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ABSTRACT
In this thesis we are mainly concerned with the problem
of decoding binary Bose-Chaudhuri-Hocquenghem( BCH ) codes,
We give certain details, which should prove useful in reducing
the amount of computation involved in decoding, for codes with

small error-correcting capability.



INTRODUCTION

In this introduction we place the concept of error-correcting

codes in the context of binary digital communications [ 1 ].

Let us consider the system as shown below. The input to the

k—’i“-‘-’l—e—a MOD }—>| CHANNEL |—>| DEMOD +—> k-tuple

Fig.1

modulator is a message k-tuple X;.that i's., a sequence of 0's and

1's, there being k bits (binary digits) in all. Thel's correspond

to pulses and 0's correspond to no-pulses. Because of the noise in
the channel, the output of the channel becomes continuous. The
demodulator takes in this channel output and puts out a k-tuple Y. -
The number e. of positions in which X and Y differ is the mumber

of errors. For reliable communication it is clear that e should

be small.
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‘As the basic function of the demodulator is to recognize pulse

or no-pulse in the presence of noise, one obvious way of reducing

e is to increase the signal-to-noise ratio; that is, to make the height

of pulse as large as possible with reference to the rms value of the

noise.

Another way of reducing e is to have a system as shown below:

1 BN
_.Em__ie_) CODER X > MOD |~———>{ CHANNEL }{—s~
, . .
———>| DEMOD X DECODER |—> k-tuple

Fig. 2
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In this system , the co‘de-_r takes in the message k-tuple X and
transforms this X into an n-tuple X', n> k. The output of the demo-
dulator is an n-tuple Y'. The decoder takes in this Y' and transforms
it into a k-tuple Y. Ifthe channel c':hara.ctei-iSﬁc's‘are such that e < |
say, t, on the average, then fhe coder and decoder are designed for t. ;
As long as the demodulator does not mé.ke more tha_h t errorsin n
bits, the decoder output Y matches with the input X exa.c.tly. In other

" words, if Y' and X' do not differ in more than t positions, then we

LRI R TR T

have one hundred percent reliable communication.

The .se_t of Zk message k-tuples is transformed by the coder

. k .
into a set C of 2 n-tuples. This set is called an error-correcting. @
code. The code C has Zk code words each of which is an n-tuple.

Since it requires only k-tuples to réprésent 2k messages uniquely,

out of the n bits, which each code word has, only k bits carry infor-

i
k]
<
iv

mation. Thus k is the number of information bits. The other n-k

bits are redundant from the point of view of information. But actually

R Sy TP ETRN

they are the price paid for the error-correcting capability of the co.de.
The ratio k/n, called the information rate, is.a measure of the efficiency
of the code. For a given error-correcting capability t, we want r to
be as small as possible and k/n to be as high as possible. From the
discussion $o far itis clear that the parameters‘ n=length of the code
word, k=number of information bits and t = error-correcting capabiﬁty
are of importance. These parameters are usually written in the form
(n,k,t). Thus, for instance, when we say that a certain code is (15, 5, 3),
we mean that the code has every word 15 bit long, bas 5 information bits

and is capable of correcting at most 3 errors in each word.

The type of code under discussion is called a random error

correcting code. This means that we have tacitly assumed the channel




s

to be randomly noisy. On the other hand there are channels which
cause the so-called burst errors [ 2 ] In fact there are also channels

which cause both random and burst errors. The codes mentioned so

g

far are under the general category of block codes. As opposed to these

codes, there are codes like convolutional codes [ 3]. In this thesis

we deal with only random error-correcting block codes.

Among random ei'ror-correct_ing block codes, the so-called
BCH codes [ 4,7] form the largest class. This thesis deals with the

problem of decoding [ 5 ] BCH codes.

In Chapter I we introduce some of the algebraic concepts which

are necessary in dealing with BCH codes.

Chapter II deals with the generation and decoding of BCH codes.

Chapter Il is a further dis cussion_ on the decoding of BCH codes.
The points presented in this chapter simplify the decoding procedure

mentioned in Chapter II when t is small.

- ’

The thesis ends with certain concluding remarks.

Before concludmg this introduction we may mentlon that, though
error- correctmg codes have been mtroduced here in the context of
digital communications, these codes have found application in improving

the reliability of computing and storage systems [ 6 1.

;
i
!




CHAPTER ONE

NECESSARY ALGEBRAIC RESULTS

In this chapter, we mention briefly certain algebraic concepts
and results which are necessary for the further development of the
thesis. For proofs and details we refer the reader to any standard

book on algebra [12 ] or on the theory of error-correcting codes [ 1 ].

Aset G of elements, on which one operation ( *) is defined,

is said to be a GROUP if it satisfies the following properties:

(i) Closure.
| If a and b belongto G, a *b isin G.
(ii) Associativity.
If a, b and c belong to G, (a *¥b) *.c scazsbic), ™
(iii) Identity. ‘
For every a in G, fhere exists an identity element e
in G such that a*ezeFacza
(iv) Existence of an inverse.

For all a in G, there exists an element 2' in G

called the inverse of a such that

T A subset of a group is said to be a SUBGROUP if it satisfies

all the properties of a group.

A group G is said to be ABELIAN if, for any two elements
2 and b of G, a*b=b *a. '
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, ‘A set R of elen;ents, on which two operations addition (+) and
multiélicatioﬁ ( ), are &eﬁned, is said to be 2 RING if it satisfies the
following properties: '

(i) R is an Abelian group under addition.
(ii) Closure. ' |
For ali a, b in R, a.b.isin R.
iii) Associativity.
For all a, b, ¢ in R, a. b.c)=(a.b). c.
(iv) Distributivity. .

For all a, b, ¢ in R;

j)»a.(btcj=a.b+a.c

?ﬁ. (b+<;). c=b‘. atc. a.

Aring R is said to be COMMUTATIVE if, for any two

elements a‘and b of R, a;bbya.

N

Aset I of Velements_ is sald to be an IDEAL ifit is 2 subgroup

of the additive group R and if fof,':_:‘%:very ain R and b in I, ab is

in I.

A set F cf elements is said to be a FIELD if it is a commu-

tative ring with identity in which every non-zero element has an inver-

se under mulﬁplication.

In particular, we are interested in a type of fields called
GALOIS FIELDS. A Galois Field of 23 elements is usually denoted
by GF(29.

Now we discuss the generation of Galois Fields.
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Where a_= 1 and every a; is from GF(2) which consists of the two

Let us consider a POLYNOMIAL: f(x) = 3 taxta x2+. ot x .
- . ‘ r

>
3
3
!

elements 0 and 1. 1Itis easily verified that 0 and 1 form a field
accordingtotherule 1+0=0+1=1, 0+0=141=0,
1x0=0x%x1=0x0=0, Ixl=1 In £(x) r is said tobe the DEGREE
of f(x).

Multiplication, division and addition of polynomials are done

as usual except that now all coefficients are computed modulo 2. For

) 2 3 2 3 5 2
instance, (l+x)+(x+x +x )=14+x +x, l_-u:_i:% =l+x +x3,

2
t+x)(l+x+x +x3)=1+x4. bx+x

A polynomial f(x) is said to be IRREDUCIBLE if f(x) cannot
be expressed in the form £(x) = fl(x) fz(x) where fl(x) and fz(x) are
over GF(2). Neither fl(x). nor fz(x_) is trivially unity.

If s is the smallest possible positive integer such thaf f(x)

divides 1 + xs, then s is said to be the EXPONENT of f(x).

A polynomial f(x) is said to have ¢ as a ROOT, if f(e¢) =0.

Let f(x) be irreducible with @ as aroot. Then all of the

0 1 2 - ar-l
2 2 2 2
roots of f(x) canbe expressedas ¢ ,a¢ ,a¢ ,..., ¢ , where

0 21 22 2r-l .

the powers are computed modulo s. Theset{l, ¢ , ¢ , 2 ,...,2}
form a multiplicative group; thatis, the setis a group under multi-

plication.

Let f(x) be irreducible and let B be a root of f(x). Further

s-1 _
let s =2%- 1. Thentheset{l B,...,p }isa GF(2") minus the

zero element.
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. o 3,6
Eor EXAMPLE, suppose f(x) =1+x +x , whichis irreducible.
Since this f(x) divides 1+ x9 and not any 1+ xp, P< 9, the exponent

of f(x) is 9. Suppose B is .aroot.of f(x). Then we have

Tt igdir=0,

or,

B8 -p% 11

From this we get,
7 4
B =B +8

8 2
B0 = 6" + 6",

pg=p6+ﬁ3=53+1+p'3=1.

Thus the set {l, ﬁ, ﬁz, [33, 54, [35. 66 = 1+ [33, {37 = (34-!- B, [38= [35+ BZ}

is a multiplicative group. For instance,

R S R LT T Y S

which is again in the set. Note that (35 . ﬁ6 = Bu = 52 where 11

modulo 9 = 2.

: : : : .
On the other hand consider the EXAMPLE f(x) =l+x+x
4
which is known to be irreducible and to have s =15=2" - 1. Suppose

e is a root of f(x). Then

a4+a+1=0.
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From this we get the f(gllowing table,

0 0
a =a’ H
1 1
e =a,
2 2
e =a,
3 3 -
e =a,
4
¢ =a+]
5 2
¢ =a+t+a,
6 2
e =a +a,
7 3 3
. a =a+a4:a+1+a.=1+a+a3,
8 2 4 2 2
¢ =et+e+a =e+a +lt+ae=1l+ea,
a9=a+a3,
: 10 2. 4 2 : 2
: e =e¢t+ae =ca+l+tae=l+etea,
il 2 3 v
g =at+a +a,

2 3 4 2 3 ' 2,3
¢ =a+ae +a =at+a+ltae=l+ae+a +a,

' 2 3 4 2 3 2 3
¢ z=aet+e +etae =et+tat+ae+tl+a=l+4atea,
3-4 ‘3 3

a =eat+a+a =a+a,+_1_+a=1+a,

4
¢ =a+e z=e+l+a=1L

' 2 1
It is easily verifi:d that the set {0,1,a¢,...,a A}form a
4
field of 24 = 16 elements. This is a GF(2"). ZXor instance

alz. a13 = a25 = am which is in the set. Also,

a1‘2-+ a13 =l+e+ a2+ a3+ 1+ a2+ a3 = a whichis again in the set.

The important difference between the two examples is that
3 s s e
while 1 +x + x6 can generate only a multiplicative group, l+x+x

can generate a GF(24).
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Abina.ry n-TUPLE is a sequence of 0's and l's and has n

bits. -

Hexfeafter, by.a.n n-tuple we mean a binary n-tﬁple-.

An n-tuple a2 2,... a2 , can be REPRESENTED by the
POLYNOMIAL ' '

A(?:) = a, tax+ax+...ta xn-l,

1 2 n-1

whichis over GF(2). Here we note that, in aixl, i denotes the position

in the sequence and 2, shows the value of the digit in that position.

By a'CYCLIC SHIFT of a 2 .a,.2 .- 2 » Wemean the sequen-

ce a a. a a a For instance, 100 is a cyclic shift of 00L

n-1 0°172°"" “n-2°

By the SUM of two n-~tuples ‘a a2, .2 and bOble' . 'bn-l’
01 San1 wh‘ere c, =3 +bi’ the addltm'g
being modulo 2. In the polynomial representation this means the addi-

wc mean the n-tuple ¢

tion of the coefficients of similar terms modulo 2. For instance,
(00010)+(01111)=01101 Inthe polynomial representation

3 2 3 4 2 4
®)+(x+x+x +x)=x+x +x.

Let C be an additive group such that every element of C is,

n-1

in C, the n-tuple a 1 %3 2 5 is alsoin C. For instance

000,001, 010,100,011, 110,101 111 isacyclic C.

an n-tuple. C is said to be CYCLIC if, for every 2522, ... 2

It is known that C is; cyclic if and only if C is an ideal. This
is equivalent to saying that G is cyclic if and only if every element

in C is, in the polynomial representation, a multiple of a certain

Srbieilita ST A a b LR Sk Rate skl

AVETHETR FIAVA Y J IR SR E R L s KOG

PRI ST
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polynomial g (x) _which also belongs to 'C; that is,ever‘y element of' '
C is divisible by g(x). For instance, consi&er the ideal I 'generated :
by g(x)=1+x+ x3, n being equal to 7. Then every elémen’c C(x) of.
C canbe represented by |

x%_ 3
%X).

3
C = (1
x)=(1+x+x )(10+ 11x+)\2

where each )‘j is 0 or 1. Thus we have 16 possibilities which

constitute C. The elements of C are

0000000,
0001101,
1010001,
1001011,

S TR SN

+ ’

. 1101000,
1000110,
1011100,
1100101
0110100,
010001 1L, :
0101110,
1110010,
0011010,
0100011,
0010111,
6111001

- - -

oo T &

v

It is easily verified that C is cyclic.

This concludes our brief discussion of algebraic results. Further
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results will be discussed as they become necessary in later chapters.

The cyclic groups are the basis for all cyclic error-correcting

codes. Hence the importance of cyclic groups.




®
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CHAPTER TWO

GENERATION AND DECODING OF BCH CODES

In this chapter we discuss the largest class of random error-
correcting codes available. These codes are usually referred to as
BCH codes. They were invented by Bose and Cha.udhﬁri [4 ] on the
one hand and by Hocquenghem I' 7 ] on the other abc;ut the same time.
We treat BCH codes as cyclic groups.

In the last chapter we mentioned that cyclic groups could be
generated by a generator polynomié,l g(x). Now we give the rule for

chgosing g(x) for BCH codes.

An (n,k,t) BCH code V is GENERATED by

gx) = LCM { g (x), g50x): gx)--0n 8y, | (3N},

where each gi(x) is irreducible and glfx) has%ﬁpo‘aéﬁft:»&,‘*‘.a’li&?@?fgre
if @ is a root of gl(x), then a a21-1 is a root of gZi-l(x)' Every code

word V(x) canbe represented by
V(x) = gx) I(x) , (2.1)

where I(x) has degree k -1 or less, Vix) has degree n-l or less
X ' "
and g(x) has dégree n-k. I(x) canbe chosenin 2° ways so that

.-V has Zk words. The polynomial

n
1+x

g(x)

h(x) =




\.;.xmsmz[
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has degree k andis called the parity check polynomial;
For EXAMPLE, (15,5, 3) BCH code can be generated by
g(x) = (l+x+ x4)(1 + x‘+lx2 + x3 +x4)(1 tx + xZ).

4 .
Here 1 +x +x has exponent15. If a isarootof 1+x+ x4, we

4 4
have 1+e+e =0 or a =1+a Using the rule a4=1+a, it is

. . 3 2
easily seen, on computation, that ¢ isarootof l+x+x +x + x4

5 . 2 :
and ¢~ is arootof 1l +x +x . Inthis connection we remark that the

table of elements of ‘GF(24) given in last chapter can be used. In
{(2-1), I(;:) is the polynomial representation of the message which is
a k-tuple. 'I:he polynomial g(x) transforms this I(x) into Vix)
which is the polynomial representatiori of the code word which is an

n-tuple. This is an example of the transformation referred to in the

Introduction.
Suppose a code word 2, a1 2, .o 2 is passed through a
channel and the outputis b, b b_ ... b_ . If b is different from
0712 n-1 j th

a., then we say that the channel noise has caused an error in the j
position. Since all sequences are binarj.r and the addition is modulo 2,
this means that, if a. and b, are complementary, then thereis an
error in the jth position. T:i)is also means that the output sequence
b.b'b b can be treated as the sum of the input sequence

012" "n-l

2 al ay .- an'_1 and an error sequence ey e e, - e .1 which is

in fact the sum of the input and output sequences.  In the error sequence the

jth position has a 1 if and only if an error has occurred in that

position. For EXAMPLE, if the input is, say, 10101 and the output

is, say, 10010, thenweca.nsaythat(lOOlO)=(10101)+(00111)
where (00111)=(10010)+(10101). Here the error sequence

is 00111 and we see that in this sequence 1's occur only in those
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places where the input and output sequences differ.

t

On the basis of the preceding comments we can say that the
polynomial R(x) received at the end of the channel can be expressed

as

R(x) = Vix)+E(x) @2

where V(x) belongs to V and E(x) is the error polynomial. The
weight of E(x), indicated by IE(x)] , is less than or equal to t; that -
is, we assume that in the channel not more than t errors can occur

per code word.

By the WEIGHT of a polynomial f(x), indicated by |£(x) |, we
mean the number of nonzero terms in it.

For EXAMPLE, f(x)=1+4+x+ x8 has weight 3; thatis, ! f(x)| =3

3 5 2t-1
Since g(x) has roots @, @ , @, ..., @ , andbecause of

(2.1), we get, from (2.2),

S, 5 1_4\. R(azl‘l) = E(aZI'I),'i? L, 2, ..., t. ©(2.3)

The DECODING PROBLEM is to find E(x), given R(x) or,

equivalently, { S, s, .-+ S, 1} The set { Sy S0 - SZt-l} 1§

called the error SYNDROME since it is unique for each error pattern

E (%).

The DECODING PROCEDURE, which was 1n1t1a11y given by
Peterson [ 5 ] and later on refined by Berlekamp [8], Massey [9 ]

—
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Chien [10 ] and Burton [11 ], is basically as follows:

Stage (i). Given R(x), compute. the syndrome {Sl,S »S_see.sS

If it turns out to be {0, 0, ..., 0}, then E(x) = 0. Ctherwise

proceed to next stage.

Stage (ii). Using the syndrome in

[72]

-+

wn
|

| T85 = 5,0, 0y

w

+

n
]

5 .
| t85 = 5;0,+5,05%5 0,0,

wn

4

wn
n

1 2 55 0‘2+S4 O3 +S3 0'4+ S2 05+ S1 06+ Gqs (2. 4)

and so on fill

S +5 =S

1 261" 52439, 15

24403t YO0y, S

e

compute the elementary functions O yreees ct. We note that o) = S1 and

. 2
that in (2. 4) we. set Uj =0 for all j> t.. Also, S.Zi - Si

It is, of course, possible that (2. 4) may have equations which

are linearly dependant. In such a case a unique solution is not possi-

3’5 Zt-}'

A ARRNE

" ble. The way to handle this situation will be discussed in the vext ckapter.

Stage (iii). Find the roots of the error locator polynomial

t t-1 t-2 '
'c(x):x-}-olx +o'2x +...+o‘t_1x+ot. (2. 5)
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To continue the EXAMPLE of (15, 5, 3) BCH code, already

referred to, suppose

R{x) = x3 +x5+x8.

Using the table of the elements of GF(24) given in the last chapter,

we make the following computations.

With reference to (2. 3), we have

3 5 8
a teae +a,

wn
1]

a9+ a15+a24,

wn
)

4
S_.=a +a25+a0,

4
which, using the rule ¢ =1+ a, become

3 7
s1 = a3+(a+a2)+(1+a2)=1+_¢z+a =a,
S =a9+l+a9=1: .

3
ss=1+a10+a =1.

Since the syndrome is not {0, 0, 0}, E(x) # 0.

Therefore we compute

2 3 13
Sl3+S3=a21+1=a6+1=a +a +tl=a ,

2 10
SS+S =a5+1=a5+1=a+a +1l=a .

sctarisak

et R AN A 5 e s A o)

.

o
-
4

¢
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Using these values iﬁ (2-4), we get

B2

10 '

L
_02 a 03'

Solving these equations, in the same way as we do any set of linear

simultaneous equations, forg 5 and oy we get

. . as
02 3

. !
05 a s

Using these two values, we get

(%) “x3+ox2+0‘ x40 _x
o = R R S %

3 7 2 5
=x +a x ta x+a

. 3
Setting x= ao, o.l, az, ..., inturn, in g(x), we find that g(e ) =0,

5 10 .
ola) = 0, 0(al®) = 0. Therefore E(x) = x +x +x .

The decoding procedure discussed in this chapter is applicable
to all BCH codes. There are simpler decoding procedures like
threshold decoding[ :3 Jand permutation decoding {error trapoing)[ 2 1-
But not all BCH codes can be decoded by these simpler procedures.

Some of the BCH codes, which are majority logic decodable or

threshold decodable, are mentioned in the literature[ 3 ] We do
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'not discuss these simpler procedures. .
The Stage (ii) of the decoding procedure, as already mentioned,
is finding o-j's from (2.4). In this connection Berlekamp's algorithm
[ g ] 2s well as Massey's [ 9 ] "physical interpretation' can be very

effectively used.

In regard to Stage (iii), the Chien search [10 ] can be used to
find the roots of g (x) speedily. '

With reference to Stage (iii), the following observation, made
by Chien [1g ], is also extremely useful. Letus consider the error
locator polynomial (2. 5) which is rewritten here for the sake of conve-

nience:

. Tt t-1 t-2
ocx)=x +clx +o-2x +... +¢o

g O

If some of o'i’s are zero, the amount of cofnputation involved in
finding the roots of g-(x) is reduced. Even when o) Cprvees Oy 4 are
all not zero, it is possible to find 2 y under certain conditions, such
that in the polynomial p (y), obtained by se.tting x=y+vy in gx),
one term is missing. From the point of view of the amount of computa-~

tion involved, it is easier to find the roots of p (y) than ¢g(x).

Furthér comments on Stages (ii) and (iii) will be made in the

next chapter.

RERREVTS D3 ERPAN SRy N G LR ey 4|
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CHAPTER 3

FURTHER DISCUSSION ON DECODING BCH CODES

In this chapter we give details regarding the decoding
procedure discussed in the previous chapter. These details should
be helpful in -implementing the procedure. '

3,10 Finding the Elementary Functions

As already stated in Chaptei' 2, the Stage (ii) of the decoding

procedure involves solving

3 _
57+ 8, =50, +03

5 _ .
S1 + 85 = 830'2 + 820'3 + S].O:1 +O’5,

) ;
s1 +8, = SSUZ + 540'3 + 530:1 + SZO'S_ + slog +OT7,

ccccc e o e e o @ e o

5 *S 2t-3a2 * S U- ¥ SZt 50:1 ’ -l-‘O—Z

1 2t-1 t=1'

for the elementary functions 0'2,0'3, P ,0;; HereO'J. = 0 for j>t.
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The equations (3-1) are the same as (2-4). They have been written

here again for the sake of convenicnce. Also, we note that 0"1 = Sl'

In (3-1) there are t-1 equations and t-1 unknowns. The

equations can be rewritten in the matrix form

M . = P, (3-2)

where Mt is a (t-1)-by-(t-1) matrix with Si's as entries and Pt is

a column matrix.

It is known[ 8 ]thaf the d=terminant of Mt’ indicated by

A, is zero if and only if the actual number e of errors that have

- -

In other words the error locator polynomial

-— -

occured is less than t-l. T

t t-1 t-2
o (x) = x +0x T0,% oo O X 0
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has one or more repeated roots if and only if At =0. fe=t=~],

then At # 0, but O’t will turn out to be zero.

I A = 0, then we know et-2. 'I‘herefore we form, parallel

“to (3-3),

2| | = F-2’ ' (3-4)

0%-2)

by taking the first t-3 equations from (3-1) and setting O.t-l: A

0. ¥ At- = 0, then e{t-4 and we repeat the process.

This means that we are interested in the determinant

A . such that A . is nonzero and that A _. is zero for all .
t-2i t-2i t-21
0 0 . »
is

i<i_. Setting t' = t - 2i , we have e = t' or t'-l. Here A_ ..
0 t-210‘

the determinant of the matrix Mt' formed by taking the first $r-1
equations from (3-1) and setting 0‘,+1 t'+ 2 Ve . =g-:c =0

in the equations. In the error locator polynomial

c]‘(x)‘zxtl+xt 0'+x o +. .. +U’t'
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(7;, OE, ... ,0; are as determined from the first t'-1 equations.

The method described is the traditional way of determining
the elementary fﬁuctions. Compared to this method, the Berlekamp's
algrithm is faster. However, when t is small, the traditional
method can be used effectively by breaking the Stage (ii) into substages
This aspect will be demonstrated for t's up t;; 5. .
In the context of the preceding comments let us consider

A fori=3, 4,5. We have, with reference to (3-1),
i

.

S 1 :
1 3
= 1= - , 3-5
A3 S3 Sl (3-5) .
s, S,
1 0
S
0
5
a= s, 5, S| =84S,
55 S, 55
1 0
+S.
o
15, 5
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5 . .
= + . -
558, Sl( 5 +5; )s . (3-6)
s1 1 -0 0
s3 s, 5 1
Bg= S S S S
5 4 3 2
5 S S5 8§,

‘ 3 3
A+ + S
.S4 4 SS( 55 SZS3) + 5651( 3 + S1 ) + S7( S1 + 83)

33 R A R D

S A +(S3+S)(Ss

= : + +
44 p+ S50 85+ 570+ S8 5553)
=S8, +A(SS +5, )+ S[(S +5,5) (37

which can also be rewritten as

R S iy

5 .
= . +
A5 S[SA +S(S +SS)]+A3(5156+S7) 85(55

+8,5,)
SS, +S +ssss+5)+5(s +8.8S.) .
'A3(53S4+16+7) 1(1‘5 575 273

5 2 5
+.5.5.S
3[SS(A)+S7)+(S1 +5)° 4575, +5

1373 175 52 3

2 5 ‘Z. 2A %
75153A3 + 8,8 +(S1+Ss) +'_5551. _3 :
_ . g

it

= +s A +(s +s ) (3-72) i
sls3A3 +(s 55 ) %;
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The expressions (3-5), (3-6), (3-7) will now be

S S RITL A2 e et T Wﬁ&m‘

£2

used to analyse the cases of t = 3, 4 and 5. The cases of

t =1, and t = 2 have been dealt with in detail in literature ,

e SRR

&,

and do not need any elaboration here, Still, for the sake

of completeness, we consider these two cases also.

el
-
¥
P4
£
ES
"
™
%
é
b
¥
¥

g

3590051

3.11 Case of t=1

ANV

(@ {§=0 }<:_:) {E(x)-=.0}.
(ii) {519‘ O}C: {E(x) = xa,vwher‘e a-is

. - - - a .
. given by S1 —(Tl a } :

s T R SR SRR B e i

[y
e S 2 e BRIINEN €1 13 ThR it

RN IEN

4
4
i
i
3
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3.12 Ca.sé of t=2

w{s, 0}{;—__—}{E(x) - o},

.The proof is as follows : {Sl = 0} —___—}{IE(x)I = 0 orD 3}.
But E(x)3¢2. Therefore E(x) = 0. The converse is obvious.

(ii) {Sl =.S3}¢=.‘}{E(x) = x°, where a is given by

Therefore {Sl3= 53}:{05 = 0}:—_—){53(:{) = xa}. The converse

is obvious.
o3 s e
(1ii) {51 4 53} (:::){IE(X)l = 2}~

Since the situations of 'E(x)\ = 0 and ‘E(x)' =1have already been

taken care of , (iii) is obvious. E(x) is determined by finding the

roots of

2
g (x) »—x +8x + B .
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3.13 Case of t =3

(i) {sl = 0, s3=o} (:) {E(x)=0}.

The proof lies in the fact that {sl =0,8,=0 } :}{]E(x)l A5 or.

0 } . But IE(x)l < 3. Therefore E(x) = 0. The converse is

obvious,

. a3 _ .2 e -
(ii) {83 = .Sl }(::{E(x) = x , where a is given by. S1

01 = o.a}.

' 3
The proof is as follows : From A3, {53 = S1 } :}{a repeated
root}. Therefore IE(x)I £ t-l = 2. But E(x) # 0 because of (i) .

Hence IE(x)l = 1. The converse is obvious,

(iii) Solving (3-1) we get

2 -
+
Vet TS,
1 3
3
0-3_510.2»+51+S3'

Using these GZ and 0‘3 in

3 2
= lvps a
Tlx) =x + Slx + X + 2 3
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we find the roots of J(x) and get E(x) from ‘these roots.

3.14 Case of t= 4 .

® {s, i 0, 5, = 0}4_—__-::3{%;) -0}

The proof lies in the fact that {Sl =0, S3 = 0} —" {[E(i{)l =

0 or=5 . But ]E(x)l:’: 4. Therefore E(x) = 0. The converse is

obvious. .

(i) { S,( St 513) + 5 515+ 55') = o} — {[E(x)] =

1l or 2}.

3 5 L } | { ;
From (3-5), {53( 5, +5) + (S +8;) =0} ==y {repeated
root}. Then [E(x)[< t-1 = 3 ; that is [E(x) = 0,1or 2. We note

that (i) has taken care of the situation E.(x) = 0. Hence [E(x){=1

or 2. Thus we have now the case of t= 2.

(iii) Now we are left with the situation of |E(x)] = 3 or 4

From (3-1) we get

S +55. +575.(8 +s3

5,5, 455,45 58,75 )

o, = x ,
4

3
g = '
3 Sl + 53 + 510'2:

S L AN Lia 6 T ES B EE

1
3

U
!
3
H
k]
1
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SZS+ S+d’(S 3+S :' + S4 5
I T M S 3} Syt 8 530, S+ S
- ; or .
4 5, 5,

The expression forOé is valid since the case of A4 = 0 is covered

A SRR AU K E R E A RS

in (if). That for U is obviously valid. In the cases of the

e b CAE A

e:;pressions for 0'4, at least one of them should be valid since

Sl_and 83 can not both be zero simutaneously becaus;e of (i). E
We compute the values of O'Z,Oé,and 0‘4 from these expressions and’ '
construct

4 3 2
.U' (x) = x 0% +0,x +O'3x 0y

We find the roots of (J{x) and thereby get E(x).

A
)
i
2
2
3
M
-
Lol
%
i

3.15 Case of t=5 ' .

() {S =0, 5 =°"S =°}<#ﬁ[l_E(x)-| =0 or> 7}.

1 3 5 :
But lE(X)I 4£ 5, Hence E(x) = 0. The converse is obvious.




. 3. 5 o o1 9
(&) {51'53’ 5 = S5 5

1
(]
wn
1
wn
~
’_lCI)
1
wn
0
p—
—,
=
—
B

= xa, where a’is given"by S1 = n.a}.

. . 3 _ 7
The proof is as follows : Setting Sl = 83, S1 = SS’ S1 = S7 and

9._ . _
S1 = 59 in (3-1), we get

= +
0=50,+05 . (3-8)
0=5% +5°0,+50 +0

It TR U B - S

Combining these two equations we get

= 3;.
slc7'4+0'5 0. | (3-9)

Thus we have the two conditions {3-8) and (3-9). Using them. we -

have

5 4 3 2-
Tglx) =x +O"1x +0'2x +0’3x +_024x +G‘5

5 4 3 2 .
=x +O'1x +O‘2x +O'10'Zx +G“1x -*O'l%

2 [x (x +0)) +0y0 x 40) 4O (000)

= £ x 467 ) ( xz+0‘2 )+, % 40))

=(x +O‘1 ‘){x2+ xfo‘—z +j-0—:i}z’

where- it-mieans that 0 (x) has two roots each of which is repeated
. - BT -

twice. Thus lE(x)I =1. The coanverse is obvious.

Tfﬂ
2
s
|
:
b
2
3
4
M
o
k]
;g
73

i

i A R s
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ARG LTSk

A e
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(1i) [AS of (3-6) = 0} (#{[E(x)! =2o0r 3}
[AS of (3-6)' = 0} (:}“E(x)l =1, 2 or 3}. But the case of

[E(x)|= 1 bas already been covered in (ii). Therefore |E( x)[= 2 or 3.

Thus we have (iii) of the case of t = 3,

(iv} Now the remaining situations are e = 4 or 5.

We compute T ,U' 0'5 from

: 4 .5 2, o
S.A + A +S7(Sl+55)+8551(5253+85)

973 T 3
o = :
2 5, .
0'-s3+s+SU'

3T 3°172

S(55+S)+(S7+S)+(SS +S)0+ (8.2
o__21"% A TR M)
4 (ss +S)

+8,)0,

or

5,0 8, +S)+(S +S)+(SS +S)U'+(S
U (ss +5, ) :

=s° T +8.0,
O=87+8,+50,+5U; + 50

which expressions are derived from (3-1).
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In these expressions A_ # 0 since the case of A
5

has been taken care of in (iii). Suppose SI3= S3 and S1 = 55.

5 5

Then from the first two equations in (3-1), we have S1 0'2 +U'3

= 0 and 510'4 + 0'5 = 0. Using all these conditions obtained so far

A AT ] s U R L R B e B O A R

on the right hand side of the fourth equation in (3-1), we get the
right hand te be zero so that Sl9= Sg' Thus we have Sl3= S3,

5 7 9 '

= = = i i) that
S1 SS’ S1 S7, S1 Sg’ all of which mean from (i) tha

5

[E(x)|= 1. Hence Sl3= S3 and S1 = S5 can not be simutaneously
valid. Therefore, at least one of the two expressions for o; must «;

be valid. So we have shown that the expressions for 0'2, 0%, 0'4

AT

and T g ate valid.

RN

<3

SRR

3.16 Example

e
ALY

S NN

Let us consider the (15,1, 4) BCH code generated by

Siviasi

2 3 4 2
g(x)=(1+x+x4)(1+x+x+x+x)(1+x-rx)

(1+x3+x4).

This ‘code is trivial in the sense that the information rate k/n is only

1/15.' However, this does‘ not affect the illustration of decoding procedure.

SRR T AR I L TS TRV 2325

.. 4 ..
" Suppose E(x) = x5+ le. Then using the GF(2') givenin Chapter 1, we have

L LAETLRY
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) 5 12 2 i
SI'E(O-)=a+o. =o.+a.+1+a.+o.2+a.3=1+a3=a.14,

3, 15, 6 ki

S3=E(a)=o. +a =1+a.2+ o.3= (113,

5, 10 2 A

55=E(0-)=a. +1‘=1+o.+0,+1=o,5,
S7=E(Q7)=a+a9= a+a2+a+a3=a.

. . 14

The problem now is to get. U (x), given that S1 =a ,

_ 13 _ 5 _ 6 :!
53-0.,55—0.,57-0.. é
2

With reference to the case of t = 4, we note that (i)-is

wififa bty Pactenil

SR

not valid. Regarding (ii) we have

a8

5
) + Sl( 5+ 55)

L 3
B, =S,57+5,

35

10
a13( a.12+ 0.13) + aM( a5+ a )

4 5 10
a13(1+o. +a.2+o.3+a2+1+a3)+a1(a+o. )

N A T A

4 2 2
uB(o.)-_l- o.l(a+o.+l+a+o.)

14 14
=a ta : .
=0,

Therefore |E(x)] = 1 or 2. With reference to the 3.12 Case of t =2,

(ii) is not valid. Hence |E(x)| = 2. From (iii), we bave

.2 : _ 14+2
glx)=x +5x+ S =x +a xta.

’ 5 12
The roots of this can be verified to be a and o .




3.17 Ceneral Comments

> - . .
.

From the discussion so far itis clear that, for a given t,

if we can store the expressions for 7 Ty v v e O‘t for the case
2

of , the expressions for G, 0., . . . ,C

h » of ¢~
2073 (-2 for the case of t-2,

{he expressions for 0'2, 0‘3, ... ,0 for the case of t~4 and so

t-4
on, finding the elementary functions for any situation e£t is notf -
difficult. When t is small, the storing of these expressicns is quite

practical. Furthermiore, the amount of storing can be reduced by

3

reccgnizing the fact that expressions like S1 + S, which occur so often
i . 3 | .

need be stored only orce. Also, it is clear from (3-1) that really we

have to get the expressions for onlyG'Z,UL,O': and so on, since

expressions for 7,0 and so on are simply linear combinations of
2

3

0‘2,0‘4,0'6 axtxd SC On.

It can be verified that solving the example of 3.1 by the
Berlekamp's 2igorithm takes much more computation than what

was used here.

' However, when t is large, Berlekamp's zlgorithm would be
more practical and should therefore be used. In this conzection,
the Burlon modification (1] is also useful.

Some of the conditions mentioned in‘ Sections 3.1l to 3.15
1

are quite general in fact. In this regard we give the following

points.

fa ikl it

il

P TTCUF 1o/

0% TR ELTK

i cvanted urke
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@ {S 0,857 0, v v ey 8y 47 00 Sppg? }zz’{lE(X)l > 2141}

w0 [5=0,5,0,...,5, 20,50 ==>{Ex}t] i

tis odd>,3.

(iii){sl= o., 5,70, 820, ..., =o}==>{E(x) - o},

t-1
if tis even. :

(iv) {s 0, 8,20, . . .. St=0}<==IE(g)=OJ,iftis

odd.

The proofs of (i), (ii), (iii) and (iv) are based on the fact that
for every word of an i-error-correcting code Sl= 0, S3= 0, ...,
Spua” ¥

3 5_ 2t-1_ } Z a

() {8725, 87285 - - -+ 8§ =5,,] ¢ >

{E(x) = xa, where a is given by Sl = aa}.

The proof of (v) is as follows : In view of the first equation

}= {510:2 +0y= °}=:){S13 G S12(73 =5,0, * SZ(T3-=.'°}. |

-

(3
of {3-1), {s1 =S,

Further in view of the second equation of (3-1), -

5
= =—3{S87T +
{s3rrz+scr3 0,5 =5, [s7,+7;
= S U' +S 0- = 01 Continuing this argument we get

{s 5,0, + 5, o‘
= = t dd. If tis even,
Slb'z -U?’ 81(7‘4 =G, and so on till 5102 1 U't1f iso

: ot ity s Rttt

:

U’t = 0. Therefore, defining t - ¢if t is odd and t' = t-1 if tis even, | ;i
o

3
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£ el -2 t1-3

=x +

o(x) = x 0% TOE +_O'3x +... +O'tl
ot el ) £1-3
= x +le -!-O'Zx +UIUZX +... +O'10;'

(x+0; ){ #- +0x ¢-3 "'+Gt‘-1}

where every term in the flower brackets i even powered, since t'

is even. Therefore every root of 07(x) execpt fo:r:O"1 occurs an even

-

. a . .
number of times. Hence E(x) = x . The converse is obvious.

3.18 Even Weighted Codes

Lei us consider the subset V' of (n, ‘k‘, t) BCH code V
such that V' is made up of all of the words, of V, having even
weight. As can be easily shown, V' is cyclic and can be treated
as being generated by.the polynomial of g'(x) = g(x)( 1 + x ) where
g(x) is the generator polynomial of V. Thus V! is (n,k -1) compared
to V. V' has only one information bit less. The error correcting
capability of V' is the same as that of V. Thus, V' is (n,k-1,1)
and is practically as good as V. With

Ri(x) = V'(x) + E(x);

where V'(x) belongs to V' and "IE(x)'s t, we note that

@ { R odd } ¢= = {[E(=)] odd },

.

e A AR
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(i1 {IR'(x)’ e;en}éf——:——?{'E(.x)]eVen}.

The proofs of (i) and (ii) follow from the simple fact that

if AL and A. are two n-tuples, then IA1 + Azlis odd if A1 and A

2 2

are even(odd) and odd(even) respectively and IA1 + AZ' is even

if A1 and A2 are both odd or even.

Because of (i) and (ii), the decoding of V' is a little simpler
than that of V! in the following sense : Suppose t is even (odd).
Under this condition, if IR(x)' is odd (even), then e is odd (even),
then e is odd (even) and at most t-1. This means that in the decoding

procedure we have tc deal with At v At 3 and so on, whereas in the

case of V we always have to deal with At’ At-Z’ and so on. Since
in the case of V there is no way of knowing a priori whether e is
odd or even. We note that At 1’ A’c-3 and so on are simpler

expressions than At’ At 27 and so on, and consequently involve

less computation.

This is one advantage inusing V' rather than V. There are

also other advantages.

3.20 Finding Roots of Error Locator Polynomial

As: stated. in the previous chapter, the, Stage {iii) of the decoding

Ra
-
o
!

o R

343 S

AN 2R AN AN At G
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procedure is to find the roots of the error locator polynomial. I At=

At-2= ¢ .. = At-Zi =0 and At-Z{i-l' 1) 0, then e = t' = t- 2(i#]) or

= t!'-1. Theref: b Ty e v . .
¢ eretore UZ 0.3 O.t' are determined from the first

t'-1 equations of (3-1), ta.kingU} = 0 for j>t'; that is , we treat the
situation as an t'-error correcting code..So,what we are interested in
are the roots of the polynomial '

t -1

L t'-2 T T
Tle) =x +0x +0x" .. 40, gm0,

-

S B

We note that({x) has no repeated roots. If(Tt , turns out to be

ErR S

zero, then e = t' - 1 so that0(x) would become

Cifads

.

v

B
AEEAL M AGE A AV X DT RIS AT TN R W TR A0

tt-1 t'-1 t'-2
Uix) =x +(Tlx +0"2x .. .+D;,_1.

For the sake of conveniecce in expression let us write down

G (x) in the form

O'(X)=xe +U"1xe-1+0'x +...+0 1x+0'.)'

where (7; #0.

. j
Basiclly the way to find the roots of 7(x) is to computeU'(q.-),
. . J
j= 0,1, 2 and so on, and see for what values of j the quantity(glc’)

4

u

becomes zero. It is clear that for every(}}: 0 the amount of computation

ERIRAES

is reduced by a certain amount. In this regard the worst situation is

A2 DR RAGHER AL N

ey

¢
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when no (. is zero. Next we will show that even in this situation

we can reduce the computation by simple transformations.

3.21 Case of e'odd

Let Q(Y) be the polynomial obtained by setting'x =y +0'1 in

g(x). Then, in Q(y’), the term yt-l is missing.

The proof of this statement is as follows : If we set x = y + b

mP(x), then the coefficient of y e-l will be e¢+O’ Here e =1 :
f

since e is odd. Clearly ¢+Oi = 0 if we make ¢=O‘1.

3.22 Case of e = 4m

Let e(y) be the polynomial obtained by setting x =y +—— o

e(x). Then, ine(y), the term y t-2 is missing.

The proof of this statement is as follows: Setting x =y + ¢

t-2
in(J(x) we find the coefficient of y to be
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e( e-1 2 S -
—i—z——)- ¢ +O‘1( e-1) +Oi. Here e(ze ) is even since
; . . e(e-1)
e is a multiple of 4, and therefore — = 0. On the other hand

e-1 =1 since e-1is odd. Thus if(p= U'_Z— , then the entire coefficient
. . 1

becomes zero. Consequently yt-z is missing in P(y).

3.23 Case of e =2m, modd, a.nd()'1 =0

e 1 3 t . 0 = +‘
Let Q(y) be the polynomial obtained by setting x = y jb—'z
in0(x). Then the terms yt-land yt-'z are missing ing(y). The proof

of this statement is as follows : Setting x=y +@Ping(x) we find the

cocfficlent of yt-l to be de +O‘1. IfC)'1 = 0 and e even, then this coefficient

t-2 1) ,2
-becomes zero. IfO'1= 0, the coefficient of y ~ would be e—(;——)-gb +(7'2.
| -1 2
Since e=2m where m is odd, E(—Ze-—l =1 so that setting <P=0—2 would make

t-
the whole coefficient of y 2 zero,

3,24 Comments on the transformations

When some of fhe Ul s aré zefo,lp(y)l can be greater than,or
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equal to, JT(x)] . For msta.nce, 1f0'(x) = x +O"x +O", then/)(y)

3
=y +y¢+(d} +(T )y+O’¢+O‘ ,wherex=y+¢. Here

we see that at best we can make ]P(y)] =|T (x)] by setting ¢ =

—ro"—z . In such a situation we do not gain anything by the

transformation. Thus the only definite comment we can make

is as follows:

The' transformation is advantageous when noO'i is zero

in 3.21and 3.22, and only(, = 0 in 3,23,

3.25 Examples

(i) If e = 3, then
3 2
P(Y)=(Y+0i) 0y 4G ) 4:+O'2(Y+Ui)+(73'
_ .3
=Y ATy G, T

(ii) If e = 4, then

Ts 4 d, -0,
= (y+ — (y+ ) +CT( y+t ‘—")

T
T, ( +O’ )+O‘
y
4 3,92 2 C2 2
= + —+U( y + y + ) +
.Y ( )2 1 0-12 0-13
O‘ g2
CT(Y+O. )+05 (Y '5'_—1-)‘”74-

or,

L S

S

JUIES. T OUCE SR SRR YN POLIS PR F Ry
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2
v rym) + (T, +0,) + (O_ +0,) %2
y —= e
1 y T (0'1 )
G2 5% |
+ + +
g2 G %
- 0'22 0t mG
~Y+U1Y = i +O’)y+o_14 _+Oi +d,.

(1) ¥ e = 6 andoi = 0, then

oty = (y 40,1 40y 485 ) 40 v 4Ty 4

1Ty 4f53) 10
6, 4 2 4 6 4 2
=P E Y ) tO Y )
3.2 - 3 2
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3. 26 Analysis of T(x) for the case of t=2

when t = 2, we have
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U (x) = x G- = +f‘)'2' S

To find the roots of J(x), let us set -

2 - '
x+0x +0,=0 O (3-7) 1
or o .
X 01 - :
—_ + +x y—-O- = 0.
I 10 2
. x ! E
Setting =" Z and =jj/, we have !
v 2 ) v?.
z+Y+ 2 1o,
or ) ;
z + 21 =Y. : ©(3-8) |
. . az
Suppose Z = a and Z = o both satisfy this relation. Then
we have .
a - a ~a .
a l+ a a1=-; a 2+ a 2,
or a ’
a'1 a'2_ -al -aZ_ aal+o. 2
g +ta “a ta FT o
17%2 .
e
or 1

This means that a1 = az or a.‘l = _n-az.

s for a givenl,(f, (3-8) has two unique solutions o’ and an-y

Thu
: . Hence

where, without losing any generality,

we can take YZ

-1 .
y can be found in at most -P—Z——-— trials. Once we have Y, the two

roots of G (x) are given ;
x = QY'[O_';‘ and x = an-YfO__'z. )

ou the other hand getting the roots of O (x) directly can take
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at most n-~l trials. Therefore solving (3~8) takes less time on

the average. It is also possible that we can store the sum
' : n-1

n-y
o.Y+ a ', for y=1, 2,-..., 2, and use it as a look-up

table,

For EXAMPLE suppose E(x) = le( 1+x2) with repect

3

to (15, 7, 2)BCH code with g(x) = {1+ x + x4)( 1+x+ xz + x + x4).

4
Then, using the GF(2") given in Chapter 1, we have

. Sl = 0.1;:% a14 = 0.5, :
S, = 0.6‘ + u.l2 = a.4,
3
so that )
5
0'1 = _Sl = a,
3 .
O—_Sl+s3 1+a4= 0._11
2 S 5 5 - @ -
1 a a
Therefore
' 2 5 11

0(x) =x +aox+a.

Clearly it takes 12 trials before we get the first root.

On the other hand

so that

- 7
Z+Zl=a..

Setting Z = o.J, we have

eaizae

2.
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T

14
ata =1+a+a3=

a
-1 7 1 15-1 s

Therefore, the roots of Z + Z ¢ are a and a . Hence : i

the roots of O (x) are

% alO'z - o.lo.13 _ Q14’ .

14 13 12
e a =

% 0.140.,2 -

Consequently E(x) = x12+ x14.

The look-up table for Z + Z-1=l)l) over the GF(24)

-

generated by 1 +x + x4 is as follows :

0.1+o.14=a.1+1+a.3'.-=a.7,

- o.2+o.13=az+l+a2+a3=a.14, '
o,3+a12=a3+1+‘o.+o.2+o.3=a10, :
a4+q,n=1+.a.+a+a.2+a3=al3, J'
u.5+o.m=o.+az+l+a+o.2=.1,'
a6+c.9=a2+a3+a.-!.-a3=a5,

7., 8 3 2 _ I '

a ta =1l+a+a +l+a =a.

There are 15;1 = 7 distinct sums. Using the look-up table ' j

14 7. gperefore this is another way of getting

L 1
we get'a +a = a.

. -1 .
the roots of Z + Z =Y. .
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CONCLUDING REMARKS

In the thesis we have dealt with the problem' of deéoding
binary BCH codes. From the discussion in Chapter 3 it is seen
that the task of getting the error ‘locator polynomial is relatively
simple when the expressions, like the ones shown in s Say , 3-13,
for elememtary functions are stored. The s%oring of these .
expressions is quite pracﬁc;al for small values of t. When t is

lérge , a scheme like Berlekamp algorithm is more efficient.

" The transformations discussed in 3, 20-3.23 should prove
useful, when used under appropriate conditions, in reducing the
. amount of computation involved in finding the roots of the error

locator polynomial.

As pointed out in 3.18 , codes with even minimun distance

are slightly better than the reqular BCH codes in the sense of

decoding.

Tt was also Seen in 3.26 that finding the roots of the
quadratic became comparitively simple after defining a new varible..
It may prove useful to investigate whether this type of thinking

can be extended to polynomials of even degree greater than two.
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