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On the Debarre–de Jong and Beheshti–Starr
Conjectures on Hypersurfaces

with Too Many Lines

J. M. Landsberg & Orsola Tommasi

1. Introduction

Let K be an algebraically closed field of characteristic 0. Write Xsing for the sin-
gular points of a variety X, P n = KP n, and G(P1, P n) = G(2, n + 1) for the
Grassmannian.

The following conjecture essentially states that if Xn−1 ⊂ P n has “too many”
lines then, for any point x ∈X that has (too many) lines going through it, one of
the lines through x will contain a singular point of X.

Conjecture 1.1. Let Xn−1 ⊂ P n be a hypersurface of degree d ≥ n and let
F(X) ⊂ G(2, n+ 1) denote the Fano scheme of lines on X. Let B ⊂ F(X) be an
irreducible component of dimension at least n − 2. Let IB := {(x,E) | x ∈ X,
E ∈ B, x ∈ PE}, and let π and ρ denote (respectively) the projections to X and
B. Let XB = π(IB) ⊆ X and let C̃x = πρ−1ρπ−1(x).

Then, for all x ∈XB , C̃x ∩ Xsing = ∅.
If we take hyperplane sections in the case d = n, then Conjecture 1.1 would imply
the following, which was conjectured independently by Debarre and de Jong.

Conjecture 1.2 (Debarre–de Jong conjecture). Let Xn−1 ⊂ P n be a smooth
hypersurface of degree d ≤ n. Then the dimension of the Fano scheme of lines on
X equals 2n − d − 3.

Our conjecture extends to smaller degrees as follows.

Conjecture 1.3. Let Xn−1 ⊂ P n be a hypersurface of degree n − λ. Let B ⊂
F(X) be an irreducible component of dimension n− 2 with IB ,XB , . . . as before.
If codim(XB ,X) ≥ λ and Cx is reduced for general x ∈XB , then for all x ∈XB ,
C̃x ∩ Xsing = ∅.
The cases XB = X and codim(XB ,X) = n/2 are known; for example, they ap-
pear in Debarre’s unpublished notes containing Conjecture 1.2. In [9], Harris,
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Mazur, and Pandharipande proved Conjecture 1.2 when d is small with respect to
n. Debarre also proved the case d = n ≤ 5, and Collino [3] had earlier proven the
case d = n = 4. In [2], Beheshti proved the case d = n ≤ 6, and a different proof
was also given in [10].

Conjecture 1.1 would also imply that a smooth hypersurface of degree d ≥ n in
P n cannot contain an (n−2)-dimensional family of lines. This is a special case of a
conjecture of Beheshti and Starr (Question 1.3 of [1]) about P ks on hypersurfaces,
which, in the same paper, Beheshti proved for k ≥ (n − 1)/4 and Conjecture 1.1
would prove for k = 1.

Central to our work is finding additional structure on the tangent space to B ⊂
F(X) at a general point. This structure gives rise to vector bundles on the cone
C̃x swept by the B-lines passing through x. These vector bundles come endowed
with a canonical section whose zero locus is Xsing ∩ C̃x. In particular, this trans-
lates the problem of finding singular points of X on the cone C̃x into proving that
the intersection number of certain top Chern classes of vector bundles is nonzero.
We exploit this approach to prove Conjecture 1.1 when our construction gives rise
to exactly one vector bundle; see Theorem 3.6.

Overview. The statement of Conjecture 1.1 indicates how one should look for
singular points. Say y ∈ X and we want to determine whether y ∈ Xsing. Let
v0, v1, . . . , vn be a basis of W with y = [v0 ] and P an equation for X; to show
y ∈Xsing we would need that all partial derivatives of local coordinates in y van-
ish. This is expressed by the n equations dPy(v1) = · · · = dPy(vn) = 0. Say we
fix a line PE and look for a singular point y of X on PE. Let e1, e2 be a basis of E
that we expand to a basis e1, e2,w1, . . . ,wn−1 of W ; then the equations dPy(e1) =
dPy(e2) = 0 come for free, so we have one less equation to satisfy.

A further simplification is obtained by a study of TEB ⊂ TEG(2,W) =
E∗⊗W/E. We observe that TEB is the kernel of the map α⊗w �→ α � (w P )|E
described in Proposition 2.1. Moreover, we identify the tangent space TECx ⊂
TEB ⊂ E∗ ⊗ W/E to the Fano scheme of B-lines through x as a subspace
x̂⊥E ⊗ �, where � ⊂ W/E is independent of x ∈ PE; see Proposition 2.2.
In the same proposition we remark that E∗ ⊗� ⊂ TEB is the intersection of TEB
with the locus of rank-1 homomorphisms in TEG(2,W) = E∗ ⊗W/E. As a con-
sequence, TEB/(E∗ ⊗ �) corresponds to a linear subspace of the space of 2 × m

matrices of constant rank 2 for which there are normal forms. The normal forms
allow us to reduce the number of equations defining the singular locus on a given
line even further; see Section 3. The new number of equations will depend on the
dimension of � but is always bounded by dim C̃x , where C̃x is the cone swept by
the lines of B passing through a general point x. For this reason, one expects to
find at least a finite number of singular points of X lying on C̃x.

Using this description, we observe an elementary case where X must be sin-
gular (Theorem 3.2) and show that Xsing ∩ C̃x is the zero locus of a section of a
vector bundle, which yields a sufficient condition (5) for the nonemptiness ofXsing

in terms of top Chern classes of vector bundles. We conclude this first part of the
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paper by illustrating how the construction of the equations defining the singular
points on a given line works by revisiting some known examples.

In the second part of the paper, we determine certain positivity properties of
the vector bundles in Lemma 5.1; we also prove Theorem 3.6, the special case of
Conjecture 1.1 in which all local equations have the same degree. Another case in
which the conjecture holds is considered in Section 7.

Acknowledgments. We thank IHES for providing us an outstanding environ-
ment for collaborating on this project and Johan de Jong for useful comments
on earlier versions of this paper. The second author would like to thank Remke
Kloosterman for discussions during the preparation of this paper.

2. The Tangent Space to B

In this section we study P ks on an arbitrary projective variety X ⊂ PW. Let W
denote a vector space over an algebraically closed field K of characteristic 0. For
algebraic subsets Z ⊂ PW, we let Ẑ ⊂ W denote the affine cone and let Fk(Z) ⊂
G(k + 1,W) = G(P k, PW) denote the Fano scheme of P ks on Z. Let X ⊂ PW

be a variety. Let B ⊂ Fk(X) be an irreducible component. Let IB := {(x,E) |
E ∈B, x ∈ PE} be the incidence correspondence, and let π and ρ denote the pro-
jections to X and B. Let XB = π(IB). Let Cx = ρπ−1(x) and let C̃x = πρ−1(Cx),
so C̃x ⊂ X ⊂ PW is a cone with vertex x and base isomorphic to Cx.

For a vector space V, v ∈ V, and q ∈ S kV ∗, we let v q ∈ S k−1V ∗ denote the
contraction. We also write q(va,wk−a) = q(v, . . . , v,w, . . . ,w) et cetera when
we consider q as a multilinear form. We denote the symmetric product by �; for
example, v � w ∈ S 2V for v,w ∈ V. The following proposition is essentially a
rephrasing of the discussion in [6, p. 273]. We include a short proof for the sake
of completeness.

Proposition 2.1. Let X ⊂ PW be a projective variety, and let E ∈ Fk(X). Then
TEFk(X) = ker σ(X,E), where

σ(X,E) : TEG(k + 1,W) = E∗ ⊗ W/E → ⊕
d Hom(Id(X), S dE∗),

α ⊗ w �→ {P �→ α � (w P )|E}. (1)

Proof. We first note that (w P )|E is well-defined because P |E = 0. Without
loss of generality, we can restrict to the case where X is a hypersurface defined by
a degree-d polynomial P. The general case follows by considering intersections.

Let e0, . . . , ek be a basis of E and let α0, . . . ,αk be the dual basis. A tangent vec-
tor η = α0 ⊗ w̄0 + · · · + αk ⊗ w̄k ∈ TEG(k +1,W) corresponds to the first-order
deformation Et = 〈e0 + tw0, . . . , ek + twk〉 of E in W, where the wj are arbitrary
liftings of the w̄j to W. Recall that E = 〈e0, . . . , ek〉 belongs to Fk(X) if and only
if P vanishes on all points of PE—that is, if and only if P(eb0

0 , . . . , ebkk ) = 0 for
all b0, . . . , bk such that b0 + · · · + bk = d. Therefore, the condition η ∈ TEFk(X)

is equivalent to the vanishing, in K[t]/(t 2), of
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P((e0 + tw0)
b0 , (e1 + tw1)

b1, . . . , (ek + twk)
bk )

= P(e
b0
0 , . . . , ebkk )

+ t[P(eb0−1
0 ,w0, eb1

1 , . . . , ebkk ) + · · · + P(e
b0
0 , eb1

1 , . . . , ebk−1
k ,wk)]

= 0 + t[(α0 � P)(w0, eb0
0 , . . . , ebkk )

+ (α1 � P)(w1, eb0
0 , . . . , ebkk ) + · · · + (αk � P)(wk , e

b0
0 , . . . , ebkk )]

= t[(σ(X,E)(η))(e
b0
0 , . . . , ebkk )]

for every choice of b0, . . . , bk. This implies the claim.

Proposition 2.2. With notation as before, let x be a general point of XB and E

a general point of B with x ∈ PE.

(i) If there exist a w ∈W/E and an α ∈E∗\0 such that σ(X,E)(α ⊗w) = 0, then
E∗ ⊗ w ⊂ ker σ(X,E).

(ii) If � ⊂ W/E is maximal such that E∗ ⊗ � ⊂ ker σ(X,E), then for x ∈ PE we
have TECx = x̂⊥E ⊗ �.

Proof. σ(X,E)(α ⊗ w) = 0 means α(u)P(w, ud−1) = 0 for all u ∈ E and for all
P ∈ I(X). If P(w, ud−1) = 0 for all u with α(u) = 0, then P(w, ud−1) = 0 for
all u∈E; thus E∗ ⊗ w ⊂ ker σ(X,E). The second assertion is clear.

3. How to Find Singular Points on X

We now specialize to the case where k = 1 and X is a hypersurface in P n = PW.

In this case TEB/(E∗ ⊗ �) is a linear subspace of K2 ⊗ Km of constant rank 2,
where m = n−1− dim TECx in view of Proposition 2.2. There is a normal form
for linear subspaces L of K2 ⊗Km containing no decomposable vectors. Namely,
for every basis α1,α2 of K2, there exist a basis w1, . . . ,wm of Km and integers
s1, . . . , sr with r = m − dimL, s1 + · · · + sr = m, and s1 ≥ s2 ≥ · · · ≥ sr ≥ 1
such that

L = 〈α1 ⊗w1 − α2 ⊗w2,α1 ⊗w2 − α2 ⊗w3, . . . ,α1 ⊗ws1−1 − α2 ⊗ws1,

α1 ⊗ws1+1 − α2 ⊗ws1+2,α1 ⊗ws1+2 − α2 ⊗ws1+3, . . . ,

α1 ⊗ws2+s1−1 − α2 ⊗ws2+s1, . . . ,

α1 ⊗wsr−1+··· +s1+1 − α2 ⊗wsr−1+··· +s1+2, . . . ,α1 ⊗wm−1 − α2 ⊗wm〉. (2)

This normal form is a consequence of Kronecker’s normal form for pencils of ma-
trices (see e.g. [8, Chap. XII])—that is, elements of K2 ⊗Km ⊗K* specialized to
the constant-rank situation. Instead of considering the image of K2 in Km ⊗ K*,
take the image of K* = L in K2 ⊗ Km. Note that the normal form gives a basis
of L divided into r blocks of length s1 − 1, . . . , sr − 1. In particular, if for some
index j we have sj = 1, then the corresponding block is empty.

Applying this normal form, we obtain a normal form for TEB. Note that in this
case r = m−dim(TEB/(E

∗⊗�)) = n−1−dim TEB+dim TECx. From now on
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we will assume dimB ≥ n− 2, so r ≤ dim Cx + 1, with equality holding generi-
cally if dimB = n − 2 and B is reduced.

Lemma 3.1. Let X ⊂ PW be as before and assume deg(X) = d ≥ 1+ s1. Let E
be a general point of B. Then there exist pE

j ∈ S d−sjE∗, 1 ≤ j ≤ r, such that

Image σ(X,E) = S s1E∗ � pE
1 + · · · + S srE∗ � pE

r .

We remark that here and in Lemma 3.3, one can drop the assumption that E is a
general point of B. The only change at special points is that the normal form (2)
will be different.

Proof. Choose a basis w1, . . . ,wn−1 of W/E such that � = 〈wm+1, . . . ,wn−1〉
and w1, . . . ,wm are adapted to the normal form (2). Apply the normal form to
ker σ(X,E)/(E

∗ ⊗ �). For 1 ≤ j ≤ s1 − 1, we have

α1 � (wj P )|E = α2 � (wj+1 P)|E. (3)

Since α1,α2 are linearly independent, for j = 1 this implies there exists a φ1 ∈
S d−2E∗ such that (w1 P)|E = α2 � φ1 and (w2 P)|E = α1 � φ1. But for the
same reason, when j = 2 we see there exists a φ2 ∈ S d−3E∗ such that

(w1 P)|E = (α2)2 � φ2,

(w2 P)|E = (α1 � α2) � φ2,

(w3 P)|E = (α1)2 � φ2,

(4)

and so on until we arrive at φs1−1 =: pE
1 ∈ S d−s1E∗ such that (wj P )|E =

(α1)j−1(α2)s1−jpE
1 for 1 ≤ j ≤ s1. In particular, S s1E∗ � pE

1 ⊂ Image σ(X,E).

Continuing in this way for the other chains in the normal form, we obtain poly-
nomials pE

1 , . . . ,pE
r with S skE∗ � pE

k ⊂ Image σ(X,E). When sk = 1 we set pE
k =

(wsk−1+··· +s1+1 P)|E.
Note that without assumptions on the degree, the conclusion of Lemma 3.1 can
fail. For example, if d = 3 and s1 = m = 3, as in the case of a general cubic
hypersurface, then (4) only says (w1 P)|E = (α2)2, (w2 P)|E = α1 � α2, and
(w3 P)|E = (α1)2. This does imply that the image of PE under the Gauss map
of X is a rational normal curve of degree 2 in P(E + �)⊥ ⊂ PW ∗, and one can
obtain similar precise information about the Gauss image of PE in other cases.

When s1 = n − 1 − dim Cx there is a single polynomial on PE whose zero set
corresponds to singular points of X.

Theorem 3.2. Let Xn−1 ⊂ P n be a hypersurface with B, C̃x , . . . as before. If
deg(X) ≥ s1 + 1 and s1 = n − 1 − dim Cx , then for all E ∈B, PE ∩ Xsing = ∅.
Lemma 3.3. LetX be as before and letE be a general point ofB. Write {degpE

k :
1 ≤ k ≤ r} = {δ1 < δ2 < · · · < δc} and set ij = #{pE

k : degpE
k ≤ δj} for all

j ≤ c. Note that if sr = 1 in the normal form (2), then ic−1 = #{k : sk > 1} and
ic = r. Consider the vector spaces
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M̂1 = M1 := 〈pE
1 , . . . ,pE

i1
〉 ⊂ Sδ1E∗,

M̂2 := 〈pE
i1+1, . . . ,p

E
i2

, M̂1 � Sδ2−δ1E∗〉 ⊂ Sδ2E∗,

M2 := M̂2/(M̂1 � Sδ2−δ1E∗) ⊂ Sδ2E∗/(M̂1 � Sδ2−δ1E∗),
...

M̂c−1 := 〈pE
ic−2+1, . . . ,p

E
ic−1

, M̂c−2 � Sδc−1−δc−2E∗〉 ⊂ Sδc−1E∗,

Mc−1 := M̂c−1/(M̂c−2 � Sδc−1−δc−2E∗) ⊂ Sδc−1E∗/(M̂c−2 � Sδc−1−δc−2E∗),

M̂c := 〈pE
ic−1+1, . . . ,p

E
ic

, M̂c−1 � Sδc−δc−1E∗〉 ⊂ SδcE∗,

Mc := M̂c/(M̂c−1 � Sδc−δc−1E∗) ⊂ SδcE∗/(M̂c−1 � Sδc−δc−1E∗).

These spaces are well-defined and depend only on X and E.

The lemma is an immediate consequence of the uniqueness of the normal form up
to admissible changes of bases. Let IE ⊂ Sym(E∗) denote the ideal generated by
the M̂j . Note that the number of polynomials generating IE is at most dim Cx +1,
independently of the normal form (and dim Cx +1 is the expected number of gen-
erators). Let B ′ ⊂ B denote the Zariski open subset where the normal form is the
same as that of a general point.

Proposition 3.4. Let E ∈ B ′ and let [y] ∈ PE be in the zero set of IE. Then
[y] ∈Xsing.

Proof. [y] ∈ Xsing means that, for all w ∈ W, (w P )(y) = 0. Let w1, . . . ,wn−1

be elements of W that descend to give a basis of W/E. Since (u P )|E = 0 holds
for all u ∈ E, the polynomial (w P )|E ∈ S d−1E∗ is a linear combination of
the (wi P )|E. Because each (wi P )|E contains one of the pE

j as a factor, the
hypothesis implies that w P vanishes at y.

We now allow E to vary. Let S → G(2,W) denote the tautological rank-2 sub-
space bundle and note that the total space of PS|B is our incidence correspondence
IB. Since all calculations are algebraic, M1 gives rise to a rank-i1 algebraic vector
bundle M1 ⊂ Sδ1S ∗|B ′ , M2 gives rise to a rank-(i2 − i1) algebraic vector bun-
dle M2 ⊂ ((S δ2S ∗)/(M1 � Sδ2−δ1S ∗))|B ′ , and so forth, finally giving a bundle of
ideals I ⊂ Sym(S ∗)|B ′ .

Now, since Grassmannians are compact, along any curve Et in B with Et ∈B ′

for t = 0 we have well-defined limits as t → 0, and thus we may define IEt

0 ⊂
Sym(E∗

0 ). Note that if we approach E0 in different ways, we could obtain differ-
ent limiting ideals; nevertheless, we have the following result.

Proposition 3.5. Let E ∈ B, let {Et } ⊂ B be a curve such that E0 = E and
Et ∈B ′ for t = 0, and let [y] ∈ PE be in the zero set of IEt

0 . Then [y] ∈Xsing.

Proof. Although this is a standard argument, we give details in a special case to
show that, at points ofB\B ′, the situation is even more favorable. We work locally
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in a coordinate patch. First note that we may choose a fixed α1,α2 ∈W ∗ that re-
strict to a basis of E∗ for all E in our coordinate patch and still obtain the normal
form by linear changes of bases in W/E. So along our curve Et we consider α1,α2

and wt
1, . . . ,wt

n−1 such that, for t = 0 (and small), � = 〈wt
m+1, . . . ,w

t
n−1〉 and we

have a fixed normal form for wt
1, . . . ,wt

m—say, for example, α1 ⊗ wt
1 − α2 ⊗ wt

2
and α1 ⊗ wt

3 − α2 ⊗ wt
4 ∈ ker σ(X,Et ) for all small t—giving rise to polynomials

φt and ψt such that

wt
1 P |Et

= α2 � φt , wt
2 P |Et

= α1 � φt ,

wt
3 P |Et

= α2 � ψt , wt
4 P |Et

= α1 � ψt .

In the limit, we may not assume that w0
1 , . . . ,w0

m are linearly independent.
First notice that if ψ0 = µφ0 then, although we have a well-defined plane

lim t→0[φt ∧ ψt ] (which equals [φ0 ∧ (ψ ′
0 − µφ ′

0)] if φ0 ∧ (ψ ′
0 − µφ ′

0) = 0),
the vanishing of φ0 already implies [y] ∈Xsing as long as w0

1 , . . . ,w0
4 are linearly

independent.
Now consider the case in which we have a relation λ1w0

1 + · · · + λ4w0
4 = 0.

This implies we have a relation

0 = λ1α
2 � φ0 + λ2α1 � φ0 + λ3α2 � ψ0 + λ4α1 � ψ0

= α1 � (λ2φ0 + λ4ψ0) + α2 � (λ1φ0 + λ4ψ0),

which implies (assuming all coefficients nonzero) ψ0 = µφ0 with µ = −λ2/λ4 =
−λ1/λ3. In particular, the relation among thew0

j was not arbitrary. We also see that

(λ1w0 ′
1 + · · · + λ4w0 ′

4 ) P |E0 = (α1 + µα2)(λ2φ ′
0 + λ4ψ ′

0).

That is, assuming z := (λ1w0 ′
1 +· · ·+λ4w0 ′

4 ) is linearly independent ofw0
1 , . . . ,w0

4 ,
we obtain that IEt

0 is generated by φ0 and z P |E0 . Otherwise, just differentiate
further.

We would like to work with vector bundles over our entire space, which can be
achieved by considering the product of Grassmann bundles G(rank M̂1, Sδ1S ∗)×
· · · × G(rank M̂c , SδcS ∗) → B. Over B ′ ⊂ B we have a well-defined section of
this bundle. Using the compactness of the Grassmannian and the limiting proce-
dure described previously, we extend this section to obtain a space τ : B → B

with fiber over points of B ′ a single point. Here B is given by the section over
points of B ′ and the union of the limit points over the points of B\B ′. Thus each
Mj (resp. M̂j ) gives rise to a well-defined vector bundle Mj → B (resp. M̂j →
B, where M̂j ⊂ τ ∗(S δjS ∗)), and we have the corresponding bundle of ideals I ⊂
τ ∗(Sym(S ∗)).

Let S = τ ∗(S ) and OP(S)(δ) = τ̃ ∗(OPS(δ)), where τ̃ : S → S is the lift of τ.
Consider the projection q : P(S) → B and the bundles

q∗(Mj )
∗ ⊗ OP(S)(δj ).
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Then q∗(M1)
∗ ⊗ OP(S)(δ1) = q∗(M̂1)

∗ ⊗ OP(S)(δ1) has a canonical section s1

whose zero set Z1 ⊂ P(S) is the zero set of (I)δ1 . For each 2 ≤ j ≤ c, the corre-
sponding bundle q∗(M̂j )

∗ ⊗ OP(S)(δj ) has a canonical section ŝj whose zero set
Zj ⊂ P(S) is the zero set of (I)δj .

Fix a general point x ∈ XB , and let Cx = τ−1(Cx) ⊂ B. The essential obser-
vation is that dim C̃x ≥ r = ∑

j rank Mj , so we expect Zc ∩ q−1(Cx) to be
nonempty. This would imply the existence of singular points because the image
of Zc in XB is contained in Xsing.

In more detail, we have a sequence of vector bundles q∗(M1)
∗ ⊗OP(S)(δ1), . . . ,

q∗(Mc)
∗ ⊗ OP(S)(δc) over P(S), whose ranks add up to r, such that q∗(M1)

∗ ⊗
OP(S)(δ1) is equipped with a canonical section s1; and restricted to its zero set Z1,
q∗(M2)

∗ ⊗ OP(S)(δ2) has a canonical section s2; . . . such that if everything were
to work out as expected then the zero set Zc of sc, which is defined as a section
of q∗(Mc)

∗ ⊗ OP(S)(δc) over Zc−1, would have codimension r, which is the di-
mension of P(S)|Cx

. Thus we expect Zc ∩ P(S)|Cx
= ∅, which would imply that

C̃x ∩ Xsing = ∅. Note that a sufficient condition for this is

ctop(q
∗(M1)

∗ ⊗ OP(S)|C x
(δ1)) · ctop(q

∗(M2)
∗ ⊗ OP(S)|C x

(δ2))

· · · ctop(q
∗(Mc)

∗ ⊗ OP(S)|C x
(δc)) = 0, (5)

where the intersection takes place in the Chow group of codimension-r cycles on
P(S)|C x

.

We were not able to prove this in general, but we are able to show the following.

Theorem 3.6. The zero set of the canonical section of q∗M̂∗
1⊗τ ∗(OP(W/x̂)(δ1))|Cx

is always at least of the expected dimension.

Another natural case to consider is the case where the Mj are all line bundles. For
instance, consider the even further special case where there is just M1, M2 and
both are line bundles. This case splits into two subcases based on whether or not
the zero section of s1 surjects onto all of XB. In Section 7 we show that, if Z(s1)

fails to surject onto XB , then Conjecture 1.1 indeed holds.
Since q∗(Mj )

∗⊗OP(S)(δj ) has only a section defined over Zj−1, it will be more
convenient to work with the bundles q∗(M̂j )

∗⊗OP(S)(δj ), which have everywhere
defined sections ŝj .

The best situation for proving results about sections of bundles is when the bun-
dles are ample, which fails here. However, in Section 5 we show that if x is suffi-
ciently general then the bundles M̂∗

j ⊗τ ∗(OP(W/x̂)(δj )) are generically ample when
restricted to Cx. As we will prove in Lemma 6.1, this ensures that the zero locus
Z(ŝj ) ⊂ P(S)|Cx

of the canonical section of q∗(M̂j )
∗ ⊗ OP(S)|C x

(δj ) is nonempty
if the rank of M̂j is smaller than r. This is what we will use in Section 6 to prove
Theorem 3.6.

4. Examples

In this section, we illustrate how to construct local equations for the singular locus
on Cx for some well-known cases of hypersurfaces containing large families of
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lines. In the first case we consider hypersurfaces containing a complete intersec-
tion of sufficiently low multidegree; in the second example, we consider hyper-
surfaces in P 5 containing the Segre embedding of P1 × P2. In both cases it is
possible to prove directly that such hypersurfaces have to be singular. Instead of
doing this, we explicitly write out M1, . . . ,Mc in each case and use this construc-
tion to prove the existence of singular points.

Although our approach is based on the study of tangent spaces, it is important
to stress that TEF(X) ≥ n − 2 at a general point E ∈ B is not a sufficient condi-
tion for the singularity of a degree-d hypersurface X with d ≥ n. For instance, it
is well known that there are nonsingular hypersurfaces X for which F(X) can be
nonreduced; a typical example is given by Fermat hypersurfaces [4, Sec. 2.5]. In
Section 4.3 we revisit this example from our point of view.

4.1. Complete Intersections. Let Y = {g1 = · · · = gr = 0} ⊂ P(W ) be a
complete intersection of multidegree (d1, . . . , dr). Assume that

∑r
i=1 di ≤ n − r,

r ≥ 2, and that Y is general. Then, by [5, Thm. 2.1], the Fano scheme B := F(Y )

has dimension 2n − 2 − r − ∑r
i=1 di ≥ n − 2.

Let X be a degree-d ≥ n hypersurface containing Y. Then there exist polyno-
mials h1, . . . ,hr , respectively of degrees d − d1, . . . , d − dr , such that X is defined
by the equation P = g1h1 + g2h2 + · · · + grhr = 0.

By computing derivatives, one finds that the linear subspace

{(w P )|E : w ∈W/E} ⊂ S d−1E∗

for E ∈B equals the degree-(d − 1) part of the ideal generated by the restrictions
of h1, . . . ,hr to E. This yields

Image σ(X,E) = S d1E∗ � h1|E + · · · + S drE∗ � hr |E.
Assume that

d1 = · · · = di1 > di1+1 = · · · = di1+i2 > · · · > di1+··· +ic−1+1 = · · · = dr

and set δj = d − dij for every j = 1, . . . , c. Then the vector bundles M1, . . . ,Mc

are given by

M1,E = 〈h1|E , . . . ,hi1|E〉 ⊂ Sδ1E∗,

M2,E = 〈hi1+1|E , . . . ,hi1+i2 |E〉 ⊂ Sδ2E∗,
...

Mc,E = 〈hi1+··· +ic−1+1|E , . . . ,hr |E〉 ⊂ SδcE∗.

This implies that the zero locus of the canonical section of q∗M ∗
j ⊗OP(S )B(δj ) is

the preimage of XB ∩ {h1 = · · · = hi1+··· +ij = 0} under the projection P(S )|B →
XB. The cone C̃x has dimension at least r for every point x of XB. Since the con-
ditions h1 = · · · = hr = 0 define a subscheme of P n of codimension at most r,
the zero locus of the canonical section q∗M ∗

j ⊗OP(S )|Cx
(δj ) is nonempty for every

x ∈X. This implies Xsing ∩ C̃x = ∅.
4.2. Hypersurfaces in P 5 Containing a Segre Product. This example is
due to J. Harris and was communicated to us by A. J. de Jong.
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Consider the Segre embedding P1 × P2 → P 5. Its image Y is a subvariety of
codimension 2 in P 5 defined by the condition

rank

(
x0 x1 x2

x3 x4 x5

)
= 1.

The Fano scheme of the varietyY has two irreducible components: a 2-dimensional
family A of lines of the form P1 × {p} for p ∈ P2 and a 3-dimensional family B

of lines of the form {p} × * with p ∈ P1 and *∈ P̌2.

Let X be a hypersurface of degree d ≥ 5 containing Y. Then X has an equation
of the form

P =
∣∣∣∣∣∣
h0 h1 h2

x0 x1 x2

x3 x4 x5

∣∣∣∣∣∣,
where the hi are homogeneous polynomials of degree d − 2. Here dimB = 3 =
n− 2 and XB is the Segre varietyY. Let x be a general point of XB. Then the cone
C̃x of B-lines passing through x is the unique 2-plane contained in XB and passing
through x.

Without loss of generality, we may assume that x = [1, 0, 0, 0, 0, 0] and that
C̃x ⊂ P 5 is defined by equations x3 = x4 = x5 = 0. Consider the line E0: x2 =
x3 = x4 = x5 = 0. Then the linear subspace

;0 := {(w P )|E0 : w ∈W/E0} ⊂ S d−1E∗
0

equals the degree-(d −1) part of the ideal generated by the polynomials h2|E0 and
(h0x1 − h1x0)|E0 , which are respectively of degrees d − 2 and d − 1. This fol-
lows from the fact that ;0 is generated by (e3 P)|E0 = −h2x1, (e4 P)|E0 =
h2x0, and (e5 P)|E0 = h0x1 − h1x0. Hence

Image σ(X,E0) = (h2|E0 , (h0x1 − h1x0)|E0)d−1.

This description can be extended to every E ∈ Cx and can be used to define the
line bundle M1 ⊂ S d−2S ∗|Cx

. Note that in this case one has M̂2,E = {(w P )E :
w ∈W/E} ⊂ S d−1E∗ andM2 = M̂2/(S ∗�M1). Furthermore, (w P )|E ∈ S d−1E∗
lies in the ideal generated by M1,E ⊂ S d−2E∗ if and only if the 2-plane P(〈w,E〉)
contains a line of the form P1 × {p} for some p ∈ PE.

One can prove the existence of singular points on C̃x as follows. In this case
Cx is a projective line, the vector bundle S is isomorphic to OP1 ⊕ OP1(−1), and
P(S )|Cx

is the blow-up of C̃x at x. In particular, its Weil group is generated by the
class ξ0 of the exceptional divisor and by the class F of a fiber of P(S )|Cx

→ Cx

with intersections given by ξ 2
0 = −1, ξ0 · F = 0, and F 2 = 0. By computing the

intersection numbers with ξ0 and F, one obtains

c1(q
∗(M ∗

1 ) ⊗ OP(S )|Cx
(d − 1)) = (d − 1)ξ0 + (d − 2)F

and
c1(q

∗(M ∗
2 ) ⊗ OP(S )|Cx

(d − 2)) = (d − 2)ξ0 + (d − 1)F.

Therefore, the number of points in Xsing ∩ C̃x is

(d − 1)2 + (d − 2)2 − (d − 1)(d − 2) = d 2 − 3d + 3.
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4.3. Fermat Hypersurfaces. In this section, we consider degree-d Fermat
hypersurfaces in P n with d ≥ n ≥ 4. This is the typical example of a non-
singular hypersurface with F(X) of dimension n − 3 but nonreduced, so that
dim TEF(X) ≥ n − 2 holds for every E ∈ F(X) (see [4, Sec. 2.5]). It is interest-
ing to see which vector bundles Mi arise in this case and to gain thereby intuition
regarding why the degeneracy of F(X) does not imply singularity here.

Let X ⊂ P n be defined by the vanishing of P = xd0 + xd1 + · · · + xdn with d ≥
n. Let B be an irreducible component of F(X). Then, up to reordering the coor-
dinates x0, . . . , xn, there is an index 2 ≤ j ≤ "n/2# such that the lines in B are
exactly the lines joining a point of

X1 := X ∩ {x0 = x1 = · · · = xj−1 = 0}
with a point of

X2 := X ∩ {xj = xj+1 = · · · = xn = 0}.
In other words, the variety XB is the join of the varieties X1 and X2. Note that

dimX1 = n− j −1 and dimX2 = j − 2, so that dimB = (n− j − 1)+ j − 2 =
n − 3 and dimXB = dimB + 1 = n − 2. For every x ∈XB \ (X1 ∪ X2), there is
exactly one line of B passing through x. Nevertheless, for every E ∈ B the em-
bedded tangent space to XB at points on PE \ (X1 ∪X2) is constant, so that TECx

has dimension dimXB − 1 = n − 3.
In view of Lemma 3.1, the points on Xsing ∩ PE are defined on PE by the van-

ishing of r = n − 1 − dim TEB + dim TECx equations on PE. Let us compute
these equations for a general line E ∈B. Every line E ∈B is spanned by vectors
of the form

v1 = (µ0,µ1, . . . ,µj−1, 0, . . . , 0),
j−1∑
i=0

µd
i = 0,

v2 = (0, . . . , 0,µj ,µj+1, . . . ,µn),
n∑

i=j

µd
i = 0,

so that every point of PE is of the form [sv1 + tv2 ].
Consider the basis {ei} ofW dual to the coordinate system {xi}. Then (ei P )E =

µd−1
i ξ d−1

i , where ξi = t if i ≤ j−1and ξi = s if i ≥ j. From this it follows that the
image of σ(X,E) is the subspace of S dE∗ ∼= S d〈t, s〉 generated by t d, t d−1s, ts d−1,
and s d. This implies dim TEB = dim ker σ(X,E) = dim(E∗⊗W/E)−4 = 2n−6.
Hence the number of equations for Xsing ∩ PE is n − 1 − (2n − 6) + (n − 3) =
2, and these equations are s d−1 = t d−1 = 0.

Note that the equation s = 0 defines the point PE ∩ X1, whereas t = 0 defines
PE ∩X2. Therefore, any putative singular points of X must lie on the intersection
X1 ∩ X2, which is empty.

In this case, if one lets E move in B, then the equations for Xsing ∩ PE give rise
to a rank-2 vector bundle M1 ⊂ S d−1S ∗ that can be described as follows. Con-
sider the line subbundle N1 ⊂ S d−1S ∗ defined by the condition of vanishing on X1

with multiplicity d − 1. Analogously, consider the line subbundle N2 ⊂ S d−1S ∗
of forms vanishing on X2 with multiplicity d −1. Then, for every E ∈B, the fiber
M1,E is the linear span of N1,E and N2,E inside S d−1E∗.
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5. Generic Ampleness

Recall [7, Ex. 12.1.10] that a vector bundle E over a variety X is generically ample
if it is generated by global sections and the canonical map PE ∗ → P(H 0(X, E )∗)
is generically finite. The locus where it is not finite is called the disamplitude locus
Damp(E ). In particular, if Y ⊂ X is a subvariety such that E |Y has a trivial quo-
tient subbundle, then Y ⊂ Damp(E ).

Generically ample bundles of rank r ≤ dimX have the property that c1(E ), . . . ,
cr(E ) are all positive in the sense that their classes in the Chow group of X are lin-
ear combinations of effective classes with nonnegative coefficients not all equal
to 0.

To use a more compact notation, from now on we will write

OCx
(k) := OP(W/x̂)(k)|Cx

and OCx
(k) := τ ∗(OCx

(k)) = τ ∗(OP(W/x̂)(δj ))|Cx
.

Analogous conventions will be used for subvarieties of Cx and Cx.

Lemma 5.1. For general x ∈ XB , the bundles M̂∗
j ⊗ OCx

(δj ) are generically
ample.

Proof. First, global generation is clear, as for all the M̂j we have a surjective map

Sδj S ⊗ OCx
(δj ) → M̂∗

j ⊗ OCx
(δj ).

Now take any choice of splittingW = x̂⊕W ′ so that the left-hand side becomes
τ ∗(OCx

⊕ OCx
(1) ⊕ · · · ⊕ OCx

(δj )), which is a direct sum of finitely generated
bundles.

The locus where the canonical map

P
(⊕δj

i=0 OP(W/x̂)(−i)
) → P

(
H 0

(
P(W/x̂),

⊕δj
i=0 OP(W/x̂)(i)

)∗)
is not finite is the POP(W/x̂) factor. Hence, when we restrict to Cx ⊂ B and pull
back to Cx , Damp(M̂∗

j ⊗ OCx
(δj )) is contained in the union of the following two

loci:

• the locus where the map τ : Cx → Cx has positive-dimensional fibers;
• the projection to Cx of the locus where the image of

P(M̂j ⊗ OCx
(−δj )) → P

(⊕δj
i=0 OCx

(−i)
)

intersects P(OCx
).

The lemma will follow from Lemma 5.2 and the fact that the general fiber of Cx →
Cx is finite if x is a general point ofXB. Note that the image of P(M̂j ⊗OCx

(−δj ))

inside P
(⊕δj

i=0 OCx
(−i)

)
intersects P(OCx

) precisely over the points E ∈ Cx such

that the fiber M̂j,E contains a nonzero polynomial vanishing at x with multiplic-
ity δj .

Lemma 5.2. For general x ∈XB and general E ∈ Cx , all nonzero elements P ∈
(IE)k vanish at x with multiplicity at most k − 1 for any integer k ≤ δc.
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Proof. Fix E ∈B. Then the locus

{[P ] ∈ P((IE)k) | P = f k for some f ∈E∗}
is the intersection of P((IE)k) with a degree-k rational normal curve contained in
P(S kE∗). Hence, it consists of at most a finite number of points [P1], . . . , [PR].
Thus it suffices to choose a point x ∈ PE such that Pj(x) = 0 for all j = 1, . . . ,R.

6. Proof of Theorem 3.6

Theorem 3.6 is a consequence of Lemma 5.1 for j = 1 when combined with the
following lemma for M = M̂1|Cx

.

Lemma 6.1. Let M ⊂ SpS∗|Cx
be a vector bundle such that M ∗ ⊗ OCx

(p) is
generically ample. Then the zero locus of the canonical section of the bundle
q∗M ∗ ⊗ OPS|Cx

(p) over P(S)|Cx
is of dimension at least dim Cx +1− rank(M).

The proof of Lemma 6.1 follows by several reductions that reduce the question to
a basic fact about intersections on nontrivial P1-bundles over a curve.

Lemma 6.2. Let pξ : S → ξ be a P1-bundle over a curve ξ with a section
e : ξ → S of negative self-intersection. If D̃1 and D̃2 are effective divisors of
S not contained in the image of e such that the restriction of pξ to each of them is
finite, then D̃1 ∩ D̃2 = ∅.
Proof. The group of Weil divisors of S (up to numerical equivalence) is generated
by the class ξ0 of the image of e and the class F of a fiber of pξ . Since S is not
a product, one has F 2 = 0, ξ0 · F = 1, and ξ 2

0 = −k with k a positive integer.
Choose irreducible components D1,D2 of the divisors, different from the image
of e. Then Di = ai ξ0 + biF with ai ≥ 1 (since ai is the degree of pξ |Di

) and
Di · ξ0 = bi − aik ≥ 0. Then D1 · D2 = −a1a2k + a1b2 + a2b1 ≥ a1a2k > 0.
From this the claim follows.

The proof of Lemma 6.1 relies on the following lemma.

Lemma 6.3. Let M ⊂ SpS∗|Cx
be a vector bundle such that M ∗ ⊗ OCx

(p) is
generically ample. Let W ′ ⊂ W be any hyperplane not containing x̂, set H ′ =
Cx ∩ PW ′, and let H ⊂ P(S|Cx

) be the preimage of H ′ under the map P(S|Cx
) →

C̃x induced by τ. Let sM denote the canonical section of q∗M ∗ ⊗ OPS|C x
(p).

Then the intersection Z(sM)∩H has dimension at least dim Cx − rank(M). In
particular, it is nonempty if rankM ≤ dim Cx.

Proof. Consider the section sM,W ′ ∈ H 0(H ′, q∗ ⊗ OP(S|C x )
(p)) obtained by re-

stricting sM to H ′. Then Z(sM) ∩ H = Z(sM,W ′).

Observe that ρ : C̃x → Cx and q : P(S|Cx
) → Cx become isomorphisms when

restricted to, respectively, H ′ and H. In particular, since H ′ was a hyperplane
section of Cx , the isomorphism H ∼= Cx so obtained induces an isomorphism
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OP(S|C x )
(1)|H ∼= OCx

(1). Since the isomorphism H ∼= Cx also induces an iso-
morphism (q∗M)|H ∼= M, one can view sM,W ′ as a global section ofM ∗⊗OCx

(p).

Therefore, if Z(sM,W ′) ⊂ H is nonempty, it has codimension at most rankM in
H [7, Prop. 14.1b]. It remains to show Z(sM,W ′) = ∅ if rankM ≤ dim Cx.

Recall from [7, Sec. 14.1] that there is a localized Chern class associated to the
section sM,W ′ , which is a class in the Chow group of Z(sM,W ′) whose pull-back
under the inclusion Z(sM,W ′) → Cx is the top Chern class of M ∗⊗OCx

(p). Since
M ∗ ⊗ OCx

(p) is generically ample and of rank ≤ dim Cx , its top Chern class is
positive. So the Chow group of Z(sM,W ′) contains a nontrivial class, and in par-
ticular Z(sM,W ′) cannot be empty.

Proof of Lemma 6.1. For every E ∈ Cx , consider NE := (Sp−1E∗ � x̂⊥)∩ME , the
linear subspace of ME of forms vanishing on the point x. Without loss of general-
ity, when E varies NE gives rise to a vector subbundle N ⊂ M of codimension 1.
Indeed, if it were not so, there would be a point E ∈ Cx such that NE = ME , and
then (E, x) would be a point of the zero locus of the canonical section, thus im-
plying the claim.

We have an exact sequence 0 → N → M → L → 0, where L is the quo-
tient line bundle. Since q∗N ∗⊗OCx

(p) is a corank-1 quotient of q∗M ∗⊗OCx
(p),

we can apply Lemma 6.3 to it. Hence, the zero locus of the canonical section of
q∗N ∗ ⊗ OCx

(p) contains an irreducible component Z, which intersects all sub-
varieties H ⊂ P(S)|Cx

that come from preimages of general hyperplane sections
of C̃x.

Without loss of generality, we may assume that Z is of dimension 1 and that
q ′ := q|Z : Z → q(Z) =: ξ is a finite surjective map. Recall that the group of
Weil divisors (up to numerical equivalence) of the ruled surface P(S)|ξ is gener-
ated by the class ξ0 of the tautological section of q ′ (i.e., (ξ0)E = (E, x)) and the
class F of a fiber of q. From the effectivity of Z and from Lemma 6.3 we obtain
Z · F ≥ 1 and Z · ξ0 ≥ 0.

To prove the claim, it suffices to show Z · c1(q
∗L∗|ξ ⊗OPS|ξ (p)) > 0. We have

c1(q
∗L∗|ξ ⊗ OPS|ξ (p)) · F = d because c1(q

∗L∗ ⊗ OPS|ξ (p)) · F = c1(q
∗L∗) ·

F + c1(OPS|ξ (p)) · F = 0 + p = p. Now recall that the canonical section of
q∗N ∗|ξ ⊗ OPS|ξ (p) vanishes on ξ0 by construction. Therefore, the canonical sec-
tion of q∗M ∗|ξ ⊗OPS|ξ (p) induces a section sL of q∗L∗|ξ ⊗OPS|ξ (p) on ξ0. Since
NE � ME for everyE ∈ Cx , we have that sL cannot vanish identically on ξ0. Hence
c1(q

∗L∗|ξ ⊗ OPS|ξ (p)) · ξ0 ≥ 0, because it is the class of Z(sL) on ξ0. Then the
asserted inequality follows from Lemma 6.2 because c1(q

∗L∗|ξ ⊗OPS|ξ (p)) is nu-
merically equivalent to an effective divisor satisfying the hypotheses of Lemma 6.2.

7. Two Line Bundles

In this section we prove the following result, which was announced in Section 3.

Lemma 7.1. Assume that M1 and M2 are line bundles and that the projection
Z(s1) → XB is not surjective. Then, for every x ∈XB , the zero set of ŝ2|Cx

is of
codimension ≤ 2 in Cx.
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As in the previous arguments, it will be sufficient to work with a general point
x ∈ XB and a sufficiently general irreducible curve ξ ⊆ Cx and show that the
zero set of ŝ2 restricted to P(S)|ξ is nonempty. The proof is based on show-
ing that Z(ŝ2) ∩ P(S)|ξ coincides with the zero set of the canonical section of
(q|ξ )∗N ∗ ⊗ OP(S)|ξ (δ2), where N ⊂ Sδ2 S|ξ is a rank-2 vector bundle satisfying
the hypotheses of Lemma 6.1. We construct N under the assumption that the zero
set Z(s1) does not intersect the tautological section of P(S)|ξ → ξ.

Since M1 is a line bundle, we have that Z(s1) ⊂ P(S) intersects every fiber
of P(S) → B in δ1 points, counted with multiplicity. This follows from the very
construction of the canonical section s1.

Without loss of generality in the choice of x and ξ, we may assume that:

(i) OCx
(1) restricts to a generically ample line bundle Oξ (1) on ξ ;

(ii) Z := Z(s1)∩P(S)|ξ is not contained in the tautological section ξ → P(S)|ξ ;
(iii) M̂∗

2 ⊗ OCx
(δ2) is generically ample when restricted to ξ ;

(iv) the map q|Z : Z → ξ is finite.

The first assumption follows from the fact that Cx → Cx is generically finite; so
Cx ⊂ Damp(OCx

(1)), and the same holds for a generic ξ ⊂ Cx. Assumption (ii)
follows from the genericity of x, and (iii) follows from Lemma 5.1. Finally, if (iv)
did not hold then Z(ŝ2) would contain δ2 points on every 1-dimensional fiber of
q|Z (counted with multiplicity), thus showing Z(ŝ2) = ∅.

For the rest of this section, we will often omit the restriction to ξ from our no-
tation. Recall that we have a short exact sequence

0 → Sδ2−δ1S∗ � M1 → M̂2 → M2 → 0.

As a consequence, the section ŝ2 ∈H 0(P(S), q∗M̂∗
2 ⊗ OP(S)(δ2)) canonically in-

duces a section s ∈ H 0(Z, q∗M∗
2 ⊗ OP(S)(δ2)). Assume that Z(ŝ2) = ∅; that is,

Z(s) = ∅ on Z. Then s induces a trivialization q∗M∗
2|Z ⊗ OZ(δ2) ∼= OZ.

In this setup, Lemma 7.1 is equivalent to the following lemma.

Lemma 7.2. Assume Z does not intersect the image of the tautological section
s0 : ξ → P(S)|ξ . Then Z(ŝ2) ∩ P(S)|ξ = ∅.
Proof. Assume by way of contradiction that Z(ŝ2) ∩ P(S)|ξ is empty. Fix a line
E ∈ ξ. The fiber M̂2,E is spanned by all degree-δ2 multiples of polynomials in
M1,E and by an additional polynomial φ that does not vanish on any point of Z.

Recall that no nonzero polynomial in M1,E vanishes at x. Therefore, the con-
dition of vanishing at x ∈ P(E) with multiplicity δ2 − δ1 defines a 1-dimensional
subspace of Sδ2−δ1S∗ � M1,E and (for dimensional reasons) a 2-dimensional sub-
space NE of M̂2,E. Hence, without loss of generality we may assume that φ is
a polynomial vanishing at x with multiplicity δ2 − δ1. If we let E vary, then
NE defines a rank-2 vector subbundle N ⊂ M̂2 ⊂ Sδ2 S∗. Moreover, we have
N ⊗ Oξ (−δ2 + δ1) ⊂ Sδ1S∗. This follows from the fact that the condition of van-
ishing at x with multiplicity at least k defines the subbundle

Oξ (k) ⊕ · · · ⊕ Oξ (δ2) ⊂ Oξ ⊕ Oξ (1) ⊕ · · · ⊕ Oξ (δ2) ∼= Sδ2 S∗.
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For every E ∈ ξ, if we choose any 0 = η ∈E∗ that vanishes on x ∈ P(E), then the
fiber of N ⊗ Oξ (−δ2 + δ1) ⊂ Sδ1S∗ over E ∈ ξ is the locus of degree-δ1 polyno-
mials ψ over P(E) satisfying ηδ2−δ1 � ψ ∈ M̂2,E.

By the description of the fibers of M̂2 just given, all points in the zero locus of
the canonical section of q∗(N ⊗ Oξ (−δ2 + δ1)) ⊗ OP(S)|ξ (δ1) belong to Z(ŝ2).

Hence, the canonical section of q∗(N ⊗ Oξ (−δ2 + δ1)) ⊗ OP(S)|ξ (δ1) has empty
zero locus.

On the other hand, (N⊗Oξ (−δ2+δ1))
∗⊗Oξ (δ1) = N ∗⊗Oξ (δ2) is a quotient of

M̂∗
2 ⊗ Oξ (δ2) and so, in particular, it is generically ample on ξ. Then Lemma 6.1

implies that the canonical section of q∗(N ⊗ Oξ (−δ2 + δ1)) ⊗ OP(S)|ξ (δ1) is
nonempty—a contradiction.
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