
On the Decidability and Complexity of Query Answering
over Inconsistent and Incomplete Databases

Andrea Cal̀ı Domenico Lembo Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

{cali,lembo,rosati}@dis.uniroma1.it

ABSTRACT
In databases with integrity constraints, data may not sat-
isfy the constraints. In this paper, we address the problem
of obtaining consistent answers in such a setting, when key
and inclusion dependencies are expressed on the database
schema. We establish decidability and complexity results
for query answering under different assumptions on data
(soundness and/or completeness). In particular, after show-
ing that the problem is in general undecidable, we identify
the maximal class of inclusion dependencies under which
query answering is decidable in the presence of key de-
pendencies. Although obtained in a single database con-
text, such results are directly applicable to data integra-
tion, where multiple information sources may provide data
that are inconsistent with respect to the global view of the
sources.

1. INTRODUCTION
In database applications, integrity constraints represent

fundamental knowledge about the domain of interest [8,
1]. In many scenarios, data may not satisfy integrity con-
straints; this happens, for instance, in data integration [20,
17], where integrity constraints enrich the semantics of the
global view of a set of autonomous information sources,
while such constraints may be violated by data at the
sources [14, 6]. In principle, the issue of dealing with in-
tegrity constraint violations is relevant in all applications
involving the integration of heterogeneous information (e.g.,
Data Warehouses, Enterprise Resource Planning Systems,
etc.). The current integration methodologies deal with this
problem in a data reconciliation step, in which data are
cleaned by ad hoc algorithms that eliminate all violations.

In the general case of a database in which data violate
integrity constraints, the problem arises of how to interpret
such a database. This problem has been extensively studied
in several works in the area of inconsistent databases that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00.

have proposed a new semantic approach to the treatment of
integrity constraints [15, 11, 5, 21, 3, 4, 19, 16], which we
briefly illustrate in the following.

Traditionally, database theory adopts an exact interpreta-
tion of data, based on the closed world assumption [23], i.e.,
the interpretation of each relation r exactly corresponds to
the extension of r in the database instance. In order to cope
with data inconsistencies, other assumptions about data are
adopted in the literature. In particular, the interpretation
of each relation r can be considered either as a superset
(sound semantics) or a subset (complete semantics) of the
extension of r in the database instance. Although in many
cases such assumptions are sufficient to guarantee the exis-
tence of a consistent interpretation of the data, in general
a less strict interpretation is needed. In particular, several
studies [15, 21, 3, 19] propose a loose semantics which se-
lects, among all possible databases satisfying the integrity
constraints, only the ones that are “as close as possible” to
the actual database instance.

In this paper, we address the problem of query answering
in a relational setting under the above semantics, when key
and inclusion dependencies are expressed on the database
schema. Specifically: (i) we identify the frontier between
decidability and undecidability of query answering for the
various semantics; (ii) for the decidable cases, we establish
the computational complexity of the query answering prob-
lem.

A detailed summary of the results of this paper is pre-
sented in Section 6 (see Figure 1). We remark that the
results we have obtained for the sound semantics extend
previous studies on query containment under integrity con-
straints [18], while the results for the loose semantics ex-
tend known results in the field of inconsistent databases, by
taking into account inclusion dependencies, which add sig-
nificant complexity to the problem. In particular, the key
issue in our work is that we are able to deal with infinite
models for a database schema, that are to be taken into ac-
count when cyclic inclusion dependencies are present in the
schema.

The paper is organized as follows. In Section 2 we recall
the formal framework of relational databases with integrity
constraints. In Section 3 we study decidability and com-
plexity of query answering under sound, complete, and ex-
act semantics. In Section 4 we introduce a loose semantics
for inconsistent data. In Section 5 we prove results about
decidability and complexity of query answering under the
loose semantics. Section 6 concludes the paper.

2. FRAMEWORK
In this section we present the syntax and semantics of the

relational model with integrity constraints. We assume that
the reader is familiar with the basic notions of relational
databases [1].

2.1 Syntax
We consider to have an infinite, fixed alphabet Γ of values

representing real world objects, and we take into account
only database instances having Γ as domain. Moreover, we
assume that different values in Γ denote different objects,
i.e., we adopt the so-called unique name assumption.

Basically, in the relational model we have to account for a
set of relation symbols and a set of integrity constraints, i.e.,
assertions on the relation symbols that express conditions
that are intended to be satisfied by database instances.

In this paper we focus our attention on inclusion and
key dependencies. More formally, we indicate a relational
schema (or simply schema) DB as a triple 〈S, I,K〉, where:

• S is a set of relations, each with an associated arity
that indicates the number of its attributes. The at-
tributes of a relation r of arity n are represented by
the integers 1, . . . , n.

• I is a set of inclusion dependencies (IDs), i.e., a set of
assertions of the form r1[A] ⊆ r2[B], where r1, r2 are
relations in S, A = A1, . . . , An is a sequence of distinct
attributes of r1, and B = B1, . . . , Bn is a sequence of
distinct attributes of r2.

• K is a set of key dependencies (KDs), i.e., a set of
assertions the form key(r) = A, where r is a relation in
the global schema, and A = A1, . . . , An is a sequence
of attributes of r. We assume that at most one key
dependency is specified for each relation.

A relational query (or simply query) over DB is a formula
that is intended to extract a set of tuples of values of Γ.
The language used to express queries over DB is union of
conjunctive queries (UCQ). A UCQ q of arity n is written
in the form q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conj m(~x, ~ym),
where for each i ∈ {1, . . . , m} conj i(~x, ~yi) is a conjunction
of atoms whose predicate symbols are in S, and involve ~x =
X1, . . . , Xn and ~yi = Yi,1, . . . , Yi,ni

, where Xk and Yi, ` are
either variables or values of Γ.

2.2 Semantics
A database instance (or simply database) B for a schema
DB is a set of facts of the form r(t) where r is a relation
of arity n in S and t is an n-tuple of values from Γ. We
denote as rB the set {t | r(t) ∈ B}. A database B for a
schema DB is said to be consistent with DB if it satisfies all
the dependencies expressed on DB. In our framework, this
means satisfying IDs in I and KDs in K. More formally:

• B satisfies an inclusion dependency r1[A] ⊆ r2[B] if for
each tuple t1 in rB1 there exists a tuple t2 in rB2 such
that t1[A] = t2[B], where t[A] is the projection of the
tuple t over A. If B satisfies all inclusion dependencies
expressed on DB, then we say that B is consistent with
I;

• B satisfies a key dependency key(r) = A if for each
t1, t2 ∈ rB with t1 6= t2 we have t1[A] 6= t2[A]. If B

satisfies all key dependencies expressed on DB we say
that B is consistent with K.

Traditionally, the database theory essentially specifies a
single database instance for a schema DB. This means as-
suming that each relation r in S has to be considered exact,
i.e., given a database instance D consistent with DB, r is
satisfied by exactly the tuples that satisfy r in D.

On the other hand, different assumptions can be adopted
for interpreting the tuples that D assigns to relations in S
with respect to tuples that actually satisfy DB. In particu-
lar, tuples in D can be considered a subset or a superset of
the tuples that satisfy DB, or exactly the set of tuples satis-
fying DB. These interpretations give raise to three different
semantics, called sound, complete, and exact, respectively.

Formally, given a database instance D for DB = 〈S, I,K〉,
and an assumption x for D, where x ∈ {s, c, e} (for sound,
complete, and exact semantics, respectively), the semantics
of DB with respect to D and x, denoted semx(DB,D), is
the set of database instances B for DB such that:

• B is consistent with DB, i.e., it satisfies the integrity
constraints in I and K;

• B satisfies the assumptions specified on D, i.e.:

– B ⊇ D when x = s (sound semantics);

– B ⊆ D when x = c (complete semantics);

– B = D when x = e (exact semantics).

It is easy to see that, while seme(DB,D) contains at most
a single database instance for DB, in general sems(DB,D)
and semc(DB,D) contain several databases for DB. Fur-
thermore, in our setting it always holds that semc(DB,D)
is a non-empty set for each DB and each D, since the empty
database instance satisfies every possible set of KDs and
IDs, therefore ∅ ∈ semc(DB,D).

Finally, we give the semantics of queries. Formally, given
a database instance D for DB and an assumption x for D,
where x ∈ {s, c, e}, we call answers to a query q of arity n
with respect to DB, D and x, the set ansx(q,DB,D) =
{〈c1, . . . , cn〉 | for each B ∈ semx(DB,D), 〈c1, . . . , cn〉 ∈
qB }, where qB denotes the result of evaluating q over the
database B. We recall that qB is the set of n-tuples of val-
ues of Γ 〈c1, . . . , cn〉, such that, when substituting each ci for
xi, the formula ∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃~ym.conjm(~x, ~ym)
evaluates to true in B.

In this paper we address the decision problem associ-
ated to query answering, that is, given a database schema
DB, a database instance D, a query q of arity n over
DB and a n-tuple t of values of Γ, to establish whether
t ∈ ansx(q,DB,D).

Example 2.1. Consider the database schema
DB = 〈S, I,K〉 where S contains the two relations1

player(Pname,Pteam) and team(Tname,Tcity), I contains
the ID player[Pteam] ⊆ team[Tname], stating that every
player is enrolled in a team of a city, and K = ∅. Assume
to have the database instance

D = {player(a, b), player(a, d), player(e, f), team(b, c)}

1For the sake of clarity, in the example we use names to
denote attributes, rather than integers.

where a, b, c, d, e, f are values from Γ. It is easy to see that
seme(DB,D) = ∅, since there do not exist two tuples in team

having d and f as first component, i.e., D is not consistent
with DB. This in turn implies that query answering is mean-
ingless, since every possible fact is a logical consequence of
DB and D: for instance, the answer to the query that asks
for all team names in team, i.e., q(x) ← team(x, y), is the
whole interpretation domain Γ (that is, every possible value
belongs to the extension of the query).

On the other hand,

semc(DB,D) = {{player(a, b), team(b, c)}, {team(b, c)}, ∅}

while sems(DB,D) contains all databases instance that can
be obtained by adding to D (among others) at least one fact
of the form team(d, α) and one fact of the form team(f, β),
where α and β are values of the domain Γ. Notice that,
since ∅ ∈ semc(DB,D), ansc(q,DB,D) = ∅, i.e., there is
no answer to the query in the complete semantics, whereas
anss(q,DB,D) = {b, d, f}.

2.3 Complexity classes
Finally, we briefly recall the complexity classes mentioned

in the paper, and refer to [22] for further details. PA (NPA)
is the class of problems that are solved in polynomial time
by a deterministic (nondeterministic) Turing machine using
an oracle for A, i.e., that solves in constant time any prob-
lem in A. In particular, the complexity class Σp

2 is the class
of problems that are solved in polynomial time by a non-
deterministic Turing machine that uses an NP-oracle, and
Πp

2 is the class of problems that are complement of a prob-
lem in Σp

2. Finally, PSPACE is the class of problems that
can be solved by a Turing machine that uses a polynomially
bounded amount of memory.

3. QUERY ANSWERING
In this section we address the problem of query answer-

ing in the presence of integrity constraints, under different
assumptions on the data. We consider a database schema
DB = 〈S, I,K〉, and a database instance D for DB.

As illustrated in Section 2, when the data are consid-
ered complete, then the empty database always belongs
to semc(DB,D), independently of I and K; therefore, for
any query q and for any tuple t we have immediately
ansc(q,DB,D) = ∅; hence, the answer to the decision prob-
lem is always negative. When the data are considered exact,
we have two cases:

1. D satisfies both I and K, therefore semc(DB,D) =
{D} and anse(q,DB,D) = qD. So, it is immediate to
establish whether t ∈ anse(q,DB,D);

2. D violates either I or K, therefore seme(DB,D) = ∅
and anse(q,DB,D) consists of all tuples of the same
arity as q; the answer to the decision problem is there-
fore affirmative, independently of q and t.

The case where the data are considered sound is more
interesting: in fact, if the inclusion dependencies in I are not
satisfied, we may think of adding suitable facts to D in order
to satisfy them (according to the sound semantics, we are
not allowed to repair such violations by deleting facts). In
this case, if D satisfies K, the semantics of DB is constituted
in general by several (possibly infinite) databases, each of

which may have infinite size, since there are several ways
of adding facts to D. Query answering with sound data is
therefore a difficult task, that is not decidable in all cases.

We now define a restricted class of dependencies under
which query answering is decidable.

Definition 3.1. Given a database schema DB =
〈S, I,K〉, an inclusion dependency in I of the form
r1[A1] ⊆ r2[A2] is a non-key-conflicting inclusion depen-
dency (NKCID) with respect to K if either: (i) no KD is
defined on r2, or (ii) the KD key(r2) = K is in K, and A2

is not a strict superset of K, i.e., A2 6⊃ K. Moreover, the
schema DB is non-key-conflicting (NKC) if all the IDs in I
are NKCIDs with respect to K.

Informally, a set of dependencies is NKC if no ID in I
propagates a proper subset of the key of the relation in its
right-hand side. We point out that the class of NKC IDs
comprises the well-known class of foreign key dependencies,
which corresponds to IDs of the form r1[A1] ⊆ r2[A2] such
that key(r2) = A2.

We first show that, as soon as we extend the class of de-
pendencies beyond the non-key-conflicting case, query an-
swering is undecidable. In particular, we introduce, together
with KDs, inclusion dependencies of the form r1[A1] ⊆
r2[A2] such that, if the KD key(r2) = K is in K, A2 is
allowed to cover K plus at most one attribute of r2. We will
call such IDs 1-key-conflicting IDs (1KCIDs) with respect
to K. A 1-key-conflicting (1KC) database schema is defined
analogously to a NKC schema. We first show undecidability
of implication of KDs and 1KCIDs.

Theorem 3.2. The problem of implication2 for KDs and
1KCIDs is undecidable.

Proof. The proof is by reduction from the more gen-
eral problem of implication of functional dependencies (FDs)
and inclusion dependencies. Consider a generic instance of
this problem, i.e., given a database schema DB = 〈S, I,F〉,
where I is a set of IDs and F is a set of FDs, and an inclusion
dependency δ. We assume that all FDs in F are in normal
form, i.e. of the form r : A→ B, where a single attribute B
is in the right-hand side. We construct an ad hoc problem
of implication of KDs and 1KCIDs, consisting of a database
schema DB1 = 〈S1, I1,K1〉, where I1 is a set of 1KCID with
respect to K1, and the same dependency δ. We will show
that the two problems are equivalent, i.e. (I ∪ F) |= δ if
and only if (I1 ∪ K1) |= δ. The dependencies I1 and K1,
defined in a new database schema DB1 = 〈S1, I1,K1〉, are
constructed as follows.

• The new set of relations S1 includes all relations in S
(plus those added as below).

• I1 includes all IDs in I (plus those added as below).

• Let ϕ be a FD in F , of the form

r : A → B

We add to the schema an auxiliary relation rϕ of arity
|A|+ 1, and we add to I1 the dependencies

γ1 : rϕ[A, B] ⊆ r[A, B]
γ2 : r[A, B] ⊆ rϕ[A, B]

2For the details about implication of database dependencies,
we refer the reader to [1].

plus the key dependency

κ : key(rϕ) = A

Note that all the IDs in I2 are 1KCIDs with respect to K1.
The following result, whose proof is straightforward, will be
used in the rest of the proof.

Lemma 3.3. For any database B1 for DB1, we have that
B1 satisfies {ϕ, γ1, γ2} if and only if B1 satisfies {κ, γ1, γ2}.

From this result it follows that we are able to simulate
general FDs by using KDs and 1KCIDs only. Now we end
the reduction by showing that (I ∪ F) |= δ if and only if
(I1 ∪ K1) |= δ.

“⇒” By contradiction, suppose (I1 ∪K1) 6|= δ; then there
exists a database B1 for DB1 such that B1 satisfies (I1∪K1)
and violates δ. Consider a database B for DB obtained
from B1 by removing the facts associated with the relations
of the form rϕ introduced in the reduction. By Lemma 3.3,
B satisfies (I ∪ F); moreover, B cannot satisfy δ because B
coincides with B1 on the relations in S.

“⇐” By contradiction, suppose (I ∪ K) 6|= δ; then there
exists a database B for DB such that B satisfies (I ∪ F)
and violates δ. We construct a database B1 for D1 that
coincides with B on the relations in S, and such that the
facts associated with the relations of the form rϕ, introduced
in the reduction, are such that the dependencies of the form
γ1, γ2 are satisfied. By Lemma 3.3, B1 satisfies (I1 ∪ K1);
moreover, it cannot satisfy δ because B1 coincides with B on
the relations in S.

The reduction is clearly computable in a finite amount of
time. Since implication of IDs and FDs is undecidable, the
thesis follows.

We now show that query answering is undecidable in the
presence of KDs and 1KCIDs.

Theorem 3.4. Let DB = 〈S, I,K〉 be a 1KC database
schema, D a database instance for DB, q a query of arity
n over DB, and t a n-tuple of values of Γ. The problem of
establishing whether t ∈ anss(q,DB,D) is undecidable.

Proof. The proof is analogous to a proof of PSPACE-
hardness of an analogous result (addressed in the context of
query containment) proved by Vardi and published in [18].
We will show a counterexample in which the problem is un-
decidable. Let δ be the following inclusion dependency:

r[A1, . . . , Ak] ⊆ s[B1, . . . , Bk]

where r has arity n and s has arity m. Without loss of
generality, δ involves the first k attributes of r and s respec-
tively. We choose a database instance D for DB containing
the single fact r(c1, . . . , cn). Then we consider the following
boolean query:

q ← r(X1, . . . , Xn), s(X1, . . . , Xk, Yk+1, . . . , Ym)

Note that the query q has a positive answer
(i.e., 〈〉 ∈ anss(q,DB,D)) if and only if the fact
s(c1, . . . , ck, dk+1, . . . , dm) is in all databases in
sems(DB,D). It is immediate to see that this is true
if and only if (I ∪K) |= δ. Since implication of 1KCIDs and
KDs is undecidable, the thesis follows.

As an immediate consequence of this theorem, undecid-
ability of query answering in the presence of KDs and gen-
eral IDs follows. Moreover, the problem is still undecidable
if we restrict to the class of instances consistent with the key
dependencies.

Corollary 3.5. Let DB = 〈S, I,K〉 be a 1KC database
schema, D a database instance for DB consistent with K, q
a query of arity n over DB, and t a n-tuple of values of Γ.
The problem of establishing whether t ∈ ans s(q,DB,D) is
undecidable.

Proof. The case where D does not satisfy K is clearly
decidable, since in that case the answer to the problem is
always affirmative. The claim follows immediately.

Now we come to query answering in the case of NKCIDs
and KDs, and prove that this problem is decidable. To
this aim, we need some preliminary results, presented in
the milestone paper of Johnson and Klug [18], which ad-
dresses the problem of conjunctive query containment in a
database DB, in the presence of functional and inclusion
dependencies. To test whether q1 ⊆ q2, we first have to
“freeze” the body of q1, considering its atoms as facts in a
database instance D, and then applying the chase proce-
dure to such a database. The resulting (possibly infinite)
database, denoted as chase(DB,D), is constructed by re-
peatedly applying, as long as it is applicable, the following
rule:

Inclusion Dependency Chase Rule. Suppose
there is a tuple t in rchase(DB,D), and there is
an ID δ ∈ I of the form r[Xr] ⊆ s[Xs]. If
there is no tuple t′ in schase(DB,D) such that
t′[Xs] = t[Xr], then we add a new tuple tchase
in schase(DB,D) such that tchase [Xs] = t[Xr], and
for any attribute Ai of s, with 1 ≤ i ≤ m and
Ai /∈ Xs, tchase [Ai] is a fresh value, not appearing
elsewhere in the database.

Johnson and Klug have proved that q1 ⊆ q2 if and only if

q
chase(DB,D)
2 is non-empty. Moreover, they have shown that,

to check whether q
chase(DB,D)
2 is non-empty, only a finite por-

tion of chase(DB,D) needs to be considered. Based on this
property, they have defined a PSPACE algorithm AnswerJK ,

that checks the non-emptiness of q
chase(DB,D)
2 .

In the case of query answering, we are able to exploit the
technique of Johnson and Klug. More specifically, we make
use of the notion of chase as specified by the following result.

Lemma 3.6. Consider a database schema DB = 〈S, I, ∅〉
and an instance D for DB; let q be a conjunctive query of
arity n, and t a tuple of the same arity. We have that t ∈
anss(q,DB,D) if and only if t ∈ qchase(DB,D).

Proof (sketch).
“⇒” Since chase(DB,D) satisfies I, it belongs to

sems(DB,D). From the definition of anss(q,DB,D), it fol-

lows that t ∈ qchase(DB,D).
“⇐” Analogously to [7], it can be proved by induction

on the structure of chase(DB,D) that, for any database in-
stance B ∈ sems(DB,D), there exists a homomorphism µ
that sends the tuples of chase(DB,D) to the tuples of B.

By hypothesis t ∈ qchase(DB,D), so there exists a homomor-
phism λ from the atoms of q to the facts of chase(DB,D);
the composition λ ◦ µ witnesses that t ∈ ans s(q,DB,D).

Based on the above property, we can apply the algorithm
AnswerJK for query answering, to check whether a tuple t
belongs to anss(q,DB,D).

We now go back to NKCIDs. The most relevant property
of NKCIDs is that they do not interfere with KDs, so that
we can operate with NKCIDs just as if the KDs were not
defined in the schema. This property is expressed by the
following result.

Theorem 3.7 (Separation). Let DB = 〈S, I,K〉 be
a NKC database schema, and let DB1 = 〈S, I, ∅〉 be the
database schema obtained from DB by removing the KDs.
Let D be a database instance for DB and DB1, q a query
of arity n over DB, and t a n-tuple of values of Γ. We
have that t 6∈ anss(q,DB,D) iff D is consistent with K and
t 6∈ anss(q,DB1,D).

Proof. “⇒” By hypothesis t 6∈ anss(q,DB,D); this
means that there exists a database instance B for DB that
satisfies I and K, and such that t /∈ qB. It is immediate to
verify that B is also an instance for DB1 that satisfies K,
and therefore t 6∈ anss(q,DB1,D). This proves the claim.

“⇐” By hypothesis t 6∈ anss(q,DB1,D) and D satisfies K.
Before we proceed further, we need to prove the following
result.

Lemma 3.8. Let DB = 〈S, I,K〉 be a database schema,
with KDs and NKCIDs, and D is an instance for DB. Then
chase(DB,D) satisfies I and K if and only if D is consistent
with K.

Proof. “⇒” If D violates any of the key dependencies,
since facts are only added (and never removed) in the con-
struction of the canonical database chase(DB,D), then also
chase(DB,D) violates the key dependencies in DB.

“⇐” The proof is by induction on the structure of
chase(DB,D). First, by hypothesis D is consistent with K.
For the induction step, suppose we insert in chase(DB,D)
a tuple t into a relation r, on which a key dependency
key(r) = K is defined, according to the ID s[A] ⊆ r[B].
We will show that there is no violation of the key dependen-
cies on r, by showing that t does not agree on K with any
pre-existing tuple t in rchase

∗(DB,D), where chase∗(DB,D) is
the portion of chase(DB,D) constructed until the insertion
of t.

According to the definition of NKCIDs, the possible cases
are the following.

1. B = K. In this case we have a foreign key dependency;
t and t̄ cannot agree on K, because in that case t
wouldn’t have been added.

2. B ⊂ K. The two tuples differ on the values of B
(otherwise only one of the two would have been added),
so they differ also on K.

3. B ∩K 6= ∅ and B −K 6= ∅. In this case B partially
overlaps with key(r); we necessarily have K −B 6= ∅,
otherwise B would be a strict superset of K. Therefore
t and t differ in the values in K−B, where t has fresh
values, thus they differ a fortiori on K.

4. B ∩K = ∅. In this case the two tuples differ in the
values in K, where t has fresh values.

With this result in place, we are able to extend the re-
sult of [18] to the case of NKCIDs and KDs. In fact, in
this case chase(DB1,D) (which is identical to chase(DB,D)
by construction) satisfies both I and K. Therefore, it is
also a representative of all databases in sems(DB,D), since
sems(DB,D) ⊆ sems(DB1,D): hence, from Lemma 3.6 it

follows that anss(q,DB,D) = qchase(DB1,D). The claim fol-
lows immediately.

Based on the above theorem, we define the algorithm
AnswerS, that solves query answering in the case of non-
key-conflicting database schemata.

Algorithm AnswerS(DB,D, q, t)

Input: NKC database schema DB = 〈S, I,K〉,
database instance D,
query q of arity n over DB,
n-tuple t of values of Γ;

Output: true if t ∈ anss(q,DB,D), false otherwise;
if D is not consistent with K
then return true
else return AnswerJK (DB,D, q, t)

To conclude the section, we present a complexity result
for query answering in the presence of NKCIDs and KDs.

Theorem 3.9. Let DB = 〈S, I,K〉 be a NKC database
schema, D a database instance for DB, q a query of ar-
ity n over DB, and t a n-tuple of values of Γ. The prob-
lem of establishing whether t ∈ ans s(q,DB,D) is PSPACE-
complete with respect to combined complexity. Moreover, it
is in PTIME in data complexity.

Proof. From the results in [18], it follows directly that
the problem in the case of IDs alone is PSPACE-complete;
being such a case a particular case of NKCIDs and KDs
(when no KD is defined, any ID is non-key-conflicting),
PSPACE-hardness in our general case follows trivially.

Membership is proved by showing that the algorithm
AnswerS runs in PSPACE. Consider a database schema
DB = 〈S, I,K〉 where I and K are sets of NKCIDs and
KDs respectively. Given a database D for DB, a query q of
arity n over G, and a n-tuple t of values of Γ, we want to es-
tablish whether t ∈ anss(q,DB,D). Our algorithm AnswerS
proceeds as follows. The first step, clearly feasible in PTIME
(and a fortiori in PSPACE), checks whether D satisfies K.
If it does not, the answer is trivial; if it does, we can apply
Theorem 3.7, disregarding K, and apply the PSPACE algo-
rithm AnswerJK of [18]. All steps of AnswerS are computable
in PSPACE. Soundness and completeness of the algorithm
follow immediately from Theorem 3.7 and from soundness
and completeness of AnswerJK [18].

Membership in PTIME in data complexity follows im-
mediately since AnswerJK runs in time polynomial in data
complexity.

The above complexity characterization of the problem
holds even if we restrict to instances consistent with the
key dependencies.

Corollary 3.10. Let DB = 〈S, I,K〉 be a NKC database
schema, D a database instance for DB consistent with K, q
a query of arity n over DB, and t a n-tuple of values of Γ.
The problem of establishing whether t ∈ ans s(q,DB,D) is
PSPACE-complete.

Proof. Membership follows immediately from the gen-
eral case treated in Theorem 3.9. With regard to hardness,
observe that in the case whereD does not satisfyK the above
algorithm solves query answering in PTIME. The claim fol-
lows immediately.

4. SEMANTICS FOR INCONSISTENT
DATA

In the cases we have addressed so far, the violation of a sin-
gle dependency (under the sound and exact semantics) may
lead to the non-interesting case in which semx(DB,D) = ∅
(x ∈ {e, s}). This does not seem reasonable when the viola-
tions are due to a small set of facts. According to a common
approach in the literature on inconsistent databases [15, 21,
3, 19], we now introduce less strict assumptions on data, un-
der which we can get consistent answers from inconsistent
database instances.

Example 2.1 (contd.). As we have already shown,
seme(DB,D) = ∅ since D does not satisfy I, and as a
consequence query processing is trivial in the exact seman-
tics. Assume now to add the key dependency key [player] =
{Pname} to K, stating that a player cannot be enrolled in
more than one team. It is easy to see that now it is also
sems(DB,D) = ∅, since the facts player(a, b) and player(a, d)
are not consistent with K, and it is not possible to make D
satisfy K by adding other facts to D. On the other hand,
team(b, c) is consistent with the dependencies in the schema,
whereas the inconsistency caused by player(e, f) can be re-
solved under the sound semantics by adding a suitable fact
to D of the form player(f, α). Therefore, rather than the
whole domain Γ, the query q(x)← team(x, y) should return
the answer set {b} under the exact semantics and {b, f} un-
der the sound semantics.

A possible solution to this problem is to characterize the
semantics of a database schema DB = 〈S, I,K〉 with respect
to a database instance D in terms of those databases that (i)
satisfy the integrity constraints on DB, and (ii) approximate
“at best” the satisfaction of the assumptions on D. In other
words, the integrity constraints ofDB are considered “hard”,
whereas the assumptions are considered “soft”.

According to the main approaches to inconsistent
databases, we now propose a modified definition of the se-
mantics that reflects the above idea. Given a possibly in-
consistent database D for DB, we define an ordering on the
set of all databases consistent with DB. If B1 and B2 are
two such databases, we say that B1 is better than B2 with
respect to D, denoted as B1 �D B2, if:

• B1 ∩ D ⊃ B2 ∩ D for the sound assumption

• B1 −D ⊂ B2 −D for the complete assumption

• at least one of the two following conditions holds for
the exact assumption:
(i) B1 ∩ D ⊃ B2 ∩ D and B1 −D ⊆ B2 −D;
(ii) B1 ∩ D ⊇ B2 ∩ D and B1 −D ⊂ B2 −D.

With this notion in place, we can modify the notion of
semantics of a schema DB with respect to a database in-
stance D and an assumption x, where x ∈ {s, c, e} as usual.
In order to distinguish between the semantics used so far
and their modified version, in the following we refer to the
former as strict semantics, while we call the latter loose
semantics, and denote it with semlx(DB,D). Namely, we
call strictly-sound, strictly-complete, and strictly-exact the
sound, complete, and exact semantics, whereas we respec-
tively call loosely-sound, loosely-complete, and loosely-exact
the three loose semantics. More specifically, a database B
consistent with DB is in semlx(DB,D) if B is maximal with
respect to�D, i.e., for no other database B′ consistent with
DB, we have that B′ �D B. It is also immediate to verify
the following lemma:

Lemma 4.1. Let DB = 〈S, I,K〉 be a database schema
and D be a database instance for DB. Then, semls(DB,D) =⋃

D′ sems(DB,D′) for each D′ maximal subset of D consis-
tent with K.

Proof. For each B ∈ semls(DB,D) consider D′ = B∩D.
It is easy to see that D′ is a maximal subset of D consis-
tent with K, and that B ∈ sems(DB,D′). Furthermore, for
each D′ maximal subset of D consistent with K, if B′ ∈
sems(DB,D′), then B′ ∩D′ = D′, hence B′ ∈ semls(DB,D).

With regard to answers, we indicate the set of answers
to queries under the loose semantics with ans lx(q,DB,D),
where x ∈ {s, c, e} as usual. It is immediate to verify that, if
semx(DB,D) 6= ∅ for any x ∈ {s, c, e}, then the strict seman-
tics and the loose one coincide, in the sense that, for each
query q ansx(q,DB,D) = ans lx(q,DB,D). Consequently,
since (as illustrated in Section 2) semc(DB,D) 6= ∅ for each
DB and for each D, it follows that the strictly-complete and
the loosely-complete semantics always coincide.

Moreover, notice that the loose semantics is never empty,
i.e., it always holds that semlx(DB,D) 6= ∅ for any x ∈
{s, c, e}, even if semx(DB,D) = ∅.

Example 2.1 (contd.). With regard to our ongoing ex-
ample we have that:

1. semle(DB,D) contains the database B1 = {player(a, b),
team(b, c)}, and all the databases of the form B2 =
{player(a, d), team(b, c), team(d, α)} for each α ∈ Γ,
B3 = {player(a, b), player(e, f), team(b, c), team(f, α)}
for each α ∈ Γ, and B4 = {player(a, d), player(e, f),
team(b, c), team(d, α), team(f, β)} for each α, β ∈ Γ;

2. semls(DB,D) contains the databases of the form B3

and B4, and each database consistent with DB that
can be obtained by adding facts to a database of the
form B3 or B4;

3. semlc(DB,D) = semc(DB,D).

Therefore, under the three semantics, the answers to the
query q(x) ← team(x, y) are respectively ans le(q,DB,D) =
{b}, ans ls(q,DB,D) = {b, f} and ans lc(q,DB,D) = ∅.

5. QUERY ANSWERING UNDER THE
LOOSE SEMANTICS

In this section we analyze the problem of computing an-
swers to queries under the loose semantics. In particular,
since (as shown in Section 4) the loosely-complete and the
strictly-complete semantics coincide, we study query an-
swering under the loosely-sound semantics and the loosely-
exact semantics.

5.1 Query answering under the loosely-sound
semantics

We now study the query answering problem under the
loosely-sound semantics. As we already said, differently
from the strictly-sound semantics, given a database schema
DB = 〈S, I,K〉 and a database instance D, it always holds
that semls(DB,D) 6= ∅, because we are now allowed to also
eliminate facts from D in order to satisfy integrity con-
straints. Notice that, while to satisfy key dependencies we
are forced to delete facts from D, inclusion dependencies
must be satisfied by adding new facts, since databases in
semls(DB,D) are the ones that are “as sound as possible”,
thus we have to consider only databases consistent with the
constraints that “minimize” elimination of facts from D.

We first show undecidability of query answering for 1-key-
conflicting database schemata.

Theorem 5.1. Let DB = 〈S, I,K〉 be a 1KC database
schema, D a database instance for DB consistent with K, q
a query of arity n over DB, and t a n-tuple of values from
Γ. The problem of establishing whether t ∈ ans ls(q,DB,D)
is undecidable.

Proof. Undecidability follows from Corollary 3.5 since,
in the case in which D is consistent with K, t ∈
ans ls(q,DB,D) iff t ∈ anss(q,DB,D).

As for the class of non-key-conflicting database schemata,
we give a method for computing answers to a query q un-
der the loosely-sound semantics that can be informally ex-
plained as follows: we first identify the maximal subsets of
D that are consistent with K, then for each such database
D′ we make use of the algorithm AnswerS presented in Sec-
tion 3. Indeed, it can be shown that a tuple t is a consis-
tent answer to a query q with respect to DB and D, i.e.,
t ∈ ans ls(q,DB,D), iff AnswerS(DB,D′, q, t) returns true for
each such database D′. More specifically, we define the fol-
lowing algorithm:

Algorithm AnswerLS(DB,D, q, t)
Input: non-key-conflicting database schema DB = 〈S, I,K〉,

database instance D,
query q of arity n over DB, n-tuple t of values from Γ;

Output: true if t ∈ ans ls(q,DB,D), false otherwise;
if there exists D1 ⊆ D
such that

(1) D1 is consistent with K;
(2) for each r(t) ∈ D −D1,

D1 ∪ {r(t)} is not consistent with K;
(3) AnswerS(DB,D1, q, t) returns false

then return false
else return true

Informally, conditions (1) and (2) together check that D1

is a maximal subset of D consistent with K; this implies
the existence of a database B ∈ semls(DB,D) such that
B ∩ D = D1. Then, condition (3) verifies that t /∈ qB.

Theorem 5.2. Let DB = 〈S, I,K〉 be a NKC database
schema, D be a database instance for DB, q be a query of
arity n over DB, and t be a n-tuple of values of Γ. Then,
t ∈ ans ls(q,DB,D) iff AnswerLS(DB,D, q, t) returns true.

Proof. “⇒” If t ∈ ans ls(q,DB,D) then t ∈ qB for
each B ∈ semls(DB,D). From Lemma 4.1 it follows that
t ∈ anss(q,DB,D1) for each D1 maximal subset of D consis-
tent with K, and from soundness and completeness of algo-
rithm AnswerS, it follows that AnswerS(DB,D1, q, t) returns
true for each such databaseD1. Hence, AnswerLS(DB,D, q, t)
returns true.

“⇐” Suppose by contradiction that t /∈ ans ls(q,DB,D)
and AnswerLS(DB,D, q, t) returns true. This implies that
for each D1 maximal subset of D consistent with K,
AnswerS(DB,D1, q, t) returns true. From soundness and
completeness of algorithm AnswerS, it follows that t ∈
anss(q,DB,D1) for each such database D1, i.e., t ∈ qB for
each B ∈ sems(DB,D1). From Lemma 4.1 it follows that
t ∈ qB for each B ∈ semls(DB,D), but this contradicts the
assumption.

We give now the computational characterization of the
problem of query answering under the loosely-sound seman-
tics in the presence of NKCIDs with respect to K.

Theorem 5.3. Let DB = 〈S, I,K〉 be a NKC database
schema, D be a database instance for DB, q be a query of
arity n over DB, and t be a n-tuple of values of Γ. The
problem of establishing whether t ∈ ans ls(q,DB,D) is coNP-
complete with respect to data complexity.

Proof. Membership in coNP follows from the algorithm
AnswerLS(DB,D, q, t) and from Theorem 3.9. Indeed, in
the algorithm the problem of establishing whether t /∈
ans ls(q,DB,D), that is the complement of our problem, is
carried out by guessing a database and checking conditions
(1), (2), and (3) that can be verified in polynomial time.

We prove coNP-hardness of the problem even if we restrict
to database schemata without IDs. Actually, this hardness
result can be immediately derived from the results reported
in [10] (although obtained under a different semantics): how-
ever, in the following we provide an alternative proof, in
which we use a reduction of the 3-colorability problem to our
problem. Consider a graph G = (V, E) with a set of vertices
V and edges E. We define a database schemaDB = 〈S, ∅,K〉
where S consists of the two binary relations edge and col ,
and K contains the dependency key(col) = {1}. The in-
stance D is defined as follows:

D = {col(c, i)|i ∈ {1, 2, 3} and c ∈ V } ∪

{edge(x, y)|〈x, y〉 ∈ E}

Finally, we define the query

q ← edge(X, Y), col(X, Z), col(Y, Z)

We prove that G is 3-colorable (i.e., for each pair of adjacent
vertices, the vertices are associated with different colors) if
and only if 〈〉 6∈ ans ls(q,DB,D) (i.e., the boolean query q
has an affirmative answer). In fact, it is immediate to verify
that, for each possible coloring C of the graph (i.e., a set of
pairs of vertices and colors, where the three colors are rep-
resented by the values 1,2,3) there exists B ∈ semls(DB,D)
that exactly corresponds to C, i.e., colB is exactly the set of
pairs in the coloring C. Therefore, if there exists a coloring

that is a 3-coloring, then 〈〉 6∈ qB for some B ∈ semls(DB,D),
consequently 〈〉 6∈ ans ls(q,DB,D). Conversely, it is immedi-
ate to verify that, for each B ∈ semls(DB,D), colB∩D cor-
responds to a possible coloring of the graph. Hence, if each
possible coloring is not a 3-coloring, then 〈〉 ∈ qB, therefore
〈〉 ∈ ans ls(q,DB,D).

Theorem 5.4. Let DB = 〈S, I,K〉 be a NKC database
schema, D be a database instance for DB, q be a query of
arity n over DB, and t be a n-tuple of values of Γ. The prob-
lem of establishing whether t ∈ ans ls(q,DB,D) is PSPACE-
complete with respect to combined complexity.

Proof. Hardness follows from Corollary 3.10 and from
the fact that, when D is consistent with K, t ∈
ans ls(q,DB,D) if and only if t ∈ anss(q,DB,D).

Membership in PSPACE follows from algorithm
AnswerLS(DB,D, q, t) and Theorem 3.9. Indeed, it is easy to
see that conditions (1), (2), and (3) can be verified in poly-
nomial space, and furthermore NPSPACE=PSPACE [22].

5.2 Query answering under the loosely-exact
semantics

We now study the query answering problem under the
loosely-exact semantics. We recall that, differently from the
loosely-sound semantics, in this case IDs can be satisfied
by either adding or deleting facts. Hence, semle(DB,D) ac-
counts for databases that minimize both elimination and
insertion of facts, i.e., that are “as exact as possible”.

We first prove that query answering under the loosely-
exact semantics is undecidable in the general case, i.e., when
no restriction is imposed on the form of IDs and KDs.

Theorem 5.5. Let DB = 〈S, I,K〉 be a database schema,
D a database instance for DB, q a query of arity n over DB,
and t a n-tuple of values of Γ. The problem of establishing
whether t ∈ ans le(q,DB,D) is undecidable.

Proof. We reduce query answering in the loosely-sound
semantics to query answering in the loosely-exact seman-
tics. We can restrict to instances D consistent with K,
since by Theorem 5.1 for this class of instances the prob-
lem of establishing whether t ∈ ans ls(q,DB,D) is undecid-
able. Starting from such a problem instance (DB,D, q, t),

we define a new problem instance (DB′,D′, q′, t
′
) such that

t ∈ ans ls(q,DB,D) iff t
′
∈ ans le(q

′,DB′,D′). Precisely:

• DB′ = 〈S ′, I′,K′〉 is obtained from DB by:

– defining S ′ as the schema obtained from S by
adding an attribute to each relation in S (in the
last position);

– changing each inclusion in order to propa-
gate such a new attribute from r to s,
i.e., I′ is obtained from I by replacing each
I = r[i1, . . . , ik] ⊆ s[j1, . . . , jk] with I ′ =
r[i1, . . . , ik, n] ⊆ s[j1, . . . , jk, m], where n is the
arity of r in S ′ and m is the arity of s in S ′;

• D′ is the set D′
1∪D

′
2, where D′

1 = { r(u, t0)|r(u) ∈ D }
and

D′
2 = { r(u, t1) | r ∈ S and

u is a tuple of values of ΓD ∪ {t1} }

where ΓD denotes the set of symbols from Γ appearing
in D, and t0, t1 are values not belonging to ΓD. Notice
that the set D′ is finite;

• if the query q has the form

q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conj k(~x, ~yk)

the query q′ is as follows:

q′(~x, Y)←
conj 1(~x, ~y1, t0) ∨ · · · ∨ conj k(~x, ~yk, t0) ∨ body ′

where body ′ is the disjunction
∨
{r(u, t1) | r(u) ∈ D and there is a KD for r in K}

• t
′
is obtained from t by adding the value t0 at the end

of the tuple t.

It can be shown that t ∈ ans ls(q,DB,D) iff

t
′
∈ ans le(q

′,DB′,D′), since for each database B in
semle(DB,D), there are two possible cases:

1. B∩D = D. In this case, due to the key dependencies K,
B does not contain any tuple of the form r(u, t1) such
that r(u) ∈ D and a key dependency for r is defined

in K. Consequently, t
′
∈ q′B iff t ∈ qB. Moreover, it is

immediate to verify that there exists at least one such
B in semle(DB

′,D′);

2. B ∩ D ⊂ D. In this case, there exists at least one
tuple in B of the form r(u, t1) such that r(u) ∈ D and
a key dependency for r is defined in K, consequently
t
′
∈ q′B for each such B. In other words, this kind of

databases does not affect ans le(q
′,DB′,D′), since in B

every possible tuple is in the answer of q′.

Therefore, t ∈ ans ls(q,DB,D) iff t
′
∈ ans le(q

′,DB′,D′).
Finally, since the above reduction is effectively com-

putable and since, by Theorem 5.1, establishing whether
t ∈ ans ls(q,DB,D) is undecidable, the thesis follows.

Differently from the previous semantics, in the case when
the instance D is consistent with K, we obtain a surprising
result: query answering is decidable under the loosely-exact
semantics even without any restriction on the form of KDs
and IDs.

Theorem 5.6. Let DB = 〈S, I,K〉 be a database schema,
D a database instance consistent with K, q a query of arity
n over DB, and t be a n-tuple of values of Γ. The problem
of establishing whether t ∈ ans le(q,DB,D) can be decided
in polynomial time with respect to data complexity and is
NP-complete with respect to combined complexity.

Proof. To prove the thesis, we define the following algo-
rithm:

Algorithm AnswerConsLE(DB,D, q, t)
Input: database schema DB = 〈S, I,K〉,

instance D consistent with K,
conjunctive query q of arity n, n-tuple t

Output: true if t ∈ ans le(q,DB,D), false otherwise
D1 = D;
repeat

D0 = D1;

for each r(t
′
) ∈ D1

if there exists r[i1, . . . , ik] ⊆ s[j1, . . . , jk] ∈ I
such that

for each s(t
′′
) ∈ D1, t

′′
[j1, . . . , jk] 6= t

′
[i1, . . . , ik]

then D1 = D1 − {r(t
′
)}

until D1 = D0;
if t ∈ qD1

then return true
else return false

Correctness of the algorithm AnswerConsLE follows from
the fact that the database D1 computed by the algorithm
is such that (i) D1 ∈ semle(DB,D); (ii) for each B ∈
semle(DB,D), B ⊇ D1. Therefore, t ∈ ans le(q,DB,D) if
and only if t ∈ qD1 . It is well-known that this last condi-
tion (corresponding to standard query answering over a re-
lational database) can be computed in polynomial time with
respect to data complexity and in nondeterministic polyno-
mial time with respect to combined complexity.

Let us turn our attention on query answering under
the loosely-exact semantics in the case of NKC database
schemata. To this aim, we first define a particular query
Q(I, t) associated with a tuple t and an inclusion depen-
dency I.

Definition 5.7. Let I be an inclusion dependency of the
form r[i1, . . . , ik] ⊆ s[j1, . . . , jk], where r has arity n and s
has arity m, and let t be an n-tuple. We denote as Q(I, t)
the boolean conjunctive query q ← s(z1, . . . , zm), where, for
each ` such that 1 ≤ ` ≤ m, each z` is as follows: if there
exists h such that ` = jh then z` = t[ih], otherwise z` = X`.

In the following, the query Q(I, t) is used in order to verify
whether a database schema DB and an instance D imply the
existence in all databases B ∈ sems(DB,D) of a fact of the

form s(t
′
) such that t[i1, . . . , ik] = t

′
[j1, . . . , jk].

Below we define the algorithm AnswerLE for query answer-
ing under the loosely-exact semantics.

Algorithm AnswerLE(DB,D, q, t)
Input: NKC database schema DB = 〈S, I,K〉, instance D,

query q of arity n over DB, n-tuple t of values of Γ
Output: true if t ∈ ans le(q,DB,D), false otherwise
if there exists D′ ⊆ D such that

(a) D′ is consistent with K and

(b) AnswerS(〈S, I, ∅〉,D′, q, t) returns false and
(c) for each D′′ such that D′ ⊂ D′′ ⊆ D

(c1) D′′ is not consistent with K or

(c2) there exists I ∈ I and r(t1) ∈ D′′

such that

AnswerS(〈S, I, ∅〉,D′, Q(I, t1), 〈〉) returns false and

AnswerS(〈S, ∅, ∅〉,D′′, Q(I, t1), 〈〉) returns false
then return false
else return true

Intuitively, to return false the algorithm looks for the ex-

istence of a database B′ in semle(DB,D) such that t 6∈ qB′

.
As in the algorithm AnswerLS, the database B′ is represented
by its intersection with the initial instance D (denoted as D′

in the algorithm): the fact that t 6∈ qB′

is verified by condi-
tion (b), while the fact that B′ ∈ semle(DB,D) is verified by
conditions (a) and (c) of the algorithm. In particular, con-
dition (c) verifies that, for each database B′′ (represented
by its intersection with D denoted as D′′), it is not the case
that B′′ �D B

′. In conditions (c1) and (c2), the symbol 〈〉
denotes the empty tuple.

Soundness and completeness of the algorithm is estab-
lished by the following theorem.

Theorem 5.8. Let DB = 〈S, I,K〉 be a NKC database
schema, D be a database instance, q be a query of arity n
over S, and t be a n-tuple of values from Γ. Then, t ∈
ans le(q,DB,D) iff AnswerLE(DB,D, q, t) returns true.

Proof. In order to prove correctness of the above al-
gorithm, we need a preliminary lemma. In the following,
given an instance D of a database schema DB = 〈S, I, ∅〉,
we denote as chase1(DB,D) the set of new facts obtained
by applying the chase rule to the facts in D, i.e., the
set of facts of the form s(t2) such that there exist I =
r[i1, . . . , ik] ⊆ s[j1, . . . , jk] ∈ I and r(t1) ∈ D such that
t1[i1, . . . , ik] = t2[j1, . . . , jk] and there exists no s(t3) ∈ D
such that t1[i1, . . . , ik] = t3[j1, . . . , jk].

Lemma 5.9. Let D′,D′′ be instances of a database schema
DB = 〈S, I, ∅〉 such that D′ ⊂ D′′ and, for each I ∈
I of the form I = r[i1, . . . , ik] ⊆ s[j1, . . . , jk] and for
each r(t1) ∈ D

′′, either AnswerS(〈S, I, ∅〉,D′, Q(I, t1), 〈〉) re-
turns true or AnswerS(〈S, ∅, ∅〉,D′′, Q(I, t1), 〈〉) returns true.
Then, chase(DB,D′′)−D′′ ⊆ chase(DB,D′)−D′.

Proof. It is straightforward to verify that the hypothesis
implies that chase1(DB,D′′) ⊆ chase1(DB,D′); this in turn
implies that each new fact added in chase(DB,D′′) by an
application of the chase rule in chase(DB,D′′) is also added
by the chase rule in chase(DB,D′). Consequently, the thesis
follows.

We now prove the theorem.
“⇒” Suppose AnswerLE(DB,D, q, t) returns false. Then,

there exists D′ ⊆ D such that conditions (a), (b) and (c) of
the algorithm hold for D′. Let B′ = chase(DB,D′). Now,
suppose B′ 6∈ semle(DB,D): hence, there exists a database
instance B′′ such that B′′ is consistent with K and B′′ �D

B′, which implies that B′′−D ⊆ B′−D. Since by hypothesis
condition (c) holds forD′, it follows that condition (c2) holds
for D′′, i.e., there exists a fact r(t1) ∈ D

′′ and an inclusion
I = r[i1, . . . , ik] ⊆ s[j1, . . . , jk] ∈ I such that:

1. AnswerS(〈S, I, ∅〉,D′, Q(I, t1), 〈〉) returns false, which
implies that there is no fact in B′ of the form s(t2)
such that t1[i1, . . . , ik] = t2[j1, . . . , jk];

2. AnswerS(〈S, ∅, ∅〉,D′′, Q(I, t1), 〈〉) returns false, which
implies that there is no fact in D′′ of the form s(t2)
such that t1[i1, . . . , ik] = t2[j1, . . . , jk]. On the other
hand, a fact of the form s(t2) such that t1[i1, . . . , ik] =
t2[j1, . . . , jk] must be present in B′′, due to the pres-
ence of r(t1) in D′′ and to the inclusion I.

The two above conditions imply that there exists a fact
of the form s(t2) in B′′ − D which does not belong to
B′. Consequently, B′′ − D ⊆ B′ − D does not hold, thus
contradicting the hypothesis that B′′ �D B

′. Therefore,
B′ ∈ semle(DB,D), and since conditions (a) and (b) hold

for D′, it follows that t 6∈ qB′

, hence t 6∈ ans le(q,DB,D).
“⇐” Suppose t 6∈ ans le(q,DB,D). Therefore, there exists

B′ ∈ semle(DB,D) such that t 6∈ qB′

. Let D′ = D∩B′. Since
B′ ∈ semle(DB,D), condition (a) of the algorithm holds for
B′, and since D′ ⊆ B′, condition (a) holds for D′ as well.

From t 6∈ qB
′

and from soundness and completeness of the
algorithm AnswerS it follows that condition (b) holds for D′.
Now, suppose condition (c) does not hold for D′: then, there

exists D′′ such that conditions (c1) and (c2) do not hold
for D′ and D′′, i.e., D′′ is consistent with K and, for each
I ∈ I of the form I = r[i1, . . . , ik] ⊆ s[j1, . . . , jk] and for
each r(t1) ∈ D

′′, either AnswerS(〈S, I, ∅〉,D′, Q(I, t1), 〈〉) re-
turns true or AnswerS(〈S, ∅, ∅〉,D′′, Q(I, t1), 〈〉) returns true.
By Lemma 5.9, it follows that chase(DB,D′′) − D′′ ⊆
chase(DB,D′) − D′. Now let B′′ = chase(DB,D′′): since
B′ ⊇ chase(DB,D′), it follows that B′′ − D ⊆ B′ − D, and
by hypothesis D′′ ⊃ D′, therefore B′′ ∩ D ⊃ B′ ∩ D, hence
B′′ �D B

′. Moreover, since D′′ is consistent with K, B′′ is
consistent with K and I, consequently B′ 6∈ semle(DB,D),
thus contradicting the hypothesis. Therefore, condition (c)
holds for D′, which implies that AnswerLE(DB,D, q, t) re-
turns false.

Finally, based on the above algorithm, we analyze the
computational complexity of query answering under the
loosely-exact semantics for NKC database schemata.

Theorem 5.10. Let DB = 〈S, I,K〉 be a NKC database
schema, D a database instance, q a query of arity n over DB,
and t a n-tuple of values of Γ. The problem of establishing
whether t ∈ ans le(q,DB,D) is Πp

2-complete with respect to
data complexity and PSPACE-complete with respect to com-
bined complexity.

Proof sketch. The analysis of the algorithm AnswerLE shows
that the problem is in Πp

2 with respect to data complexity.
Indeed, it is immediate to verify that:

• condition (a) can be verified in polynomial time;
• condition (b) can be verified in polynomial time, as

shown in Section 3;
• conditions (c1) and (c2) can be verified in polynomial

time: therefore, condition (c) can be verified in non-
deterministic polynomial time.

Consequently, if considered as a nondeterministic procedure,
the algorithm runs in Πp

2 with respect to data complexity.
Hardness with respect to Πp

2 can be proved by a reduction
from 2-QBF validity, i.e., the validity problem for quantified
boolean formulae having the form ∀x∃yf(x, y) where f(x, y)
is a 3-CNF, i.e., a propositional formula in 3-conjunctive nor-
mal form. The reduction generalizes the scheme employed
in the proof of Theorem 5.3.

As concerns combined complexity, it is immediate to ver-
ify that each of the conditions of the algorithm is computed
in nondeterministic polynomial space, therefore the algo-
rithm runs in nondeterministic polynomial space with re-
spect to combined complexity, which proves membership in
PSPACE of the problem. PSPACE-hardness can be proved
by reducing query answering under loosely-sound seman-
tics for databases without key dependencies to this problem.
The reduction is obtained by a slight modification of the re-
duction from query answering under loosely-sound seman-
tics exhibited in the proof of Theorem 5.5, and observing
that, if the original problem instance is such that, for each
I = r[~A] ⊆ s[~B] ∈ I, ~B does not cover the set of all the
attributes of s, then the derived database schema DB′ is a
NKC schema. Moreover, it is immediate to verify that re-
stricting to such a kind of problem instances does not affect
PSPACE-hardness of the query answering problem under
the loosely-sound semantics. Finally, the reduction is mod-
ified in a way such that the database instance D′ obtained
from the original instance D has size polynomial with re-
spect to data complexity.

6. DISCUSSION

6.1 Summary of results
The summary of the results we have obtained is reported

in Figure 13, in which we have two distinct tables, that
present, respectively, the complexity of query answering for
the class of general database instances and for instances con-
sistent with KDs. Each column (with the exception of the
first two) corresponds to a different semantics, while each
row corresponds to a different class of dependencies (speci-
fied in the first two columns). Each cell of the tables reports
data complexity and combined complexity of query answer-
ing: for each decidable case, the complexity of the problem
is complete with respect to the class reported. We have
marked with the symbol ♠ the cells corresponding either to
already known results or to results straightforwardly implied
by known results.

We point out that, due to the correspondence between
query answering and query containment illustrated in Sec-
tion 3, all the complexity results established for the problem
of query answering also hold for the conjunctive query con-
tainment problem.

6.2 Related work
The problem of reasoning with inconsistent databases is

closely related to the studies in belief revision and update
[2]. This area of Artificial Intelligence studies the problem
of integrating new information with previous knowledge. In
general, the problem is studied in a logical framework, in
which the new information is a logical formula f and the
previous knowledge is a logical theory (also called knowledge
base) T . Of course, f may in general be inconsistent with T .
The revised (or updated) knowledge base is denoted as T ◦f ,
and several semantics have been proposed for the operator ◦.
The semantics for belief revision can be divided into revision
semantics, when the new information f is interpreted as a
modification of the knowledge about the world, and update
semantics, when f reflects a change in the world.

The problem of reasoning with inconsistent databases can
be actually seen as a problem of belief revision. In fact,
with respect to the above illustrated knowledge base revi-
sion framework, if we consider the database instance D as
the initial knowledge base T , and the set of integrity con-
straints I ∪ K as the new information f , then the problem
of deciding whether a tuple t is in the answer set of a query
q with respect to the database schema DB = 〈S, I,K〉 and
the instance D corresponds to the belief revision problem
D ◦ (I ∪ K) |= q(t). Based on such a correspondence, the
studies in belief revision appear very relevant for the field of
inconsistent databases: indeed, almost all the approaches to
inconsistent databases that we have considered in this sec-
tion can be reconstructed in terms of direct applications of
well-known semantics for belief revision/update in a partic-
ular class of theories.

On the other hand, from a computational perspective,
there are no results concerning the particular kind of belief
revision/update that is of interest for database applications:
in particular, the class of relational integrity constraints as
revision/update knowledge has not been taken into account
in the belief revision literature, where the computational

3Due to space limitations, in the present version of the paper
we have not been able to include the proofs of all the results
reported in Figure 1.

Data complexity/combined complexity for general database instances:

KDs IDs strictly-sound loosely-sound loosely-exact

no GEN PTIME/PSPACE♠ PTIME/PSPACE PTIME/NP

yes no PTIME/NP♠ coNP/Πp
2
♠ coNP/Πp

2
♠

yes FK PTIME/PSPACE coNP/PSPACE coNP/PSPACE
yes FK,UN PTIME/PSPACE coNP/PSPACE Πp

2/PSPACE
yes NKC PTIME/PSPACE coNP/PSPACE Πp

2/PSPACE
yes 1KC undecidable undecidable undecidable

yes GEN undecidable♠ undecidable undecidable

Data complexity/combined complexity for key-consistent database instances:

KDs IDs strictly-sound loosely-sound loosely-exact

no GEN PTIME/PSPACE♠ PTIME/PSPACE PTIME/NP

yes no PTIME/NP♠ PTIME/NP♠ PTIME/NP♠

yes FK PTIME/PSPACE PTIME/PSPACE PTIME/NP
yes FK,UN PTIME/PSPACE PTIME/PSPACE PTIME/NP
yes NKCID PTIME/PSPACE PTIME/PSPACE PTIME/NP
yes 1KCID undecidable undecidable PTIME/NP

yes GEN undecidable♠ undecidable PTIME/NP

Legenda: FK = foreign key dependencies, GEN = general IDs, UN = unary IDs; ♠ = already known result.

Figure 1: Complexity of query answering under KDs and IDs (decision problem)

results mostly concern a setting in which knowledge is spec-
ified in terms of propositional formulae of classical logic [12,
13]. Instead, the typical database setting is considered by
the literature on inconsistent databases, which we briefly
survey in the following.

The notion of consistent query answers over inconsistent
databases was originally given in [5]. However, the approach
in [5] is completely proof-theoretic, and no computational
technique for obtaining consistent answers from inconsistent
database is provided.

In [21] the authors describe an operator for merging
databases under constraints which allows for obtaining a
maximal amount of information from each database by
means of a majority criterion used in case of conflict. Even
if a large set of constraints is considered, namely the con-
straints that can be expressed as first-order formulae, the
computational complexity of the merging procedure is not
explored, and no algorithm to compute consistent query an-
swers is provided. Furthermore, the problem of dealing with
incomplete databases is not taken into account. Notice also
that, different from all the other studies mentioned in the
following, this approach relies on a cardinality-based order-
ing between databases (rather than a set-containment-based
ordering).

In [15] the authors propose a framework for updating the-
ories and logical databases (i.e., databases obtained by giv-
ing priorities to sentences in the databases) that can be
extended also to the case of updating views. The seman-
tics proposed in such a paper is based on a particular set-
containment based ordering between theories that “accom-
plish” an update to an original theory, which is similar to
the loosely-sound semantics above presented.

In [3] the authors define an algorithm for consistent query
answers in inconsistent databases based on the notion of
residues, originally defined in the context of semantic query

optimization. The method is proved to be sound and com-
plete only for the class of universally quantified binary con-
straints, i.e., constraints that involve two database relations.
In [4] the same authors propose a new method that can
handle arbitrary universally quantified constraints by spec-
ifying the database repairs into logic rules with exceptions
(LPe). The semantics underlying the notion of consistent
query answers both in [3] and in [4] is defined on a set-
containment ordering between databases, which corresponds
to the loosely-exact semantics of our framework.

Moreover, a different semantics for database repairing has
been considered in [10, 9]. Specifically, in such works a se-
mantics is defined in which only tuple elimination is allowed;
therefore, the problem of dealing with infinite models is not
addressed. Then, a preference order over the database re-
pairs is defined, in such a way that only minimal repairs (in
terms of set containment) are considered. Hence, the se-
mantics is a “maximal complete” one, in the sense that only
maximal consistent subsets of the database instance are con-
sidered as repairs of such an instance. In [10] the authors
establish complexity results for query answering under such
a semantics in the presence of denial constraints, a gener-
alization of key dependencies and functional dependencies,
while in [9] also inclusion dependencies are considered. Such
a “maximal complete” semantics is different from the com-
plete semantics considered in the present paper.

Finally, [16] proposes a technique to deal with inconsis-
tencies that is based on the reformulation of integrity con-
straints into a disjunctive datalog program with two different
forms of negation: negation as failure and classical negation.
Such a program can be used both to repair databases, i.e.,
modify the data in the databases in order to satisfy integrity
constraints, and to compute consistent query answers. The
technique is proved to be sound and complete for universally
quantified constraints. The semantics adopted to support

this method corresponds to our loosely-exact semantics.
We point out that none of the above mentioned works

provides a general solution for the case of cyclic inclusion
dependencies under the semantics (both strict and loose)
considered in this paper.

6.3 Future work
Although obtained in a single database context, many

of the techniques and results presented here are directly
applicable to data integration, where multiple information
sources may provide data that are inconsistent with respect
to the global view of the sources. Indeed, we believe that
one important development of the research presented in this
paper is towards both the computational analysis of query
answering in data integration systems and the definition of
effective query processing techniques in such a setting.

Moreover, we are currently working on the extension of
the present framework with more complex forms of depen-
dencies, e.g., functional dependencies and exclusion depen-
dencies.

7. ACKNOWLEDGMENTS
This research has been supported by the Projects IN-

FOMIX (IST-2001-33570) and SEWASIE (IST-2001-34825)
funded by the EU, and by the Project D2I funded by MIUR
(Ministero per l’Istruzione, l’Università e la Ricerca). We
would like to thank Maurizio Lenzerini and Giuseppe De
Giacomo for their insightful comments about this material.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley Publ. Co., Reading,
Massachussetts, 1995.

[2] C. E. Alchourrón, P. Gärdenfors, and D. Makinson.
On the logic of theory change: Partial meet
contraction and revision functions. J. of Symbolic
Logic, 50:510–530, 1985.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki.
Consistent query answers in inconsistent databases. In
Proc. of the 18th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’99),
pages 68–79, 1999.

[4] M. Arenas, L. E. Bertossi, and J. Chomicki.
Specifying and querying database repairs using logic
programs with exceptions. In Proc. of the 4th Int.
Conf. on Flexible Query Answering Systems
(FQAS 2000), pages 27–41. Springer, 2000.

[5] F. Bry. Query answering in information systems with
integrity constraints. In IFIP WG 11.5 Working Conf.
on Integrity and Control in Information System.
Chapman & Hall, 1997.

[6] A. Cal̀ı, D. Calvanese, G. De Giacomo, and
M. Lenzerini. Accessing data integration systems
through conceptual schemas. In Proc. of the 20th Int.
Conf. on Conceptual Modeling (ER 2001), pages
270–284, 2001.

[7] A. Cal̀ı, D. Calvanese, G. De Giacomo, and
M. Lenzerini. Data integration under integrity
constraints. Information Systems, 2003. To appear.

[8] M. A. Casanova, R. Fagin, and C. H. Papadimitriou.
Inclusion dependencies and their interaction with

functional dependencies. J. of Computer and System
Sciences, 28(1):29–59, 1984.

[9] J. Chomicki and J. Marcinkowski. Minimal-change
integrity maintenance using tuple deletions. Technical
Report arXiv:cs.DB/0212004v1, 2002.

[10] J. Chomicki and J. Marcinkowski. On the
computational complexity of consistent query answers.
Technical Report arXiv:cs.DB/0204010v1, 2002.

[11] P. M. Dung. Integrating data from possibly
inconsistent databases. In Proc. of the 4th Int. Conf.
on Cooperative Information Systems (CoopIS’96),
pages 58–65, 1996.

[12] T. Eiter and G. Gottlob. On the complexity of
propositional knowledge base revision, updates and
counterfactuals. Artificial Intelligence, 57:227–270,
1992.

[13] T. Eiter and G. Gottlob. The complexity of nested
counterfactuals and iterated knowledge base revisions.
J. of Computer and System Sciences, 53(3):497–512,
1996.

[14] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering. In
Proc. of the 9th Int. Conf. on Database Theory
(ICDT 2003), pages 207–224, 2003.

[15] R. Fagin, J. D. Ullman, and M. Y. Vardi. On the
semantics of updates in databases. In Proc. of the 2nd
ACM SIGACT SIGMOD Symp. on Principles of
Database Systems (PODS’83), pages 352–365, 1983.

[16] G. Greco, S. Greco, and E. Zumpano. A logic
programming approach to the integration, repairing
and querying of inconsistent databases. In Proc. of the
17th Int. Conf. on Logic Programming (ICLP’01),
volume 2237 of Lecture Notes in Artificial Intelligence,
pages 348–364. Springer, 2001.

[17] A. Y. Halevy. Answering queries using views: A
survey. Very Large Database J., 10(4):270–294, 2001.

[18] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies. J. of Computer and System Sciences,
28(1):167–189, 1984.

[19] D. Lembo, M. Lenzerini, and R. Rosati. Source
inconsistency and incompleteness in data integration.
In Proc. of the 9th Int. Workshop on Knowledge
Representation meets Databases (KRDB 2002). CEUR
Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-54/, 2002.

[20] M. Lenzerini. Data integration: A theoretical
perspective. In Proc. of the 21st ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2002), pages 233–246, 2002.

[21] J. Lin and A. O. Mendelzon. Merging databases under
constraints. Int. J. of Cooperative Information
Systems, 7(1):55–76, 1998.

[22] C. H. Papadimitriou. Computational Complexity.
Addison Wesley Publ. Co., Reading, Massachussetts,
1994.

[23] R. Reiter. On closed world data bases. In H. Gallaire
and J. Minker, editors, Logic and Databases, pages
119–140. Plenum Publ. Co., New York, 1978.

