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A b s t r a c t .  The problem we deal with in this paper is the research of 
upper and lower bounds on the randomness required by the dealer to 
set up a secret sharing scheme. We give both lower and upper bounds 
for infinite classes of access structures. Lower bounds are obtained using 
entropy arguments. Upper bounds derive from a decomposition construc- 
tion based on combinatorial designs (in particular, t-(v, k, )~) designs). We 
prove a general result on the randomness needed to construct a scheme 
for the cycle C,~; when n is odd our bound is tight. We study the ac- 
cess structures on at most four participants and the connected graphs 
on five vertices, obtaining exact values for the randomness for all them. 
Also, we analyze the number of random bits required to construct anony- 
mous threshold schemes, giving upper bounds. (Informally, anonymous 
threshold schemes are schemes in which the secret can be reconstructed 
without knowledge of which participants hold which shares.) 

1 Introduct ion 

Randomness  plays an impor t an t  role in several areas of  theoretical  compute r  
science, mos t  no tab ly  a lgor i thm design, complexi ty  and cryptography.  Since ran- 
d o m  bits are a na tura l  computa t iona l  resource, the amoun t  of  randomness  used 
in c o m p u t a t i o n  is an impor t an t  issue in m a n y  applications. Therefore, consider- 
able effort has  been devoted bo th  to reducing the number  of  r andom bits used 
by probabil is t ic  a lgor i thms (see for instance [15]) and to analyzing the amoun t  
of  r andomness  required in order to achieve a given performance [18]. 

A secret sharing scheme is a me thod  of  dis tr ibut ing a secret s among  a set of  
par t ic ipants  P in such a way tha t  qualified subsets of  P can reconstruct  the value 

* This work has been done while the author was visiting the Department of Computer 
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of s, whereas any other (non-qualified) subset of :P cannot determine anything 
about the value of the s. 

Secret sharing schemes are useful in any important  action that  requires the 
concurrence of several designated people to be initiated, such as launching a 
missile, opening a bank vault or even opening a safety deposit box. Secret sharing 
schemes are also used in management of cryptographic keys and multi-party 
secure protocols (see [14] for example). 

Blundo, De Santis, and Vaccaro [6] introduced the concept of randomness 
coefficient for secret sharing schemes. The randomness coefficient of a secret 
sharing scheme is the amount of randomness per bit of the secret required by 
the dealer to set up such a scheme. 

In this paper we analyze the randomness coefficient of secret sharing schemes 
for access structures which are the closure of the edge set of a graph, that  is, 
access structures for which the set of participants can be identified with the ver- 
tex set V(G) of a graph G = (V(G), E(G)), and the set of participants qualified 
to reconstruct the secret are only those containing an edge of G. Secret shar- 
ing schemes for such access structures have been extensively studied in several 
papers, such as [7, 8, 10, 5, 4, 24, 26]. 

We give both lower and upper bounds for infinite classes of access structures. 
Lower bounds are obtained using entropy arguments. We prove a general lower 
bound on the randomness coefficient for access structure based on graphs. As 
a result we obtain a general bound for the cycle Ca. This bound improves that  
proposed in [6]; for Ca, when n is odd, our bound is tight. The upper bounds 
derive from a decomposition construction based on combinatorial designs (in 
particular, t-(v, k, )t) designs). A decomposition construction can be considered 
as a recursive technique that  uses small schemes to build schemes for larger 
access structures. The decomposition of a given access structure into smaller 
ones has been accomplished in several ways; we refer the reader to [8, 5, 25, 19]. 
Also, we study the access structures on at most five participants, obtaining exact 
values for the randomness coefficient for all access structures on at most four 
participants, and for all connected graphs on five vertices. Finally, we analyze 
the randomness coefficient of anonymous threshold schemes, giving both a lower 
and an upper bound on it. 
Due to the space limit on this extended abstract, all proofs are omitted. The 
authors will supply a complete version on request. 

2 B a s i c  D e f i n i t i o n s  

In this section we recall some basic definitions of secret sharing schemes and the 
randomness coefficient for secret sharing schemes. Both secret sharing schemes 
and the randomness coefficient are defined using the entropy approach. 

To formally define the randomness coefficient we use the Shannon entropy 
of the random variables generating the secret and the shares. Given a prob- 
ability distribution P = (pl , . . . ,p ,~) ,  the Shannon entropy of P is H ( P )  = 
- -  ~ - ~ i n = l  Pi logpi. 
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2.1 S e c r e t  S h a r i n g  S c h e m e s  

A secret sharing scheme permits  a secret to be shared among a set 79 of n 
part icipants  in such a way that  only qualified subsets of 79 can recover the 
secret, and any non-qualified subset has absolutely no information on the secret. 
An access structure `4 is the set of all subsets of 79 that  can recover the secret. 

D e f i n i t i o n  1. Let 79 be a set of participants.  A monotone access structure .4 
on 79 is a subset A C 2 ~', such that  A E `4, A __. A ~ C 79 =~ A'  E `4. 

In this paper,  we assume that  there is always at least one subset of participants 
who can reconstruct the secret, i.e. `4 ~ I~. 

D e f i n i t i o n 2 .  Let 7 9 be 
denoted cl(A), is the set 

a set of part icipants and `4 C 2 ~'. The closure of `4, 
cJ(,4) = { c I B  e A and B _ C _c 79}. 

For a monotone  access structure ,4 we have ,4 = c1(`4). I f `4  is an access structure 
on 79, then B E `4 is a minimal authorized subset if A r `4 whenever A C B. 
The set of minimal  authorized subsets of ,4 is denoted by `40 and is called the 
basis of `4. 

Following [17] and [10], by using the entropy approach a secret sharing scheme 
can be defined as follows. 

D e f i n i t i o n  3. A secret sharing scheme is a distribution of the secrets in S among 
part icipants  in 79 such that  

1. Any qualified subset cqn reconstruct the secret: 
Formally, for all A E ,4, there holds H(SIA) = O. 

2. Any non-qualified subset has absolutely no information on the secret: 
Formally, for all A ~ ,4, there holds H(SIA) = H(S). 

2.2 D e a l e r ' s  R a n d o m n e s s  

In this section we recall the definition of the randomness coefficient for a given 
access structure ,4. The total  randomness present in a secret sharing scheme for 
an access structure ,4 on a set 79 = {P1 , . . . ,  Pn} of n participants is equal to 
H ( P 1 . . . P n ) .  This takes into account also the randomness H(S)  of the secret. 
The dealer 's randomness is the randomness needed by the dealer to generate 
the shares, given tha t  the set S and the probabil i ty distribution {ps(s)}ses are 
known. Therefore, given an access structure ,4 and a secret sharing scheme, the 
dealer 's randomness is equal to H(P1 . . .  Pn IS). This randomness is needed only 
to generate the shares distributed to participants. The following result relates 
the total  randomness and the dealer 's randomness. 

R e s u l t 4 .  ([6]) Let .4 be an access structure on the set P = {P1 , . . . ,Pn} .  
For any secret sharing scheme for secrets in S, there holds H ( P 1 . . .  Pn) = 
H(P~... Pn IS) + H(S). 
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To analyze the randomness required by the dealer we define the randomness 
coefficient of a secret sharing scheme Z,  given that  the probabili ty distribution 
on the set of secrets S is 1-Is. This randomness coefficient was defined in [6] to 
be 

#(.4, lls, ~) = H ( P1. . . P, IS) 
H(S) 

The value/ ,( .4,  IIs, ~) represents the amount  of randomness per bit of the secret 
required by the dealer to set up the scheme, when using the scheme ~ and where 
IIs is the probabil i ty distribution on the secret. Notice that  #(.4, IIs, ~) also 
depends on ~ since the probabili ty that  participants receive given shares, and 
therefore the entropy H(P1. . .  Pn[S), depends both on {Ps (s) }ses and E .  Since 
we are interested in the min imum possible amount  of randomness for a given 
access structure .4, we employ the following definition. 

Defini t ionS.  ([6]) Let .4 be an access structure on a set P = {P1 , - . . ,  P,,} of 
n participants.  The randomness coefficient #(.4) of .4 is defined as 

/z(.4) = inf #(.4, IIs, E) 
@,T 

where Q is the space of all non-trivial probabil i ty distributions IIs on the set 
of secrets S and 7- is the space of all secret sharing schemes E for the access 
structure .4. 

3 L o w e r  B o u n d s  

In this section we analyze access structures which are the closure of the edge 
set of a given graph, tha t  is, access structures for which the set of part icipants 
can be identified with the vertex set V(G) of a graph G = (V(G), E(G)), and 
the sets of participants qualified to reconstruct the secret are precisely those 
containing an edge of G. Secret sharing schemes for such access structures have 
been extensively studied in several papers, such as [7, 8, 10, 5, 4, 24, 26]. In 
this section we will give a general lower bound on the randomness coefficient for 
access structures based on graphs. We will give a bound for the cycle Cn, n > 5. 
The only previous bound known for Cn was given in [6]. We improve on that  
result; in the case of odd n our bound is tight. 

In [6] an independent sequence is defined as follows. 

D e f i n i t i o n 6 .  ([6]) Let .4 be an access structure on a set P = {P1 , . . . ,  P~} of 
participants.  A sequence P j l , - - . ,  Pj~ of participants is called independent if 

1. r 
2. for all i < m a subset Xi E 2 ~' of participants exists such that  

(a) {Pj~,...,Pj,}UX~C~A, 
(b) {Pj , , . . . ,P j , ,P j ,+,}UXi  e A .  
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The following result gives a lower bound on the randomness coefficient of any 
access structure .4 when an independent sequence of A is known. 

R e s u l t T .  ([6]) Let ,4 be an access structure on a set ~ = {P1, . . . ,Pn}  of 
participants. If  there exists an independent sequence of length m then It(A) > rn. 

For an access structure A which consists of the closure of the edge-set of a 
graph G we denote the randomness coefficient by It(G) = #(A). Before we state 
our main theorem of this section we need some definitions. 

Let P and H be the graphs with vertex set V(P) = V(H) = {P1, P~., P3, P4} 
and edge set, E(P) = {(P1, P2), (P2, P3), (/93, P4)} and E(H) = {(]91, P2), (/92, P3), 
(P2, P4), (P3, P4)}, respectively. In [10] it was proved that  H(P2P3) > 3H(S) 
for both P and H. 

Let G be a graph. If V~ C V(G), then we define the graph G[V~] to have 
vertex set ~ and edge set {(U, V) E E(G) : U, Y e V1}. We say that  G[V1] is an 
induced subgraph of G. 

D e f i n i t i o n 8 .  Let G be a graph. G is said to be k-{H, P}-inducedif there exist 
k sets X1,...,  Xk such that  

1. For i = 1, 2 , . . . ,  k, = F i , }  c_ Y ( a ) .  
2. For all i C j,  Xi N Xj  = O. 
3. For i = 1, 2 , . . . ,  k, G[Xi] is isomorphic either to P or to H. 

It is clear that  a k-(H, P}-induced graph G is also a (k - 1)-{H, P}-induced. 
Moreover if each G[Xi] is isomorphic either to P or to H then, there exist two 
participants P', P"  E Xi such that  H(P'P")  > 3H(S). Suppose, wlog, that  for 
i = 1, 2 , . . . ,  k, H(Pi2Pi~) > 3H(S). Then we have the following definition. 

D e f i n i t i o n 9 .  Let G be a graph. G is said to be strong k-{H, P}-induced if 
G is k-{g,P}-induced and for any l E {/2, i3} and r E {j l , j2 , j3, j4},  where 
i, j = 1, 2 , . . . ,  k and i r j ,  the edge (l, r) r E(G). 

One can easily prove, by adapting the proof of Theorem 4.1 in [10], that  in 
any strong k-{H, P}-induced graph G there exist k participants, say Pjx, �9 -.,  Pjk, 
such that  

o /  

H(Pj l . . .P jk )  >_ 2 H ( S )  �9 (1) 

Moreover, the participants Pj l , . . . ,  PJk constitute an independent sequence in 
G. The following theorem holds. 

T h e o r e m  10. Let G be a strong k-{ H, P }-induced graph. Let Pj~ , . . . , PJk be the 
participants for which H(Pj , . . .P jk )  >- (3k)/2H(S). Finally, let P j , , . . . , p h ,  
Pj~+~,..., Pj~ be the longest independent sequence in G having Pj~, . . . ,  Pj~ as 
first k partic•ants. The randomness coefficient It(G) satisfies 

k 
It(o) > t + 3 
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With Cn we denote the cycle on n vertices, that  is, the graph with edges 
Po P1,..., Pn-  1Po. The following corollary holds. 

C o r o l l a r y  11. Let Cn be the cycle on n >_ 5 vertices. The randomness coeI~icient 
#(Cn) satisfies It(Cn) = n /2  if  n is odd and ( n -  1)/2 < It(C,) < n/2  if  n is 
e v e n .  

If we consider n=6,  then from previous corollary we get that  2.5 < It(Cs) < 3. 
Brickell and Stinson [8] gave a secret sharing scheme for C6 which shows that  
It(Cs) < logs 6 < 2.58497. Thus, in the case of the cycle C6 we have the following 
theorem. 

T h e o r e m  12. Let C6 be the cycle on 6 vertices. The randomness coefficient 
It(Cs) satisfies 2.5 < It(Cs) < log2 6. 

A lower bound on the randomness coefficient for graphs is the following. 

R e s u l t  13. ([6]) Let G be a connected graph. I f  G is a complete multipartite 
graph then It(G) = 1; otherwise It(G) >_ 2. 

The following theorem exhibits the existence of a large class of graphs having 
randomness coefficient greater than 2. 

T h e o r e m  14. Let G be a connected graph with girth at least t > 5. Then the 
randomness coefficient It(G) satisfies 

t/2 iftisodd 
g(G) > ( t -  1)/2 i f t  is even. 

3.1 C o n n e c t e d  Graphs  on  at Most  Five Vertices  

In this section we give some results on the randomness coefficient for access 
structures based on graphs with 4 and 5 vertices. Before we state our bounds we 
need the following result. 

R e s u l t  15. ([6]) Let G be a graph. I f  ~l(G) is the smallest number of complete 
multipartite subgraphs needed to cover all edges of G then the randomness coef- 
ficient It(G) satisfies #(G) <_ rl(G). 

The next theorem is a consequence. 

T h e o r e m l 6 .  Let G be a graph with IV(G)I _ 4. I f  G is complete multipartite 
graph, then It(G) = 1, otherwise It(G) = 2. 

T h e o r e m  17. Let G be a graph with [V(G)t = 5. I f  G is complete multipartite, 
then It(G) = 1; i f  G is the cycle C5, then p(C~) = 2.5; otherwise It(G) = 2. 
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4 U p p e r  B o u n d s  

In this section we present a combinatorial technique to obtain a general upper 
bound on the randomness coefficient for an infinite class of access structures. We 
will use an extension of the decomposition construction presented in [24]. Stinson 
[24] used this decomposition construction, based on Steiner systems S(t, k, v), 
to obtain general lower bounds on the information rate and average information 
rate of certain classes of access structures. A decomposition construction can 
be considered as a recursive technique that  uses small schemes to build secret 
sharing schemes for larger access structures. The decomposition of a given access 
structure into smaller ones has been accomplished in several ways; we refer the 
reader to [8, 5, 25, 19]. 

Stinson [24] defined the rank of an access structure to be the maximum 
cardinality of a minimal authorized subset. An access structure is uniform if 
every minimal authorized subset has the same cardinality. 

Blundo, De Santis, and Vaccaro [6], by using a decomposition technique, gave 
an upper bound on the randomness coefficient for general access structures. To 
state their bound we need the following definition. 

D e f i n i t i o n  18. ([6]) Let .4 be an access structure and let . 41 , . . . , . 4a  be access 
structures such that  .4i C_ .4, for i = 1, 2 , . . . ,  a. If each qualified set A ~ .4 be- 
longs to at least b of the access structures .41 , . . . , . 4a ,  then the set {.41, .-- ,  An} 
is called an (a, b)-decomposition of `4. 

A general upper bound for an access structure .4 that possesses an (a, b)-decom- 
position is the following. 

R e s u l t  19. ([6]) Let .4 be an access structure and let {`4i,... ,.4a} be an (a, b)- 
decomposition of.4. The randomness coefficient p(.4) satisfies It(.4) < ~-~i~=1 pi/b, 
where Pi is the randomness coefficient of the scheme for .4i. 

4.1 R a n k  t A c c e s s  S t r u c t u r e s  

In this section we use a combinatorial technique to obtain a general upper bound 
on the randomness coefficient for an infinite class of access structures. We will 
use an extension of the decomposition construction presented in [24]. 

We present some basic terminology from design theory. A t-(v, k, ~) design 
is a pair (V, B), where V is a set of v elements (called points) and B is a family 
of subsets of V of size k (called blocks), such that  every subset of points of 
size t occurs in exactly ~ blocks. A t-(v, k, A) design is said to be non-trivial if 
t < k < v. A Steiner system is a t-(v, k, 1) design and usually it is denoted by 
S(t, k, v). For general information on the existence of t-(v, k, )t) designs we refer 
to [2]. For a collection of surveys and the latest results on design theory we refer 
the reader to [12]. 

The  following decomposition technique was first considered by Stinson [24]. 
Suppose .4 is a rank t access structure on a set P of n participants. Suppose 
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t h a t  there  exists an S(t,  k, n), (:P, B). A decompos i t ion  of`40 can be cons t ruc ted  
as follows. For every block B �9 B, define 

A s = { A E ` 4 0  I A G B } .  (2) 

I t  is easy to see t h a t  {`4B I B �9 B} is a (IBI, 1) -decomposi t ion  of ,4 .  I f  ins tead 
of  an S(t,  k, n) we use a t-(n, k, ~) design, (7 ~, g),  then  it is easy to check t h a t  
the  decompos i t ion  {.As I B �9 g} is a (Igl, A)-decomposi t ion o f ,4 .  
T h e  following theo rem holds. 

T h e o r e m  20. Let `4 be a rank t access structure on n participants. Suppose that 
a t-(n, k, ~) design exists. I f  the randomness coefficient of any access structure 
`4k,t of rank at most t on k participants is at most Pk,t, then the randomness 
coefficient p(A)  satisfies 

< 
- r  

T h e  following theo rem sta tes  an upper  bound  on any access s t ruc ture  on four 
pa r t i c ipan t s  of  r ank  a t  mos t  three. 

T h e o r e m  21.  Let .4 be an access structure of rank at most 3 on four partici- 
pants. Then the randomness coefficient #(`4) < 2. 

T h e  following theo rem s ta tes  an upper  bound  any access s t ruc ture  on five 
pa r t i c ipan t s  o f  r ank  a t  mos t  three. 

T h e o r e m  22. Let ,4 be an access structure of rank at most 3 on five participants. 
Then, the randomness coeI~icient p(,4) satisfies #(,4) < 4. 

T h e  following t heo rem gives an upper  bound  for any rank  3 access s t ruc ture  on 
n > 5 par t ic ipan ts .  I t  uses known classes of  3-(v, k, )~) designs. 

T h e o r e m  23.  Let,4 be a rank 3 access structure on n participants, where n > 5. 
The randomness randomness coefficient p(A) satisfies 

n ( n -  1 ) ( n -  2) p(A) _< 
15 

4 .2  U n i f o r m  R a n k  t A c c e s s  S t r u c t u r e s  

In  this section we give an uppe r  bound  on the randomness  coefficient for any 
uni form rank  t access s t ructure .  To  this a im we need to  in t roduce an access 
s t ruc ture  called generalized star. Stinson [24] defined the  generalized s tar  and 
used it to give a lower bound  on the in format ion  rates of  un i form rank  t access 
s t ructures .  We denote  a generalized s tar  of  rank  t on r par t i c ipan ts  by  ,4(t,  r) .  
I t s  basis  is defined as `4~ r) = { { P 1 , . . . ,  Pt-~, Pj} : t < j < r}. T h e  center of 
a general ized s ta r  `4(t, r)  is the intersection of all qualified subsets  in the basis 
(i.e., {P1, �9 �9 -, Pt-1} in the  above definition). I t  is easy to see t ha t  the r andomness  
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coefficient It(.4(t, r)) of a generalized star is equal to It(.4(t, r)) = t - 1. Indeed, 
P1 , . . . ,  Pt-~ constitutes an independent sequence; hence It(Jl(t, r)) _> t - 1. A 
scheme that  meets this bound can be constructed by a simple modification of a 
Shamir (t, t) threshold scheme [22]. 

The following theorem states an upper bound on the randomness coefficient 
for any uniform rank t access structure. 

Theorem 24. Let .4 be uniform rank t access structures on a set 79 of n partic- 
ipants. The randomness coefficient It(.4) satisfies 

n ) t - 1  
It(A) _< t -  1 t 

The following corollary is a consequence. 

C o r o l l a r y  25. Let ,4 be uniform rank 3 access structures on a set 79 of n par- 
ticipants. The randomness coefficient It(A) satisfies It(A) <_ n(n - 1)/3. 

5 A n o n y m o u s  T h r e s h o l d  S c h e m e s  

In this section we give upper bounds on the randomness coefficient of anonymous 
threshold schemes. Informally, in an anonymous secret sharing scheme the secret 
is reconstructed without knowledge of which participants hold which shares. In 
such schemes the computation of the secret can be carried out by giving the 
shares to a black box that  does not know the identities of the participants holding 
those shares. 

Anonymous threshold schemes were first analyzed in [28]. Following the char- 
acterization of [28] and [20] we can define anonymous threshold schemes as fol- 
lows. 

Definition26. Let' 79 be a set of k participants. A (t, k) anonymous threshold 
scheme, 1 < t < k, is a (t, k) threshold scheme satisfying the following properties 

1. Different participants receive different shares. 
2. The key is determined as a function of the set of shares held by an authorized 

subset of participants. 

Let S be the set of possible secrets and V, with IV] = v, be the set from 
which the shares are taken in a (t, k) anonymous threshold scheme. Stinson and 
Vanstone [28] proved that  in any (t, k) anonymous threshold scheme, 

v > ( k - t +  1)ISl + t -  1. (3) 

For an information theoretic proof of this bound see [9]. 
We recall the following condition of regularity that in [20] and [28] was made 

on the distribution of shares of the participants. 
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R.1  There exists a positive integer g such that  any s E S it is associated with 
a subset r C V k consisting of g elements. To share a secret s E S, an 
element from r is chosen with uniform probability and the components 
of the chosen vector are given to participants as shares. 

To analyze the randomness needed by the dealer we define the randomness 
coefficient of a (t, k) anonymous threshold secret sharing scheme ~U, where the 
probability distribution on the set of secrets S i s / / s ,  to be 

I~A(t, k, IIs, E) = H(P1. . .  Pn[S) 
H(S) 

The value I~A(t, k, 1IS, ~) represents the amount of randomness per bit of the 
secret required by the dealer to set up the scheme when using the scheme Z?, 
where IIs is the probability distribution on the secret. 

Stinson and Vanstone [28] defined an optimal (t, k, v) threshold scheme as a 
(t, k) anonymous threshold scheme having v shares and (v - t + 1)/(k - t + 1) 
possible secrets (i.e., in such a scheme the equation (3) is satisfied with equality). 
Let (V, B) be a Steiner system S(t, k, v). We say that  S(t, k, v) is partitionable if 
we can partition the set of blocks B into sets B1,. �9 �9 ,Bl, in such a way that  each 
(V,B/), for 1 ~ j < g, is a Steiner system S(t - 1, k,v). Stinson and Vanstone 
[28] proved the following. 

R e s u l t  27. ([28]) An optimal (t, k, v) threshold schemes exist if and only if a 
Steiner system S(t, k, v) can be partitioned into Steiner systems S(t - 1, k, v). 

Let us see how to construct an optimal (t, k, v) threshold scheme. Let (V, B) 
be a partitionable Steiner system S(t, k, v) and let B1 , . . . ,  Bt be a partition of the 
set of blocks B such that  (V, Bj), for 1 < j _< g, is a Steiner system S(t - 1, k, v). 
It is known that  g = ( v - t + l ) / ( k - t + l ) .  For 1 _ j ~ g, to each set of blocks Bj 
the dealer associates a secret sj. When the dealer wants to share a secret sj then 
he/she randomly chooses a block in Bj and randomly distributes to participants 
the elements of this block as shares. (This is the construction from [28].) It is 
well known that  the number of blocks in a Steiner system S(t - 1, k, v) is equal 

v k to ( t -1) / ( t -1)  (see for instance [2]). When the dealer has chosen a block he/she 
has k! ways to distribute to the k participants the elements of this block as 
shares. Hence, to share a secret of log((v - t +  1)/(k - t +  1)) bits the dealer uses 
log(((t_~ 1) / (t _h 1) )k!) bits of randomness. Thus, the following theorem holds. 

T h e o r e m  28. Let IIs be the uniform probability distribution on the secret. The 
randomness coefficient #A (t, k, IIs, Z)  of any optimal (t, k, v) threshold scheme 
satisfies 

t - - 2  k - - t + l  �9 E =0 log(, - i) + E j=I  logj 
(t, k, ns, _< log ~-t+l 

k - - t + l  

The following corollary provides upper bounds on the randomness coefficient 
of (t, k) anonymous threshold schemes for parameters t and k for which both 
partitionable Steiner systems and ordered designs exist. 
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C o r o l l a r y  29. Let l-Is be the uniform probability distribution on the secret. The 
randomness coefficient # a ( t, n, 1Is, S )  of ( t, k) anonymous threshold schemes 
satisfies 

logv i f t  = 2, 2 < k < 4 ,  and v =_ k mod k ( k -  1) log(v- 1)-log(k- 1) 

logv+log(v-1) i f t  = 3, k = 3, and v = 1, 3 mod 6, v ~ 7 #a (t, n, IIs, S )  < ,og(~- 1)- 1 
log v+log(v- 1) log(.-a)-log3 if  t = 3, k = 4, and v = 4 m, where m > 2. 

A c k n o w l e d g e m e n t  

D. R. Stinson's research is supported by NFS grant CCR-9121951. C. Blundo 
and A. Giorgio Gaggia research's is supported by Italian Ministry of University 
and Scientific Research in the framework of the project: "Algoritmi, Modelli 
di Calcolo e Strut ture Informative" and by the National Council of Research. 
The authors would like to thank Keith Martin and Wen-Ai Jackson for helpful 
comments about Theorem 22. 

R e f e r e n c e s  

1. J. C. Benaloh and J. Leichter, Generalized Secret Sharing and Monotone Functions, 
in "Advances in Cryptology - Crypto '88", S. Goldwasser Ed., "Lecture Notes in 
Computer Sdence', Vol. 403, Springer-Verlag, Berlin, pp. 27-35, 1990. 

2. T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Bibliographisches Institut, 
Zurich, 1985. 

3. G. R. Blakley, Safeguarding Cryptographic Keys, Proceedings of AFIPS 1979 Na- 
tional Computer Conference, Vol. 48, New York, NY, pp. 313-317, June 1979. 

4. C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro, On the Information Rate 
of Secret Sharing Schemes, in "Advances in Cryptology - CRYPTO '92", Ed. E. 
Brickell, "Lecture Notes in Computer Science", Vol. 740, Springer-Verlag, Berlin, 
pp. 149-169, 1993. To appear in Theoretical Computer Science. 

5. C. Blundo, A. De Santis, D. R. Stinson, and U. Vaccaro, Graph Decomposition 
and Secret Sharing Schemes, Journal of Cryptology, VoL 8, (1995), pp. 39-64. 
A preliminary version appeared in "Advances in Cryptology - Eurocrypt '92", 
Lecture Notes in Computer Science, Vol. 658, R. Rueppel Ed., Springer-Verlag, 
pp. 1-24, 1993. 

6. C. Blundo, A. De Santis, and U. Vaccaro, Randomness in Distribution Protocols, 
in "21st International Colloquium on Automata, Languages and Programming" 
(ICALP '94), Serge Abiteboul and Eli Shamir Eds., vol. 820 di "Lecture Notes in 
Computer Science", Springer-Verlag, Berlin, pp. 568-579, 1994. 

7. E. F. Brickell and D. M. Davenport, On the Classification of Ideal Secret Sharing 
Schemes, J. Cryptology, Vol. 4, No. 2, pp. 123-124, 1991. 

8. E. F. Brickell and D. R. Stinson, Some Improved Bounds on the Information Rate 
of Perfect Secret Sharing Schemes, J. Cryptology, Vol. 5, No. 3, pp. 153-166, 1992. 

9. R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, A Note on Secret Shar- 
ing Schemes, Sequences II: Methods in Communication, Security and Computer 
Science, Springer-Verlag. Positano, Italy, pp. 335-344, June 1991. 



46 

10. R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, On the Size of Shares 
for Secret Sharing Schemes, Journal of Cryptology, Vol. 6, No. 3, Pag. 157-169, 
1993. 

11. I. Csiszs and J. KSrner, Information Theory. Coding Theorems for Discrete Mem- 
oryless Systems, Academic Press, 1981. 

12. J. H. Dinitz and D. R. Stinson, Contemporary Design Theory. A Collection of Sur- 
veys, Wiley-Interscience Series in Discrete Mathematics and Optimization, 1992. 

13. R. G. Gallager, Information Theory and Reliable Communications, John Wiley & 
Sons, New York, NY, 1968. 

14. O. Goldreich, S. Micali, and A. Wigderson, How to Play any Mental Game, Pro- 
ceedings of 19th ACM Syrup. on Theory of Computing, pp. 218-229, 1987. 

15. R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits, Proceedings of 
30th Annual Symposium of Computer Science, pp. 248-255, 1989. 

16. M. Ito, A. Saito, and T. Nishizeki, Secret Sharing Scheme Realizing General Access 
Structure, Proceedings of IEEE Global Telecommunications Conference, Globecom 
87, Tokyo, Japan, pp. 99-102, 1987. 

17. E. D. Karnin, J. W. Greene, and M. E. Hellman, On Secret Sharing Systems, IEEE 
Trans. on Inform. Theory, Vol. IT-29, No. 1, pp. 35--41, Jan. 1983. 

18. D. Krizane, D. Peleg, and E. Upfal, A Time-Randomness Tradeofffor Oblivious 
Routing, Proceedings of 20th Annual ACM Symposium on Theory of Computing", 
pp. 93-102, 1988. 

19. K.M. Martin, New Secret Sharing Schemes from Old, J. Comb. Math. Comb. Comp. 
Vol. 14, pp. 65-77, 1993. 

20. P. J. Schellenberg and D. R. Stinson, Threshold Schemes from Combinatorial De- 
signs, J. Combin. Math. and Combin. Computing, Vol. 5, pp. 143-160, 1989. 

21. D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman' s Schoolgirl Problem, 
Amer. Math. Soc. Proc. Symp. Pure Math., Vol. 19, pp. 187-204, 1971. 

22. A. Shamir, How to Share a Secret, Communications of the ACM, Vol. 22, n. 11, 
pp. 612-613, Nov. 1979. 

23. G.J. Simmons, An Introduction to Shared Secret and/or Shared Control Schemes 
and Their Application, Contemporary Cryptology, IEEE Press, pp. 441-497, 1991. 

24. D. R. Stinson, New General Lower Bounds on the Information Rate of Secret 
Sharing Schemes, in "Advances in Cryptology - CRYPTO '92", Ed. E. Brickell, 
"Lecture Notes in Computer Science", Vol. 740, Springer-Verlag, Berlin, pp. 170- 
184, 1993. 

25. D.R. Stinson, An Explication of Secret Sharing Schemes, Design, Codes and Cryp- 
tography, Vol. 2, pp. 357-390, 1992. 

26. D. R. Stinson, Decomposition Constructions for Secret Sharing Schemes, IEEE 
Trans. Inform. Theory Vol. 40 (1994), pp. 118-125. 

27. D. R. Stinson, Combinatorial Designs and Cryptography, in "Surveys in Combina- 
torics, 1993", K. Walker Ed., Cambridge Univ. Press, pp. 257-287. 

28. D. R. Stinson and A. Vanstone, A Combinatorial Approach to Threshold Schemes, 
SIAM J. Disc. Math., Vol. 1, May 1988, pp. 230-236. 


