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ON THE DE RHAM COHOMOLOGY

OF ALGEBRAIC VARIETIES(1)

by A. GROTHENDIECK

... In connection with Hartshorne's seminar on duality, I had a look recently at

your joint paper with Hodge on " Integrals of the second kind 5? (2). As Hironaka has

proved the resolution of singularities (3), the (c Conjecture C " of that paper (p. 81)

holds true, and hence the results of that paper which depend on it. Now it occurred

to me that in this paper, the whole strength of the " Conjecture C " has not been fully

exploited, namely that the theory of (c integrals of second kind 5? is essentially contained

in the following very simple

Theorem 1. — Let X be an affine algebraic scheme over the field C of complex numbers;

assume X regular (i.e. " non singular 3?). Then the complex cohomology H'(X, C) can be

calculated as the cohomology of the algebraic De Rham complex (i.e. the complex of differential

forms on X which are (c rational and everywhere defined ").

This theorem had been checked previously by Hochschild and Kostant when X

is an affine homogeneous space under an algebraic linear group, and I think they also

raised the question as for the general validity of the result stated in theorem i.

It will be convenient, for further applications, to give a slightly more general

formulation, as follows. If X is any prescheme locally of finite type over a field k, and

" smooth " over k, we can consider the complex of sheaves t^x/fc °^ regular differentials

on X, the differential operator being of course the exterior differential. Let us consider

the hypercohomology

(1) H-(X)=H-(X,Q^)

which we may call the <( De Rham cohomology " of X, in contrast to the c< Hodge

cohomology "

(2) H^X.Q^-nH^X.Q^),

(1) This is part of a letter of the author to M. F. ATIYAH, dated Oct. 14, 1963. Some remarks have been
added to provide references and further comments. (Except for remark (13), these remarks were written in
November 1963.)

(2) M. F. ATIYAH and W. V. D. HODGE, Integrals of the second kind on an algebraic variety, Annals of
Mathematics, vol. 62 (1955), p. 56-91. This paper is referred to by A-H in the sequel.

(3) H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals
of Maths., vol. 79 (1964), p. 109-326.

351



9
6 A . G R O T H E N D I E C K

which is bigraded, whereas De Rham cohomology has only a simple grading. The

two cohomologies are related by the usasal spectral sequence

(3) Er-H^X.Q^H^X),

which shows for instance that if X is affine, then

(4) H-(X)=H-(r(X,Q^))

i.e. the De Rham cohomology in this case is what one might naively think.

Now assume k to be the field of complex numbers C, and let Xh be the complex

analytic variety associated to X. Then we may also consider the <( analytic De Rham
cohomology "

HW t^),

but by Poincard's lemma the complex of sheaves Q^/c on X^ is just a resolution of the

constant sheaf C, therefore the hypercohomology of this complex is just the usual complex

cohomology H^X^ C). Now we have a canonical homomorphism of the algebraic into
the analytic De Rham cohomology

(5) H-(X) -^ H^) ̂  H-(X^ C),

and we can state:

Theorem 1\ — The homomorphism (5) is an isomorphism.

I f X is affine, this reduces by (4) to theorem i. In fact, we can reduce easily

theorem i' to theorem i. To see this, take a covering U of X by affine open sets U-;
then we get a convergent spectral sequence

(6) H-(X) <= E^-H^U, ̂ ),

where ̂  stands for the presheaf V->H^V) on X, and an analogous spectral sequence
for X'

1 and the covering U^ of X71 by the open subsets U^,

H'(X71) <= Ej^H^, ̂ .

Now (5) is associated to a homomorphism of spectral sequences, so we are reduced to

prove we have isomorphisms for the terms Eg, which will follow if we know that (5)

is an isomorphism, when X is replaced by any prescheme U^nU^n . . . nU, . This

reduces us, first to the case when X is contained in an affine scheme, and hence is

separated, and in this case the previous open sets are affine, so we are finally reduced
to theorem i.

Besides, if X is complete, then we can prove theorem i / directly, using the spectral

sequence (3) and the analogous one for X^, and using Serre's GAGA (4); thus in this

case, the result is elementary i.e. does not use resolution, as does th. i.

(4) }%~v' SERRE, Geometric algebrique et geometric analytique, Annales de I'lnstitut Fourier vol VI do^
p. 1-42. -'-»"/»
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ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES 97

Now to the proof of theorem i. As Hironaka's resolution theorems are equally

valid on complex analytic spaces, at least locally, one can deduce theorem i from a

stronger, purely local theorem on complex analytic spaces, as follows:

Theorem 2. — Let X be a reduced complex analytic space, Y an analytic closed subset,

U==X—Y, assume U non singular and dense in X, and that Y can be defined locally by one

equation. Let t^x(*Y) be the complex of Modules on X of
 c<

 differential forms with polar

singularities on Y 59, which on U reduces to the complex of holomorphic differential forms on U,

hence we get canonical homomorphisms

(7) «^W(*Y)) -> RV;(Cu),

where Cy is the constant sheaf C on U and f : U->X the natural injection. These homomorphisms

are isomorphisms.

(N.B. For a formal definition of the sheaf QX^)? take the subsheafof /JQ'u)

whose sections, on an open set V, are the holomorphic differential forms on VnU

which are restrictions of meromorphic Kahler differential forms on V) (5).

This theorem is essentially equivalent with the case b) of the

Corollary. — Let X be as above, assume moreover that

(8) H^(X,^(*Y))=o for p>o, any q ;

then the global homomorphisms analogous to (7) :

(9) H^r(X,Ox(*Y))->FP(U,C)

are isomorphisms. This conclusion holds in particular in each of the following cases :

a) X is projective, and Y is the support of an ample positive divisor on X (6).

b) X is Stein.

(5) In fact, what we actually need is that for any p, the coherent sheaf ^== 0.^ on U can be extended, on

an open neighbourhood Wy in X of any point y e Y, into a coherent sheaf 6 on Wy. In this situation, the
" sheaf of meromorphic sections ofj^, holomorphic on U " is defined as the subsheaf^'(*Y) of/^(^) whose sections,
on an open set V, are the sections (oof^'on V n U such that, for every j/eVHY, there exists an open neighbourhood
WcWyflV of^, a section o/ of 6 on W, and an integer n, such that (oKWnU)^^^) |(WnU), where 9'
is the defining equation of Y in X. It is easily checked that these (o are indeed the sections of a subsheafj^+Y)
^.AW? and ^at thi

^ subsheaf does not depend on the choices performed. In the case when y can be extended
globally to a coherent sheaf & on X, there is a natural isomorphism

J^(*Y) ^lim^m^y",^),

n

where ^ is a coherent sheaf of ideals on X defining Y. In our case (^ == ̂ p) we can take 6 = Q.P == AHy, the

sheaf of Kahler differentials on X. For the definition of0^, see S^minaire Carton, 1960-1961, Expose 14 : Elements
de calcul infinitesimal.

(6) A slightly different proof shows that the assumption in a) can be generalized into the following one:
a ' } X is compact algebraic, and X—Y is affine.
Let us show how this implies (8), and more generally for any coherent sheaf 6 on X:

(8') HP(X,5(*Y))==o for/»>o.

Let XQ, YQ be the schemes over C that define X, Y (they are uniquely determined up to isomorphisms by GAGA (4),
or rather by the extension of the results of GAGA to complete varieties that I gave in S^minaire H. Cartan, 1956-57,
Expose 2 : Sur les faisceaux algebriques et les faisceaux analytiques consents). Let UO==XQ—Y(),/Q : Uo->Xg
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98 A. G R O T H E N D I E C K

The fact that (8) and isomorphy for (7) imply isomorphy for (9) is standard.

That assumption a) implies (8) is an immediate consequence ofSerre's vanishing theorem

and commutation of cohomology of the compact space X with direct limits of sheaves

(cf. A-H, lemma 6). An analogous argument holds in case b ) , as there exists a coherent

sheaf S on X which on U reduces to Q^j, so that we have an isomorphism

f^(*Y) ^ \v^^om^{/\ <?),

n

where / denotes a coherent sheaf of ideals such that Y===Supp Q^\ / ' Using the

vanishing of the cohomology groups of the holomorphically convex compact subsets K

ofX with coefficients in the coherent sheaves J^ow^ (^n, €\ it follows as before that

the cohomology of these K with coefficients in Q^(*Y) vanishes, hence also the

cohomology of X with values in the same sheaf.

Theorem i is contained in part a) of the corollary, as one sees by denoting by U

the X of theorem i, and by X a projective closure ofU.

Now to prove theorem 2, use resolution to get a projective birational morphism

^:X'-^X,

the canonical immersion. Let ^o be the coherent sheaf on XQ that defines 6, equally determined up to unique
isomorphism (same reference, which we will abbreviate into ((> GAGA "). As

6(*Y) ^lim^ow^^,^),

n

^ being a coherent sheaf of ideals denning Y, we get by compactness of X

HP(X, <§(*¥)) ^ Hm HP(X, ^omQ^y, &)),

n

but by applying GAGA we get

HP(X, ̂ om^(r, <S)) ^ W (Xo, ̂ om^(^ ^)),

and hence
HP(X, <^Y)) ^ lim HP(Xo, ^om^W, ̂ )) ^ HP(Xo, (/o), (^ Uo))

n

As UQ is affine and Xy complete and hence separated, /p : Up ->XQ is an affine morphism, hence R9 (./o)^ (^o | Uo) ==o
for q>o, hence

W(Xo (/o), (^o|Uo)) ^ HP(Uo, <5o|Uo),

which is zero for p ̂  o, as UQ is affine. This proves (8') and also the formula

(8-) HO(X,<S(*Y)) ^ HO(Uo,<So|Uo),

i.e. the meromorphic sections of«^ on X with only polar singularities on Y and holomorphic on X—Y, are just the
rational sections of <*?o on Xp regular on Up, i.e. the sections of S | Up on UQ .

If now X is regular and Y has only normal crossings, then (as observed and used below in the proof of theorem 2)
the homomorphisms (7) are isomorphisms, as seen by easy explicit computation (A-H, lemma 17), hence the
homomorphisms (9) are isomorphisms, hence (using (8")) theorem i holds true for Up = Xp—Yp. But using global
resolution for algebraic schemes over C, one sees that any regular affine scheme Up over C is isomorphic to Xp—Y(),
with XQ projective and regular, and Yp a divisor with only normal crossings. This proves theorem i independently
of theorem 2, using global resolution of algebraic schemes rather than local resolution of complex analytic spaces,
and independently also of Grauert-Remmert*s result (7), whose application in the proof of theorem 2 is a little bit
subtle.

It would be interesting to know if the conclusion (8') holds true if we assume only X compact, and U = X—Y
Stein (which would imply that (9) are still isomorphisms in this case).
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ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES 99

with X' non singular and Y'^-^Y) a divisor with only normal crossings ( ( < simple

divisor 5? in the terminology of A-H) for the reduced induced structure. This is

possible at least locally on X, which is enough for our purpose. For simplicity let

jr = ̂ (*Y), jr- == QX^Y'),

Let U
t
==g~

l
(\J)y we can assume that g induces an isomorphism

g- :U-->U.

Let J?' be an injective resolution of Cy, hence an injective resolution JSf" of C^,. The

homomorphism (7) is deduced from a homomorphism of complexes

(10) jr^(^),

and the homomorphism analogous to (7) for (X', Y') is deduced from a homomorphism
of complexes

(10') jr-->/;(^'),

where /' : U'-^X' is the canonical embedding. Besides, one has natural isomorphisms

^(jr-) ̂  jr, ^C/:^-)) ̂ (^-),

and we can assume (10) deduced from (10') by applying g . I contend we have
moreover:

(") R^(^>/p)==R^(/:(^'p))=o for <7>o, any p.

This is trivial for the second relation, as /^(JSf^) is flasque. As for the first, we have more

generally, for any coherent sheaf S ' on X', and denoting by <?'(*Y') the c< sheaf of

meromorphic sections of € ' holomorphic on X'—Y^IT 9?, the relations

R^(^(*Y'))=o for q>o.

To see this, write

S'^^V^^om^/'^ <T),

n

where / ' is a coherent sheaf of ideals defining Y', so that ^'(*Y') appears as a direct

limit of coherent sheaves ^. As g is proper, R^ commutes with direct limits of

sheaves; on the other hand the comparison theorem ofGrauert-Remmert (7) on projective

morphisms of analytic spaces tells us that the fiber at a point x of the sheaf R5/ (<^)

(7) H. GRAUERT et R. REMMERT, Faisceaux analytiques coherents sur Ie produit d'un espace analytique et
d'un espace projectif, C.R. Acad. Sc. Paris, t. 245, p. 819-822. The proof that follows is essentially the same as the
one given in the previous remark (6), except that reference to GAGA is replaced by a reference to the theorem of
Grauert-Remmert, which should be viewed as the generalization of GAGA, from the case of a base space reduced
to one point, to the case of a ground space an arbitrary complex analytic space. For the general philosophy of the
result of Grauert and Remmert, one may read my talk in Cartan's Seminar 1960-61, Expose 15, Rapport sur les
theoremes de fmitude de Grauert et Remmert (especially the remarks on the last page of the expose).

We sould remark also that the theorem of Grauert and Remmert is implicit in the proof of the isomorphism

^(^•)^Jf,

(which in our remark (6) above corresponds to the isomorphism (8")).
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ioo A . G R O T H E N D I E C K

r*»^

can be computed as the q'th cohomology group, on the projective scheme X' over
<^ /̂
X==Spec(^x x) which defines X'/X in a neighbourhood of^, of the algebraic coherent

/" '̂i /^-^
sheaf S'^ on X' which corresponds to <?„. Thus to prove that

R^(^(*Y')L-HmR^«),
n

("•»«»/

is zero for y>o, we are reduced to the corresponding fact on X, i.e. to prove

H^X', J : ( S ' U'))-o for ^>o.

r̂ »/ /-s^ '—•»-' '̂ ^/

Now this is easy, for as Y is defined in X by one equation, the same holds for Y' in X',

therefore J ' : U^X'- is affine, and hence H^X^y^^lLf')) ^ H^l?',^^), which
/^x^/ i^*^ _

is zero for q>o as U'^U is affine. This establishes (n).

Moreover, (10') induces an isomorphism for the cohomology sheaves, i.e. Theorem 2

holds true when (X, Y) are replaced by (X', Y'). This follows from the fact that X'

is non singular and Y' has only normal crossings, by an elementary explicit calculation

(A-H, lemma 17). From this and (11) follows, by a standard argument, that the

image of (10') by g , namely (10), induces also an isomorphism for the cohomology

sheaves. The proof of theorem 2, and hence of theorem i, is now complete.

The purely algebraic definition ( i ) of De Rham cohomology raises a number of

further questions. Let for instance

/:U->X

be a morphism of regular schemes over C; does the corresponding Leray spectral sequence

(12) H-(U\ Cu.) <= HW R^(C^))

admit a purely algebraic definition, valid for any ground field k, at least for k of char. o

(cf. (13)). For instance, if/ comes from a morphism of schemes Uo->Xo over a

subfield ko of C, is it true that the Leray filtration of IT(U\ C^jh) comes from a filtra-

tion of H'(U())? The spectral sequence (12), when/ is an open imbedding and X is

projective, was used in A-H (p. 84) in order to define the notion of a rational closed

form 9 (< of second kind " on X. However, this definition now makes sense in a purely

algebraic way, as it just means that there exists a dense open subset U of X (for the

Zariski topology) such that 9 is regular on U and the element ofH'(U) it defines is in

the image of H-(X)->H-(U) (8).

(8) There is however another spectral sequence of a purely algebraic character, which for the study of the
notion of '* integrals of the second kind " may be substituted to the one used in A-H, having for abutment the
De Rham cohomology H'(X), X being any algebraic prescheme smooth over a field k. To get it, we observe that
every locally free sheafs on a regular scheme X has a canonical injective resolution (the " Cousin resolution "
or ( < residue resolution " (cf. Hartshorne's Seminar, Harvard, 1963-64), which as a graded sheaf is just the direct

sum of the flasque (even injective) sheaves associated to the local invariants H^(<S)==hm Ext^^/m^?, <S^)»
n
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ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES 101

Also, for a general regular (9) scheme X over any subfield k of C, a number field

say, there is in the usual complex cohomology H^X^, C^h) a natural sub-vector

space H'(X) over k, which gives H^X^, C^h) by extensions of scalars K->C. This

subspace (ifX is projective) contains the subspace H°(X, Q^) of all regular differential

forms on X as a subspace of the pure component H^X^^H^X^, Q^), but even in

the case when X is a complete non singular curve or an abelian variety (an elliptic

curve, say), and n== i, the position of the whole ofH^X) in H^X^, C^) with respect

to H^X^, Cy^h) or H^X^, Z^h) yields an interesting arithmetic invariant, generalizing

the c< periods " of the regular differential forms. In a way, one has 4^ " periods "

instead of the usual 2g one (2g being the first Betti number); one may ask for instance

(x £X, p == dim c^ ^). If X is of dimension i, this is just the resolution by " repartitions ", C°(^) == «S(E) ^ ̂  the

sheaf of rational sections of E, C^) ̂  C°(6)/6 ̂  U (<^®^ ^X^l^x (
x runs over the set F of closed points

of X) = the sheaf of additive Cousin data on X relative to <^. This resolution C* (<S) is functorial in <S with respect
to arbitrary homomorphisms of abelian sheaves (not necessarily ^-linear), hence for every complex 0, of abelian

sheaves on X, whose components are locally free sheaves of modules (the differential operator not necessarily linear)
an injective resolution C'(n^) ofn^ which can be used to compute the hypercohomology H* (X, fi.^.). This complex

seems to be quite convenient for the study of the De Rham cohomology. It yields a spectral sequence

H-(X,nx) ̂  E?'^ U H^^),
a-ex^

where XP is the set of all x e X such that dim ̂  ^ ==p. IfD^ is the complex of regular differentials on X, then

one can define (using residues of differentials) a canonical homomorphisms:

(R) H^-P(k(x)) -^H^(nx).

where for any extension K of k, we denote by H*(K) the De Rham cohomology of K/A: (which, if K is of finite type
and separable over k, is just the direct limit of the De Rham cohomologies of affine models of K smooth over k).
Moreover, if k is of char. o, one shows by a transcendental argument using theorem i, that the homomorphisms (R)
are isomorphisms. Therefore, in the case X smooth over k of characteristic zero, wo get the spectral sequence

(S-) H*(X)<=Ef^== II I^~P(h(x)).
a; ex'

(If k == C, this spectral sequence can be interpreted geometrically as the direct limit of the spectral sequences, for
the usual complex cohomology ofX, arising from nitrations ofX by Zariski closed subsets of decreasing dimension).
In the corresponding filtration of WP (X), the last factor occuring is the subspace ofWP (X) which is <( algebraic ",
i.e. generated by algebraic cycles of codimension p. Although E^ is pretty big, it seems plausible that already Eg

is of finite dimension over the groundfield k; this can be checked at least if dim X^ 2, or for E|?'q for small values
of p, q.

(9) It is likely that <( regular " is not needed, provided we replace cohomology by homology; namely that for
any algebraic scheme X over a field of characteristic zero, X not necessarily regular, one can define (in a purely
algebraic way) ( < singular " homology groups H^(X), which in the case k =C will coincide with the ususal singular
homology groups with arbitrary supports of X^ (dual to the cohomology with compact supports of X). If for
instance X is imbedded in a regular algebraic scheme X' everywhere of dimension n, one should define

(H) H,(X)=H^-*(X/,nx-/^fc)

(where the right-hand side denotes hypercohomology with supports in X); of course one should check that this is
independant of the chosen imbedding, a problem very much of the same type as the invariance problem dealt with
in Hartshorne's Harvard Seminar 1963-64, and which calls for a common generalization. The residue resolution
of ^x'/fc ^^ ^lves rlse to a spectral sequence, generalizing the spectral sequence (S) defined in the previous
remark (8)

(S.) H.(X)<=E^== U HP-?(feM),
xe^p

where now Xp denotes the set of points xe X such that the dimension of the closure of x be p, and HP''"^^^))
denotes birational De Rham cohomology as before.
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102 A . G R O T H E N D I E C K

if Schneider's theorem generalizes in some way to this larger set of periods (10).

If X is projective and smooth over a field k of char. o, then Lefschetz's principle

and Hodge's theory imply that the spectral sequence (3) degenerates: all differentials

dy (r^ i) vanish. The same holds in any characteristic if X is an abelian variety, and

presumably every time when the Hodge cohomology gives the < c correct " Betti numbers

(namely those given by etale Z^-adic cohomology (n), / prime to the characteristic).

Thus, in these favorable cases, the bigraded group associated to the natural filtration

of H"(X) is just the Hodge cohomology (2). But in contrast to what happens in the

transcendent set-up, there is no (( natural " splitting available for this filtration, i.e. no

natural isomorphism between De Rham and Hodge cohomology (as one can see already

in the case when X is an elliptic curve). The extensions thus obtained seem to be again

interesting arithmetic invariants. For instance, the H^X) of an abelian variety over

any field K is an extension of tx*=Hl(X, ^x) (tne tangent space of the dual abelian

variety X* at the origin) by tx (the dual of the tangent space of X at the origin). This

may be viewed as an extension of R-modules, where R is the ring of endomorphisms

ofX. If the characteristic is p^o, it seems unlikely that this extension should always split.

It is probably tied up in some way with the following extensions of algebraic finite groups

o->G(tx)->,X-^D(G(tx.))->o,

where pX==Ker (j&.idx), Gr(tx) and Gr(tx*) are the radicial groups of height one associated

to the restricted j^-Lie algebras tx and tx*, and D denotes Carder dual. In the same way,

if we are dealing with an abelian scheme X over an arbitrary ground scheme S instead

of a ground field, (say S=some modular scheme), we get an extension of locally free

sheaves of tx* by tx, hence a canonical cohomology class

^H^S.tx^tx),

which probably is not always zero, not even in char. o and with S proper.

Quite generally, if f : X->S is a smooth morphism of schemes, one can generalize

definition (i) to introduce coherent sheaves on S:

(i3) H^/^R^x/s),

(10) In fact, J.-P. Serre pointed out to me that for an algebraic curve over C, these " periods of differentials of
the second kind " are rather classical invariants. Thus, for an elliptic curve denned by the periods co^, (Og one defines
classically the integrals

[^i
^ = , ̂

J 0

(where x=^>z, y ^ ^ ' z - i and T] ==—— is a differential of the second kind which, together with the invariant

differential <o, forms a basis of H1(X)= differentials of second kind mod. exact differentials). The only known
general algebraic relation among the r^ and co^ is

0)i7]2——^i^ == 2 t'TT.

Schneider's theorem states that if X is algebraic (i.e. its coefficients g^ and ^3 are algebraic), then (Oi and cog are
transcendental, and it is believed that if X has no complex multiplication, then coi and <0g are algebraically
independent. This conjecture extends in an obvious way to the set of periods (<0i, cog, T^, T^) and can be rephrased
also for curves of any genus, or rather for abelian varieties of dimension g, involving 4^ periods.

(11) Cf. M. ARTIN, Grothendieck Topologies, Spring, 1962, Harvard University, or M. ARTIN etA. GROTHENDIECK,
Cohomologie etale des Schemas, Seminaire de Geometric algebrique de FI.H.E.S., 1963-64.
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ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES 103

(coherence is seen using the analogon of the spectral sequence (3)). If/is proper, one

might still hope (12) that these sheaves on S are locally free, or what amounts to the

same, that <( their formation commutes with base-extension S'-^S ", which would

imply in particular that " De Rham cohomology is compatible with specialization 5?.

On the other hand, if S is again the spectrum of a field k of any characteristic, one might

hope that if X/A: is proper, the dimension of H^X) is just the n-th Betti number in the

sense of /-adic cohomology (/ prime to the characteristic). This can be seen to be

correct in char. o, by the usual transcendent argument (the second assertion, even if X

is not proper over A, using theorem i' above). As far as I know, the usual counter-

examples in char. p>o (Igusa, Serre, Mumford) are all relative to Hodge cohomology,

which turns out to be (( too big 55 in these examples; this can possibly be explained

away by observing that in these cases, the spectral sequence (3) is non trivial, and cuts

down Hodge cohomology just the amount needed so that the abutment should have the

correct dimension...

Manuscrit refu Ie 5 juillet 1965.

(12) This " hope ", and the next one, are excessive, as Serre pointed out. Indeed, it is not hard to check that
in his example of a non singular surface X, quotient of a regular surface in P

3 by the group G = Z//?Z operating freely,
p = characteristic (cf. J.-P. SERRE, Sur la topologie des varietes algebriques en caracteristique p. Symposium Interna-
cional de Topologia Algebrica (1958), p. 24-53, proposition 16), one has dimH^X)^!, whereas 7^(X)==Z//?Z
and hence the first Betti number &i(X) is zero. Thus the dimensions ofH^X) may still be too big, probably due to
torsion phenomena in the /»-adic cohomology.

(13) (Added July 1965). Manin's work on the Mordell conjecture {hvestija Akad. Nauk SSSR, Ser. Mat.,
t. 27 (1963), p. 1395-1440) strongly suggests that, for a proper and smooth morphism /: X->S of preschemes of
char. o, one should introduce on the locally free sheaves R/^(£"l*r,g) on S a canonical integrable connexion (relative to

any given ground-scheme for S, for instance — taking the optimal choice — relative to Spec(Q)). From the trans-
cendental point of view, in the particular case when S is locally of finite type over C, this connexion is defined simply
by the canonical isomorphism Wf^{P\h,^h) ^ ^f^C^h)®^^ (where the upper h denotes again that we are

passing to the corresponding complex analytic objects).
This extra structure on the sheaves Wf^(fl*r,a) allows for instance to state a variant of the conjectures of

Hodge and Tate on algebraic cohomology classes, as follows: if S is connected and reduced, and if 9 is a section
of R^/^n^g), then 9 is < ( algebraic on every fiber " (i.e. corresponds on every geometric fiber Xg, s E S , to the

cohomology class of an algebraic cycle on Xg with rational coefficients) if and only if 9 is tt constant " for the
canonical connexion of RV^Q^/g), and 9 is algebraic for one point s of S. Once a suitable algebraic definition

of the canonical connexions is given, so as to give a sense to the previous statement, this conjecture would be a
consequence of Tate's (as reported in his Woodshole conference).

It should be noted also that the definition of the De Rham cohomology H*(X, Qy/i,) (tor X smooth over a

field k) extends to the case when one takes on X a sheaf of coefficients 6, which should be a locally free sheaf endowed
with an integrable connexion. Indeed, as well known, the differential operator ofQ.\r,^ then extends in a natural way

to a differential operator on ^x/fc®*^ anc^ one can ^enne therefore

HiDR(X,E)=H-(X,Ox/fc®6),

(where DR means " De Rham "). It is likely that with this definition, the main results (theorems i and i') of
this paper generalize to the case of De Rham cohomology with coefficients in such a sheaf <S.

If now X is smooth and proper over S, S smooth over a field k of char. o, then using the •' canonical connexions "
on the sheaves R^/^(Qy,g), one can define the terms

E^=HSK(S,RV^g)),

which should form the initial term of a, ( < Leray spectral sequence " whose abutment is H*(X). This gives some
indication about the direction of investigations which should lead to a suitable generalization of Leray's spectral
sequence (note (12)).
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