeM (and DEM) is very

similar to the optimal decision bound (Ashby & Alfonso

Reese, 1995; Ashby & Maddox, 1993; Nosofsky, 1990).

The GCM (and DEM) parameters allow the model enough

flexibility to account for small deviations from the opti

mal bound and, thus, can mimic the performance of ob

servers who behave approximately optimally. The fact

that averaging had little effect on the model fits also

seems reasonable. Because each observer used a similar

decision bound, the averaging operation affected only the
measurement error and, thus, led to little or no change in

the fit of the models to the averaged data.

Second, when each observer's decision bound was

nonoptimal (Figures 6b, 6c, 7b, 7d), the averaging opera-

tion yielded a large improvement in fit for the GCM (and

usually the DEM) and a decrement in fit for the decision

bound models, in particular, the DBMTRUE. This effect

was magnified when perceptual integrality was satisfied.

In other words, although the DBMTRUE was clearly su

perior to the GCM (and DEM) at the level of the indi

vidual observer data, once averaged, the superiority was

strikingly reduced. Clearly, the averaging operation led

to a qualitative change in the nature of the data. However,

the data were not altered in a haphazard fashion; rather,

the data changed in such a way that the ability ofthe GCM

and DEM to describe the data was improved and the abil

ity of the true model to describe the data worsened.

GCM versus OEM. A comparison of the GCM and

DEM fits yielded the following results. First, the fits of

the GCM and DEM to the average data were more simi
lar than the GCM and DEM fits to the individual ob

server data. The DEM advantage for the single observer

data was expected, because the decision bound model

yields responding that is more deterministic (i.e., less

based on probability matching) than that predicted by the

GCM. The DEM can completely or partially account for

this level ofresponse determinism by increasing the value
of the yparameter. However, when highly deterministic

individual observer data are averaged, the aggregate data
appear much less deterministic (recall the example of
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a: SA; Optimal Bound all-or-none learning in the introduction). Since the GCM

predicts probability matching, it is better able to account

for the aggregate than for the individual observer data.

Second, the fits of the GCM and DEM to the individual

observer data were more similar in the SA than in the EA

condition. The GCM provided a poor account of the indi

vidual observer data in both cases, and the DEM provided

a poor account of the data in the SA condition. Interest

ingly, however, when perceptual separability was satisfied

in the EA condition, the DEM fit was nearly identical to

that ofthe DBMTRUE. In order to account for the decision

bound used in the SA condition, the GCM and DEM must

attend more heavily to Dimension 2 than to Dimension 1.

This is accomplished by setting the w parameter to a value

near 0 (w represents the attention placed on Dimension 1).

This stretches the psychological space along Dimen

sion 2 and shrinks the psychological space along Di

mension 1. Stretching the psychological space increases

the Dimension 2 interpoint distances and, thus, makes the

predictions from the models more extreme. In other words,

the model predictions become more deterministic. Con

sequently, although the w parameter is generally assumed

to represent the effects of selective attention only, it has

a secondary effect ofincreasing response determinism. The

c parameter can increase or decrease response determin

ism by expanding or contracting the psychological space

uniformly. Interestingly, this leads to a large amount of

parameter interdependence. Consequently, when c is large,

the ability of w to affect the equivocality contour is re

duced. Similarly, when w is extreme (near 0 or 1), the ef

fect of c is reduced. This can have a strong effect on the

ability of the GCM to mimic individual observer data

generated from the decision bound model. For example,

when a nearly optimal decision bound was assumed, only

the intercept was free to vary across observers, and the

decision-bound slope was set equal to zero. Under these

conditions, the best fitting value of w was near zero, and

the c parameter was adjusted to approximate the level of

response determinism. The addition of the yparameter in

the DEM had little effect, because the values of c and w
were such that responding was already highly determin

istic. Thus, the DEM and GCM provided nearly equivalent

fits to the data and were able to predict the data as well as

the DBMTRUE.

However, when responding was nonoptimal (Figures

6b, 7b), both models performed poorly. When respond

ing was nonoptimal, the individual observer decision

bound slopes were allowed to differ slightly from zero. A

close examination of the GCM and DEM fits suggested

the following. When the decision-bound slope was slightly

negative, both models were able to mimic the decision

bound and high level of determinism by setting w near

zero and adjusting c (and y for the DEM) to approximate

the response determinism. In these cases, the GCM and

DEM fit the data nearly as well as the DBMTRUE. How

ever, when the decision-bound slope was slightly posi

tive, both models performed poorly, because no set of

parameter values was able to mimic the decision bound.

so ave
ave obs

Figure 6. Goodness-of-fit (-lnL) values for the Monte Carlo
simulations in which a linear decision bound was assumed and
perceptual integrality held (see text for details). In each panel,
the five bars on the left depict the average of the single-observer
data fits (denoted so ave). The five bars on the right depict the fits
to the average observer (denoted ave obs). SA, selective attention;
EA, equal attention; DBMTRUE, decision bound model with the
true perceptual representation and a linear decision bound;
GLCSI, linear decision bound model with a stimulus-invariant,
a 2I perceptually separable representation; GQCSI, quadratic
decision bound model with a stimulus-invariant, a 2I perceptu
ally separable representation; GCM, generalized context model
with a Euclidean distance metric and a Gaussian similarity func
tion; DEM, deterministic exemplar model with a Euclidean dis
tance metric and a Gaussian similarity function.
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Figure 7. Goodness-of-fit ( -lnL) values for the Monte Carlo simulations in which a linear deci

sion bound was assumed and perceptual separability held (see text for details). In each panel, the
five bars on the left depict the average ofthe single-observer data fits (denoted so ave). The five bars

on the right depict the fits to the average observer (denoted ave obs). SA, selective attention; EA,

equal attention; DBMTRUE, decision bound model with the true perceptual representation and a
linear decision bound; GLCSI, linear decision bound model with a stimulus-invariant, a 2I percep

tually separable representation; GQCSI, quadratic decision bound model with a stimulus-invariant,
a 2I perceptually separable representation; GCM, generalized context model with a Euclidean dis

tance metric and a Gaussian similarity function; OEM, deterministic exemplar model with a Eu

clidean distance metric and a Gaussian similarity function.

Recall that the GCM and DEM yield an equivocality

contour that is similar in spirit to a decision bound, where

the equivocality contour is the line or curve through the

psychological space at which the summed similarity to

the two categories is equal. If the model parameters can be

adjusted so that the equivocality contour can mimic the

decision bound, the model may be able to account for the

data. If no set of parameter values exists that will allow

the equivocality contour to mimic the decision bound,

the models will perform poorly. When no selective atten

tion exists (i.e., when 11' = .5), the equivocality contour in

the two SA conditions (see Figure 2c for the perceptually

separable application and Figure 3a for the perceptually

integral application) is linear with a slope of zero for
moderate values along Dimension 1, bends up for small

values along Dimension I, and bends down for large val

ues along Dimension I. When all attention is placed on
Dimension 2 (i.e., when 11' = 0), the equivocality contour

in the two SA conditions is linear with a slope of zero. As

the attention weight shifts from .5 to 0, the equivocality
contour becomes more linear but will have a generally

negative slope to it. Thus, when data are generated from

a linear decision bound with a negative slope, the GCM

and DEM are able to adjust the 11' (and other) parameters

to approximately mimic the true linear decision bound.

On the other hand, when the true decision bound slope was

positive, no set ofGCM and DEM parameter values exist

that can mimic this decision bound. The best the GCM and

DEM could do was to set 11' equal to zero, which yielded a

zero slope. The c and yparameters could be adjusted to
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approximate the response determinism, but the poor ac

count of the decision bound led both the GCM and DEM

to provide poor accounts of the data.

In the perceptually separable, EA condition, when the

decision bounds were nearly optimal (Figure 7c), each in

dividual observer's slope was near I, with variation across

observers. Both the GCM and the DEM were able to

mimic the appropriate slope by adjusting w to a value near

.5 and using the c (and yfor the DEM) to approximate the

response determinism. In these cases, the GCM and DEM

fit the data nearly as well as the DBMTRUE. When the

decision bounds were nonoptimal, some individuals used

bounds with slopes around .5, and others used bounds with

slopes around 2 (see Appendix A for details). For the GCM

to account for these decision bounds, the w parameter

needed to be different from .5 (less than .5 when the slopes

were near .5, and greater than .5 when the slopes were near

2). In addition, the high level of response determinism re

quired large values ofc. But, as stated earlier, large values

of c diminish the power of the w parameter. In short, the

two parameters were in competition, and poor fits to the

data resulted. The DEM, on the other hand, was able to ac

count for the response determinism by adjusting the ypa

rameter. This allowed the value of c to stay small, which

increased the power of the w parameter to account for the

decision bound. In support ofthis claim, the average value

ofc (across observers) was 3.390 and 0.525 for the GCM

and DEM when applied to the perceptual separability, EA

condition in which nonoptimal bounds were assumed. In

addition, the average value of yfrom the DEM was quite

large (15.29), suggesting that the yparameter was able to

account for the high level of response determinism.

In the perceptually integral, EA condition (Figure 6c),

both the GCM and the DEM provided poor accounts of

the data. In short, the equivocality contour was nonlinear

because of the perceptual integrality inherent in these

stimuli. Thus, no set ofparameter values could mimic the

true decision bound predictions. Although the addition

of the yparameter for the DEM did provide some im

provement in fit over the GCM, the model was unable to

mimic the performance of the DBMTRUE.

GLC versus GQC. Recall that two of the decision

bound models applied to the data assumed a stimulus

invariant, a 21 perceptually separable representation.
One assumed a linear decision bound (the GLCSI), and

one assumed a quadratic decision bound (GQCSI). The

third decision bound model was the model that generated

the data. This model assumed the true perceptual repre

sentation and a linear decision bound. In the perceptual

separability application, the true perceptual representation

was a stimulus-invariant, a 21perceptually separable rep

resentation, and, not surprisingly, all three models pro

vided essentially equivalent fits ofthe individual observer

data (Figure 7). In the perceptual integrality application,

on the other hand, the "true" perceptual representation

was not a stimulus-invariant, a 21 perceptually separable

representation, and thus the representation assumptions

of the GLCSI and GQCSI models were incorrect. Under

these conditions, the GQCSI model enjoyed a consistent

advantage over the GLCSI model (Figure 6). It appears

that when the model makes an incorrect assumption about

the perceptual representation, the extra decision bound

parameters ofthe GQCSI model allowed it to account for

some of the error that resulted from the incorrect percep

tual representation assumption. This finding underscores

the importance of making the correct perceptual repre

sentation assumptions. Despite the fact that individual

observers used a linear decision bound, when the incor

rect perceptual representation assumptions were made, it

appeared as if the observer was using a quadratic decision

bound.

This is an important result, because it suggests that the

incorrect perceptual representation assumption might

lead one to an incorrect inference about the form of the

decision bound. Recently, McKinley and Nosofsky (1996)

outlined categorization conditions for which they argued

a linear decision bound was predicted. They found that

the GQCSI model provided a superior account ofthe data

and used these findings to argue against the validity of

decision bound theory. Their stimuli were iso-hue Mun

sell color chips that varied in saturation and brightness

and, thus, are highly integral. However, they applied the

GQCSI and GLCSI models that assume perceptual sepa

rability. Because it is likely that the perceptual represen

tation assumption made by McKinley and Nosofsky

(1996) was incorrect, it is possible that they drew an in

correct inference about the form of the decision bound.

Brief Summary
The most critical findings from these simulations can

be summarized as follows. First, when individual differ

ences are small and observers are approximately optimal,

all the models make similar predictions, and averaging

has little effect. Second, when reasonable individual dif
ferences exist, averaging can have a large effect on the

ability of the models to account for the data. In particu

lar, averaging tends to improve the fits of the GCM and
DEM and to worsen the fits ofthe decision bound model,

even though the DBMTRUE perfectly described the be
havior of individual observers. Third, the parameters of

the GCM and DEM can be highly interdependent. Under

some conditions, this interdependence does not adversely
affect the ability of the models to mimic the data (e.g.,

when nearly optimal decision bounds are assumed),

whereas, under other conditions, the interdependence se

verely constrains the models' predictions (e.g., when

nonoptimal bounds are assumed). Even so, the potential

adverse affects ofparameter interdependence are reduced

when the data are averaged. Finally, incorrect perceptual

representation assumptions made by decision bound

models can lead to an incorrect inference about the na

ture of the observer's true decision bound.



GENERALIZED CONTEXT
MODEL SIMULATIONS

This section summarizes the simulation approach
taken when the GCM was assumed to be correct. The de
tails are presented in Appendix B. The "true" model (i.e.,

the model that accurately described the individual ob
server performance) assumed every item was represented
by a point in some MDS psychological space (Equa

tion 1). When presented with an item to be categorized,
the observer computed the similarity between the target
exemplar and all exemplars in memory and used the
Equation 2 response rule with y= 1 (see Equations 2-4).
Several distance metric and similarity function pairings
were examined. Across simulations, assumptions about

the categorization rule (selective attention or attention to
both dimensions), perceptual representation (separable
or integral), and individual differences in the observers'

value of wand /3 were varied systematically.
As in the previous set of simulations, SA and EA con

ditions were examined. In the previous set of simulations,
different SA and EA stimulus-to-response mappings
were used for the perceptually separable and perceptually
integral applications. This approach was taken because,
within the framework of decision bound theory, the per
ceptual representations (i.e., the perceptual means, vari
ances, and covariances) are strongly influenced by inte
grality or separability of the stimulus dimensions. Within
the framework of the GCM, the integrality-separability
distinction affects the nature of the distance metric and
does not affect the stimulus coordinates (i.e., Equation 1).
Thus, for simplicity, the SA and EA conditions depicted
in Figures 2c and 2d were utilized.

Integrality-Separability Distinction
Following the MDS literature, the Euclidean distance

metric defined integral-dimension stimuli, and the city
block distance metric defined separable-dimension stim
uli. As originally proposed, the GCM paired the Euclid

ean metric with the Gaussian similarity function and the
city-block metric with the exponential decay similarity

function. Simulations ofboth ofthese versions ofthe GCM
were conducted. More recently, a version of the GCM
that paired the Euclidean metric with the exponential
decay similarity function has been examined (e.g., McKin
ley & Nosofsky, 1995). This version of the GCM was

also simulated.

Individual Differences and Categorization Rule
The next step in the simulation approach was to spec

ify the parameters used by each hypothetical GCM ob
server. As in the previous set of simulations, optimal and
nonoptimal parameter settings were investigated for each
categorization condition and perceptual representation.
The details are outlined in Appendix B. To summarize,
when optimality was assumed, each observer attended
selectively in the SA condition (i.e., w = 0) and attended
approximately equally in the EA condition (i.e., w near
.5). When optimality was violated, it was generally as-
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sumed that half of the observers used one set of param
eter values and halfused another set ofparameter values.
As in the previous simulations, to investigate the influence

of averaging on the fits of the models, it was crucial that
reasonable individual differences exist among observers.
The three parameters of the GCM are the c, w, and /3 pa
rameters. Individual differences were incorporated by al
lowing the attention weight parameter, w, and the cate
gory bias parameter, /3, to vary across observers. [The c
parameter was held fixed (c = 1.5) for all simulations in
order to yield accuracy rates in accordance with empiri
cally observed values.] The wand /3 parameters specified
in Appendix B might be better termed the population

mean parameters. In other words, the GCM parameter
values in Appendix B represent the mean (or average)
parameter values from the population distribution ofhy

pothetical observers. The values of wand /3 for each ob
server were determined by taking a random sample from

the population w distribution and a random sample from
the population /3 distribution. Both distributions are as
sumed to be univariate normal, with the mean and vari

ance outlined in Appendix B. Notice that, although the
exact values of wand b differed across observers, each
observer used a single value of wand /3.

Models
The GLCSI model, the GQCSI model, and the three

versions of the GCM (i.e., city-block/exponential, Eu
clidean/exponential, Euclidean/Gaussian) were applied
to the data from each observer and to the aggregate data,
using a maximum likelihood procedure. The DEM was
excluded from these analyses for two reasons. First, be
cause the GCM can account perfectly for the data from
each individual observer (inasmuch as it was used to
generate the data), the fit of the DEM and GCM would
be identical, and the additional y parameter of the DEM
would estimate to one (as is implied in the GCM). Sec
ond, although it is possible that the DEM might provide
a slightly better fit to the averaged data than the GCM,
this finding would not be very informative.

Results
The distinction between optimal and nonoptimal pa

rameter settings had little effect on the model fits, so the
data were collapsed across optimal and nonoptimal pa
rameter settings. The results for the three versions of the
GCM are depicted in Figure 8. Figures 8a-c present the
results from the SA condition, and Figures 8d-f present
the results from the EA condition. The three columns de
pict the three distance metric/similarity function pair
ings. The results can be summarized as follows. First, av
eraging had little effect on the fits of any of the models.
This finding was expected, because Ashby et al. (1994)
and Ashby et al. (1992) had shown that the MDS model

and the SCM yield single-observer and average data that
have similar structures. In other words, averaging does
not alter the structure of the data. In light of this fact, it

is not surprising that the fits of the single observer and
aggregate data are nearly identical. Second, the decision
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Figure 8. Goodness-of-fit (-lnL) values for the Monte Carlo simulations in which the generalized context model (GCM)
was assumed to be correct (see text for details). In each panel, the three bars on the left depict the average of the single
observer data fits (denoted so ave). The three bars on the right depict the fits to the average observer (denoted ave o~s). SA,
selective attention; EA, equal attention; GCMCE, the GCM that assumed a city-block distance metric and an exponential
decay similarity function; GCMEG, the GCM that assumed a Euclidean distance metric and a Gaussian similarity func
tion; GCMEE, the GCM that assumed a Euclidean distance metric and an exponential decay similarity function;
GCMTRUE, GCM with the correct distance metric and similarity function assumptions; GLCSI, linear decision bound
model with a stimulus-invariant, a 2I perceptually separable representation; GQCSI, quadratic decision bound model with
a stimulus-invariant, a 2I perceptually separable representation.

bound models and GCMTRUE yielded similar fits when

the Euclidean/Gaussian model was assumed, but the de
cision bound model yielded much worse fits for the city
block/exponential and Euclidean/exponential versions
of the GCM. Most likely, this is due to the fact that,
under certain conditions, equivalencies can be derived
between the decision bound models and the Euclid
ean/Gaussian version of the GCM (see Ashby & Mad
dox, 1993, for details). Finally, although not depicted in
Figure 8, when the city-block/exponential version was
correct, the correct version and the Euclidean/exponen
tial version provided nearly equivalent fits. Analo
gously,when the Euclidean/exponential version was cor
rect, the correct version and the city-block/exponential
version provided nearly equivalent fits. However, when
the Euclidean/Gaussian version was correct, only the cor
rect version of the GCM provided a good account of the
data. The two versions that assumed an exponential decay

similarity function provided poor descriptions of the
data. Apparently, the correct choice of the similarity
function is more important than the correct choice of the

distance metric.
In summary, averaging had little effect on the fits of

the GCM or the decision bound models. In addition, the
decision bound models were always outperformed by the
GCMTRUE when applied to the single-observer and ag

gregate data.

EMPIRICAL APPLICATION

In this section, an empirical test of the averaging hy
pothesis is offered. In short, 9 observers classified lines
that varied in length and orientation into one of two cat
egories. The stimulus-response mappings were such that
attention to both length and orientation was necessary to
solve the problem (see Figure 9).
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Figure 9. A schematic illustration of the stimulus-response
mappings for the empirical application. The label "A" denotes a
stimulus assigned to Category A, and the label "B" denotes a
stimulus assigned to Category B. The stimuli were lines of vary
ing length (in pixels) and orientation (in radians).

Method
Subjects. Nine observers participated for pay ($6 per session) in

the experiment. All the observers were volunteers from the Arizona
State University community. All observers claimed to have 20/20
vision or vision corrected to 20/20.

Stimuli and stimulus-response mappings. The stimulus en
semble consisted of eight lines of varying length and orientation.
Four stimuli were assigned to Category A, and four to Category B.

Figure 9 depicts a schematic ofthe categorization problem and stim
uli. The stimuli were computer generated and displayed on a 14-in.
SVGA monitor with 1,024 X 768 resolution. The stimuli were white
on a black background and subtended approximately 10 of visual
angle.

Procedure. The experiment was conducted in a dimly lit sound
proof chamber. The observer was seated approximately I m from
the computer monitor, with no head or chin restraints. All the ob
servers completed two sessions of 800 trials each. The first session
was considered practice and was excluded from subsequent analy
ses. Each session consisted of four blocks of 200 trials, for a total
of800 trials. Within each 200-trial block, each of the eight stimuli
were presented 25 times. The presentation sequence was randomized
within each 200-trial block. The observers were instructed to max
imize accuracy and not to worry about speed of responding. A typ
ical trial proceeded as follows: A stimulus was presented and was
pattern masked after 800 msec; the mask remained on the screen
until the observer responded by pressing a button marked "A" or
"8" corrective feedback was provided for 1,000 msec, followed by
a 500-msec intertrial interval.

Results and Theoretical Analysis
The GCM and DEM (both assuming a city-block met

ric and an exponential decay similarity function) and the
GLCSI and GQCSI models were applied to the data from
each observer and to the aggregate data, using a maximum
likelihood procedure. The city-block metric and exponen
tial decay similarity function were assumed because these
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stimulus dimensions have been found to be separable, on
the basis ofa series of operational tests (Gamer, 1974).Be
cause the stimuli were highly confusable and were pre
sented briefly, it is likely that the stimulus-invariant, (i21

perceptually separable representation assumption of the
decision bound models is incorrect. Even so, without ad
ditional information to suggest the appropriate percep
tual representation assumptions, this is the most parsi
monious initial assumption. The goodness-of-fit values
for the (averaged) single-observer data and the aggregate
data for each model are displayed in Table 2.

The results can be summarized as follows. First, and
most important, the fits of the models were more similar
for the averaged than for the single-observer data. In par
ticular, whereas the GQCSI model provided the best fit
to the single-observer data, the DEM, GQCSI model,
and GLCSI model all provided roughly equivalent fits to
the aggregate data. Thus, on the basis of the aggregate
data, it would be difficult to determine which approach
(decision bound, or exemplar-similarity) provided the
best description of the data. Second, the fits of all the mod
els were better to the aggregate data than to the single
observer data, but the largest improvement was obtained
for the GCM. This result is most likely due to the fact that
the averaged data were less deterministic (i.e., more like
probability matching) than the individual observer data.
Third, the GQCSI model was superior to the GLCSI model
for the individual observer data but not for the aggregate
data. The simulations offer a possible explanation for
this finding. The simulation results suggest that the
GQCSI model can provide a superior fit over the GLCSI
model when the true perceptual representation violates
the stimulus-invariant, (i21 perceptually separable repre
sentation. These conditions also were found to lead to im
provements in the fit of both models to aggregate data, a
result obtained in this experiment. Because the stimuli
were highly confusable and were presented briefly, it is
likely that the stimulus-invariant, 0'21 perceptually sep
arable representation assumption was violated.

This experiment was not meant to provide a definitive
test of the empirical validity of the averaging hypothe
sis. Clearly, a number of factors must be studied empir
ically to test this hypothesis rigorously. Even so, the
major prediction, that the fits of the GCM (and DEM)
would improve when applied to averaged data, was sup
ported. Although the decision bound model fits also im
proved, the improvement in fit was much smaller than
that of the GCM. Most important, as suggested by Mad-

Table 2
Goodness-of-Fit (-lnL) Values From the Empirical Application

Model Single Observer Average AverageObserver

GCM 53.57 35.60
DEM 29.16 21.85
GLCSI 29.78 21.62
GQCSI 26.88 21.62

Note-Based on data from 9 observers.



370 MADDOX

dox and Ashby (1993) the fits of all the models were

more similar when applied to the aggregate than to the
single-observer data.

SUMMARY AND CONCLUSIONS

It is common in psychology to draw inferences about

individual human behavior from analyses of aggregate

data. Often, this is a valid approach, because the averag

ing operation reduces measurement error and does not af

fect the qualitative structure of the data. This appears to

be the case when the GCM provides the true description

ofindividual observer categorization performance. Under

these conditions, averaging has little effect on the fits of

the models, and the GCM is clearly superior to the deci

sion bound models when applied to the individual ob

server and aggregate data. However, this is not always the

case. Building on the findings of Ashby et al. (1994; see

also Ashby et aI., 1992), this report suggests that infer

ences drawn from averaged categorization data should

be interpreted with caution if the decision bound model

provides the true description of individual observer cate

gorization performance. When the decision bound

model is superior at the individual observer level, it is

often the case that averaging leads to improved fits of the

GCM (and DEM) and to worse fits ofthe decision bound

models. If the focus is on the averaged data, an incorrect

inference regarding individual performance might result.

If the goal is to understand the behavior of individuals,

caution must be taken before averaged data are inter

preted.

It is important at this point to make a distinction be

tween intraobserver variability and interobserver vari

ability. One might argue that this article addresses only

interobserver variability and ignores intraobserver vari

ability. On the contrary, one of the strengths of theories

such as decision bound or signal detection theory is that

they acknowledge, and make fundamental, the impor

tance of intraobserver variability. Within the framework

of decision bound theory, intraobserver variability is
specified at the level of the perceptual effect (i.e., the ex

istence ofperceptual noise is recognized) and at the level

ofthe decision (i.e., the existence ofcriterial noise or mem

ory for the decision bound is recognized). These sources

of variability are captured by associated parameters in

the model and will not lead to incorrect psychological

inference. On the other hand, regardless of the existence

or absence of intraobserver variability, there is still the

potential to draw an incorrect inference about individual

observer performance from analyses of aggregate data.

The results also make it clear that the GCM and, espe

cially, the DEM are extremely flexible and are often able

to mimic the predictions from decision bound models. In

many cases, the parameters can be adjusted to mimic the

form of the decision bound and the level of response de

terminism. The decision bound models, on the other
hand, are less able to mimic the performance ofthe GCM,

especially when the GCM assumes an exponential decay

similarity function. The results also suggest that an ade

quate test of decision bound theory requires the correct

assumption about both the perceptual representation and

the decision bound. When the perceptual representation

violates perceptual separability and the observer uses a

linear decision bound, the quadratic decision bound model

will be superior to the linear decision bound model when

both assume that perceptual separability is satisfied. In

other words, the incorrect perceptual representation as

sumption of the models will lead to an incorrect inference

regarding the shape of the observer's decision bound.

Obviously, the results of this article and the recent de

velopment of models that acknowledge the fundamental

importance of individual differences in categorization

(e.g., COVIS and RULEX) have important implications

for modeling categorization performance and for the ap

propriateness of aggregate data analysis, but the implica

tions go beyond the realm ofcategorization research. The

GCM and DEM are grounded in an MDS approach to sim

ilarity and the probabilistic response rule of the SCM (al

though the DEM can mimic a wide range of responding

from highly probabilistic to highly deterministic). Ashby,

Maddox, and Lee (1994) showed both ofthese major com

ponents to be strongly affected by averaging. Because

variants of the GCM, and thus the MDS and SCM as

sumptions, have been applied in several areas ofpsychol

ogy,one must give serious thought to the reported success

of the GCM in these areas, inasmuch as nearly all of this

work is based on aggregate data. Certainly, in some ofthis

work, the averaging operation affects only measurement

error, but in other realms this may not be the case.
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NOTES

I. It is important to make a distinction between perceptual and deci

sional selective attention (see, e.g., Maddox & Ashby, 1998). Although

the details are beyond the scope of this article, suffice it to say that per

ceptual selective attention is relevant to situations in which the percep

tual representation changes as a function of task demand. Decisional

selective attention, on the other hand, holds when the categorization rule

is such that only one stimulus dimension is relevant. This article focuses

on decisional selective attention, but hereafter we will simply use the

traditional term selective attention.

2. It is generally assumed that the w parameter represents decisional

selective attention (see, e.g., Nosofsky, 1987).

3. While searching for a suitable transformation from the discrete

Munsell color space to a continuous valued color space, it became ap

parent that several possible transformations existed. Although the co

variance matrices that would result from various transformations would

clearly differ, as long as the resulting representation was characterized

by complex variance and dependence relations, the results of the simu

lations should be similar. In fact, several arbitrary perceptual integral

representations, such as variance shift integralities (see Ashby & Mad

dox, 1994; Maddox, 1992), were investigated before the approach out

lined in this report was discovered. In general, the results were similar

to those reported here.
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APPENDIX A

General Procedure for Monte Carlo

Simulations of the Linear Decision Bound Model

Basic Assumptions
I. Each simulation consisted of 10 hypothetical observers.

2. The perceptual representation (i.e., means and covariance matrix for each stimulus) was constant across

observers.

3. Each stimulus was presented 200 times. In other words, for each hypothetical observer, 200 random samples

were taken from each perceptual distribution.

4. No criterial noise existed (i.e., e
c
= 0, and a

c
= 0; see Equation 6).

Specifics of Perceptual Integrality Application

Perceptual Representation Assumptions
This application used category structures similar to the orthogonal (termed SA here) and diagonal(a)

(termed EA here) category structures used by McKinley and Nosofsky (1996). The stimuli were iso-hue Mun

sell color chips that varied in saturation and brightness. The goal was to use current vision research to trans

form from the discrete Munsell color space to a color space that was continuous and, thus, would allow a rig

orous description of the contours of equal likelihood for each stimulus. The steps were as follows:

I. Transform the three-dimensional (3-D) Munsell coordinates to the 3-D CIE LUV uniform color space.
LUV is a uniform color space because equal distances in the LUV space are approximately perceptually

equal. The transformation from Munsell to LUV was accomplished relative to CIE Illuminant C and is

a nonlinear transformation (Brainard, 1995; Wyszecki & Stiles, 1982). The result was a set ofLUV coor

dinates, one for each Munsell stimulus.

2. Generate an iso-discrimination surface for each stimulus in the CIE LUV space. Because equal distances

are approximately perceptually equal in LUV, the iso-discrimination surface was a sphere.

3. Transform each iso-discrimination sphere (in the CIE LUV space) to an iso-discrimination ellipsoid in

the 3-D CIE XYZ space. Because the ellipsoidal nature of the XYZ iso-discrimination curves was first
discovered by Macadam (1942), these are generally referred to as Macadam ellipsoids. In order to per

form the transformations, assumptions about the viewing conditions were necessary. Two viewing con

ditions were examined. The first assumed daylight viewing conditions; the second assumed incandescent

light, which has more yellow and less blue than daylight. The resulting contours ofequal likelihood were

very similar. The reported simulations assumed daylight illuminance.

4. Because the contours of equal likelihood for a multivariate normal distribution are always elliptical, the

next step was to estimate the parameters ofa trivariate normal distribution for each Macadam ellipse. The
result was a set oftrivariate normal distributions, one for each Munsell stimulus.

5. The mean vectors for each trivariate normal distribution were approximately coplanar. In other words,

when the Munsell stimulus coordinates were transformed to the CIE XYZ space, they all fell on a com

mon plane in XYZ. This result was expected because the stimuli were iso-hue Munsell color chips, dif

fering only in saturation and brightness. Although hue is not directly related to X, Y,or Z in isolation, each
hue is represented by a plane through XYZ space.

6. In light of this fact and to simplify the problem, the trivariate normal distributions were projected onto
this iso-hue plane, and a simple rotation was applied so that the resulting perceptual representation was as

similar to the Munsell values as possible (see Figures 3a and 3b).

7. The axes in this space are denoted by the labels Dimension I and Dimension 2. These arbitrary labels

were used to make clear that these dimensions differ from the X, Y, and Z dimensions of the CIE color

space. Even so, notice that the Dimension 2 values in this space are very similar to the brightness values
in the Munsell space. This obtains for two reasons. First, brightness in the Munsell system is analogous

to Y in the CIE XYZ space. In other words, Munsell stimuli of a fixed brightness are represented in the

CIE XYZ space by a fixed Y value. Second, the projection and rotation, outlined above, preserved the
relationship among the Y values in XYZ space. Thus, it is reasonable to interpret the Dimension 2 values

in the Figure 3a space as directly related to the brightness values in the Munsell system.

8. Two additional caveats need mention. First, in the EA condition, transfer items 3-5 from McKinley and

Nosofsky (1996) were excluded because the GCM and DEM yielded undefined predictions for these

items (i.e., the summed similarity to Category A and Category B was zero). Second, in order to achieve the
appropriate accuracy rates, the entries of the perceptual covariance matrices were multiplied by a factor

of four.
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Decision Bound Assumptions

I. Selective Attention Condition

1. Approximately Optimal Decision Bound

I. Simulation Set I: mean slope = 0, mean intercept = 20.25.

2. Simulation Set 2: mean slope = 0; Observers 1-5, mean intercept = 18.25; Observers 6-10,

mean intercept = 22.25.

3. For both sets of simulations, the slope was fixed at 0 for each observer. The intercept for each

observer was obtained by taking a random sample from a normal distribution, with the mean

defined above and O"intercept = 4.0.

2. Nonoptimal Decision Bound

I. Simulation Set 1: same as Simulation Set 1 above.

2. Simulation Set 2: same as Simulation Set 2 above.

3. Simulation Set 3: Observers 1-5, mean slope = .25, mean intercept = 11.25; Observers 6-10,
mean slope = - .25, mean intercept = 27.75.

4. Simulation Set 4: Observers 1-5, mean slope = .25, mean intercept = 11.75; Observers 6-10,

mean slope = - .25, mean intercept = 18.25.

5. For all four sets of simulations, O"slope = .4, and O"intercept = 4.0.

2. Equal Attention Condition

1. Nonoptimal Decision Bound

1. No simulations were conducted that used approximately optimal decision bounds, because the
perceptual representation is complex and no linear decision bound yields optimal performance

levels.

2. Mean slope = 1.25, mean intercept = -24.

3. As before, the slope and intercept for each observer was obtained by taking a random sample

from a normal distribution, with the mean defined above and O"slope = .4, and O"intercept = 4.0.

Specifics of Perceptual Separability Application

Perceptual Representation Assumptions
I. The perceptual means were set to the relevantstimulus level. For example, the stimulus at Level 1 along

both stimulus dimensions had a mean perceptual effect of (1,1). The stimulus at Level I along Dimension 1
and Level 2 along Dimension2 had a mean perceptualeffect of (1,2), and so on.

2. A stimulus-invariant, 0"
21 perceptually separable representation in which 0" 1 = 0" 2 = .5 was assumed.

Decision Bound Assumptions
I. Selective Attention Condition

1. Approximately Optimal Decision Bound

I. Simulation Set 1: mean slope = 0, mean intercept = 2.5.

2. Simulation Set 2: mean slope = 0; Observers 1-5, mean intercept = 2; Observers 6-10, mean

intercept = 3.

3. For both sets of simulations and all observers, the slope remained fixed at zero. The intercept

for each observer was obtained by taking a random sample from a normal distribution with a

mean as defined above, and O"intercept = .4, where O"intercept represents the standard deviation for
the intercept.

2. Nonoptimal Decision Bound

I. All procedures were identical, except that the slope was not held fixed at zero; rather, the slope
for each observer was obtained by taking a random sample from a normal distribution, with a

mean of zero and O"slope = .2.

2. Equal Attention Condition

I. Approximately Optimal Decision Bound

1. Mean slope = I, mean intercept = O.

2. The slope (and intercept) for each observer was obtained by taking a random sample from a

normal distribution. For the slope, the mean was I and O"slope = .2; for the intercept, the mean

was 0 and 0" intercept = .4.
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2. Nonoptimal Decision Bound

1. Simulation Set I: Observers 1-5, mean slope = 0.5, mean intercept = 1.25; Observers 6-10,

mean slope = 2, mean intercept = - 2.5.

2. Simulation Set 2: Observers 1-5, mean slope = 0.5, mean intercept = 1.5; Observers 6-10,

mean slope = 2, mean intercept = - 3.

3. Simulation Set 3: Observers 1-5, mean slope = 0.5, mean intercept = 1.75; Observers 6-10,

mean slope = 2, mean intercept = -2.5.

4. For all simulations, the slope (and intercept) for each observer was obtained by taking a

random sample from a normal distribution, with aslope = .2, and aintercept = .4.

APPENDIXB

General Procedure for Monte Carlo Simulations

of the Generalized Context Model

Basic Assumptions

1. Each simulation consisted of 10 hypothetical observers.

2. The MDS psychological space (i.e., stimulus coordinates) was constant across observers.

3. The scaling constant c was set to 1.5 to yield the appropriate accuracy rates.

Perceptual Representation Assumptions

I. The perceptual means were set to the relevant stimulus level. For example, the stimulus at Levell along

both stimulus dimensions had a mean perceptual effect of (I, I). The stimulus at Levell along Dimension 1

and Level 2 along Dimension 2 had a mean perceptual effect of (1,2), and so on.

2. Perceptual Integrality: In line with the MDS literature and previous applications ofthe GCM, two distance

metric and similarity function pairings were examined. One assumed a Euclidean distance metric and a

Gaussian similarity function. The second assumed a Euclidean distance metric and an exponential decay

similarity function.

3. Perceptual Separability: In line with the MDS literature and some applications of the GCM, a city-block

metric and an exponential decay similarity function were assumed.

Categorization Rules and Individual Differences

1. Selective Attention Condition

1. Approximately Optimal Parameters

I. Simulation Set 1: w = 0, f3 = .5.

2. Simulation Set 2: w = 0; Observers 1-5, f3= .3; Observers 6-10, f3= .7.

3. For both sets of simulations, w was fixed at 0 for each observer. The value of f3 for each observer

was obtained by taking a random sample from a normal distribution, with the mean defined

above and ap= .2.

2. Nonoptimal Parameters

I. Simulation Set 1: same as Simulation Set 1 above.

2. Simulation Set 2: same as Simulation Set 2 above.

3. For both sets of simulations, aw = .2, and ap= .2.

2. Equal Attention Condition

1. Approximately Optimal Parameters

1. w = .5, f3 = .5.

2. The value of w (and f3) for each observer was obtained by taking a random sample from a normal

distribution, with the mean defined above and a
w

= .2, and ap = .2.

2. Nonoptimal Parameters

1. Observers 1-5, w = .3, f3 = .5; Observers 6-10, w = .7, f3 = .5.

2. The value of w (and f3) for each observer was obtained by taking a random sample from a normal

distribution, with the mean defined above and aw = .2, and ap= .2.
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