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ABSTRACT.    Let   G   be a connected semisimple real-rank one Lie group
with finite center.   It is shown that the decomposition of the tensor product of
two representations from the principal series of  G  consists of two pieces,   Tc
and   Td,   where   Tc  is a continuous direct sum with respect to Plancherel mea-
sure on   G  of representations from the principal series only, occurring with
explicitly determined multiplicities, and   Td is a discrete sum of representations
from the discrete series of G,  occurring with multiplicities which are, for the
present, undetermined.

I.  Introduction.  Let  G be a connected semisimple Lie group with finite
center. If F is a cuspidal parabolic subgroup of G and P = MAN denotes a
Langlands decomposition for P, we denote by Md  the square-integrable ir-
reducible representations of M. For oGMd, tEA, oxt is a representation
of MAN via (o x T)(man) = o(m)r(a) and the family of representations

{n(o, t) = Ind£ oxt.  a € Md, t&A}

is called the nondegenerate continuous series corresponding to P. In the case of
a minimal parabolic subgroup, it is customary to say principal series.  An impor-
tant problem is that of decomposing the tensor product of two such representa-
tions into irreducibles.  In §5, it is shown that this problem "reduces" to knowing
how to decompose tensor products of representations from Md  and how to de-
compose Ind^ oxt for all  (o, T)£.Èd x A.  One of the main goals of this
paper is to show to what extent these last two problems can be answered when
G has real-rank one, P = MAN is a minimal parabolic subgroup, and we are
decomposing the tensor product of two principal series representations.

The main result is that this decomposition consists of two pieces,  Tc  and
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178 R. P. MARTIN

Td, where  Tc  is a continuous direct sum with respect to Plancherei measure on
G of representations from the principal series only, occurring with explicitly de-
termined multiplicities, and  Td is a discrete direct sum of representations from
the discrete series of G, occurring with multiplicities which are, for the present,
undetermined.  Let  V = 9N, where 9  is an appropriate Cartan involution on
G, and S denote a suitably chosen cross-section for the action of MA  on  V.
Then both the cardinality of S and the isotropy subgroup at v0&S under the
action of MA  (which is actually independent of v0 G S) play decisive roles in
determining the multiplicity of a principal series representation occuring in  Tc.

For real-rank one groups we shall show, by using Mackey's tensor product
theorem, that the problem of decomposing the tensor product of two principal
series representations reduces to knowing Ind^ oxt for all o x t G (MA)".
We then show (in fact for arbitrary rank) that Ind^ a x t is independent of
T&A  and hence it suffices to determine  Indj^ oxt for almost all o x r £
(MA)". By applying a reciprocity theorem due to N. Anh, this amounts to deter-
mining the multiplicity of a x t in the restriction of it to MA, (tt)ma, for
almost all n S G.

If it is an irreducible representation from the principal series of G,  then
(n)MA   is computed by applying Mackey's subgroup theorem to MAN and MA.
It is here .that explicit knowledge of  V/MA  is needed.  If S denotes a suitable
cross-section for this action, then S depends not only on the number of positive
roots which are not simple roots but also on the dimensions of the root spaces.

For irreducible representations tt of the discrete series of G we first give
a new proof (one using AnhTs reciprocity theorem) of the fact that there exists a
5GZC suchthat it is contained in Ind£ 5. We then use Mackey's subgroup
theorem to compute  (Ind£ 8)MA.  From this it becomes clear that

Wma - Sma n(-°' T' n^a x T)*c(ff« T)

where pc is Plancherel measure on (MA)"  and n(o, r, it) G {0, 1, 2, • • •, °°}.
The problem of decomposing the tensor product of principal series repre-

sentations has been considered for SL(2, C) by G.  Mackey in [13] and M. A.
Naîmark in [14], for SL(«, C) by N. Anh in [1], and was completely solved for
complex semisimple groups by F. Williams in his 1972 thesis [18].  For SL(2, R),
the problem was completely solved by L. Pukanszky in [15]. We shall comment
on these cases in §6 of this paper and show how the techniques developed in §5
not only can be used to give new proofs of these results but also can be used to
give a complete solution to the problem of decomposing the tensor product of
two (minimal) principal series representations of G = SL(«, R), n>3.
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THE DECOMPOSITION OF TENSOR PRODUCTS 179

II.  The semisimple theory.  Let  G be a connected semisimple Lie group
with finite center and Lie algebra g.  Let  8 = f + t> be a Cartan decomposition,
8  denote the corresponding Cartan involution, and K = the maximal compact
subgroup of G with Lie algebra f.  Let Be(X, Y) = -B(X,8Y) where B is
the Killing form and X, Y G fl.  Then Be   is an  Ad (Z<)-invariant inner product
on  g which makes  g  into a real Hubert space.  Let  a be a maximal (abelian)
subalgebra of  p and a* = HomR (a, R) its dual.  For X G ó*, put g K =
{XGg:   [H,X] =UH)X, for all ZZGO}.  If X ¥= 0 and g^{0},  then X
is called a (restricted) root and mx = dimQx  is called its multiplicity.  For
a G a*, let Ha GO be determined by a(H) = B6(H, Ha)  for ZZGa.  Let a'
be the open subset of  a where all restricted roots are  + 0.  The components
of fl    are called Weyl chambers and if we fix a Weyl chamber 0 +,  a root a
is called positive if it is positive on a+.  Let A (resp.  A+) denote the set of
roots (resp. positive roots).  A root a G A+  is called simple if it is not the sum
of two positive roots.  The simple roots form a basis for a*. Put

n=   Z    ga,     ö =ôn =   E    g_a,
01ËA+ C4£A +

and let N, V and A  denote the analytic subgroups of G with Lie algebras
n, tt and  a respectively.  Then  G = KAN is an Iwasawa decomposition and
the dimension of A  is called the real-rank of G.  Let M (resp. M1) denote
the centralizer (resp. normalizer) of A  in K. Then M is normal in M1, both
M, M1 are closed,  W = M'/M is the (finite) Weyl group, and MAN is a (minimal
parabolic) subgroup of G.

If m'x, • ' ', m'w  is a set of representatives of W and P = MAN, then
we have the Bruhat decomposition G = U^j Pm'jP.   This union is disjoint and
exactly one of the summands, viz., Pm*P where  Ad(m*)a+ = a- =
{H:  a(H)<0, for all a>0}, is open in G.  So   MANV has a complement
of measure zero in  G.

By a parabolic subgroup F of G is meant a closed subgroup of G  such
that

(i) if b = LA(P), then F is the normalizer of  6 in G, and
(ii)  bc  contains a maximal solvable subalgebra of g c.

A parabolic subgroup F is called minimal if it is minimal among all parabolic
subgroups of G.  Let N = the maximal unipotent normal subgroup of F, set
S = F n 8P, and set A = the maximal connected split (i.e.,  Ad (a) diagonizable
over R) abelian subgroup lying in the center of a. Then H is the centralizer
of A in G.  Let X(a) = {x-  2 —► R*, x a continuous homomorphism}.
Set M = C)xGxís) ker rjfj« Then M is reductive (i.e., m = LA(M) is reduc-
tive) but not connected in general. Moreover, S = MA  is a direct product and
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180 R. P. MARTIN

the map (m, a, n) —► man  is an analytic diffeomorphism of M x A x N onto
F. This is called the Langlands decomposition for F.  F is said to be cuspidal if
M has a compact Cartan subgroup.  For the results quoted above, we refer to [5]
and [17].

Let F = MAN be a cuspidal parabolic subgroup of G and Md  denote
A _    A

the square-integrable irreducible representations of M. Then for tEA, oGMd,
o x t is a representation of MAN via (o x T)(mari) = o(m)r(a) and the family
of representations   [ti(o, t) = Ind£ oxt:  o& Md> r&A} is called the non-
degenerate continuous series corresponding to F.  In the case of a minimal para-
bolic subgroup, it is customary to say principal series.  It is known that almost all
the tt(o, t) are irreducible and, as in the case of a minimal parabolic subgroup of
G, MANN (N = 8N) has a complement of measure zero in G.  Two cuspidal
parabolics PX,P2  are called associate if there exists xGG suchthat xAxx~l
= A2. Conjugating by x, we may assume that Px = MANX, P2 = MAN2.
Finally, it can be shown that IndS  o x r ~ Indp   oxt, for a G Md, tGA
and Fj = MANX, P2 = MAN2  associate parabolics [11, p. 473].

III.  Results of Mackey and Anh.  Let X be a locally compact Hausdorff
space, p a finite Borel measure on X, R  an equivalence relation on X, Y =
X/R, and r: X —► Y the canonical projection. Then R  is said to be a mea-
surable equivalence relation if there exists a countable collection   {E¡} of subsets
of Y suchthat r~1(E¡) is measurable and for every y G Y,   {y} =
M [E¡: y &E¡}. Now let  Gx, G2  be closed subgroups of the separable locally
compact group G.  Gx, G2  are said to be regularly related if there exist mea-
surable sets E0, Ex, • • •   in G such that each E¡ is a union of Gx : G2   double
cosets, E0 has measure zero, and every double coset outside of E0  is the inter-
section of the E¡ that contain it.  Let D = the collection of Gj : G2   double
cosets in G.  Clearly Gj : G2  are regularly related if and only if the double co-
sets outside of a certain set of measure zero form the equivalence classes of a
measurable equivalence relation.  If p is a finite measure on  G equivalent to
Haar measure and r:  G —► D is the projection, then the measure v given by
v(E) = v(r~ 1(E)), whenever E is such that r~l(E) is measurable, is called an
admissible measure on D.  Any two such are equivalent.  In the special case where
there exists a subset of G with complement of measure zero which is itself the
countable union of Gx : G2   double cosets, then Gj : G2  are called discretely
related.  In this case v is a discrete measure.

Theorem (Mackey's subgroup theorem [12, p. 127]). Let G be a sep-
arable locally compact group, Gx, G2 be regularly related closed subgroups of G,
and 7rGRep(Gj). For each xEG consider Gx = G2C\x~xGxx Form Vx =
IndG2(7j—>7r(^nx-1)), tjGG^.  Then Vx is determined to within equivalence by the
Gj : G2 double coset d to which x belongs, write it Vd, and
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THE DECOMPOSITION OF TENSOR PRODUCTS 181

(Indgj n)G2 ~fl Vddv(d)
where v is any admissible measure on D = GX\G/G2.

Theorem (Mackey's tensor product theorem [12, p. 128]). Let G,
GX,G2  be as in Mackey's subgroup theorem,  ttx G Rep(Gj), and tt2 G
Rep (G2). For (x, y) G G x G denote

Gxy=x-lGxxC\y-lG2y,

irx,y(s) = '*i(xgx~1)® TT2(ygy~l),    and   TT*<y = Indg^ irx¡y.

Then  7rx,-v  is determined to within equivalence by the double coset d to which
xy~l   belongs, write it  ird, and if v is any admissible measure on  D =
Gj\G/G2,  then

Indg1 TTj <8> Indg2 tt2 * J® 7rdcZKrf).

The following generalization of Mackey's reciprocity theorem [13, p. 212]
will play an important role in §5.

Theorem (Anh [1, p. 299]).   Let G by a type I separable locally compact
group, H CG a c/ose<¿ type I subgroup, pG, pH finite measures in the
Plancherel measure classes of G, H respectively, oj(tt, v) and n(ir, v) be
pG x pH measurable functions where n(ir, v) is a countable cardinal for every
it, v.   Then the following are equivalent:

(i) For pfj-aimost all v,

lnd% v^)G n(it, v)iru(TT,v)dpG(Ti).

(ii) For pG-almost all it,

Wh -Jh "<■*> «0"wOr. v)dpH(v).

rV.  Real-rank one Lie groups and algebras.  Let G be a real-rank one
connected semisimple Lie group with finite center, Lie algebra   g,  and Iwasawa
decomposition KAN. Then dim A = 1  and, if a denotes a simple (restricted)
root of g, a may be chosen so that all roots are of the form ja, j = ±1, ±2.
Let  V = 6N, M = the centralizer of A  in K, M1 = the normalizer of A  in
K, P = MAN, and  W the finite (Weyl) group M'/M.   W has order two and
if m' G M1 - M, we have the Bruhat decomposition G = MAN U MANm'MAN
(and so there are only two MAN:MAN double cosets in  G with only one of
positive measure and MANV has a complement of Haar measure zero in  G).
If a , m denote the Lie algebras of A, M and  ja= {IGJ:   [H, X] =
ja(H)X, all ZZG a}, then
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182 R. P. MARTIN

8 = m © a © 8a ©82a ® i-a ® 8-2a-
If  g   is simple, then   g   is  so(n, 1),  su(«, 1),  sp(«, 1)  or  f4 9   (i.e.,

G is locally isomorphic to  S0e(«, 1),  SU(«, 1), SP(«, 1),  or  F49).  If g
is semisimple, then

8 = Ç 8/*¿ (', + «, + ",)
1=1

where each  g,-  is a simple ideal [5, p. 122] (and so each 8,-  centralizes g;-,
ii1]) and   ff+Oj. + n¿  denotes an Iwasawa decomposition for 8,-  Since 8
has real-rank one, all but exactly one of the 8 /.  say  g r, must be compact and
so   g = ( f j + f2 + • • • + tr) + &r + nr  will be an Iwasawa decomposition
for g .  Let

K = (exp fj)(exp f2) * * ' (exP 'r-i)-

Then

G - (exp fjXexp f2) • • •  (exp frMA = ^A

ZC = KZÍ,.,   A=Ar,   A = A,,   M= KMr.

Note that since Ad (K) fixes n = LA (N) (or ti =8 n), in determining the
orbits of points in n (or D) under the action of MA, we may assume that
G is simple (of course the stability groups will in general be larger). Let us ex
amine the simple real-rank one groups more closely.

A.   The classical cases.  We shall look more closely at  SOe(«, 1),  SU(«, 1),
SP(«, 1)  for « >2  and  Spin(«, 1)  for « >3  (recall that  SU(1, 1) is
locally isomorphic to  SOe(2, 1),  SP(1, 1)  is locally isomorphic to  SOe(4, 1)
[5, p. 351], and  SOe (1, 1) « Rx  is not semisimple).

Let « > 2 and K be R, C or H (the quaternions).  Let  G be the
group of all automorphisms of K" + '   which preserve the hermitian quadratic
form   Ixjl2 + • • • + \xn\2 - l*„+jl2   with the additional property that if
K = R  or C,  we consider only automorphisms of determinant  1.  Then G is
SO(«, 1),  SU(«, 1)  or  SP(«, 1)  according to whether  K is R, C  or H  [8,
p. 555].  SU(«, 1) and  SP(«, 1) are connected [5, p. 346] and we denote by
SOe(«, 1) the identity component of SO(n, 1).  Then we have a Cartan decom-
position  8 = I + P   f°r the Lie algebra of G where:

*     ixi   °\
f = I 0 J,      Xx   is an n x n  skew hermitian with

^ 2'       entries in K, X2   is a skew member of
K, X2 + tr Xx = 0 if K = C (X2 = 0
for K = R),
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P = I _„        1,      F is a column vector in K".X o )
In each case the Cartan involution, 8, is negative conjugate transpose. We also
have:

0 r
1 0

' cosh t   0   sinh t
0       I       0

sinh t   0   cosh t

X a column vector in K"-1,

r   0   -Y

= 9a © 02«.      » - on,

82a = 0 if K = R; 7GK with
Y = -r if K = C  or H,

V=

N =

l+Y-MX?     Xt    Y-Vz\X\2
-X I -X

-r + aijfl3     -F  i - y + u\x\2

\ + Y-lA\X\2   X*   -Y + K\X\2
-XIX

Y-*A\X\2 X*    1-Y + Vl\X\V

K

k   0
,0   1
>u   0
¿0   c

SO(«),   fcGSO(«)  for K = R,

■ S(U(n) x ¿7(1)) * £/(«),    u G U(n),   \c\ = 1,

Sp («) x Sp (1),    u> G Sp («),   M G Sp (1)
(unit quaternions) for K = H,

cdetu = 1   for K = C,

\v° «>
%    0    0

[0      X  0    I,   X2  skew in K (= 0 if K = R);
» 0      0   X2 J     X an (n - 1) x (« - 1)  skew hermitian

with entries in K,  2Xj + tr X = 0
if K = C,
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«GSO(« - 1)  for K = R,

c   0    0'
M={(o   X   0 I,       Id = 1,  \<=U(n-\), c2detX = 1

k0   0   c I        for K = C,

u   0    0N
0    w    0

,0    0     u
«GSp(l),  coGSp(n-l)  for K = H.

To investigate the action of MA   on  V, we deal with an algebra conjugate to
8.   Let

2-H    0    -H*'
0 Z    0

-2_,/2    0    2_,/l

and 8  =so8'so   •  Then .4   becomes

eT    0   0
0     Z    0

,0     0    e~'
M remains the same,

/l    Xf    ^(r+lXl2^
A = lo   Z X

\0   0 1
and

V= exp (X + Y) = (X, y) = i
1
X

SA(Y + \X\2)   Xt   1
The action of A   on   V is:

V    0   0 \ / 1 0     o\/e-'0    0
ozojf        x        zojjozo

v0     0    e-t/\Á(Y+ \X\2)   X*    l/\0     0   •*

1 0       0'
e-*X I

Ke~2tíÁ(Y+ \X\2)     e-tX*
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i.e., a • v = e* • (X, Y) = (e~*X, e~2tY) while the action of M on   V is:

0        0
f,rl   o

u-1'

1 0
coXu~l I

u>A(Y+ IXI2)«-1    uX'oJ'1    I'      \A(uYu-1 + \X\2)   u^o}-1

i.e., m • v = diag(u, co, w) • (X, JO = (coX«_1, uYu~l). In each case the action
of M is by rotation while the action of A  is by dilation.  For K = R, MA
acts on  Ve = V — {0} in one orbit for « > 3  and two orbits for « = 2.
For K = C, MA  acts on exp g _a  by rotation and dilation by e~ * while only
A  acts on exp g_2oi  (M fixes exp g_2a) by dilation by e~2t. So MA
acts transitively on expg*a  while MA  acts on exp §x_2a  in two orbits.  If
we take X_a G g*a =  g_a - {0},  Y_2a G gl2a,  then up to a set of Haar
measure zero in   V,   [exp(tX_a ± Y_2a):  t > 0} will serve as a cross-section
for the action of MA  on  V = expig^ © g_2J. For K = H, M=Sp(l)
xSp(«-l) where both Sp(l) and Sp(«-1)  acton exp g_a  while only
Sp(l)  acts on  exp g_2a.  One may easily verify that the above action of Sp(l)
on exp g_2o(  is the same as that of SO (3)  on R3   [2, p. 38]. In this case
MA  will act transitively on both exp 8^  and exp fll2a, in fact if MY =
{m 61:  m • exp Y = exp Y,   Y G ^x_2a}, then MYA   also acts transitively
on exp gfa.  So if we take X_a G gfa,   F_2û! G gi2a,  then up to a set of
Haar measure zero in   V,   {exp(tX_a + Y_2a):  t > 0} will be a cross-section
for the action of MA  on  V.

For « > 3,  Spin («, 1) denotes the simply-connected double covering
group of SOe(«, 1).  (Recall that the universal covering of SL(2, R) or
SU(«, 1)  does not have a finite center and that  Sp(«, 1), as well as F4 9, is
already simply connected.) If G = Spin(n, 1) = KAN and G = SOe («, 1) =
KAN, then we have £ = Spin(«), K/Z2 « K, A = A, Ñ = N, M =
Spin(«-1),. and M/Z2"M.  Clearly MA  acts transitively on  Ve.

B. 77ze exceptional case:  F4 9. There is only one nonclassipal simple Lie
group of real-rank one.  It is a real form of F4   [5, p. 354]. Denote this group
by F4>9  and its Lie algebra by f49.  Then dim f49 = 52,  dim 0 2a   =7,
dim ia = 8, ZC=Spin(9),  and M = Spin (7) (see [6]).

C. The only remaining simple groups of real-rank one are quotients of the
universal covering groups of the above groups by discrete central subgroups Z
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(Ç M). Note that if G = KAN is such a universal covering group, Z is a
discrete central subgroup of G, and G' = G/Z = K'A'N*, then

K'= K/Z, A'= A, N" = N,   and   M'=M/Z.
In particular for m =mZEM,XEn (or »>), Ad(«z')X = Ad(mZ)Z = Ad(m)Z
and so in computing the orbits of points n (or t> ) under the action of M'A', we
may assume that G' or G is one of the groups described in A  or B, i.e.,
SOe(n, 1), SU(«, 1), Sp(«, 1), or F4>9.

Let us remark at this time that since MA  can be regarded as a direct
product, the irreducible representations L G (MA)"  are all of the form L =

* A A A

o x t  with o EM,t G A  and so (MA)" = M x A  with Plancherel measure" "
on (MA)"  being the product of the Plancherel measures on M and A   [7].
We shall put MA = C where convenient and shall denote by pc (resp. pG)

A A
Plancherel measure on C (resp. G). We now thank Anthony Knapp for sup-
plying the details of the following argument which is due to Kostant and lies
behind some of this work in [9].

Lemma.   Let  8 be a real-rank one semisimple Lie algebra and k — ±l,
±2.  77ze«

(i) if dim 8fctt = 1. then MA will act on  6ka - {0} = 6%a in two
orbits while

(ii) if dim jjfca > 1, then MA  will act on ika in one orbit.

Proof.   As stated earlier in this section, we may assume g   is simple.
Note also that the above lemma follows immediately from previous calculations
when 8   is one of the classical real-rank one algebras. The following general
argument shows tire result to be true for f4 9  as well.  As noted above, we may
assume  dim Qka > 1  for k = ±1, ±2.

Let k = 1, XE ga, and Ha G 0   be determined by a(H) = Be(H, Ha),
HE a. Then 8XEq_a,  [X, 8X] = B(X, 8X)Ha E a, and   [X, 8X, Ha}
spans a subalgebra of 8   isomorphic to si (2, R).  Left multiplication by this
subalgebra gives a representation of si (2, R)  on g   and   {X, 8X, Ha} spans
an invariant subspace.  Any finite-dimensional representation of si (2, R) splits
into a direct sum of irreducibles and we may assume that these irreducibles are
orthogonal with respect to the natural inner product on g .  One of these irreduc-
ibles is   {X, 8X, Ha} with weights (i.e., the eigenvalues of ad Ha) a, 0, - a.
Matching these weights with the weights of all the irreducible abstract representa-
tions of si (2, R), we see that the weights of an «-dimensional representation
would have to be  Vi(ri - \)a, *Á(n - 3)a, • • •, — ¥fn — l)a. The only possible
weights in  g   are  2a, a, 0, - a, - 2a and so «=1,3  or 5. We now have
the following diagram:
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THE DECOMPOSITION OF TENSOR PRODUCTS 187

D - D
u     ran ••• d D-D

SD-DD-DD-D.
0D - D D-D

D - D
where each vertical column represents an invariant subspace and each box repre-
sents a one-dimensional subspace.  Note that  ad X of each box in the   0 + m
row is contained in the corresponding box in the  ga  row.  Let X = Xx, ' • *,
Xp be a basis for the  ga  row and choose basis elements ZZ1( • • •, H , Hp+x,
' • ' ,Hq  in the  a + m  row such that   [X, H¡] = X¡, i = 1, • • •,p  (e.g.,
ZZj = - Hja(Ha)).   Any vector  Y E $a  is a linear combination of the X¡%
say  Y = EfL, cX,.  Let  W = Sf=j ctH, E a 4- m. Then

[X, W] = Z   ct[X, HA = Z   '¿i - Y
1-1 i=l

and we have shown that   [X, a +m] = ga  for XE ia- {0}.
Now we consider the map /: MA —► ia via ma i-» Ad (ma)X. Since

df/:   a + m —>ja  is given by m + a i-> ad (m + a)X = [m + a, X], the above
argument shows that df is onto and so it follows from the inverse function
theorem that the orbit  Ad (MA)X is open in  g a - {0}.  Since M is compact
and the action of A  is given by

a • X = Ad(a)X = ^A^X = ea^X,     a - exp ZZ, ZZ G a,

it follows that this orbit is also closed in  ga - {0}.  Since  dim ga > 1,  Ad(M4)
acts in   ga - {0} in one orbit.

The proofs for k = - 1, ±2 are similar and the lemma has been proven.
Note. Let cEMA, XE gfca.  Since c- exp X = c(exp X)c~' =

exp Ad(c)X = exp(c • X),  there is a canonical  1-1   correspondence between
orbits in   %ka/MA  and orbits in  (exp Qka)/MA.  Thus AM   will act on
exp(g£a)  in one orbit for dim Qka > 1   and two orbits for  dim Qka - 1.

V. The tensor product of principal series representations.  Let  G be a
connected semisimple Lie group with finite center, Fj = MAN be a cuspidal
parabolic subgroup of G, and F2 = MAN where N = 8N. Recall that Md
denotes the square-integrable irreducible representations of M and for t EA,
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a G Md, a x t is a representation of MAN via (o x T)(man) = o(m)r(a).
A A (-,

For a G Afd, t G >1  let  tt(o, t) = Ind£   o x t.

Theorem 1.

ir(ox,Tx) ® it(o2, t2) ^ Ind^ (ox ® o2)(txt2)
A A

where ox ^Md, r^A, i = 1, 2.

Proof.   Since F1(F2  are associate parabolic subgroups, we have (see [11,
p. 473] )  Indp   o2 x r2 ~ Indp   o2 x t2   and we may apply Mackey's tensor
product theorem with G¡ = P¡, i" = 1,2. PX,P2  are discretely related, there is
exactly one double coset of positive measure in G, and if we take e as a repre-
sentative for this double coset, we have Px C\P2— MA. Thus

ir(ox, tx) <S> tt(o2, t2) =*■ Indpj a, x tx ® Ind£2 a2 x t2

^lndGIA(o1 ®o2)(txt2).

Thus the problem of decomposing the tensor product of two continuous series
representations arising from the same cuspidal parabolic subgroup can be solved

A

once one knows how to decompose  ox <8> o2  for ox,o2EMd  and how to de-
compose Ind^ L  for all L E (MA)". However, there is no reason, a priori,
to expect that either of these last two problems is any easier than the one we
started with.  In what follows, we show to what extent these problems can be
dealt with when F is a minimal parabolic subgroup and in particular when  G
has real-rank one.

Theorem 2. Let P = MAN be a minimal parabolic subgroup.   Then for
A A

o EM, tx,t2EA  we have

^dMA oxtx^ Ind£x oxt2.

Proof.   Let  G have real-rank / > 1  and let ax, • ' • ,a¡ denote the
simple (restricted) roots of g .  Since the simple roots form a basis for   o*  and
A « 0*,  any  t E A  is of the form r'(a) = eiß(H)  where ß = 2^, «2,-a,.,
m¡ E R, and a = exp H, HE a.  Let T*(a) = eim'a'(H)  for / = 1, • • •, /
and t° = 1  where   1   is the 1-dimensional identity representation of A  (i.e.,

A

the representation corresponding to  0 G a*). Then r G A, i = 0, 1, • • •, /,
and t = 2j_0 t1. We shall show that

;-i
lndMA   ° X T   - ^dMA  O X fi     T1 «c« • «

1=0

^Ind^ oxtx ^\nd%A o x 1.
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It clearly suffices to show

(*) Ind^oxT^Ind^axJj  /

where t = ITj-=0 t'  and / = 1, • • •, /.  Fix a = a;- and let

«a- Z 8fca,   >.-».-£ «-*..  '.-BA
Then, as in [10, p. 399], the subalgebra j"  of  9  generated by na  and t>a
is of the form 0 a = oa © ma © na © öa  where ma Ç m = Z„4(A/) and
fla = R • ZZa.  So 8 a  is a real-rank one semisimple subalgebra of 8 •  Let q  =
8a  or  q = 82a  according to whether   820t = W or not-  If ß = exp q,
then Ô is an abelian subgroup of N such that MA  leaves Q invariant. In
fact, from the lemma of §4, we know that exp(ma © aa)  will act on fi-
fí} in two orbits or one orbit depending upon whether dim 0=1   or not.  If

A A

o EM= Md (M is compact), then (*) will follow by induction in stages [12,
p. 113] once we show

(**) irT = Indj¡£íQ oxt^ IndJ£J 0 o x t_ = ir_.

We first say something about the action of MA  on q *  (via the coadjoint
representation) and then define a function D:   q * —* U which is to satisfy the
important identity

D((ma)~l - <¡>) = D(<¡>y'(a)   for all   0 G q* - {0}, maEMA.

In the following, we let ka be 2a or a according to whether  q =
82a  or not.  Let (•, •) be an Ad (Af)-invariant inner product on q and note
that (a • X, Y) = (X, a • Y) = ekct^H)(X, Y) where a = exp H, HE a, and
X, Y E q.  Define a map  U:  q * —► q via 0 h» X0  where <¡>(X) = (X, X^)
for X G q.  Then  Í7 is a vector space isomorphism (and so Borel).  By defini-
tion we have  (ma • <j>)X = (¡>((ma)~x ' X). So for all X E q we have

(X, Xma.¿ = (ma • MX) = ¿((«T^-1) • X)

- («T'a"1 • X *0) = (a-1 • X, m • JT0) = (X, ma'1 • JT0),

i.e., Xma^ = /«a-1 • JT0. Note that if we define (<px, 02)* = (Z0J, X0) for
0j,02Gq*, then (*,*)* is an Ad*(A/)-invariant inner product on q *. Let
<É>0  be fixed in  q* - {0}.

If dim q > 1,  then we know that MA  acts transitively on  q - {0}.
Let <t> E q* - {0} and choose «za_1 EMA 3 ma'1 • X0   = X^. Then

(ma • 4>oyX) = ^(m-ia-i • *) = (mT^1 • X, X0Q)
-1= (X, ma-' • JT0 ) = (X, XJ = 0(X)
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and so ma • 0O = 0.  Thus MA  also acts transitively on  q* - {0}.  So for
dim q > 1, define D:   q* —* n  by D(0) = 1, D((ma)~l • 0O) = T'(a). Note
that D is defined on all of q * and is a Borel function. Note also that

(1) D is well-defined.
Suppose (ma)'1 • <p0 = 0O  with a = exp H, HE a.  Since  (a • 0O)(.Y)

= (a"1 - X, JT0o) = e-*"<">(X-, X^) = e-fca<">0o(;r), we have a • 0O =
e-ka(H)0o.  Let 11011 = (0, 0)?. Then Um"1«-1 • 0O|| = lia"1 • 0J| =
eka(H)\\<p0\\ = II0OII  implies that ka(H) = 0.  Hence T>(a) = e0"/*"^ = i   and
£> is well-defined.

(2) D((ma)-1 • 0) = D(<t>)T>(a) for 0 G g*a - {0}, maEMA.  Let 0 G
q* "* {0} and choose  »ijaj £14 («ijaj)-1 • 0a = 0. Then

D((ma)~l • 0) = D((mmxaax)-1 • 0O) = r^aaj)

= ri(a)TÍ(ax) = D(<t>)T¡(a).

Now suppose  dim q = 1. We know exp(aa ©mtt) acts on q - {0} in
two orbits (although it is conceivable that MA  acts in one orbit), in fact, we
know that a • X = eka(H)X for XG q - {0}, a = exp H, HE a   and that
a ' 0 = e".ko:(i/)0 for 0 G q* - {0}.  So A  acts on q * - {0} in two orbits.
Define D:   q * —> II by I>(0) = 1, D((wa)_1 • (±0O)) = ¿(a). Then Z) is
Borel, defined on all of q *, and

(1) D is well-defined:
Suppose  (ma)~l • (±0O) = ±0O.  Then, as above, ka(H) = 0 and ^(a)

= 1.
(2) D((ma)~l • 0) = D(<py(a) for 0 G q* - {0}, maEMA.  Let 0 G

q* - {0} and choose aj G A a af1 • (±0O) = <j>. Then

ZXOwar1 • 0) = D((maaxTx • (±0O)) = r>(aax) = ZW'(a).

Let dX denote Lebesgue measure on  q   and choose Haar measure dq
on Ô  such that fQ f(q)dq = Jq /(exp *)dY for fELl(Q, dq). If we let
0:  L2(Q,dq)-+L2(q,dX) via  (0/)(*) =/(exp JÏ),  then  0  is a unitary
operator between L2(Q) and Z,2(q).  For maEMA, let  Aka(ma) denote
the modulus of the automorphism q m (ma)q(ma)~l, # G ß.  As in [10, p.
392], since «i H» Aka(m) defines a continuous homomorphism of the compact
group M/center (G)  into the multiplicative group of positive reals, we have that
Aka(m) =1, for all m EM. Now let a = exp H, HE a   and  dim q = cka.
Then

Afca(a) = det (Ad (a)) = det (exp ad H) = exp (tr ad H)

= exp (ckaka(H)).
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So

fQ f(fl)dq = Aka(a) fQ f((ma)q(maTl)dq.
Now

Jq   (*f)(Ad(ma)X)dX = /„ /(exp Ad (ma)X)dX

= fQ KQnaMmaT^dq

= Aka(a~1) fQf(q)dq = Aka(a-1) /„   (*f)(X)dX.

Thus the modulus of In Ad(ma)X is also Afca(a) = eCkaka(H\
We now prove (**).  If / G L2(Q, Ha), then

TTT(man)f(q) = o^^ayQn^a^qam^A-^a)

and .   ./-i  .
ir_(man)f(q) = o(m) U T'(a)f(m-la-lgamn)A7*(a)

f=o *a

where manEMAQ. Now let  *: L2(Q, H0)-+L2(q,Ha) by  (?f)(X) =a'
'2//(exp .Y).  Then  *  is a unitary operator and for h E L (q, Ha) with */ —

«  we have

iïT(man)h(X) = (*7rT(nia«)0-1«)(r) = (^irT(man)f)(X)

= 7TT(ma«y(exp X)

= oQnyrfayQn^a.-1 (exp J*>«2 exp Xn)AZ*(a),     n = exp JT„,

= a(/«)r(ay((exp Ad^r^exp X„)A^

= o(wM«)f (exp (Ad (ma)"1* + Z„))A^(a)

- o(myr(a)h(Ad(ma)-lX + Xn)A^(a).

Similarly
7-1

7_(man)h(x) = o(m) fi r'íaMAdíma)-1* + X„)A^(a).
i=0

For XEq, fEL2(q,Ha), and 0Gq* we have

(F/)(0) = /q f^e^dX,

the operator-valued Fourier transform on q . We now use   F to realize ttt
and *_ on Z,2(q*,ZZa).  Let HEL2(q*,Ha) with  Vh = ZZ.
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nT(man)H(<p) = (FñT(man)rlH)(<¡))

= {  iïT(man)h(X)ei<t'<-x'> dX

= f   o(m)T(a)h(Ad(ma)~lX + Xn)AZ^(a)ei1>wdX

= o(m)T(a) /Q h(X + Xn)exV^j(Ad(ma)X)}A'£a(a)dX

= o(m)T(a) j   h(X)exp {/0(Ad (ma)(X - Xn))} Avk\(a)dX

= o(myr(a)Afa(a)exP{~i((ma)-i • 4>)(Xn)}H((ma)-1 • 0).
Similarly,

M
TT_(man)H(4>) = o(m) \\   T<(a)A*a(a)exp{- {((ma)'1 • 4>)(Xn)]H((ma)- ' • 0).

1=0

Now define F:  ¿2(q*, ZZCT) —>Z,2(q*, Z/a) by g(0) -> D(<p)g(<p). Then F is
clearly unitary and for B~lg = G  we have

(BÏ!T(mari)Brlg)((j>) = (5ÍT(ma«)G)(0) = Z)(0)iT(ma«)G(0)

= D(0)a(?«>(a)A^(a) exp {-/((ma)"1 • 0)(X„)} Gama)"1 • 0)
■

/-i
= Z)(0)a(m)r/(a) TJ   r''(a)A*a(a) exp {-/((ma)"1 • 0)(X„)} G«/™)"1 • 0)

1=0

/-t
= Z^irna)"1 • 0) n   r'(a)a(m)A^(a)exp {-/((ma)"1 • 0)(X„)} Gííma)-1 • 0)

1=0

for 0#O.

;-i
= o(m) JJ   T'(a)A^(a>-'«'"a) '»«^«^((ma)-1 -0),      0 * 0

1=0

= TT_(man)g(<t>),      0 =£ 0.
So 7TT ~ tt_  and  Theorem 2 has been proven.

Now let  G be a connected semisimple Lie group with finite center and
Iwasawa decomposition ZC4A. If M is the centralizer of A  in K, then M
is compact and F = MAN is a minimal parabolic subgroup of G. Thus ox ®
a2 ~ 2;- or- where  oy EM = Md, the sum is finite, and the Z>'s  are called the
Clebsch-Gordan coefficients for ox, o2. Theorem 1 now states that

7t(0j , r, ) ® 7r(a2, t2) »   2   ô - Ind^ (a- x t),      t - Tj t2 ,
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and so the problem of decomposing the tensor product of two principal series
representations reduces to that of knowing Ind^ Z,  for all LE (MA)". The-
orem 2 states that inducing from MA  is independent of the character on A   and
so if we could determine  lndGIA L  for pc-almost all LE (MA)", then we
would know Ind^ L  for all L E (MA)".  By Arm's reciprocity theorem, the
problem of finding  IndGJA L  for //¿.-almost all ¿6 (MA)"   is equivalent to
finding (it)MA   (note that the measure in this decomposition must be absolutely
continuous with respect to pc)  for uG-almost all it EG.  We now show to what
extent we can solve this last problem when G has real-rank one.

From now on, we assume that  G is a connected semisimple real-rank one
Lie group with finite center.  From Theorems 1 and 2, we know how to decompose
the tensor product of two principal series representations of G once we know

_    Ahow to decompose  (jt)MA   for iíg"^111081 aü  ^ EG, i.e., for almost all principal
series and all discrete series representations of G.

We now proceed to find (n)MA   when it is a principal series representation
by using Mackey's subgroup theorem.

Lemma 3.   Let MA act on   V by inner automorphism.   Then up to a set
of measure zero, .this action corresponds to the canonical action (on the right)
of MA on P\G.  If S Ç V is a cross-section for  V/MA,  then up to a set of
measure zero S also serves as a cross-section for P\G/MA.

Proof.   Let g = bv, bEP, vEV and maEMA. Then
ma • MANg = MANbvma = NMAvma = NMA(ma)~l v(ma) = MAN(maTlv(ma)
and so the first part is clear.  Now define a map ^:   V/MA —► P\PV/MA  via
V:   0 —*■ D where   0 G V/MA,  D is the double coset containing  v,  and  v
is any point in  0. That  ^ is well defined and onto is clear.  Now suppose
Uj, v2 G V lie in the same double coset.  Then v2 = nm'a'vxma   for some
m,m'EM, a.a'EA, and nEN.  So v2 = n(m'a'ma)((ma)~1vxma) and
since elements in NMA V are expressed uniquely, we have  (ma)~ 1vxma = v2
and vx,v2  lie in the same orbit in  V/MA. Thus V is also  1-1  (in fact a
Borel isomorphism) and the second part is also clear.

We now fix X^EQ^- {0} and X_2a E q_2a - {0}.

Lemma4. Let  V = {exp Wexp T = exp(W + T):  WE g*^, TE qx_2a},
and set

{exp(±-Y_a)} if dim %_2a = 0, dim g_a = 1,

{exp (X_a)} if dim 0 _2a = °>  dim g _a > 1,

{exp (tX_a± Y_2a):  t > 0}     if dim 0 _2a = 1,

{exp(/*_a + Y_2a):  t>0}   if dim g_2a > 1.

S =
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777e*« S is a Borel cross-section in   V for the orbits under the action of MA.

Proof.  As discussed in §4, we may assume that G is simple.  For the
classical simple real-rank one Lie groups it is immediate, by looking at the realiza-
tions of these groups and the action of MA  on  V given in §4, that the above
sets form cross-sections for  V/MA. That essentially the same arguments hold for
the exceptional case,  F4 9, is not so clear and we thank K. Johnson for forwarding
a paper [6] which made clear some of the underlying results in Kostant [9].  So
now let G = F49  and suppose  exp(fj.Y_a + Y_2a), exp(t2X_a + Y_2a)
lie in the same orbit in  V/MA.  Then there exists c = ma E MA  such that
c-lexp(txX_a + Y_2a)c = exp(r2Z_a + Y_2a). So a = e, m EMY_2a =
[mEM:  m • Y_2ot = Y_2a), and  Ad(mJtxX_a = t2X_a, i.e., Ad(m)X_a =
(t2lt1)X_a  and tx = t2. So S meets any orbit in  V/MA  in at most one
point. What we must show is that S does indeed meet each orbit.

We know that K = Spin (9), M = Spin (7), dim g^ = 8, dim g_2oi = 1,
and that M acts on both %_a  and  0_2<3i.  From the lemma of §4, we see
that M acts transitively on spheres in both i_a, g_2a  and hence that M must
act irreducibly on  g_a  and  g_2a.  If we put an Ad (Af)-invariant inner product
on  0 = g_o, © g_2a> then we have that M acts as  SO (7)  on  g_2a  and
as the  Spin respresentation on  %_a  (since these are the only irreducible repre-
sentations of M in these dimensions). If we let S_a, S_2a   denote the unit
spheres in g_a, g_2a  respectively, then we obtain an action of M on S_a ©
S_2a  for which we now show:  given (ux,vx), (u2,v2)E S_a ® S_2a, there
is an mEM such that m • (ut, vx) = (u2, v2). Since M = Spin (7) is transi-
tive on S_2a, we may assume Uj = v2 = u.  The subgroup of Spin (7) which
leaves v fixed is Spin (6) « SU (4) and when the spin representation of Spin (7)
acting on ¡^  is restricted to  Spin(6), we obtain the irreducible representa-
tion of SU (4)  on C4 « R8.  Since  SU (4) is transitive on S7, we obtain our
result.

Now we know that MA  acts transitively on   g_2a  and MY     A  acts
transitively on  g_a.  So let (W, T) E », with 0#K>Gg_a, O=7tFG0_2a.
Choose cEMA  suchthat Ad(c)T=Y_2a  and then choose mEMY_
suchthat Ad (m)(Ad (c)W) = tX_a, t > 0.  Then mcEMA  and Ad (mc)(W, T)
= (tX_a , Y_2a) as desired.

Note. (1)  Since Ad(m)tX = tAd(m)X, tER, mEM, A"Go, the
stability subgroup at any point in S C V under the action of MA is equal to

[m EM:  Ad(m)Y_2a = Y_2a, Ad(m)X_a= X_a} = MQ

and so along our cross-section S all the stability subgroups are equal to M0.
(2) Aside from a set of Haar measure zero in G, P\G/MA  can be iden-
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Lemma 5.   MA and MAN are regularly related.

Lemma 6.   For s ES, MA ns~lMANs = M0.

Proof.  In light of the correspondence between the action of MA  on   V
by inner automorphism and the natural action of MA  on P\PV, it suffices to
prove the following:

Claim.  Suppose H2  acts on ZZj\G on the right. Then ZZj\G is the
union of orbits  0¡.  Let x¡ E 0¡  and Mx. = the isotropy subgroup at x¡.
Then Mx. = H2 n x71Hxxi.

Proof of claim.
MXi= {hEH2: « • (Hxx¡) = Hxx¡} = {hEH2: Hxx¡hxTl = Hx }

= {hEH2:  « G jcT'ZZjJC,.} = H2 n xr'ZZjX,-.

Lemma 7. ¿er 77 GAf„ = {m EM: m~lvm = v} for vEV and let
LEMA.   Then tj-f¿^„-i, "  (£)*„.

Proof, t? GM„ =*• vr)v~' = n and Z,(uí)ü_j) = Z,(t)).
Now define

!car<
00,

cardinality of S,  if the cardinality of S is finite,m
otherwise.

Theorem 8.   Let S, M0 be as above,  o EM, tEA, and AR denote
the regular representation of A.   Then

Ho, t))ma « #(S)Ind^ (o)Mq - ^S)(lnd%Q (o)Mq x *F).

Proof.  We apply Mackey's subgroup theorem by identifying the collec-
tion of F :MA  double cosets in G with S and choosing any admissible mea-
sure c on 5 (note that when  #(,S) = °°,  there are no orbits of positive mea-
sure in  V and so v will be nonatomic).  Then

Ho,t))ma */J lnd%Ao(o)Modv(s)*mindMA (o)Mq

^mindM^{e}(o)Mo x 1 ~mOn<%0{o)Mo x Ind£} 1)

^#(^(Ind^o(a)Mox^F).

Note that in determining IndjjJ (a)M , we may use the compact version of the
reciprocity theorem and that the multiplicity of a o' x r EMA  occurring in
(7r(a, r))MA   does not depend on t. So the above decomposition can be written
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A ;

where pc  denotes Plancherel measure on MA = C  and  «(7V, a )  can be ex-
plicitly computed (see Theorem 16).

A

Now let  Gd  denote the discrete series representations for G. We now
A f, Aattempt to find (ir)MA   for tt G Gd. We first find (Ind£ o)MA   for  o EK.

Lemma 9.   77ie action of M on N by inner automorphism corresponds
to the action of MA on K\G on the right and if Sx ÇN denotes a cross-
section for N/M, then Sx  also serves as a cross-section for K\G/MA.

Proof.   Let g = kna,  kEK, aEA,  nEN and ma'EMA. Then
ma' • Kg = Knama' = Km~xnmaa' and so the first part is clear.  Define  ^:
N/M —► K\G/MA  by sending an orbit   0 to the double coset D, where D is
the double coset containing u, and v is any point in  0.  Two points in the
same orbit in N/M clearly lie in the same K : MA   double coset and so \p" is
well defined.  That  ^ is onto is clear.  Now suppose nx, n2  lie in the same
K:MA  double coset. Then n2=knxma  for some kEK, maEMA. Thus
«2 = (km)(m~lnxm)a  and since elements in KNA  are expressed uniquely, we
have m~lnxm = n2, i.e., nx,n2  are in the same orbit in N/M and  * is
1-1.  Lemma 9 is now clear.

Lemma 10.  Let Xa=8X_aEia- {0},  Y2a = 8Y_2a G g2a - {0},
and set

{exp(tXa):  t E R} if dim g2a = 0, dim 0a = 1,

{exp(tXa):  t>0} if dim 02a = 0, dim ga > 1,

{exp(tXa + sYa):  t > 0, s E R}    if dim g2a = 1,

{exp (tXa + sYa):  t > 0, s > 0}    // dim g2a > 1.

Then Sx   is a Bore! cross-section in N for the orbits under the action of M.

Proof.  We proceed as in Lemma 4.  Since the classical cases are again
clear by inspection, we shall deal only with the exceptional case.  First suppose
exp(txXa + sxYa), exp(t2Xa + s2Ya) lie in the same orbit in N/M. Then
there exists m EM suchthat  Ad(m)txXa = Ad(m)t2Xa, Ad(m)sxY0i =
Ad(m)s2Ya  where tx,t2,sx,s2  are ah > 0.  Thus tx = t2,  sx = s2,  and
Sx   meets any orbit in at most one point.

As in Lemma 4, M acts transitively on spheres in  g2a while MY    acts
transitively on spheres in  ga.  So for (W, T) E n = LA(N) we may choose
m EM such that Ad(m)T= sYa  for some s > 0 and then an «7' EMY
suchthat Ad(m')Ad(m)W = tXa  for some t > 0.  Then mm EM and
Ad(m'm)(W, T) = (tXa,sYa) and hence 5j  meets every orbit in N/M.

Note. (1) The isotropy subgroup along Sx   are again all equal, and in
each case we have  4f(Sx ) = °°.

St'

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DECOMPOSITION OF TENSOR PRODUCTS 197

(2) Since  Ad(m)8Xa = 0(Ad mXa)  for m EM and XaEqka, k =
1,2, we have that   {m EM:  Ad(m)Xa =Xa}= {mEM:  Ad(m)9Xa = 8Xa}.
So M0 = {mEM:  Ad(m)X_a = X^, Ad(m)Y_2a = Y_2a} = {mEM:
Ad(m)Xa = Xa, Ad(m)Ya = Ya} = the isotropy subgroup (s)  along Sx.

(3) We may identify 5j   with K\G/MA  and so the following is clear.

Lemma 11.  K and MA are regularly related in  G.

Lemma 12.  For s ESX, MA O s~lKs = M0.

Proof.   Same as claim in Lemma 6.
A

Theorem 13.   Let Sx, M0 be as above and oEK.   Then

(^4o)MA^^nd»o(o)MoxAR).

Proof.   Mackey's subgroup theorem implies that

Ond£ o)MA « J® Indjft (o)Modv(s)

where  v is any admissible measure on Sx.  So as before

(Ind£ o)MA * mSx)(lnd'MQ (o)Mq x AR) « =o(lnd£0 (o)Mq x aR).

A A «

Lemma 14.   n0 G Gd =>   3 S E AT 3 tt0 is contained in  Indj£ 5.
A

Proof.  We use Ahn's reciprocity theorem. We know that, for all it G G,
A p

(tt)k — 26ejf w(7T, 5)5  and so, for all 5 G AT, we have Indj£ 5 ~
J¿ «(7T, 8)ttdpG(n). Now there exists a 6 GZC for which «(7r0, 5) =£ 0 (lest
(ff,,^ = 0) and since pc({tt0}) > 0, we have found a 8 EK for which 7r0
is contained in Ind£ 5.

Theorem 15.   7r G Gd ■» 00m,< - /*t n(o, r, 77X17 x f)dpc(o, r) w/iere
A ^      Ä

uc is Plancherel measure on  C = MA — (MA)  and n(o, t,ti)E{0, 1,2, • • •, °°}.
A (-1

Proof. By Lemma 14, 35GZC suchthat 7T is contained in Ind£ 6
and by Theorem 13

(Ind/c °)ma -/I n'(°> 5> »X» x r)dpc(o, t)

where n'(o, 8,tt)E {0, *»}.  So by [4, p. 273] we have

¥)ma - J® n"(°> T> 8> ffXa * t)<Ko, r)

where v <pc  and «"(a, r, Ô, 7r) < «'(a, t, S, tt) for v almost ah (a, t). We
may now write «"(a, t, 6,7r) = «"(a, t, 7r) since, if 7r is also contained in
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J® n"(o, T, S, 7r)(a x T)dv(o, t) « (n)MA at f® n'¡(o, t, ô', 7r)(a x T)dv2(o, t)

and hence that v ~ i>2  and n" = «2  for v almost all (a, t). If we now
choose a ^-measurable set EEC  such that  v  and  x¿- * Mc  Ofe  is the
characteristic function of E) have the same null sets, then by [12, p. 123] we
obtain

OOiiM Ä/| ""(°> T> "X* x O^Gfe ' J"cXCT> *)•

If we now define

j«>,r,7r)   if (o,t)EE,
n(o, t, it) » < .

(0 otherwise,

then we have  (77)^^4 ~ /? «(<j, t, 7r)(a x T)dpc(o, r) and the proof is com-
plete.

A

Combining Theorems 8 and 15, we now see that for pG  almost all 77 G G

Wma ~f¿ n(°> T> *Xo x T)dpc(o, t)
A A A

where n(o, r, it) is a measurable function on M x A x G. So by Ann's
reciprocity theorem and Theorem 2, we have for all (o, r) G (MA)"

lndMA o XT at j*| n(o, r, Tt)ndpG(TT)

where n(ff, r, 7r) can be computed explicitly for n in the principal series and
A (~,

n(o, t, tt) E {0, 1, 2, • • •, <»} for 77 G Gd. Note that since Indjj^, o x t is
independent of t EA, we may now conclude that «(o, r, n) = n(o, it).

Theorem 16.  Let G be a connected semisimple real-rank one Lie group
with finite center, let n(ox ,tx), tt(o2, t2) be two principal series representa-
tions, let ox ®o2 = 2"_j bjOj, let M0 be as in Lemma 6, and for Xi > X2 G
Rep(M0) let   I(Xi,X2) denote the intertwining number for Xi  ond X2>
Then tt(ox , tx) <g> v(o2, t2) =*Tc®Td where Tc is a continuous direct integral with re-
spect to Plancherel measure on  G of representations from the principal series
of G and  Td is a discrete direct sum of discrete series representations.  If
dim 8_2o, ¥= 0, then the multiplicity of ir(o, r) in  Tc is either 0 or » ac-
cording to whether SJLj I((o)Mo, (Oj)Mo) is  0 or not. If dim B_2a = 0,
then the multiplicity of   tt(o, t)   in    Tc   is finite and equals
e • SJLj 1((o)Mq, (Oj)Mo)bj where e = 2 if dim qa = 1 and e = I  if
dim ga > 1.

Proof.   All but the multiplicity of 7r(a, r)  in  Tc is clear.  Recall that
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n
tt(ox,tx) ® 7t(o2, t2) s* £ èylnd^ a,- x /,      t = txt2,

and that the multiplicity of 7r(o, r)  in  Ind^ o- x t   equals the multiplicity
of Oj x t' in  (n(o, t)ma ~ #(S)(lndMQ(o)Mo x AR), viz.,  #(S) • (the
multiplicity of o,-  in  Ind^o(a)M()).

Now let

(o)M   =   Z   «(a, p)p,      (Oj)M   =    Z    «(o,-, p')p,
PBMq p'SMq

and

ve/ii

Then by compact reciprocity, the multiplicity of a-  in IndjJJ0(o)M    is given
by:
a    = «(IndJiJo (o)Mq, Oj) =   Z   «(ff, P)"(Ind^o p, ay)

peM0

=   Z   «(a, p)n((Oj)M    p) =   Z   «(a, p)«(a-, p) = I((o)Mo, (a.)Mn).
pSAi0 P6M0

So the multiplicity of 7r(a, t) in 7r(aj, Tj) <8> 7r(a2, t2) will be

m - Z I((a)Mo, (a,-)^)*,,-

and the theorem is then clear from Lemma 4.
Note that even though we are not able to give the multiplicity of a discrete

series representation occurring in  Td at this time, Theorem 13 does provide us
with some information about discrete series representations which do not occur
in  Td.

VI.  Examples.
A. G complex. When G is a connected complex semisimple Lie group,

we may use the techniques of §5 to simplify some of the recent work of Floyd
Williams [18]. When G is complex, MA  is a Carian subgroup and the princi-

A A A

pal series  {77(0, r):  a G M, t G A} consitute almost all of G.  So by Theorems
1 and 2 of §5 and Ann's reciprocity theorem, we know how to decompose
7iiaj, Tj) ® 77(ct2, t2) ~ Ind^ (o-j^X^i^)  once we know (*(<*« t))m¿   for
almost all (o, t) E M x A.

Let   {a15 • • •, a¡} denote the simple roots of g,   {ax, • • •, a¡,
a/+j, • • •, ak} the positive roots, X, E g_a - {0},

V0 = j II exp ZjXj E V: z¡ E C, zf #0  for  I </</[•
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and

V = j fi exp ZjXj EV:  zf = 0,   !</ </ (•

Then   V - V0  has Haar measure zero and Williams shows that   V0/MA   can be
identified with V' (*&Ck~l).   Choosing S = V', we see that S is either one
point or infinite depending upon whether N is abelian (if and only if all posi-
tive roots are simple) or not and that up to a set of Haar measure zero in G,  S
may be identified with MAN\G¡MA. For vES, let Mu = {cEMA:  c~xvc
= v}. Then:

Lemma.  M0 = Z(G), the center of G, for each  v ES.

Proof.   Clearly Z(G) Ç Mu  for each v E S. So let cEMu where
v = exp X, X= 2a>0 X_a, X_a G g^ - {0}.  If exp H = c, then a(H) =
0 for all a  [in fact mx= {HEh: H-X = X}= {HEh:  S eot(//)ALa =
SZ_a}= {ZZG«:  a(ZZ) = 0, all a} = {0}].  Let g = exp(h0 + 2 Xa).
Then

c-^c = exp (eadHhQ + Z ead//*a)

= exp (hQ + Z ea(">Xa) = exp («0 + Z Xa) = g,

i.e., c E Z(G).  Thus by applying Mackey's subgroup theorem, we obtain

«*. r))MA */®Ind^ (a x r)M/M(u)~e -Ind^G)(a)z(G)

where  e = 1   or °° according to whether N is abelian or not.  Note that
A

(o)ziG)  is irreducible for o EM. Hence we have the following:

Theorem (Williams, 1972).  Let G be a connected complex semisimple
Lie group and MA a Cartan subgroup of G.  Suppose tt(o. , r2), tt(o2,t2)

A A

are two principal series representations where ox, o2EM, tx,t2 E A.   Then

tt(ox, tx) ® 77(a2, t2) - J| e ' *(o, r)dpG(n)

where the elements it = n(o, t) occurring in this decomposition are precisely
those for which  o and oxo2  coincide on Z(G) and e= 1  or °° according
to whether N is abelian or not.

B.  G = SL(2, R).  When  G = SL(2, R),  our techniques yield a complete
solution to the problem of decomposing the tensor product of two principal

A

series representations, since we are able to compute  (tt)ma   for it EGd.  Recall
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¡j U      j:  ad-bc=l,a,b,c,dERÍ,      K = SO(2),

/±1      0
M = Z(G) =

\ o ±1
A A +

/4*R,  and M= {o~}.  The discrete series for  SL(2, R)  (see [16]) can be
parameterized by nonzero half-integers and briefly described as follows:   On the
upper half plane F,  for « = 1, 3/2, 2, • • •   (resp.  « = -1, -3/2, -2, • • • ),
we take the Hilbert space H2 n(P) of holomorphic (resp. conjugate holomorphic)
functions on F with the inner product

ß8)" = r(2«-1) fpf(pc + iyWx+V)y~2+2^dxdy

while for « = J4  (resp.  « = -Î4), Z/2 ,/2(Z>)  (resp. ZZ2 _y2(P))  is the space of
holomorphic (resp. conjugate holomorphic) functions on F with the property
that /T.. l/(x + z»l2 (¿j: is bounded uniformly in jy  for y > 0.  Intrusease,
/ has boundary values almost everywhere on the real axis and if f(x), g(x) de-
note the boundary values of f(z), g(z), then the inner product is given by
f-m f(x)g(x)dx.   For « = {±1/2, ±1, ±3/2, • • • },  we have a representation

A

DnEG acting on H2 „   via

A,Gr)/(z) = (^ + <0"2"/(flTd)>      " = !/2' ». 3/2. • * ' •

Dn(g)f(z) = (bz + dT2ln'f(^rij,     n = -1/2, -1, -3/2, • • •,

where g = ("c   d).  The discrete series of G = SL(2, R)  is the family of repre-
sentations Gd = {Dn:  « = ±1, ±3/2, ±2, • • • }.  The representations D,Á, D_Vi
are not square-integrable and it is known that DVl ®D_Vz ~ 7r(o-, 0).  For
t G A « (0, °°),  let dp(t) = dt/t  denote Haar measure on A  and L2(A) =
Z,2((0, °°); dp).  For a.tEA, fEL2(A), let p(a)f(t)=f(at) be the regular
representation of A  and p~(a)f(t) = f(a2t).  Then

Lemma,  p ^p".

Proof. Let  tf:  L2(A)-+L2(A) by  ^(f(t)) = 2~v'f(s/t), t E (0, °°).
Then
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»*/ii2 - ;• i*/»i! * - i/0" wvf

4ir«"|5T=/»l/(')|27=w|:
and for F= *-1/

OMa)*-1/)« = 2-'/jp(a)F(V0 = 2~*F(aV0

= /(a2r) = (p>)0(f).

Lemma.

»'''xp   // n = ±1, ±2, • • •,
(PnW «

a   x p    z/ n = ±2-, ±-,

Proof.   Let « = 1/2, 1, 3/2, • • •   and

/±1     ON/a"1    o\
g = «ia= eM.

\ 0   ±l/\0      a)

As in [16], for n > % we let H^2ny(P) be the Hubert space of functions on
(0, o°) with the inner product

(0' *}» = ¡¿T JrT ̂(0*(7>-2"+1 *
and define the inverse Fourier-Laplace transform of a holomorphic function /
in H2>n(P) by

(F/xo = (2*r*J"l /(*+«r****«*.
This integral is independent of y > 0, F/(0 vanishes almost everywhere for
t < 0, and  F: H2n(P)—>H^2ny(P) is an isometric isomorphism.

For « = Vi, the inverse Fourier-Laplace transform on H2 ,A(P) reduces
to the ordinary Fourier transform on Z,2(R), i.e.,

F(0(0 = (27r)-,'4/roo f(x)e~itxdx

and, as is well-known,   F/(r) vanishes almost everywhere for r < 0. Setting
Hi2tVl)4P) = Z-2((0, °°), dt), we have that   F is an isometric isomorphism from
H2'V2(P) to ZZ(2>1/4r(F).
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For fEH2n(P), n = 1/2, 1, 3/2, • • •,  and g = ma EMA,  we have
D„(g)f(z) = (ma)l2nf(a-2z). We now use   F to realize  (Dn)MA   on ZZ(2>„r(F):

(l=Dn(g)r-1g)(t) = (¥Dn(g)f)(z)   where   ¥~xg^f.

= (27r)-,/i fR (ma)"2nf(a-2z)e-itzdx
(with the obvious changes for n = &)

= (2irTV2jR (ma)~2nf(z)e-ita2za2 dx

= m-2na2-2n(2n)-,A fR f(z)e-ita2z dx

= mr2na2-2ng(a2t).

Set   (W(n))"f(t) = (2t)~n+Vif(t). Then (W(n))"  is a unitary mapping from
Hi2,nr(F) t0 Hi2,Vi)<F) and we may now realize (Dn)MA   on H(2tVlT(P):

ÄÄ-'/XO = MÎO/«-2"a2-2"F(a20

= (2í)~"+,/2m-2"a2-2"F(a2í)

= (2t)-"+^m"2^2 - 2"(2a2r)" " 'Af(a21)

= m~2"af(a2t).

Now set  $(/(r)) = r1/2/(r).  Then $ is a unitary mapping of ZZ(2y2r(F)
= Z,2((0, °°), dr) into ¿2((0, °°),dt/t) = L2(A) and

(«?„(?)*-^O = (®Dn(g)F)(t) = í'/2«i-2"aF(a2í)

= t*m-iMm-lr*f(ß2t) = m-2nf(a2t).

For « = 1, 2, • • •, this last representation is equivalent to  o+ x p
while for « = 1/2, 3/2, • • •, this last representation is equivalent to  d~ x p.
A similar argument holds for « = -1/2, -1, -3/2, • • •   and so the lemma is
now clear.

Now recall that MA  acts on  V in two nonzero orbits and so  (rr(a, t))ma
MA*M2 Indjjí^ a ~ 2(o x p) for a G M, t E A. Thus we have

Theorem (Pukanszky, 1960).  Let ir(ox,Tx), tt(o2,o2), ox,o2E
M = {a* }, Tj, t2 G A be two representations from the principal series of
G = SL(2, R).  77ie«
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77(a1,T1)®77(CT2,T2)=:<

2 fi n(o+, r)ciuG(77) ©       Z        ©Dn
J ° /i=±l,±2,'«>

if oxo2 = o+,

2f%TT(0-,T)dpG(TT)® Z @Dn
J *» n=±3/2,"»

if oxo2 = o .

C. G«SOc(3, l)**SL(2,C)/{±el When G = SOe(3,1), 5 is one point,
M0 = {e},  (tt(o, t))Mj4 ~ Ind^M 1 ~ MAR  for ail (o, t) G M x A, and there
is no discrete series for G.  Thus we obtain:

Theorem (Mackey, 1952-Naïmark, 1958). Let tt(ox,tx), tt(o2,t2)
where ox, o2EM= SO(2)", tx, t2 EA, be two representations from the
principal series of G - SOe (3, 1).  77zen

7r(0j, t,) ® tt(o2, t2) =* J® 7r(ff, T)dpG(ir).

Note that Theorem 16 also yields a complete solution to the decomposition
of the tensor product of two principal series representations for  G =
SOe (2« + 1, 1), « > 1, since in this case  Gd = 4>.

D. G = SL(«, R), « > 3. We shall now show how the techniques de-
veloped in §5 yield a complete solution to the problem of decomposing the
tensor product of two (minimal) principal series representations of G = SL(«, R),
« > 3.  Let D(ax, • • •, an) denote the diagonal matrix in G with entries
ai > * " * > an   an^i let ei(tKai > * * *.a«)) = ai> í = 1, * • *, "• We have that

8 = {X E gl(«, R):   tr(*) = 0},     f = {XE 0:  X< = -X},

P = {XE 0: X* = X}, a . |¿)(aj, • • • ,an): a, G R, £ a,- - o[,
i=i

-e,:8  is negative transpose, A = {±(e¡ - ej):   1 < / </ < «}, A+ = {e,-
1 < i </ < «},   0e._e. = R • F,y (F1;- is the « x n  matrix consisting of all
zeros and a single one in the lyth place), the simple roots are {e¡ - e2, e2 - e3,
• • •, e„_j -en}, K = SO(n), A  is the subgroup of all diagonal matrices with
positive diagonal elements, N is the subgroup of all matrices which are one on
the diagonal and zero below and M is the subgroup of ah matrices which are
±1   on the diagonal and zero elsewhere.  For «  odd, the center of G is Z(G)
= {e} while for «  even, Z(G) = {±e}.  For «  even, we put (Z(G))" =
{X+, X-}-  The group of all diagonal matrices in  G, MA, is a Cartan subgroup
of G and the principal series of G is the family of representations   {ir0(o, f)
= Ind^jy o x t:   o EM,  r G .4}.

For « > 3, Rank G # Rank K and so there is no discrete series to con-
tend with.  However, G has Cartan subgroups not conjugate to MA  and forLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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each conjugacy class there is a cuspidal parabolic subgroup and a corresponding
family of continuous series representations,   F,  for which pG(F) =£ 0.  Let
F0 = MAN, a minimal parabolic subgroup of G. We now construct a complete
set of nonassociate cuspidal parabolic subgroups of G.  If t is the largest integer
such that  2t < «,  then there are exactly t mutually nonconjugate Cartan sub-
groups which are not conjugate to MA   [17, vol. I, p. 95] and so there are
t + 1   nonassociate cuspidal parabolic subgroups for G.  The following con-
struction is detailed in [17, vol. I, pp. 66-78].  Let 8X = {ex - e2}, 92 =
\ex — e2, Cj— e^i, ' ' ', ot = {ex — e2, e3 — e^,        , e2r_j ~ e2t}.  Let
<0,-> denote the set of those  X G A which are linear combinations of the ele-
ments in 0j,  {0,-)* = A* n <0->, and  1^(0,) = 2Ae<9.>± 0X  (note that  O,-)*
= 8¡). If  0(0,.) denotes the subalgebra of  0  generated by   n+(0(.) + ""(0,-),
then  0(0,-) = f (0,-) + p(0,-) where   i(8¡) = 0(0,-) n (, f (0,.) = 8(0,-) n p .
Furthermore,  0(0,-) is semisimple and  0(0,)= f(0j) + P(0,)  is a Cartan de-
composition.  For XG0,. we fix XE$X  with -B(X, 8X) = 1.  Then
[8X, X] = QKE 0(0,-).   Let  af  denote the orthogonal complement (relative

to Be)  of 2xe9/ R •  Qx in a. For x = xEX2 E 8ej_e2.  ßA =
D(+x2, -x2, 0, • •"•, 0)  and tt(D(ax, • • •, a„)ßx) = x2(aj -a2).  Since
B(X, Y) is a multiple of ti(XY), we have that  dj = D(ax, ax, a3, • • •, a„).
Similarly, we have for k < r,  afc = D(ax, ax,a2, a2, • • • ,ak, ak, a2k+x, •••, an).
Now set n,-= SXGA+_e. 9x,  o,-= 0(n,-), and

9, = p0 + n-(0,.) = n+(0,-) + n-(0,-) + Z  RQX + o,- 4- n.

(p0 = LA(P0)). Denote by A¡, N¡, V¡ the analytic subgroups of G  corre-
sponding respectively to o,-, n;, \>¡. Note that   V¡ has the following form

1   0
0  1
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where there are  i  blocks of the form  (¿   j ).  Let

m, = n+(8i) + n-(0/) + Z RQX,

Xx     Yx
Zx -xx

i.e.,

m  =
k

Xk      Yk

%k   ~Xk

Let Me.  denote the analytic subgroup of G  with Lie algebra m(.  and Mg .(K)
denote the centralizer of  o,- in K. Then

/

,/SL1(2,R)

M„t = SL,-(2,R)

[the indices indicate copies of SL(2, R)]   while Mg.(K) has the form

/S0*(2)

SOf(2)
±1
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where the determinant must, of course, be   1.  Finally, let M¡ = Me. =
Mg.(K)Me¡.  Then

/SL*(2, R)

Mt = SLf (2, R)
±1

\ *>i
P¡ = MjAjNj is a parabolic subgroup of G containing F0  (with Langlands de-
composition MfAjNi), and PiVi is a dense open submanifold of G whose
complement has zero Haar measure. Clearly each Ff  for i = 0, 1, • • •, t is
cuspidal and since  dim A¡¥=Aj, i^j, they are all nonassociate. Thus F0,
• • •, Pt is a complete set of nonassociate cuspidal parabolic subgroups of G.
We shall denote the continuous series corresponding to P¡ by   {tt¿(o, t) =
IndS a xt:  OEM., tEAA.

id1 n
Theorem 1 now says 7r0(àj, tx) ® tt0(o2, t2) ~ Ind^ (aj02 x txt2).

Thus, by Theorem 2 and Ann's reciprocity formula, we need only find the
A

multiplicity of ffja2 x TjT2  in (ir)MA   for pG -almost all it EG, i.e., for al-
most all 7rf(ff, t), i = 0, • • •, r.  Since the various continuous series representa-
tions are all induced representations, we may apply the subgroup theorem.

(1) Let 7r0(a, t) be a principal series representation.  Since the action of
MA  on MAN\G on the left corresponds to the action of MA  on  V by inner
automorphism, we may identify MAN\G/MA  with  V/MA.  Let   o = LA(V)
and  d° = {2a&±-Xa: Xa^0 for each a G A-}. Then  b° is an open,
dense, conull subset of 0   invariant under the action of MA. Let Vo = exp tt°.
Then  Vo  is a dense, conull subset of V and the subgroups MAN, MA  will
be regularly related in G if we can show  Vo/MA  is countably separated.
Since  Vo/MA « o°/MA  (recall that exp  is a diffeomorphism and takes orbits
to orbits), it suffices to show ö °/MA  is countably separated. This will follow
from [3, p. 42] once we show that the orbits in  Ö °/MA  are locally closed [a
subset Z of a topological space  Y is locally closed if Z is the intersection of
an open and closed set].  Since M is compact, it suffices to show that the
orbits in  o°/A  are locally closed.

Now let X = S Xa E ti0,  y = 2 ra G t>°, and   {exp Hn} be a se-
quence in A with (exp Hn) • X —*Y. ThenLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(exp Hn)-X= Y..ea{Hn)Xa — Z Ya

ea(Hn)-+Ya/Xa>0 for each a G A"

"* a(Hn) converges for each a G A

=> |3(ZZn) converges for each ß G 0*

=> 3ZZ G a  such that j3(ZZ„) —> ß(H) for all ß E a*.
Now exp HE A   and

(exp H„) • X -   Z   ea("n)*a — Z    e^""^ = (exp Ä) • X.
ûiëA" a£i~

Thus
(exp H) • X = Y,      YE0X= {a- X: aEA},

and  0X is cfoserf in  0 °.
We now show that the stability subgroup of any X E \>°  under the action

of MA  equals Z(G).  Let c = Z3(Cj, • • •, cn) E MA  and let

^31      ^32      *

\Xnl     Xn2

Then

Xnn-1

= (x2x, x3x, x32, • • ', xnX, • ' ' ,xnn_x)

-1
C '   (*21>  • • • . *//>  • • • > *„„-l) = ¿(*21>  • * • . X¡j, "• , Xnn_x)c

= (c2cx-lx2x, • • • , c,.^1*.., • • . , cnc-lxxnn_x).

Now let x = xE¡jE 0e._e., f<i. Then exp X = I + xEtj, and  exp(cI-cr1X>
= c • exp(X) = exp Aa(c)X = exp(c • X).  Thus c - X = cicJxxEij and M4
acts in one nonzero orbit on each root space.  Now suppose X = S/<(- x^E- E
0°  and c = Z)(cj, • • •, c„) G AM  with c • X = X. Then c X =
Vj<icf7xxijEij = 'ZxijEij and Jty * 0, j <i, implies that  cn_xc~x_2 =
Vf1 -••-•- <V?ni2 = 1,  i.e., c„ - Cj = c2 = • • • = c„_2 = c„_j.
Since   1 = U%x c¡ = cnn,  we have that  c EZ(G).  Thus

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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{cEMA:   C'X = X   for   *GÖ0}
= {cE MA:   c • v = v   for   v E Vo = exp t>°}= Z(G).

Now by Mackey's subgroup theorem, we have

Qn¿MAN ° * T)mA  M Slo,MA  IndZ(G) (P)zrG)dV(v)

- °°(Indf(G) (PhiC) x P)
where p  denotes the regular representation of A  and v is any admissible
measure on  V/MA.

(2) We now find  (Tnd£. a x t)Mj1   for i = 1, • • •, t. Since the action
of MA  on P¡\G corresponds to the action of MA  on  V¡ by inner auto-
morphism, we may identify P¡\G/MA  with  VJMA.  Let   Vf = V¡ n F°.  Then
T7^  is a dense, conull subset of V¡ such that the stability subgroup at any  v E
Vo  is equal to Z(G) (same proof as in (1)).  By an argument similar to that in
(1), we have that   Vo/MA  is countably separated.  If we now let u¡ denote any
admissible measure on  VJMA, we have by Mackey's subgroup theorem

(mdg a x t)ma ~ ¡ltlMA Indg&j (o)z(G) dV¡(v).

there is one nonzero orbit in  Vo/MA, Mx = SL* (2, R), and for  o EMX     we
have  (a)Z(G) = °° • 1.  Thus

(Ind«   axT)ifiûf-hdÇ}la!-wA

For « > 3,  dim (F¿8«4) > 1  and so for I = 1, • • •, t

and£. a x t)ma * «and^(c) (a)z(G) x p).

So for n  odd and i = 0, 1, • • •, t we have (Ind«f a x t)ma ~ °° Mj4F. For
n  even, we let

T+ = Z a    and     F~" ■ Z a.
aeM,(a)z(G)=X+ aeM,(a)z(G)=x-

Then for i= 0, 1, • • • ,t
j°°(r+ x p)    if (a)Z(G)^°°X+,

(Ind£. a x t)^ «  1
\°°(T-xp)    if (o)z(G)-°°X~-

The following theorem is now clear.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem.  Let t0(ox,tx), tt0(o2, t2) be two principal series representa-
tions for G = SL(«, R) for n>3.  Then if n is odd,  tt0(ox, tx) ® 7r0(cr2, r2)
~ GR, while if n  is even

!j$+^dpG(ir)    if <V2)Z(G) = X+,

/?_ ~nrf/ic(ir)    if (°X°2)Z(G) = X~,

where  G+ = {tt G G:   (tt)z(g) = °°x+ },  G_ = {rr G G:   (tt)z(g) = °°x-}.
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