
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 127, Number 11, Pages 3383–3391
S 0002-9939(99)04866-2
Article electronically published on May 3, 1999

ON THE DARBOUX THEOREM
FOR WEAK SYMPLECTIC MANIFOLDS
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(Communicated by Peter Li)

Abstract. A new tool to study reducibility of a weak symplectic form to
a constant one is introduced and used to prove a version of the Darboux
theorem more general than previous ones. More precisely, at each point of the
considered manifold a Banach space is associated to the symplectic form (dual
of the phase space with respect to the symplectic form), and it is shown that
the Darboux theorem holds if such a space is locally constant. The following
application is given. Consider a weak symplectic manifold M on which the
Darboux theorem is assumed to hold (e.g. a symplectic vector space). It
is proved that the Darboux theorem holds also for any finite codimension
symplectic submanifolds of M , and for symplectic manifolds obtained from M
by the Marsden–Weinstein reduction procedure.

1. Introduction

It was first pointed out by Marsden [1] that the Darboux theorem fails for weak
symplectic forms. Afterwards, some generalizations of the theorem to weak sym-
plectic manifolds were proved [2] (see also [3]), but a complete characterization of
the situations in which the symplectic form can be locally reduced to a constant
one is still lacking. In the present paper a new tool to study reducibility of a weak
symplectic form to a constant one is introduced and used to prove a version of the
Darboux theorem more general than previous ones. A necessary condition for the
Darboux theorem is also obtained.

The main idea of this paper is (following [4]) to associate, at each point of the
manifold, a suitable Banach space to the symplectic form (classifying space); it
turns out that the Darboux theorem can be proved if the classifying space does not
depend on the point of the manifold and a suitable smoothness condition holds.
Applying this version of the Darboux theorem the following results are proven: Let
M be a weak symplectic manifold in which the Darboux theorem is assumed to hold
(e.g. a symplectic vector space); then the Darboux theorem holds for each closed
symplectic submanifold of M having finite codimension (see Theorem 3.1). Then,
the case where a finite dimensional Lie group acts symplectically onM is considered:
it is proven that the Darboux theorem holds for the symplectic manifold obtained
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from M by the Marsden–Weinstein reduction procedure (see Corollary 3.5). As far
as I know these results are new.

I come to the necessary condition for the reducibility of a weak symplectic form
to a constant one. It turns out that the assumptions of the present version of the
Darboux theorem are not invariant under general coordinate transformations, and
so they do not directly provide a necessary condition for the reducibility of the
symplectic form to a constant one. Anyway it is possible to exploit the classifying
space to give a completely coordinate independent necessary condition for the re-
ducibility of a symplectic form to a constant one. Such a condition is exploited to
give a counterexample to the Darboux theorem. Actually this is just a variant of
Marsden’s counterexample, and is given here mainly for the sake of completeness.

2. A necessary and a sufficient condition for the Darboux theorem

2.1 Statements. First, recall that a bilinear form Ω : P × P → R, P being a
Banach space, is said to be weakly nondegenerate if

{Ω(X,Y ) = 0 , ∀Y ∈ P} =⇒ X = 0 .(1)

It is well known that Ω defines a linear map Ω[ : P → P∗ by

〈Ω[Y,X〉 := Ω(Y,X) ,(2)

and that, by (1), such a map is injective; if it is also surjective, then Ω is said to
be strongly nondegenerate.

A weak symplectic manifold (M,Ω) is a differentiable manifold M endowed with
a closed differentiable 2-form Ω, which at each x ∈ M is weakly nondegenerate as
a bilinear form on TxM . I will denote by Ωx : P ×P → R the value of Ω at x ∈M ,
and by Jx the inverse of the map Ω[

x. Jx is usually called the Poisson tensor.
Since the Darboux theorem is a local result, it is enough to consider the case

whereM is an open set U of a Banach space P which will be assumed to be reflexive;
I will assume also 0 ∈ U , and all functions will be assumed to be C∞.

Using Ωx define on P the norm

‖X‖Fx
:= sup

‖Y ‖P=1

|Ωx(X,Y )| =
∥∥∥Ω[

xX
∥∥∥
P∗

,(3)

and consider the completion Fx of P in such a norm.

Definition. The space Fx thus obtained will be called “the dual of P with respect
to Ωx.”

It is clear that Ωx can be extended to a continuous bilinear form on P × Fx.

Theorem 2.1. Assume that there exists a neighbourhood W of 0 such that, for all
x ∈ W the spaces Fx coincide (i.e. the norms ‖.‖Fx

are equivalent), and moreover
that the map x 7→ Ωx is differentiable as an application from W to the continuous
bilinear forms on F × P, where F := Fx; then there exist a neighbourhood V of 0
and a change of coordinates ψ defined on V which reduces Ω to the constant two
form Ω0 := Ωx

∣∣
x=0

, namely such that

ψ∗Ω = Ω0 .

Remark 2.2. One can conjecture that the differentiability of Ω as an application
form V to the bilinear forms on P × F is automatic. It is easy to construct a
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counterexample in the case of Ωx which is Ck (k <∞) dependent on x, however I
do not have a counterexample in the C∞ case.

Remark 2.3. The Darboux theorem proved in [3] is contained in the above theorem
2.1. This is easily seen exploiting the lemma on p.10 of [3]. The same holds for
the Darboux theorem proved in [2], which is based on ideas quite close to those
presented here.

Theorem 2.1 can be reformulated in terms of the Poisson tensor. Indeed the
norm ‖X‖Fx

can obviously be defined by ‖X‖Fx
:=

∥∥J−1
x X

∥∥
P∗ , and this allows us

to obtain the following

Corollary 2.4. Define F as the completion of P in the norm ‖X‖F :=
∥∥J−1

0 X
∥∥
P∗,

where J0 := Jx

∣∣
x=0

. Assume that there exists a neighbourhood of the origin where
Jx extends to a bounded linear operator from P∗ to F smoothly dependent on x;
then there exists a chart about zero in which the symplectic form (and therefore the
Poisson tensor) is constant.

Remark 2.5. The constancy of the spaces Fx is a property which is not completely
chart invariant; indeed one can construct examples of change of coordinates which
change the spaces Fx everywhere, but not at one single point.

One can use the spaces Fx to give a coordinate independent necessary condition
for the Darboux theorem.

Proposition 2.6. The existence of chart about 0 in which the symplectic form is
constant implies that there exists a neighbourhood of 0 such that for each x in such
a neighbourhood there exists an isomorphism between Fx and F0 which restricts to
an isomorphism of P with itself.

2.2. Proofs. The proof of Theorem 2.1 will be obtained along the lines of [5]
(which follows an idea by Moser). The original part consists of the proof of the
smoothness of the vector field generating the transformation we are looking for.

We begin with two simple lemmas. Consider the map Ω̃[
x : Fx → P∗ defined by

〈Ω̃[
xV ;W 〉 := Ωx(V,W ); we have the following

Lemma 2.7. ω̃[
x is an isomorphism between Fx and P∗.

Proof. It is immediate to remark that Ω̃[
x is a linear unitary operator, so that

it is invertible on its range, and its inverse is continuous. I prove now that it is
surjective. Denote by R the range of Ω̃[

x (which is close by the above consideration)
and assume by contradiction that there exists a covector α ∈ P∗ such that α 6∈ R.
By the Hahn–Banach theorem there exists a X ∈ P∗∗ such that

X(α) = 1(4)

and

X(β) = 0 , ∀β ∈ R .(5)

But P is reflexive, and therefore X ∈ P , so (5) is equivalent to

Ωx(Y,X) = 0 , ∀Y ∈ Fx ,

which, by (1), implies X = 0 against (4).
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The above lemma is used to prove

Lemma 2.8. The map Ω[
x : P → F∗

x , defined by X 7→ Ωx(X, .), is an isomorphism.

Proof. It is clear that the map is injective; I prove now that it is surjective by
constructing its inverse. Consider the map that associates to any α ∈ F∗

x the
vector X ∈ P∗∗ defined by

X(β) := −α(Jxβ) , ∀β ∈ P∗,
where Jx := (Ω̃[

x)−1. But P is reflexive, so that X ∈ P . It is easy to see that this
map is the inverse of Ω[

x.

In what follows we will not distinguish between Ω[
x and Ω̃[

x.

Remark 2.9. Lemmas 2.7 and 2.8 hold also for any nondegenerate bilinear form
(skew–symmetry plays no role).

Remark 2.10. In the hypotheses of Theorem 2.1 the map

W → L(P ,F∗),

x 7→ Ω[
x(6)

is smooth; here L(P ,F∗) is the Banach space of linear operators from P to F∗.
Indeed it is the composition of the map x 7→ Ωx which is smooth as an application
fromW to the bilinear forms on P×F by hypothesis, and the linear map [ : Ω 7→ Ω[,
which is analytic.

Proof of Theorem 2.1. Denote Ω̄ := Ω0−Ω and Ωt := Ω+ tΩ̄, where Ω0 := Ωx|x=0.
By the Poincaré lemma we have

Ω̄ = dα , with αxX :=
∫ 1

0

sΩ̄sx(x,X)ds .(7)

We look for a smooth vector field Yt : P → P such that

iYtΩ
t = −α .(8)

By (7) the one form αx can be extended to an element of F∗. Consider now

(Ωt)[
x : P → F∗ .(9)

When x = 0, one has Ωt
x|x=0 ≡ Ω0, and therefore at such point (9) is an isomor-

phism. By Remark 2.10 (Ωt
x)[ depends smoothly on x and, for x close to zero, it is

an isomorphism. So, one can define

Yt := ((Ωt
x)[)−1α ,

and Yt is a smooth, time dependent vector field taking values in P .
Then the proof is easily completed following the scheme by Moser. So, let Ft be

the flow generated by Yt; then

d

dt
F ∗t Ωt = F ∗t (£YtΩt) + F ∗t

d

dt
Ωt = F ∗t (−dα+ Ω̄) = 0 ,

so F ∗1 Ω1 = Ω, and F−1
1 is the desired change of variables.
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Proof of Corollary 2.4. By Lemma 2.7, J0 is an isomorphism of P∗ and F , it follows
(from the implicit function theorem) that in a neighbourhood of zero also Jx is an
isomorphism of P∗ and F , and therefore the spaces Fx coincide with F ; moreover
one clearly has that

Ωx : F × P → R
(X,Y ) 7→ 〈J−1

x X,Y 〉
depends smoothly on x as a bilinear form on F × P , therefore Theorem 2.1 gives
the result.

Proof of Proposition 2.6. Assume that there exists a change of coordinates ψ about
0 such that ψ∗Ω = Ω0. Then, for X,Y ∈ P one has

Ωx(ψ∗xX,ψ∗xY ) = Ω0(X,Y ) ,

where we denoted by ψ∗x the tangent map to ψ at x. Denote by Ax the inverse of
ψ∗x; then one has

Ωx(X,Y ) = Ω0(AxX,AxY ) ,

and therefore

‖AxY ‖F0
= sup

Z 6=0

|Ω0(Z,AxY )|
‖Z‖P

= sup
X 6=0

|Ω0(AxX,AxY )|
‖AxX‖P

= sup
X 6=0

|Ωx(X,Y )|
‖AxX‖P

,(10)

where X = A−1
x Z. But, since Ax is an isomorphism, one has

‖AxX‖P ≥
∥∥A−1

x

∥∥−1 ‖X‖P ,

from which, substituting in (10) and taking into account the definition of the norm
Fx

‖AxY ‖F0
≤ ∥∥A−1

x

∥∥ ‖Y ‖Fx
.

It follows that Ax can be extended to a continuous operator from Fx to F0; more-
over, the same holds for the operator A−1

x , so Ax is the desired isomorphism.

3. Applications to symplectic submanifolds

Let M be a weakly symplectic manifold modelled on a reflexive Banach space;
assume that at each point of M there exists a chart in which the symplectic form
is constant. The following theorem will be proved.

Theorem 3.1. Let N ⊂M be a closed symplectic submanifold of M having finite
codimension. Then at each point of N there exists a chart in which the symplectic
form of N is constant.

Before giving the proof of Theorem 3.1 I give two lemmas on symplectic vector
spaces which will be used below.

Let (P ,Ω) be a weakly symplectic vector space, with P a reflexive Banach space;
as above denote by F the dual of P with respect to Ω. Given a closed subspace
V ⊂ P define V

F
to be the closure of V in the topology of F , and

V ⊥ := {X ∈ P : Ω(X,Y ) = 0 ∀Y ∈ V } ,

V † := {X ∈ F : Ω(X,Y ) = 0 ∀Y ∈ V } .
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Note that

V ⊥F = V † .(11)

If W ⊂ F is a closed subspace, I will denote

W⊥ := {X ∈ P : Ω(X,Y ) = 0 ∀Y ∈W} ;

this is not ambiguous since (for V ⊂ P) one has

V ⊥ =
(
V
F)⊥

.(12)

Lemma 3.2. Let V ⊂ P be a closed subspace; then one has

V ⊥⊥ = V ,
(
V ⊥)†

= V
F
.(13)

Proof. Let X 6∈ V be a vector of P ; then by the Hahn–Banach theorem there exists
α ∈ P∗ such that α(X) = 1 and α|V = 0. Consider Jα ∈ F : clearly one has
Jα ∈ V † and Ω(Jα,X) = 1, so that

X 6∈ (
V †)⊥ = V ⊥⊥

where the last equality follows from (11) and (12). This proves X ∈ V =⇒ X ∈
V ⊥⊥; the inverse inclusion is trivial. To obtain the second of (13) remark that

V
F

= V ⊥⊥F =
(
V ⊥)†

,

where the second equality follows from (11).

For a previous proof of V ⊥⊥ = V in weak symplectic spaces see [6].

Lemma 3.3. Let V ⊂ P be closed and symplectic; then
1.

P = V ⊕ V ⊥.

2. Let π be the projection on V ; then π extends to a continuous map from F to
V
F
.

3. There exists C such that ∀X ∈ V one has

‖X‖F ≤ C sup
Y ∈V \{0}

|Ω(X,Y )|
‖Y ‖ .

Proof. Clearly one has V ∩ V ⊥ = {0} and V
F ∩ V † = {0}. Define P1 := V ⊕ V ⊥,

and assume that it does not coincide with P ; then there exists 0 6= X ∈ P \P1. By
the Hahn–Banach theorem there exists α ∈ P∗ such that α(X) = 1 and α

∣∣
P1

= 0.
Then, by Lemma 3.2, one has

Jα ∈ V † ∩ (V ⊥)† = V † ∩ V F
= {0} .

Since α 6= 0, this is a contradiction. To prove 2 fix X ∈ P ; we have

‖πX‖F = sup
Y ∈P\{0}

|Ω(πX, Y )|
‖Y ‖ = sup

Y ∈P \{0}

|Ω(πX, πY )|
‖Y ‖

= sup
Y ∈P \{0}

|Ω(X, πY )|
‖Y ‖ ≤ sup

Y ∈P \{0}

‖πY ‖ ‖X‖F
‖Y ‖ ≤ C ‖X‖F ,
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where the last equality is just boundedness of π. I come to 3. Fix Y ∈ V ; we have

‖Y ‖F = sup
X∈P \{0}

|Ω(X,Y )|
‖X‖ = sup

X∈P \{0}

|Ω(πX, Y )|
‖X‖

≤ sup
X∈P \{0}

|Ω(πX, Y )|
‖πX‖

C

where the last equality is due to the boundedness of π. From this 3 immediately
follows.

Proof of Theorem 3.1. The result is local, so I consider only the case where M =
U ⊂ P is an open subset of P endowed by a constant symplectic form Ω. Moreover
assume 0 ∈ U ∩N ; I will construct a chart of N about 0 in which the assumptions
of Theorem 2.1 are satisfied. Denote by F the dual of P with respect to Ω, and
V := T0N ; then V is symplectic and therefore P = V ⊕ V ⊥; denote by π : P ⊃
U → V the projection on V . Clearly there exists a neighbourhood W ⊂ N of 0
where

ϕ : W → V

x 7→ ϕ(x) := πx

is a chart of N . I claim this is a chart in which the assumptions of Theorem 2.1
are satisfied.

To start with note that in this chart the expression ΩN of the symplectic form
of N is given by

ΩN
x : V × V → R

(X,Y ) 7→ ΩN
x (X,Y ) := Ω

(
ϕ−1
∗xX,ϕ

−1
∗x Y

)
;

I will show that ϕ∗x extends to an isomorphism of TxN
F

and V
F

; then the result
will easily follow.

First note that, from the linearity of π, one has
ϕ∗x : TxN → V

X 7→ ϕ∗xX = πX .

I use this fact to construct more explicitly ϕ−1
∗x . Fix a basis v1(x), ..., v2n(x) of

(TxN)⊥ smoothly dependent on x, define the one forms αx
i := Ω(vi(x), .), and note

that they extend to elements of F∗ smoothly dependent on x. Then define the
linear operator

Ax : P → V ⊕ R2n

X 7→ (πX ;αx
1X, ..., α

x
2nX);

(14)

clearly Ax

∣∣
TxN

≡ (ϕ∗x, 0). It is immediate to realize that A0 is an isomorphism

which extends to an isomorphism of F with V
F ⊕ R2n. Moreover, Ax depends

smoothly on x both as linear bounded operator from P to V ⊕R2n and as bounded
linear operator from F to V

F ⊕R2n. So there exists a neighbourhood W of 0 ⊂ U
where it is an isomorphism. It follows that

ϕ−1
∗x :V → TxN

X 7→ A−1
x (X, 0)

extends to an isomorphism of V
F

with TxN
F

smoothly dependent on x.
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Denote now by Fx the dual of V with respect to ΩN
x . By Lemma 3.3 (assertion 3),

one has F0 = V
F

. I am going to prove that the same holds for x in a neighbourhood
of 0. By the very definition of ‖.‖Fx

and of ΩN
x , for Y ∈ V one has

‖Y ‖Fx
= sup

X∈TxN \{0}

|Ω(X,ϕ−1∗x Y )|
‖ϕ∗xX‖ ,

but, since ϕ∗x is an isomorphism of TxN and V there exist constants such that

‖Y ‖Fx
≤ C1

∥∥ϕ−1
∗x Y

∥∥
F ≤ C2 ‖Y ‖F ,

‖Y ‖Fx
≥ C3 sup

X∈TxN \{0}

|Ω(X,ϕ−1
∗x Y )|

‖X‖ ≥ C4

∥∥ϕ−1
∗x Y

∥∥
F ≥ C5 ‖Y ‖F ,

where I used also the fact that ϕ∗x is an isomorphism from V
F

and TxN
F

, and
Lemma 3.3.

Finally one has to prove that ΩN
x depends smoothly on x as a bilinear form on

V × F ' V × V
F

. But this is a trivial consequence of the smoothness of A−1
x

both as a map from V ⊕ R2n to P and as a map from V
F ⊕ R2n to F , and of the

definition of ΩN .

Remark 3.4. I think that Theorem 3.1 should hold also for ∞-codimensional sym-
plectic submanifolds of M ; however, I was not able to prove that (TxN)⊥ depends
smoothly on x, and therefore I did not succeed in defining an operator of the kind
of the operator (14)

I come to symplectic manifolds obtained by the Marsden–Weinstein reduction
procedure.

Fix again M as above, and let G be a finite dimensional Lie group. Let Φ :
M×G→M be a smooth symplectic action ofG onM admitting anAd∗-equivariant
momentum map I : M → g∗. Let µ ∈ g∗ be a regular value of I, and denote by Gµ

the isotropy group of µ, namely

Gµ :=
{
g ∈ G : Ad∗gµ = µ

}
.

Assume Gµ acts properly and freely on I−1(µ), and denote

Mµ :=
I−1(µ)
Gµ

;

then it is well known that Mµ is a symplectic manifold.

Corollary 3.5. About each point of Mµ there exists a chart in which the symplectic
form is constant.

Proof. Let z ∈Mµ. Then z = [x] for some x ∈ I−1(µ); denote by Gµx the orbit of
Gµ through x. Let P ⊂ M be a closed submanifold of M passing through x such
that TxM ≡ TxP ⊕ Tx(Gµx). Then it is well known that Mµ is locally isomorphic,
as a symplectic manifold, to a neighbourhood of x in P ∩ I−1(µ). But P ∩ I−1(µ)
is a finite codimension submanifold of M , and therefore Theorem 3.1 gives the
result.
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4. A counterexample to the Darboux theorem (following Marsden)

Let Q be a Banach manifold modelled on a reflexive Banach space B; then it is
well known that the canonical symplectic structure of T ∗Q is strong [1]. Suppose
that Q is endowed by a metric; then it is possible to pull back the symplectic form of
T ∗Q to TQ. If the metric of Q is only weakly nondegenerate (i.e. gx : TxQ×TxQ→
R is weakly nondegenerate as a bilinear form), then the symplectic form on TQ is
only weakly nondegenerate. Marsden’s idea is to define a symplectic form Ω on TQ
using a metric, which for a given x0 ∈ Q is only weakly nondegenerate, while it is
strongly nondegenerate at the points xn of a sequence having x0 as an accumulation
point. It clearly turns out that ∀X ∈ Tx0Q the form ΩX is weakly nondegenerate,
and therefore FX strictly contains TXTQ ' B × B, while for any Y ∈ TxnQ the
form ΩY is strongly nondegenerate, and therefore FY ≡ TY TQ ' B × B. This
violates the necessary condition 2.6, and therefore the Darboux theorem fails.

A concrete example of this kind can be obtained choosing Q to be the Sobolev
space H1(T1) of L2 functions on [0, π] having L2 weak derivatives, and fulfilling
periodic boundary conditions; the weak metric can be defined by

gu(X,Y ) :=
∫
T1
X(x)Y (x)dx + ‖u‖2L2

∫
T1
Xx(x)Yx(x)dx ,(15)

which at u = 0 is weak (it is just the L2 pairing) while for u 6= 0 it is strong.
A simple calculation shows that, denoting (as usual) by H−1 the dual of H1(T1)

with respect to the L2 pairing, the map

Ω[
(u,u̇) : H1(T1)×H1(T1) → H−1 ×H−1

corresponding to the so obtained symplectic form is given by

Ω[
(u,u̇)

(
V

V̇

)
=

(−‖u‖2L2 V̇xx + V̇ − u̇xx2〈u, V 〉L2 + 2〈V, u̇xx〉u
‖u‖2L2 Vxx − V

)
,(16)

which is an isomorphism for u 6= 0.

Remark 4.1. ChoosingQ = Hs(T1) (s > 1) endowed by the metric (15) one obtains
a symplectic form which is nowhere strong, however exploiting (16) it is easy to
show that also in this case the Darboux theorem fails. Indeed it is clear that the
reason why the Darboux theorem is violated is that such a map is a differential
operator whose degree changes at u = 0.
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