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Abstract. We study an initial boundary value problem for the p-Laplace equation with

a strong absorption. We are concerned with the dead-core behavior of the solution. First, some

criteria for developing dead-core are given. Also, the temporal dead-core rate for certain initial

data is determined. Then we prove uniqueness theorem for the backward self-similar solutions.

1. Introduction. In this paper, we consider the following initial boundary value prob-

lem

(1.1)

⎧

⎨

⎩

ut = (|ux |
p−2ux)x − uq , 0 < x < 1 , t > 0 ,

ux(0, t) = 0 , u(1, t) = k , t > 0 ,

u(x, 0) = u0(x) , x ∈ [0, 1] ,

where parameters q ∈ (0, 1), p > 2 and k > 0. We shall always assume that u0(x) > 0 for

all x ∈ [0, 1]. The local existence and uniqueness of classical solution of (1.1) is trivial. Let

[0, T ), T = T (u0) > 0, be the maximal time interval for the existence of a positive solution

u to the problem (1.1). In the case when T < ∞, we have

lim inf
tրT

{ min
x∈[0,1]

u(x, t)} = 0

so that the solution reaches zero at some point in a finite time. We call such a property a dead-

core phenomenon. In fact, in the study of chemical reaction, the chemical is inactive when

the chemical concentration u vanishes and so the set of vanishing concentration is called the

dead-core.

Problem (1.1) with p = 2 arises from the modeling of an isothermal reaction-diffusion

process (cf. [2, 9]). See also [1, 3]. In problem (1.1), there is no flux on the boundary x = 0

and it is injected with a fixed amount of reactant on the boundary x = 1. Owing to the

strong absorption (the reaction rate −uq−1 → −∞ as u ց 0, since q < 1), a dead-core is

expected to be developed for certain initial data. On the other hand, it is also very interesting

to study the temporal dead-core rate. For this, we refer the reader to [7, 6, 5, 4] for the study

of dead-core for the equation

(1.2) ut = (um)xx − uq
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in which 0 < q < 1 and m > q . The case for m = 1 corresponds to the case for p = 2 in

(1.1). The dead-core rate can be either of self-similar or of non-self-similar type for different

range of m. We refer to [7, 5, 4] for more details. For m = 1, the exact dead-core rates for

different initial data is addressed in [6] by applying a braid group theory. The other cases are

largely open.

The main purpose of this paper is to study the dead-core problem for the p-Laplace

equation with a strong absorption. Some criteria of developing dead-core is provided in the

next section. Now suppose that u develops a dead-core in finite time T . If we further assume

that u′
0 ≥ 0 on [0, 1], then ux > 0 in (0, 1] × (0, T ) by the strong maximum principle.

Therefore, in this case we may re-write the first equation in (1.1) as

ut = (p − 1)u
p−2
x uxx − uq .

In particular, at x = 0 we have

(1.3) ut (0, t) = −u(0, t)q for all t > 0 .

An integration of (1.3) from t < T to T gives that

u(0, t) = α−α(T − t)α , α := 1/(1 − q) .

This determines the dead-core rate at the point x = 0. Notice that the dead-core time T is

uniquely determined by u0(0) = α−αT α .

Finally, we study the self-similar solutions of problem (1.1). For this, we introduce the

following standard self-similar transformation for (1.1):

(1.4) v(y, s) =
u(x, t)

(T − t)α
, y =

x

(T − t)β
, s = − ln(T − t) , β :=

p − 1 − q

p(1 − q)
.

Then v satisfies

(1.5) vs = (|vy |p−2vy)y − βyvy + αv − vq for 0 < y < eβs, s > s0 := − ln T .

We shall only consider the classical solutions, i.e., solutions in C2 class. For a classical sta-

tionary solution V of (1.5) for y ∈ [0,∞), i.e., V satisfies

(1.6) (|Vy |
p−2Vy)y − βyVy + αV − V q = 0 , y ∈ [0,∞) ,

in the classical sense, there corresponds a self-similar solution u of (1.1) in the form

u(x, t) = V

(

x

(T − t)β

)

(T − t)α .

In particular, let

(1.7) V∗(y) := c0y
γ , y ≥ 0 ,

where

γ :=
p

p − 1 − q
=

α

β
> 1 , c0 := [(p − 1)γ p−1(γ − 1)]

1
q−p+1 .

Then V∗(y) is a classical solution of (1.6) when γ ≥ 2. Another trivial nonzero self-similar

solution is the constant function V0 ≡ α−α . It is interesting to see whether there are any other

self-similar solutions. We prove in the last section of this paper that these two functions are
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the only nonzero classical solutions of (1.6) under certain conditions. Similar results were

proved in [7, 5, 4].

This paper is organized as the follows. We give some criteria of developing dead-core

in §2. Then we prove the uniqueness (under certain conditions to be specified below) of

self-similar solutions in §3. Although the method of proving the uniqueness theorem is quite

similar to the one given in [4], the analysis here is more delicate and involved due to the

p-Laplace diffusion term.

2. Occurrence of dead-core. In this section, we provide some criteria for the oc-

currence of dead-core. Similar results for the (1.2) can be found in [5, 4]. The proof of the

following theorem is based on an idea of [8].

THEOREM 2.1. For any k > 0, δ ∈ (0, 1) and M > 0, there is a constant σ > 0,

depending on δ and M , such that T (u0) < ∞ for any initial datum u0 with 0 < u0 ≤ M in

[0, 1] and u0 ≤ σ in [0, δ].

PROOF. Set U(x, t) = ε(T − t)α(1 + y2)η, where

y :=
x

(T − t)β
, β :=

p − 1 − q

p(1 − q)
,

p

2(p − 1 − q)
< η <

p

2(p − 2)
.

Then

Q[U ] := Ut − (|Ux |
p−2Ux)x + Uq

= ε(T − t)α−1{−α(1 + y2)η + 2βηy2(1 + y2)η−1

−εp−2(2η)p−1(p − 1)[2(η − 1)y2 + (1 + y2)](1 + y2)(η−1)(p−1)−1yp−2

+εq−1(1 + y2)ηq} .

Note that from the choice of η, 2βη > α and so Q[U ] ≥ 0, if y ≥ L ≫ 1. On the other hand,

choose ε sufficiently small, we have Q[U ] ≥ 0, if y ∈ [0, L]. Hence

Ut − (|Ux |
p−2Ux)x + Uq ≥ 0 for x ∈ (0, 1), t ∈ (0, T ) .

Moreover,

U(x, t) ≥ εx2ηT α−2βη .

Suppose u0 ≤ σ in [0, δ] and 0 < u0 ≤ M in [0, 1], where σ := min[0,δ] U(x, 0). Choosing T

small enough such that εδ2ηT α−2βη ≥ M , we have u0(x) ≤ U(x, 0) for all x ∈ [0, 1]. Also,

we have Ux(0, t) = 0 and U(1, t) ≥ M ≥ u0(1) ∀t ∈ (0, T ). Hence by the Comparison

Principle, u ≤ U in [0, 1] × [0, T ), where u is the solution of (1.1). Notice that U(0, t) =

ε(T − t)α → 0 as t → T −. Therefore, u attains a dead-core in a finite time ahead of T . The

theorem is proved. ✷

Next, we study the stationary solutions of (1.1). For this, we define the following quan-

tities

K(p, q) :=

[

p

(p − 1)(q + 1)

]1/p

, k0 :=

[

p − q − 1

p
K(p, q)

]p/(p−q−1)

.
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Let U = Uµ be the solution of the following initial value problem:

(|U ′(x)|p−2U ′(x))′ = Uq (x), x ≥ 0 , U ′(0) = 0, U(0) = µ ≥ 0 .

Then it is easy to see that U ′ > 0 on (0, 1] if U > 0 on (0, 1]. Moreover, Uµ1
< Uµ2

on [0, 1]

if 0 ≤ µ1 < µ2. Suppose that U(1) = k > µ. Then, by an integration, we can easily deduce

that

Ik(µ) :=

∫ k

µ

du

(uq+1 − µq+1)1/p
= K(p, q) .

Note that the integral Ik(µ) is integrable such that Ik(k) = 0 and

Ik(0) =

∫ k

0

u−(q+1)/pdu =
p

p − q − 1
k(p−q−1)/p .

Therefore, a (unique) solution U with U > 0 on (0, 1] to the problem

(2.1) (|U ′(x)|p−2U ′(x))′ = Uq (x), x ∈ [0, 1] , U ′(0) = 0, U(1) = k > 0 ,

exists if and only if k ≥ k0. We denote this solution by Uk . On the other hand, for k ∈ (0, k0),

there is a unique solution Uk to (2.1) such that Uk = 0 on [0, δk] and Uk > 0 on (δk, 1] for

some positive constant δk < 1. Indeed, the constant δk is determined by

(1 − δk)K(p, q) =
p

p − q − 1
k(p−q−1)/p .

Actually, the solution u to (1.1) exists globally with u ≥ 0. We introduce the energy

E[u](t) :=
1

p

∫ 1

0

|ux(x, t)|pdx +
1

q + 1

∫ 1

0

uq+1(x, t)dx .

Then it is easy to check that

E[u]′(t) = −

∫ 1

0

u2
t (x, t)dx ≤ 0 .

Therefore, the standard energy argument shows that u → Uk uniformly on [0, 1] as t → ∞.

This together with Theorem 2.1 imply the following dead-core criterion.

COROLLARY 2.2. For k ∈ (0, k0), any solution of (1.1) develops a dead-core in finite

time.

3. Uniqueness of self-similar solutions. This section is devoted to the study of the

self-similar solutions of (1.1). In order to study the self-similar solution of (1.1), following

[4] we introduce

(3.1) r =
Bx

(T − t)β
, s = −[ln(T − t)]/γ , zγ (r, s) =

u(x, t)

A(T − t)α
,

where

A := α−α , B := [α1−2α+pα(γ − 1)−1(p − 1)−1γ 1−p]1/p .

Then the equation (1.1) is transformed to

(3.2) zγ−1zs/α = azγ−σ z
p−2
r zrr + zγ−σ−1(z

p
r − 1) + zγ−1(z − rzr) ,
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where

a := (γ − 1)−1 , σ := −(γ − 1)(p − 2) + 1 .

Note that γ > 1 and σ ∈ (−1, 1), since

σ − 1 =
(1 + q)(2 − p)

p − 1 − q
< 0 <

p(1 − q)

p − 1 − q
= σ + 1 .

Also, we have γ − σ − 1 = pq/(p − 1 − q) > 0.

Suppose that u is a solution of (1.1) with the maximal existence time interval [0, T ). If

we assume that u′
0(x) ≥ 0 and (|u′

0|
p−2u′

0)
′ − u

q

0 ≤ 0 for all x ∈ [0, 1], then it follows from

the strong maximum principle that ut < 0 < ux for all x ∈ (0, 1) and t ∈ (0, T ). From the

fact that ut < 0, we obtain

(|ux |
p−2ux)x − uq < 0 .

Multiplying this inequality by ux and integrating it from 0 to x with x > 0, we obtain

(3.3) 0 < ux(x, t) < Cp,qu
q+1
p (x, t) , 0 < x < 1, 0 < t < T ,

where Cp,q = [
p

(p−1)(q+1)
]1/p. It follows from (3.3) that

(3.4) 0 < vy < Cp,qv
q+1
p , 0 < y < eβs, s > s0 .

Due to the estimate (3.3) (and (3.4)), we have

z(r, s) > 0 , 0 < zr (r, s) ≤ 1

for 0 < r < Beβγ s , s > − ln T/γ . Therefore, any ω-limit Z of z (if it exists) satisfies

(3.5) Z ≥ 0 , 0 ≤ Zr ≤ 1 , r ≥ 0 .

Also, Z is a (nonnegative) steady-state solution of (3.2) in [0,∞), i.e., Z satisfies the equation

(3.6) aZγ−σ Z
p−2
r Zrr + Zγ−σ−1(Z

p
r − 1) + Zγ−1(Z − rZr ) = 0 , r ≥ 0 .

Hence hereafter we only consider solutions of (3.6) satisfying (3.5) such that Zγ ∈C2([0,∞)).

Note that Z ≡ 0 and Z ≡ 1 are two trivial (constant) solutions of (3.6).

For a given nontrivial solution Z of (3.6) satisfying (3.5) with Zγ ∈ C2([0,∞)), we set

r0 := inf{r ≥ 0 | Z(r) > 0} .

Then r0 is well-defined and r0 ∈ [0,∞). Note that Z(r) > 0 for all r > r0. On the other

hand, we observe from (3.6) that Z(r̄) = 1, if Zr(r̄) = 0 for some point r̄ > r0. Also, Z ≡ 1

on [r̄, r̃], if Zr (r̄) = Zr(r̃) = 0 with r0 < r̄ < r̃ . Indeed, since Z(r̄) = Z(r̃) = 1, if Z(r) �= 1

for some r ∈ (r̄, r̃), then the mean value theorem implies that there is a point r0 in either (r̄, r)

or (r, r̃) such that Z′(r0) < 0, a contradiction to (3.5).

REMARK 3.1. For {Z > 0, Zr > 0}, we may write (3.6) as the system

Zr := W ,

Wr = {Z−1(W 2−p − W 2) + Zσ−1(rW − Z)W 2−p}/a .
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Due to the singularity of the nonlinearity, the standard uniqueness theory for initial value

problem cannot be applied for the initial value (Z,W) = (1, 0).

REMARK 3.2. Note that, due to the boundary condition, we may assume that

(Zγ )r (0) = 0. This implies that Zr(0) = 0, if Z(0) > 0 (so that r0 = 0). Note that

Z(r0) = Zr (r0) = 0, if r0 > 0. Therefore, in any case we have either Z(r0) = 0 or

Zr (r0) = 0. Also, it is trivial that Zrr(r0) is finite, when r0 > 0, due to (3.5). On the

other hand, for r0 = 0, we have Zγ−1(0)Zrr(0) < ∞ due to Zγ ∈ C2([0,∞)). In particular,

if Z(0) > 0, then we have the finiteness of Zrr(0).

LEMMA 3.3. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and

(A) Zr > 0 on (r0, r1) and Zr(r1) = 0 for some r1 ∈ (r0,∞).

Then Zrr(r) has the same sign as that of −σ for all r ∈ (r0, r1).

PROOF. For r ∈ (r0, r1), we define the quantity

ρ(r) :=

∫ r

r∗

ξZσ−1(ξ)

aZ
p−2
ξ (ξ)

dξ , r∗ := (r0 + r1)/2 ,

which is well-defined and nonnegative for all r ∈ (r0, r1). Writing (3.6) as

aZ1−σZ
p−2
r Zrr + Z−σ (Z

p
r − 1) + (Z − rZr) = 0 , r0 < r < r1 ,

and differentiating it once in r , we obtain

aZ1−σZ
p−2
r Zrrr + σZ−σ−1Zr (1 − Z

p
r )

+Z−σ Z
p−1
r

[

a(1 − σ) + p + a(p − 2)ZZ−2
r Zrr − rZσZ

1−p
r

]

Zrr = 0, r0 < r < r1.

It follows that Z satisfies

(3.7) a
d

dr

[

ZrrZ
1−σ+

p
a Z

p−2
r e−ρ

]

= −σZ−1−σ+
p
a Zr(1 − Z

p
r )e−ρ

for all r ∈ (r0, r1).

For any r ∈ (r0, r1), by integrating (3.7) from r̃ ∈ (r0, r) to r and sending r̃ to r0, we

obtain

(3.8) Zrr(r) = −
Z(r)−1+σ−

p
a Zr(r)

−p+2eρ(r)

a

∫ r

r0

σZ−1−σ+
p
a Zξ (1 − Z

p
ξ )e−ρdξ

for all r ∈ (r0, r1). Here we have used Remark 3.2 and the fact that the number

−1 − σ +
p

a
=

2pq

p − 1 − q

is positive so that the integral in (3.8) is well-defined. Notice that

(3.9)
[

ZrrZ
1−σ+

p
a Z

p−2
r e−ρ

]

(r+
0 ) = 0 .

Indeed, (3.9) holds trivially when Zrr(r0) is finite. It is left to check the case when r0 = 0 and

Z(0) = 0. In this case, we have Zγ−1(0)Zrr(0) < ∞. Writing

ZrrZ
1−σ+

p
a = ZrrZ

γ−1Z1−γ+1−σ+
p
a
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and noting that 1 − γ + 1 − σ + p
a

is positive, we obtain (3.9). Therefore, (3.8) holds and

we conclude that Zrr(r) has the same sign as that of −σ for all r ∈ (r0, r1), if the condition

(A) holds. ✷

LEMMA 3.4. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and

(B) Zr(r) > 0 for all r > r2 for some r2 ≥ r0.

Then Zrr(r) has the same sign as that of σ for all r ∈ (r2,∞).

PROOF. Similar to Lemma 3.3, we define

(3.10) ρ1(r) :=

∫ r

r2+1

ξZσ−1(ξ)

aZ
p−2
ξ (ξ)

dξ , r > r2 .

We first claim that

(3.11) ρ1(r) ≥ crσ+1 , r ≥ Z(0) + 2(r2 + 1) ,

for some constant c > 0. Indeed, since 0 ≤ Zr(r) ≤ 1 on (0,∞), we have

Z(r) = Z(0) +

∫ r

0

Zξ (ξ)dξ ≤ Z(0) + r .

Hence Z(r) ≤ 2r , if r ≥ Z(0) + 2(r2 + 1). It follows that

ρ1(r) ≥

∫ r

r/2

ξ(2ξ)σ−1

a
dr =

2σ+1 − 1

4a(σ + 1)
rσ+1 , r ≥ Z(0) + 2(r2 + 1)

and so (3.11) holds.

Next, we claim that

(3.12) Zrr(r) =
Z−1+σ−

p
2 Z

−p+2
r eρ1(r)

a

∫ ∞

r

σZ−1−σ+
p
a Zξ (1 − Z

p
ξ )e−ρ1dξ

for all r > r2. To see this, we note that (3.7), with ρ replacing by ρ1, holds for r > r2. Using

the estimate

a|Zrr |Z
1−σ+

p
a Z

p−2
r = Z−σ+

p
a (a|Zrr |ZZ

p−2
r )

≤ Z−σ+
p
a (1 − Z

p
r ) + Z

p
a |(rZr − Z)|

≤ |Z(0) + r|−σ+
p
a + |Z(0) + r|

p
a +1

for r > r2, by integrating (3.7), with ρ replacing by ρ1, from r > r2 to ∞, (3.12) follows.

Hence the lemma is proved. ✷

LEMMA 3.5. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and σ ≤

0. Then Zr > 0 for all r > r0.

PROOF. Suppose for contradiction that there exists r̄ > r0 such that Zr (r̄) = 0. Then

Z(r̄) = 1. Set

r1 := inf{r > r0 | Zr(r) = 0} , r2 := sup{r > r0 | Zr(r) = 0} .

Then ri ∈ [r0,∞], i = 1, 2, are well-defined such that r1 ≤ r2 and Z ≡ 1 on [r1, r2].

Furthermore, we have either r1 > r0 or r2 < ∞. Otherwise, r1 = r0 implies that Z(r0) = 1
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and so r0 = 0. If we also have r2 = ∞, then Z ≡ 1 on [0,∞), a contradiction to Z is

nontrivial.

Suppose that r1 > r0. Then Zr > 0 in (r0, r1) and Zr(r1) = 0. Hence the condition (A)

holds. It follows from the mean value theorem that Zrr(r̂) < 0 for some r̂ ∈ ((r0 + r1)/2, r1),

a contradiction to Lemma 3.3 due to the assumption σ ≤ 0.

On the other hand, suppose that r2 < ∞. Then Zr (r2) = 0 and Zr (r) > 0 for all r > r2.

It follows from Lemma 3.4 that Zrr(r) ≤ 0 for all r > r2. But, the mean value theorem

implies that Zrr(r̂) > 0 for some r̂ ∈ (r2,∞), a contradiction. Thus the lemma follows. ✷

LEMMA 3.6. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and σ ≤

0. Then r0 = 0 and Zr(r) > 0 for all r > 0.

PROOF. Note that Z(r), Zr (r) > 0 for r > r0, by Lemma 3.5. Set

(3.13) J (r) := rZr − Z .

Then we compute

Jr = rZrr =
r

aZZ
p−2
r

(1 − Z
p
r + Zσ J )

=
r

aZZ
p−2
r

(1 − Z
p
r ) + (ρ1)rJ

for all r > r0. It follows that

d

dr
(e−ρ1J ) =

re−ρ1

aZZ
p−2
r

(1 − Z
p
r ) , r > r0 .

Integrating from r > r0 to R > r and letting R → ∞, we obtain

(3.14) J (r) = −eρ1(r)

∫ ∞

r

ξe−ρ1(ξ)

aZZ
p−2
ξ

(1 − Z
p
ξ )dξ , r > r0 ,

by using (3.11) and the fact that

−(Z(0) + R) ≤ −Z(R) ≤ J (R) ≤ R .

Notice that, by (3.14), J (r) ≤ 0 for all r > r0.

Suppose for contradiction that r0 > 0. Then Z(r) = 0 on [0, r0]. Integrating

[Z(r)/r]r = J/r2 ≤ 0 over (r̂, r), r0 < r̂ < r , and sending r̂ to r0, we have Z(r)/r ≤

Z(r0)/r0 = 0 for all r > r0. This implies that Z ≡ 0 on [0,∞), a contradiction. Conse-

quently, r0 = 0 and Zr (r) > 0 for all r > 0. The proof is completed. ✷

Now, we divide our discussions into two cases. First, we deal with the case that Z(0) =

0.

LEMMA 3.7. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and σ ≤

0. If Z(0) = 0, then Zr(0
+) = 1.
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PROOF. First, from (3.14), we have J (r) ≤ 0 and (Z/r)r = J/r2 ≤ 0 for all r > 0.

Hence the limit

l := lim
r→0+

Z(r)

r

exists and l ∈ [Z(1), 1].

Next, we claim that

(3.15) l = lim
r→0+

Zr (r) = Zr (0
+) .

For this, from

lim sup
r→0+

Zr (r) ≤ lim
r→0+

Z(r)/r = l = lim
r→0+

∫ 1

0

Zr(rξ)dξ ≤ lim sup
r→0+

Zr(r) ,

it follows that lim supr→0+ Zr(r) = l. On the other hand, from (3.6) it follows that

aZ
p−1
r Zrr ≥ −Zσ Zr

for all r > 0. Integrating each side from r1 to r with 0 < r1 < r , we obtain

a

p
Z

p
r (r) −

a

p
Z

p
r (r1) ≥ −

Z(r)σ+1

σ + 1
+

Z(r1)
σ+1

σ + 1
≥ −

Z(r)σ+1

σ + 1
.

Sending r1 to 0 along a subsequence on which Zr (r1) → l, we have

Z
p
r (r) ≥ lp −

p

a(σ + 1)
Zσ+1(r) for all r > 0 .

It follows lim infr→0+ Zr(r) ≥ l and thus (3.15) is proved.

Now, we rewrite (3.6) as

aZZ
p−2
r Zrr + Z

p
r − 1 = Zσ (rZr − Z) .

Then integrating it from 0 to r > 0 yields

a

p − 1
(ZZ

p−1
r )(r) +

p − 1 − a

p − 1

∫ r

0

Z
p
ξ dξ − r

=
r

σ + 1
Zσ+1(r) −

σ + 2

σ + 1

∫ r

0

Zσ+1dξ = O(rσ+2) .

Dividing the above equation by r and sending r to 0+, we deduce that

a

p − 1
lp +

p − 1 − a

p − 1
lp − 1 = 0 .

Here the fact σ + 1 > 0 is used. Hence we have lp = 1 and so l = 1. ✷

With this lemma, we are ready to prove the first main theorem of this section.

PROPOSITION 3.8. Let Z be a nontrivial solution of (3.6) satisfying (3.5) and let σ ≤

0. If Z(0) = 0, then Z(r) = r for all r ≥ 0.
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PROOF. From Lemma 3.7, Zr (0
+) = 1, and so Z(r) = r(1 + o(1)) for 0 < r ≪ 1.

Recall (3.10) with r2 = 0. Then

ρ1(0) = lim
r→0+

ρ1(y) = −

∫ 1

0

ξZσ−1(ξ)

aZ
p−2
ξ (ξ)

dξ ,

since σ > −1. Moreover, from (3.14),

lim
r→0+

J (r) = −

∫ ∞

0

ξeρ1(0)−ρ1(ξ)

aZZ
p−2
ξ

(1 − Z
p
ξ )dξ .

On the other hand, limr→0+ J (r) = limr→0+{rZr −Z} = 0. It follows Z
p
r ≡ 1 and so Zr ≡ 1

on [0,∞). Hence Z(r) = r for all r ≥ 0 and the proposition is proved. ✷

For the case Z(0) > 0, we have

PROPOSITION 3.9. Let Z be a solution of (3.6) satisfying (3.5) and let σ ≤ 0. If

Z(0) > 0, then Z(r) ≡ 1 for all r ≥ 0.

PROOF. Note that Zr(0) = 0, since Z(0) > 0. Suppose that Z �≡ 1. Then, by

Lemma 3.6, Zr (r) > 0 for all r > 0. But, by Lemma 3.4, Zrr(r) ≤ 0 for all r > 0.

This implies that Zr (r) ≤ 0 for all r ≥ 0, a contradiction. Hence the proposition follows. ✷

Returning to the original variable, we have the following uniqueness theorem.

THEOREM 3.10. Suppose that σ ≤ 0 and V is a nonzero classical solution of

(3.16) (|Vy |
p−2Vy)y − βyVy + αV − V q = 0 , y ≥ 0 ,

and Vy(0) = 0 such that

(3.17) 0 ≤ Vy ≤ Cp,qV
q+1
p (x, t) , y > 0 .

Then either V ≡ α−α or V = V∗, where V∗ is defined by (1.7).

PROOF. Let V be a nonzero classical solution of (3.16) and Vy(0) = 0 such that (3.17)

holds. From (1.4) and (3.1), we can see that Z defined by

Z(r) := A−1/γ V 1/γ (y) , r := By ,

is a nonzero solution of (3.6) satisfying (3.5). Hence the theorem follows by combining Propo-

sitions 3.8 and 3.9. ✷

Note that σ ≤ 0 if and only if p ≥ 1 + 1/q . Due to q ∈ (0, 1), 1 + 1/q > 2.
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