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ON THE DECIDABILITY OF DIOPHANTINE PROBLEMS 
IN COMBINATORIAL GEOMETRY 

BERND STURMFELS 

ABSTRACT. In spite of Matiyasevic's solution to Hubert's 10th prob
lem some fifteen years ago it is still unknown whether there exists an 
algorithm to decide the solvability of diophantine equations within the 
field of rational numbers. In this note we show the equivalence of this 
problem with a conjecture of B. Grünbaum [6] on rational coordinatiz-
ability in combinatorial geometry. Such an algorithm exists if and only 
if the rational realizability problems for matroids, oriented matroids, 
and convex polytopes (Steinitz problem) are decidable. 

1. Introduction and statement of the result. Many realizability 
problems in combinatorial and computational geometry can be formulated 
in terms of polynomial equations and inequalities with integer coefficients, 
and so these problems are decidable over the real numbers by a well-known 
result of Tarski [14]. 

The situation is different if we focus our attention on solutions in the field Q 
of rational numbers. In view of Matiyasevic's negative solution [9] to Hubert's 
10th problem in 1971, B. Grünbaum has conjectured [6, Conjecture 2.14] that 
there is no algorithm to enumerate all (isomorphism types of) arrangements of 
lines in the rational projective plane. In [5, p. 92] the same question has been 
raised for convex polytopes in rational Euclidean d-space, d > 4. Matiyasevic's 
result "there exists no algorithm to decide whether a system of diophantine 
equations has a solution among the rational integers" cannot be applied to 
prove Grünbaum's conjecture, and, as B. Mazur points out in a recent survey 
article [10], the corresponding problem for rational numbers is still open; see 
also Klee and Wagon [8]. 

In this note we show that Grünbaum's conjectures for line arrangements 
and convex polytopes as well as the corresponding conjecture for matroids are 
equivalent to the above problem. See White [15], Bachem [1], Bokowski and 
Sturmfels [3] and the references given there for the basic concepts of matroid 
theory and oriented matroids and [13] for recent results on irrational oriented 
matroids and polytopes. 

THEOREM. The following statements are equivalent. 
(1) There exists an algorithm to decide for an arbitrary polynomial ƒ G 

Z[xi,..., xn], n G N, whether f has zeros in the field Q of rational numbers. 
(2) There exists an algorithm to decide for an arbitrary matroid M whether 

M is coordinatizable over Q. 
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(3) There exists an algorithm to decide for arbitrary polynomials / i , . . . , fr, 
, xn], n G N, whether there exist # 1 , . . . , qn 6 Q such that 

/i(g ,i,--.,9n) = 0 for i = l , . . . , r and gj{qi,... ,qn) > 0 for j = 1 , . . . , s. 
(4) There exists an algorithm to decide for an arbitrary oriented matroid x 

whether x is coordinatizable over Q. 
(5) There exists an algorithm to decide for an arbitrary finite lattice L 

whether L is isomorphic to the face lattice of a convex polytope in rational 
Euclidean space. 

Note that by the correspondence of oriented matroids and arrangements of 
pseudo-spheres [16], Grünbaum's conjecture on line arrangements is equiva
lent to the statement (4). 

The crucial part of the Theorem is the implication (2)=>(1). The idea 
is to encode an arbitrary polynomial equation with integer coefficients by a 
finite set of matroids. In other words: arbitrary affine algebraic varieties can 
be decomposed into realization spaces of rank 3 matroids. This method is 
closely related to the approach of Mnëv [12]. 

2. Outline of the proof. It is well known in projective geometry that 
the algebraic operations of addition and multiplication have their "geometric" 
analogues in certain projectively invariant constructions which are of consid
erable importance in the coordinatization of Desarguesian projective planes, 
e.g. [7, §VI.7. The algebra of points on a line]. This kind of construction 
can be used in matroid theory to impose arbitrary polynomial conditions on 
points on a line. For details see Mac Lane [11], where it is proved that ev
ery finite algebraic extension over Q is the unique "minimal" coordinatizing 
field of some rank 3 matroid, and [13; 5, Chapter 5] where that technique is 
applied to construct irrational convex poly topes. 

Here we generalize this idea to construct arbitrary affine algebraic Q-
varieties by matroids. Given two elements e\ and e<i on a line / spanned 
by elements 0, 1, and oo in a matroid M, by a construction of the product 
or sum e\+ e*} on / we mean an extension M of M by the points needed to 
projectively construct the product or sum in any realization of M. Thereby 
the dependencies among the new points describe the linear construction. 

Observe that the use of the indefinite article is necessary because such an 
extension is not unique. For example, the newly constructed point e\ + e<i 
might but need not coincide with a certain old point on the line /. Never
theless, the set of those matroids is certainly finite and algorithmically com
putable. 

(2)=>(1): Given a decision procedure for rational coordinatizability of ma
troids, the following algorithm decides whether ƒ has rational roots. 

Let c be the largest absolute value of the coefficients of the polynomial ƒ. 
Consider the projectively unique matroid M of rank 3 in which, starting from 
a projective basis, all integers between —c and c have been constructed on 
a line /. Denote by M i , . . . , Mp all possible extensions of M with n points 
ex,..., en on the line /. For any such Mi consider the set of all possible matroid 
extensions which are constructions of the point ƒ := / ( e i , . . . , e n ) on the 
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line /. Let M / , . . . , Mp denote all such constructions for which rk{0, ƒ} = 1, 
i.e. ƒ = 0 in every projective realization. 

The set of matroids {M/} is algorithmically constructible, and f(x±, 
. . . , £ n ) = 0 has a rational solution if and only if one of the matroids in 
{M/} is coordinatizable over Q. 

(4)=>(2). For any matroid M the set 0(M) of oriented matroids with 
underlying matroid M is computable. Clearly, M is Q-realizable if and only 
if there exists a Q-realizable x € 0 (M). Consequently, every Q-realizability 
test for oriented matroids yields also a Q-realizability test for matroids. 

(3)=>(4). Let x be an oriented matroid of rank d on { 1 , . . . , n}. Writing 
X: { l , . . . , n } d —• { —1,0,+1} for the corresponding chirotope, i.e. oriented 
bases map, then x is Q-realizable if and only if the inequality system 

(*l •• *L\ 
det : •.. : = x(Ai,...,Xd) for all Ai,...,Xd E { 1 , . . . ,n} 

v< ••• <J 
has a solution over Q; see [3]. 

(5)=^(4). In [13] the author introduced the concept of rigid oriented 
matroids, that is, oriented matroids with only extreme vertices which have 
the property that no other such oriented matroid has the same face lattice. 
Clearly, a rigid oriented matroid is Q-realizable if and only if its face lattice 
is Q-polytopal. 

The following construction due to J. Lawrence assigns to every oriented 
matroid x of r&nk d with n vertices a rigid oriented matroid A(x) of rank 
2n — d with 2n vertices which is realizable over a field K if and only if x is. 
Given an oriented matroid x on a set ^ , let \' denote the extension by |JE7| 
vertices antipodal to the original vertices, i.e., for every e E E introduce a 
new vertex e' such that {e, e'} is a positive circuit of x'- The oriented matroid 
A(x) dual to x' is rigid; see Billera and Munson [2, Theorem 2.2]. 

Assuming there was an algorithm that decides the rational Steinitz prob
lem, we obtain a Q-realizability test for an arbitrary oriented matroid x by 
applying this algorithm to the face lattice of the Lawrence construction A(x) 
of X-

(4)=>(5). Conversely, it is well known that the question whether a certain 
finite lattice is isomorphic to the face lattice of a convex polytope can be 
algorithmically reduced to the realizability problem for oriented matroids. 
For details of this algorithmic reduction see [4]. Since all operations are 
independent of the realization field, every Q-realizability test for oriented 
matroids solves the rational Steinitz problem as well. 

(1)=>(3). The rational inequality system in (3) can be reduced to a single 
equation by the following standard method. Introduce 8s new variables p],, 
j = 1 , . . . , s, k = 1 , . . . , 8, and replace each inequality Qj{q\,...,qn) > 0 by 
the equation 

hj(qi>. •. ,4fn,PÎ, •.. ,pj) := g,(qu • •-,<?»)• ((pi)2 + (P'2)2 + (Ps)2 + K ) 2 ) 

- ((Pi)2 + (Pi)2 + K ) 2 + (Pi)2 + 1) = 0. 
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The inequality qj > O has a rational solution if and only if the equation hj = 0 
has a rational solution. For, by Lagrange's four-square theorem, an integer 
n 6 Z is nonnegative if and only if there exist integers a,b,c, and d such that 
n = a?+ly* + c2+<P [8]. 

Finally, replace the equations f\ = 0 , . . . , fr = 0, hi = 0 , . . . , hs = 0 by the 
single equation 

ƒ := (A)2 + • • • + (/r)2 + (M 2 + • • • + CO2 = 0 

in n + 8 s variables. This equation has a rational solution if and only if its 
summands have common rational zeros. D 
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