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ABSTRACT. Let G be a connected semisimple real-rank one Lie group
with finite center. It is shown that the decomposition of the tensor product of
two representations from the principal series of G consists of two pieces, T,
and T4, where T, is a continuous direct sum with respect to Plancherel mea-
sure on 6 of representations from the principal series only, occurring with
explicitly determined multiplicities, and T4 is a discrete sum of representations
from the discrete series of G, occurring with multiplicities which are, for the
present, undetermined.

I. Introduction. let G be a connected semisimple Lie group with finite
- center. If P is a cuspidal parabolic subgroup of G and P =MAN denotes a
Langlands decomposition for P, we denote by Md the square-integrable ir-
reducible representations of M. For ¢ € M , TE A 0 x T is a representation
of MAN via (o x 7¥(man) = o(m)r(@) and the family of representations

{n(o, 1) = Indgo X T oej{d, 162}

is called the nondegenerate continuous series corresponding to P. In the case of
a minimal parabolic subgroup, it is customary to say principal series. An impor-
tant problem is that of decomposing the tensor product of two such representa-
tions into irreducibles. In §5, it is shown that this problem “reduces” to knowing
how to decompose tensor products of representatlons from M and how to de-
compose IndM 4 0 x7 forall (o,7) GM x A. One of the main goals of this
paper is to show to what extent these last two problems can be answered when
G has real-rank one, P = MAN is a minimal parabolic subgroup, and we are
decomposing the tensor product of two principal series representations.

The main result is that this decomposition consists of two pieces, T, and
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178 R. P. MARTIN

T4, where T, is a continuous direct sum with respect to Plancherel measure on
G of representations from the principal series only, occurring with explicitly de-
termined multiplicities, and T, is a discrete direct sum of representations from
the discrete series of G, occurring with multiplicities which are, for the present,
undetermined. Let V = 0N, where 6 is an appropriate Cartan involution on
G, and S denote a suitably chosen cross-section for the action of MA on V.
Then both the cardinality of S and the isotropy subgroup at v, €S under the
action of MA (which is actually independent of v, € §) play decisive roles in
determining the multiplicity of a principal series representation occuring in T,.

For real-rank one groups we shall show, by using Mackey’s tensor product
theorem, that the problem of decomposing the tensor product of two principal
series representations reduces to knowing Indf, 4 0 %7 forall o x7€(MA)".
We then show (in fact for arbitrary rank) that Indf,, 4 0 % 7 is independent of
7€ A and hence it suffices to determine Ind$, o x 7 foralmostall ¢ x 7€
(MA)~. By applying a reciprocity theorem due to N. Anh, this amounts to deter-
mining the multiplicity of o x 7 in the restriction of m to MA, (m),,,, for
almost all 7 € G.

If = is an irreducible representation from the principal series of G, then
(m)yr4 is computed by applying Mackey’s subgroup theorem to MAN and MA.
It is here .that explicit knowledge of V/MA is needed. If S denotes a suitable
cross-section for this action, then S depends not only on the number of positive
roots which are not simple roots but also on the dimensions of the root spaces.

For irreducible representations 7 of the discrete series of G we first give
a new proof (one using Anh’s reciprocity theorem) of the fact that there exists a
6 €K such that m is contained in Indf(; 8. We then use Mackey’s subgroup
theorem to compute (Indg 8),,,. From this it becomes clear that

(Myrq = :, 4 10, 7, 7)o x 1)dpuc(o, 7)

where u, is Plancherel measure on (MA)* and n(o, 7, 7)€ {0, 1,2, +, o},

The problem of decomposing the tensor product of principal series repre-
sentations has been considered for SL(2, C) by G. Mackey in [13] and M. A.
Naimark in [14], for SL(rn, C) by N. Anh in [1], and was completely solved for
complex semisimple groups by F. Williams in his 1972 thesis [18]. For SL(2, R),
the problem was completely solved by L. Pukanszky in [15]. We shall comment
on these cases in §6 of this paper and show how the techniques developed in §5
not only can be used to give new proofs of these results but also can be used to
give a complete solution to the problem of decomposing the tensor product of
two (minimal) principal series representations of G = SL(n, R), n > 3.

The author would like to thank Professor Ronald L. Lipsman for the many
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THE DECOMPOSITIGN OF TENSOR PRODUCTS 179

II. The semisimple theory. Let G be a connected semisimple Lie group
with finite center and Lie algebra g. Let ¢ =t + p be a Cartan decomposition,
0 denote the corresponding Cartan involution, and K = the maximal compact
subgroup of G with Lie algebra {. Let B,(X, Y) =-B(X, 0Y) where B is
the Killing form and X, Y € 8. Then B, is an Ad(K)-invariant inner product
on g which makes ¢ into a real Hilbert space. Let a be a maximal (abelian)
subalgebra of p and a* = Homg (a, R) its dual. For A€ d*, put g, =
Xe¢ [H X] =NHX, forall H€a}. If A#0 and g, # {0}, then A
is called a (restricted) root and m, = dim g, is called its multiplicity. For
a€a*, let H, € a be determined by o(H) = By(H, H,) for HEa. Let a'
be the open subset of q where all restricted roots are # 0. The components
of a' are called Weyl chambers and if we fix a Weyl chamber @*, a root «
is called positive if it is positive on @*. Let A (resp. A,) denote the set of
roots (resp. positive roots). A root a € A, is called simple if it is not the sum
of two positive roots. The simple roots form a basis for a*. Put

n_aEEA+ 8or O =00 *aEZA_'_ 8w
and let N, ¥V and A denote the analytic subgroups of G with Lie algebras
n, v and a respectively. Then G = KAN is an Iwasawa decomposition and
the dimension of A is called the real-rank of G. Let M (resp. M") denote
the centralizer (resp. normalizer) of 4 in K. Then M is normal in M’, both
M, M are closed, W=M/M is the (finite) Weyl group, and MAN is a (minimal
parabolic) subgroup of G.

If m'l, LN m'w is a set of representatives of W and P = MAN, then
we have the Bruhat decomposition G = Ui‘;l PmiP. This union is disjoint and
exactly one of the summands, viz., Pm*P where Ad m*et =6~ =
{H: o(H) <0, forall >0}, isopenin G. So MANV has a complement
of measure zero in G.

By a parabolic subgroup P of G is meant a closed subgroup of G such
that

@) if b= LA(P), then P is the normalizer of § in G, and

(ii) bc contains a maximal solvable subalgebra of ¢ c.

A parabolic subgroup P is called minimal if it is minimal among all parabolic
subgroups of G. Let N = the maximal unipotent normal subgroup of P, set
E=PN0OP, and set A = the maximal connected split (i.e., Ad(@) diagonizable
over R) abelian subgroup lying in the center of =. Then = is the centralizer
of 4 in G. Let X(E) = {x: =-— R* x a continuous homomorphism}.

Set M= ﬂxex(g) ker Ixl. Then M is reductive (ie., m = LA(M) is reduc-

[~
. —
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180 R. P. MARTIN

the map (m, a, n) — man is an analytic diffeomorphism of M x A x N onto

P. This is called the Langlands decomposition for P. P is said to be cuspidal if

M has a compact Cartan subgroup. For the results quoted above, we refer to [5]
and [17].

Let P= MAN be a cuspidal parabolic subgroup of G and Icfd denote
the square-integrable irreducible representations of M. Then for 7 € 2 g€ fld,
0 x 7 is a representation of MAN via (o x 'r)(man) = o(m)r(a) and the family
of representations {m(o, 7) = IndP OXT O eMd, r€A } is called the non-
degenerate continuous series corresponding to P. In the case of a minimal para-
bolic subgroup, it is customary to say principal series. It is known that almost all
the n(o, 7) are irreducible and, as in the case of a minimal parabolic subgroup of
G, MANN (N =6N) has a complement of measure zero in G. Two cuspidal
parabolics P;, P, are called associate if there exists x € G such that x4,x~*
= A,. Conjugating by x, we may assume that P, = MAN,, P, = MAN2 .
Finally, it can be shown that IndP oOXT™ Indl.,2 ox7, for o EMd, TEA
and P, = MAN,, P, = MAN, assoclate parabolics [11, p. 473].

III. Results of Mackey and Anh. Let X be a locally compact Hausdorff
space, ¢ a finite Borel measure on X, R an equivalence relationon X, Y =
X/R, and r: X — Y the canonical projection. Then R is said to be a mea-
surable equivalence relation if there exists a countable collection {E;} of subsets
of Y such that »~!(E,) is measurable and for every y €Y, {y}=
N {E: y €E;}. Nowlet G,, G, be closed subgroups of the separable locally
compact group G. G,, G, are said to be regularly related if there exist mea-
surable sets E,, E,,*** in G such that each E; is a union of G, :G, double
cosets, E, has measure zero, and every double coset outside of E is the inter-
section of the E; that contain it. Let D = the collection of G, :G, double
cosets in G. Clearly G, : G, are regularly related if and only if the double co-
sets outside of a certain set of measure zero form the equivalence classes of a
measurable equivalence relation. If p is a finite measure on G equivalent to
Haar measure and r: G — D is the projection, then the measure v given by
W(E) = v(r~1(E)), whenever E is such that r—'(E) is measurable, is called an
admissible measure on D. Any two such are equivalent. In the special case where
there exists a subset of G with complement of measure zero which is itself the
countable union of G, :G, double cosets, then G, :G, are called discretely
related. In this case v is a discrete measure.

THEOREM (MACKEY’S SUBGROUP THEOREM [12, p. 127]). Let G be a sep-
arable locally compact group, G,, G, be regularly related closed subgroups of G,
and nGRep(Gl) Foraach x€G consider G,=G,Nx"'Gx. Form V, =
License or clﬂ% 2 (R T o sy 6 GiosThenaVygisdeternained to within equivalence by the
G, :G, double coset d to which x belorgs, write it V, and
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2]
(ndg, M), = [ o V,dvid)

where v is any admissible measure on D = G|\G/G,.

THEOREM (MACKEY’S TENSOR PRODUCT THEOREM [12, p. 128]). Let G,
G,, G, beas in Mackey’s subgroup theorem, m, € Rep(G,), and m, €
Rep(G,). For (x,y) €G x G denote

G'x'y = x’lGlx ﬂy‘ley,

Tey® = 1,08x™") ® ;@py™!), and oY =Ind§ .

Then =Y is determined to within equivalence by the double coset d to which
xy~Y belongs, write it w%, and if v is any admissible measure on D =

G,\G/G,, then
Indgl T, ® Indg2 m, zfz 7% dv(d).

The following generalization of Mackey’s reciprocity theorem [13, p. 212]
will play an important role in §5.

THEOREM (ANH [1,p. 299]). Let G by a type 1 separable locally compact
group, H C G a closed type 1 subgroup, pg, iy finite measures in the
Plancherel measure classes of G, H respectively, w(m,v) and n(m,v) be
Mg X My measurable functions where n(m, v) isa countable cardinal for every
@, v. Then the following are equivalent:

() For py-aimost all v,

Ind,G, = f 2 n(m, vynw(ny)dug ().

(i) For ug-almost all =,
®
(M) = f o nm, v (m, v)du, ).

IV. Real-rank one Lie groups and algebras. Let G be a real-rank one
connected semisimple Lie group with finite center, Lie algebra g, and Iwasawa
decomposition KAN. Then dim A =1 and, if a denotes a simple (restricted)
root of g, @ may be chosen so that all roots are of the form ja, j = +1, +2.
Let ¥V =0N, M = the centralizer of A in K, M' = the normalizer of 4 in
K, P=MAN, and W the finite (Weyl) group M'/M. W has order two and
if m' €M —M, we have the Bruhat decomposition G = MAN U MANm'MAN
(and so there are only two MAN :MAN double cosets in G with only one of
positive measure and MANV has a complement of Haar measure zero in G).

LnLﬁsegr !op‘y‘rﬂghg&nagg mgpk‘i\grmghwgage%p%vams.glgfgumnt;'apsﬁ-uix e g: [H» X] =
ja(H)X, all H€ a}, then
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G=mO®adg, D, D8_, D820
If g issimple, then g is so(n, 1), su(n, 1), sp(n, 1) or f, 4 (ie.,
G is locally isomorphic to SO, (n, 1), SU(n, 1), SP(n, 1), or F, ). If g

is semisimple, then
r

r
8=2 8, =2 (t;+9,+m)
where each @, is a simple ideal [5, p. 122] (and so each @, centralizes g,
i#j) and f;+ a,+n; denotes an Iwasawa decomposition for g,. Since g
has real-rank one, all but exactly one of the g ;, say g,, must be compact and
so g=(t, +t,++ +1,))+a, +n, wil be an Iwasawa decomposition
for g. Let

K= (exp £,)(exp E) <<+ (exp F,_)).
Then
G = (exp t,)(exp £,) - (exp [ A, N, = KK,AN,,

K=KK, A=A, N=N, M=EKM,

Note that since Ad(K) fixes n = LA(V) (or © = 6n), in determining the
orbits of points in 1 (or ©) under the action of MA, we may assume that
G is simple (of course the stability groups will in general be larger). Let us ex-
amine the simple real-rank one groups more closely.

A. The classical cases. We shall look more closely at SO, (1, 1), SU(n, 1),
SP(n, 1) for n>2 and Spin(n, 1) for n >3 (recall that SU(1, 1) is
locally isomorphic to SO, (2, 1), SP(1, 1) is locally isomorphic to SO, (4, 1)
[5, p. 351], and SO, (1, 1) ® R* is not semisimple).

Let n>2 and K be R, C or H (the quaternions). Let G be the
group of all automorphisms of K"*! which preserve the hermitian quadratic
form lx 1% + <+« + Ix, 12 - lJcn_,_ll2 with the additional property that if
K=R or C, we consider only automorphisms of determinant 1. Then G is
SO(n, 1), SU(n, 1) or SP(n, 1) according to whether K is R,C or H [8,
p. 555]. SU(n, 1) and SP(n, 1) are connected [5, p. 346] and we denote by
SO, (#, 1) the identity component of SO (#n, 1). Then we have a Cartan decom-
position g = ! + p for the Lie algebra of G where:

X 0 . e
t= <0 X>’ X, isan n x n skew hermitian with
2 entries in K, X, is a skew member of
K, X, +tr X, =0 if K=C (X, =0
for K = R),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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0 Y
p={_ , Y isa column vector in K".
Yt 0

In each case the Cartan involution, 8, is negative conjugate transpose. We also

have:
0 1 cosht O sinht
a =R- ( ), A= 0 I 0 .

10 sinhf O cosht
0 Xt o
8,= (=X 0 X}, X acolumn vectorin K*!,
0X 0
Y 0 -Y
8,,=100 0} . 8,=0if K=R; YEK with
Y 0 -Y Y=-Y if K=C or H,

n=1g,® g,, b =0n,

1+ Y-%IXP X' Y-ulx?
V= X I ~-X ,
-Y + %ixI? -Xt 1-Y +u%lx1?
N= -X I X .

Y - %ixi? X 1-Y+%lx?

K= (“ 2> ~ S(U(n) x UQ)) = Un), u€ Un), lcl=1,

< 1+Y-%Ixi2 X -Y+ulx?

cdetu=1 for K=C,

© ¢t
L)

> ~Sp(n) x Sp(1), w€Sp(n), u€Sp(l)
(unit quaternions) for K = H,

X, 00
m={0 X 0 |, X, skewin K (=0 if K=R);
0 0 X, X an (n—1) x (n—1) skew hermitian
with entries in K, 2X, +tr X =0
if K=¢C,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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1, 00
0 u 0)» u€SO@®-1) for K=R,
0 01
c 00
M={l0o A 0], led=1 A€eUn-1), ctdetr=1
0 0 ¢ for K=C,
u0 0
0 w 0}, u€ESp(l), wESp(n—-1) for K=H
0 0 u
To investigate the action of MA on V, we deal with an algebra conjugate to
g. Let
7% o 2%
$s=| O I 0
% 0 2%

and § =S,855 . Then 4 becomes

e 00
0O 17 0 |,
0 0 ¢!

M remains the same,

1 X' %Y+ 1Xx1?)
N=|0 I X ,
00 1
and
1 0 0
V=exp(X+N=(X, V)= X I o}
Wy +1x1?) x* 1
The actionof A on V is:
e 00 0 e’0 0
0 I 0 I 0 I 0
0 0 ¢! %(Y+IXI2) X 0 0 e
0

1
= ex
ey +1X12) X 1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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ie, arv=e"+ (X, Y)=(e"'X, e~ 2'Y) while the action of M on V is:

u 0 0 1 0 O\pm' o 0
0 wo X I 00 w0
0 0 u/\WY+I1Xx1>) X 1/V0 0 u!
1 0 0 1 0 0
= wXu™! I 0]= wXu™! I 0
ub(Y + 1X10u™ ! uXtw™ 1 YuYu! +1X1?) uX'w! 1

ie, me+v=dag, w u)* (X, )= (wXu~?, uYu™1). In each case the action
of M is by rotation while the action of A is by dilation. For K =R, MA
actson V* = ¥V — {0} in one orbit for n > 3 and two orbits for n = 2.

For K=C, MA actson expg_, by rotation and dilation by e~* while only
A actson exp g_,, (M fixes exp g§_,,) by dilation by e~2'. So MA

acts transitively on exp g*, while M4 acts on exp 8*,, in two orbits. If
we take X_, €g%, = g_,— {0}, Y_,, € 8%,,, then up to a set of Haar
measure zero in V¥, {exp(tX_, + Y_,,): t> 0} will serve as a cross-section
for the action of MA on V=-exp(g_o, ® g_,,). For K=H, M= Sp(1)

x Sp(n —1) where both Sp(1) and Sp(n—1) act on exp g_, while only
Sp(1) actson exp §_,,. One may easily verify that the above action of Sp(1)
on exp §_,, isthe same as that of SO(3) on R3 [2, p. 38]. In this case
MA  will act transitively on both exp 8%, and exp g% ,,, in factif My =
{meEM: me-expY=exp?, YEg¥,,}, then MyA also acts transitively
on exp g%,. Soif we take X_, € g%, Y_,, € 8%,,, then up to a set of
Haar measure zero in ¥V, {exp(tX_, + Y_,,): ¢t >0} will be a cross-section
for the action of M4 on V.

For n >3, Spin(n, 1) denotes the simply-connected double covering
group of SO, (1, 1). (Recall that the universal covering of SL(2, R) or
SU(n, 1) does not have a finite center and that Sp(n, 1), as well as F, o, is
already simply connected.) If G = Spin(n, 1) = KAN and G= SO, (n, 1) =
KAN, then we have K = Spin(n), K/Z, ~K, A=A, N=N, M=
Spin(n — 1), and ]l"l/Z2 ~ M. Clearly MA acts transitively on  V*.

B. The exceptional case: F, . There is only one nonclassi¢al simple Lie
group of real-rank one. It is a real form of F, [5, p. 354]. Denote this group
by F, o and its Lie algebra by f; o. Then dimf, o =52, dim 8,, =7,
dim 8, =8, K =Spin(9), and M = Spin(7) (see [6]).

C. The only remaining simple groups of real-rank one are quotients of the

universal covering groups of the above grougs_by discrete central subgroups Z
License or copyright restrictions May apply t0 redistribution; see https://www.ams.obrg/journal-terms-of-use



186 R. P. MARTIN

(EM). Note that if G = KAN is such a universal covering group, Z isa
discrete central subgroup of G, and G' = G/Z = K'A'N’, then

K'=K/Z, A=A, N =N, and M =M/Z

In particular for m' =mZ €M, X €En (or v), Ad(m)X = Ad(m2)X = Ad(m)X
and so in computing the orbits of points n (or ©) under the action of M'A’, we
may assume that G’ or G is one of the groups described in A or B, ie.,
SO,(n, 1), SU(n, 1), Sp(n, 1), or F, .

Let us remark at this time that since MA can be regarded as a direct
product, the irreducible representations L € (MA)* are all of the form L =
oxr with cEMTE 2 and so (MA)* = Mx A with Plancherel measure
on (MA)* being the product of the Plancherel measures on M and A4 7.
We shall put MA = C where convenient and shall denote by uo (resp. ug)
Plancherel measure on C (resp. 6). We now thank Anthony Knapp for sup-
plying the details of the following argument which is due to Kostant and lies
behind some of this work in [9].

LEMMA. Let @ be a real-rank one semisimple Lie algebra and k = t1,
12, Then
() if dim g, =1, then MA willacton 8., — {0} = 8%, intwo
orbits while
(i) if dim g,, > 1, then MA will act on @83, in one orbit.

PROOF. As stated earlier in this section, we may assume @ is simple.
Note also that the above lemma follows immediately from previous calculations
when @ is one of the classical real-rank one algebras. The following general
argument shows the result to be true for f, o as well. As noted above, we may
assume dim g,, > 1 for k = %1, £2,

Let k=1, X€ g,, and H, € @ be determined by «(H) = By(H, H,),
Hea. Then 6XE€g_,, [X 6X] =B, 0X)H, € a, and {X, 6X, H,}
spans a subalgebra of @ isomorphic to s1(2, R). Left multiplication by this
subalgebra gives a representation of sl(2, R) on g and {X, 0X, H,} spans
an invariant subspace. Any finite-dimensional representation of sl(2, R) splits
into a direct sum of irreducibles and we may assume that these irreducibles are
orthogonal with respect to the natural inner product on g. One of these irreduc-
iblesis {X, 80X, H,} with weights (i.e., the eigenvalues of ad H,) «,0,—a.
Matching these weights with the weights of all the irreducible abstract representa-
tions of sI(2, R), we see that the weights of an n-dimensional representation
would have to be %(m — )a, %(n —3)a, ***,—%n—1)x The only possible
weights in ¢ are 2e,0,0,—a,—2a andso n=1,3 or 5. We now have

License or cggﬁghf%s noc%lsnngy gplp?)gg?ég’s‘t'ribunon; see https://www.ams.org/journal-terms-of-use
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- ] --- 0O
. mO..O00-0

 mO.00.00.-0.
0. o [] ... [ []..- 01
-ze O ... Od

where each vertical column represents an invariant subspace and each box repre-
sents a one-dimensional subspace. Note that ad X of each box in the a +m
row is contained in the corresponding box in the g, row. Let X =X,,**,
X, be abasis for the g, row and choose basis elements Hy,***,H,, Hy,,,,
---,Hq inthe a + m rowsuch that [X, H] =X, i= l,---,p (e.g.,

H, = - H |o{H,)). Any vector Y € g, is a linear combination of the X;’s,

say Y=22, ¢cX;. Let W=2, c;H; € a+m. Then

Mv
M*a

X, w] = c;[X H} = . X, =Y
and we have shown that [X, a +m] = g, for X€ 8, — {0}.

Now we consider the map f: MA — @, via ma +— Ad(ma)X. Since
df a+m—g, isgivenby m+a - ad(m+a)X = [m +a, X], the above
argument shows that df is onto and so it follows from the inverse function
theorem that the orbit Ad (MA)X is openin g, — {0}. Since M is compact
and the action of A4 is given by

1

-~
I

o~
1

a- X=Ad@X =4y =Wy  g=expH, HE a,

it follows that this orbit is also closed in g, — {0}. Since dim g, > 1, Ad(MA)
actsin g, — {0} in one orbit.
The proofs for k = — 1, +2 are similar and the lemma has been proven.
Note. Let c EMA, X € g,,. Since ¢ * exp X = c(exp X)c~! =
exp Ad(0)X = exp(c * X), there is a canonical 1-1 correspondence between
orbits in  @8,,/MA and orbits in (exp @8;,)/MA. Thus MA will act on
exp(g%,) in one orbit for dim g,, > 1 and two orbits for dim g,, = 1.

V. The tensor product of principal series representations. Let G be a
connected semisimple Lie group with finite center, P; = MAN be a cuspldal
parabolic subgroup of G, and P, = = MAN where N =06N. Recall that M‘i

otes the s quare-integra rable irreducible representations of M and for 7 € 4,

L\cense or copyright resmct ns may ution; see https://www.ams'org/journal-terms-of-use



188 R. P. MARTIN

0 GMd, gxT is a representation of MAN via (0 x 7)(man) = o(m)r(@).
For aEMd, TEA ket n(o, 1) = Indpl oXxT.

THEOREM 1.
n(0y, 7,) @ 7(0,, T5) = Indfm (0, ®0y)(7,7,)
where 0, Efld, 7 €4, i=1,2

PrOOF. Since Py, P, are associate parabolic subgroups, we have (see [11,
p. 473]) Indf,"l Oy X T = Indf,;2 0, x 7, and we may apply Mackey’s tensor
product theorem with G; =P;, i=1,2. P,, P, are discretely related, there is
exactly one double coset of positive measure in G, and if we take e as a repre-
sentative for this double coset, we have P, NP, = MA. Thus

n(0,, 7,) ®n(0y, 7,) = Indf,;l o0, X7, ® Ind,cf2 0, X Ty
~ Ind%, (0, ® 0,)(r,7,).

Thus the problem of decomposing the tensor product of two continuous series
representations arising from the same cuspidal parabolic subgroup can be solved
once one knows how to decompose 0, ® 0, for ¢,,0, € Ifld and how to de-
compose Indf, 4 L forall L €(MA)~. However, there is no reason, a priori,
to expect that either of these last two problems is any easier than the one we
started with. In what follows, we show to what extent these problems can be
dealt with when P is a minimal parabolic subgroup and in particular when G
has real-rank one.

THEOREM 2. Let P = MAN be a minimal parabolic subgroup, Then for
6EM, 7,,7, €A we have

Indfu oxXT, ~Ind%, o x 7,.

PrROOF. Let G have real-rank /=>1 andlet a;,**+,, denote the
s1mple (restncted) roots of g. Since the simple roots form a basis for a* and
A=a* any 7 €4 isof the form 7(s) = e®*) where B= 2L, ma,
m;ER, and a=expH, HE a. Let 7(a) = miei®) gor J=1,000,1
and 7% =1 where 1 is the 1-dimensional identity representation of A (1.e.,
the representation corresponding to 0 € a*). Then 7 Gﬁ, i=0,1,°°°,1,
and 7' = =L, 7. We shall show that

=1
G ! ~ G i
Indy , 0 x 7 ~Indy, oxi_lol Thoxees

==Ind1?“ g x 71! =Indffu o x 1.
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It clearly suffices to show
-1
™ Indfmox'rzlndf“axq 7
=

where 1'=H’,:=01" and j=1,++-,L Fix a=¢q and let

N R
@ g1 k@ @ ¢ k31 8 ko> =0

—

Then, as in [10, p. 399], the subalgebra g * of @ generated by n, and V9,
is of the form g*=a, ® m,®n, ® v, where m, Cm=LAM) and
a,=R-*H, So 8% isa real-rank one semisimple subalgebra of g. Let q =
8, Of 4 = @,, according to whether ¢,, = {0} ornot. If Q =exp q,
then Q is an abelian subgroup of N such that MA leaves Q invariant. In
fact, from the lemma of §4, we know that exp(m, ® a,) willacton Q-

{e} in two orbits or one orbit depending upon whether dim @ =1 or not. If
oEM= ﬁ{d (M is compact), then (*) will follow by induction in stakes [12,

p. 113] once we show

(**) 7, =Ind42 o x r=Indf4% o x r_=1_.

We first say something about the action of MA on q* (via the coadjoint
representation) and then define a function D: q* — I which is to satisfy the
important identity

D((may™! « ¢) = D(¢)’(@) forall ¢ € q* - {0}, ma € MA.

In the following, we let ka be 2a or a according to whether g =
8,, ornot. Let (v, *) bean Ad(M)-invariant inner product on q and note
that @+ X, Y)=(X,a* Y)=e**")(X, Y) where a =exp H, H€E a, and
X, Y€ q. Defineamap U: q*— q via ¢ > X, where ¢(X) = (X, X,)
for X € q. Then U is a vector space isomorphism (and so Borel). By defini-
tion we have (ma * ¢)X = ¢((ma)~! « X). So for all X € q we have

X, Xppg.9) = (ma » $)X) = ¢((n™'a™") + X)
=mla X X)=@"' X, m-X)=(X ma! - Xp),

ie., Xma,,¢ =ma! . X¢. Note that if we define (¢;, ¢,)« = (X¢1’ X¢) for
¢y, &, €q*, then (¢, *)s is an Ad*(M)-invariant inner product on q*. Let
®, be fixedin g* - {0}

If dim q > 1, then we know that MA acts transitively on q — {0}.
Let ¢ € q* — {0} and choose ma~! € MA 3 ma™! - X5, = Xy Then

(ma * $o)X) = do(m~'a™! « Xy = (m 'a” + X, X, )

= (X, ma '+ X, )= (X, X,) = ¢(X)
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and so ma > ¢, = ¢. Thus MA also acts transitively on q* — {0}. So for
dim q > 1, define D: q* — I by D(0) =1, D((ma)~! * ¢,) = 7/(@). Note
that D is defined on all of q* and is a Borel function. Note also that

(1) D is well-defined.

Suppose (ma)~! + ¢, = ¢, with a =exp H, HE a. Since (@ * ¢o)(X)
=@ X X, )= e ket)x, x, )= e~keg (X), we have a * ¢, =
e~keWg . Let ligll = (3, $)i- Then lIm~a="1 - doll = lla™! « ggll =
e""‘(H)II%II = [\¢oll implies that ka(H) = 0. Hence 7/(a) = ™k H) 1 and
D is well-defined.

(2) D((ma)~! + ¢) = D(¢)?@) for ¢ E g}, — {0}, ma EMA. Let ¢ €
q* — {0} and choose m;a, € MA (m,a,)~! + ¢o = ¢. Then

D((ma)™ + ¢) = D((mm,aa,)* * ¢,) = 7(aa,)

= 7(a)i(a,) = D¢} (@).

Now suppose dim q = 1. We know exp(a, ®m,) actson q — {0} in
two orbits (although it is conceivable that MA acts in one orbit), in fact, we
know that @ » X = e¥*(H) X for X € q — {0}, a=expH, HE 4 and that
a-p=ekHy for s € q*~ {0} So A actson q *— {0} in two orbits.
Define D: q* — 11 by D(0) =1, D((ma)~! * (29,)) = 7(@). Then D is
Borel, defined on all of g *, and

(1) D is well-defined:

Suppose (ma)~?! » (2¢,) = t¢,. Then, as above, ka(H) =0 and 7(a)

(2) D((ra)~" * ¢) = D(g)y'(@) for ¢ € a*— {0}, ma EMA. Let ¢ €
q* — {0} and choose a; €A 3 a7l * (2¢y) = ¢. Then

D((ma)™ + ¢) = D((maa,Y! * (£¢y)) = 7'(aa,) = D($)7(@).

Let dX denote Lebesgue measure on q and choose Haar measure dg
on Q such that f, flg)dq = f, f(exp X)dX for f€ LY(Q, dg). If we let
y: L%(Q, dg) — L*(q,dX) via (Yf)(X)=f(exp X), then ¥ is a unitary
operator between L?(Q) and L2(q). For ma € MA, let A, (ma) denote
the modulus of the automorphism g+ (ma)g(ma)~!, q € Q. As in [10, p.
392], since m - A,,(m) defines a continuous homomorphism of the compact
group M/center(G) into the multiplicative group of positive reals, we have that
A (m)y=1, forall mEM. Nowlet a=expH, HEa and dim q = ¢y,
Then

A (@) = det (Ad (@) = det (exp ad H) = exp (tr ad H)

= exp (cxokodH))-
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So
J, f@¥a = 8, [, fraa(mayt)dg.

Now

fq (¥f)Ad (ma)X)dX = f q f(exp Ad (ma)X)dX
= [, FGraatray ™)

= 8a@™) [, F@da = do@™ J, @NOAX.
Thus the modulus of X » Ad(ma)X is also A, () = e*e**H),
We now prove (x+). If f€L*(Q H,), then
7, (man)f(q) = o(myr@Y (m~'a™ qamm)A (@)

and I=1
n_(man)f(q) = o(m) ,«Q 7@f(m='a" "gamn)A, %(a)

where man € MAQ. Now let ¥: L*(Q, H,)— L%*(q,H,) by (INX) =
f(exp X). Then ¥ is a unitary operator and for & € L%(q, H)) with ¥f =
h we have

7, (man)h(X)

(¥ (man)y™ ' K)(X) = (Ym (man)f (X)
= . (man)f(exp X)
= o(m)r@)f(m~'a ! (exp X)amexp X,)A,%@), n=-expX,,
= a(m)r@) (exp Ad (ma)™' X)exp X, )Ar%
= o(m)r@)f (cxp (Ad (ma)~' X + X, )8k (a)
= o(m)r(@)h(Ad (ma)"' X + X,)A; %(a).
Similarly
-1
7_(man)h(x) = o(m) [] r'@W(Ad(may X + X,)A. ().
i=0
For X€q, fEL%(q,H,), and ¢ €q* we have

@ = J, fee®ax,

the operator-valued Fourier transform on q . We now use F to realize 7,
and ¥_ on L?(q* H,). Let HEL*(q* H,) with Fh=H.
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7, (man)H(g) = (F7,(man)F- H)()
= J, Fmanponeeax

fq o(m)r(@)h(Ad (ma) 1 X + X,) A;Z?(a)e""’(x) dx

o(myr(@) J, hex + X,,)exp{i fad (ma)X)}A,‘{*a @dx

o(my(@) [ h(Oexp {16(Ad (ma)(X - X, )} ALk, @)dX

o(myr@)AL, @)exp {~i((ma)™* + $YX,}H(Gma) ™" * ¢).
Similarly,

a j ~1 .
A ram}i(@) = o) [ @a%,@exp (- iema)™" + YK )} H(Gma)™" - 6).

Now define B: L*(q*, H,) — L%(q*, H,) by g(¢) — D(¢)e(¢). Then B is
clearly unitary and for B~ g = G we have

(BT (man)B~'g)(¢) = (BT, (man)GX9) = D($)T,(man)G(9)

= D($)o(myr@)AL, @) exp {~i((ma)™! « ¢)(X,)} G((ma)™" + ¢)

f— l N
= D@)o(myi(a) ’rg r@)AL @) exp {~i(ma) ™ + O)X,)} G((ma)™ - )

i—1
= D((ma)™* - ¢) 'Ig r@)om)AL @exp {~i(ma)™! + )X,)} G((ma)™ + ¢)

for ¢ #0.
j—1
= o(m) H, @A @e T Xndg(may™ « ¢), ¢+0

=7 _(man)g(¢), ¢ #0O. _
So m, >~m_ and Theorem 2 has been proven.
Now let G be a connected semisimple Lie group with finite center and
Iwasawa decomposition KAN. If M is the centralizer of 4 in K, then M
is compact and P = MAN Jdsa ‘r\ninimal parabolic subgroup of G. Thus o; ®
0, ~ Ei bi'r, where 0; €M =M,, the sum is finite, and the b]-’s are called the
Clebsch-Gordan coefficients for o,, 0,. Theorem 1 now states that

< oo
e~ 5 pmg, @ x, 1=nm,
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and so the problem of decomposing the tensor product of two principal series
representations reduces to that of knowing Ind$;, L forall L € (MA)*. The-
orem 2 states that inducing from MA is independent of the character on 4 and
so if we could determine IndS , L for p-almostall L € (MA)*, then we
would know Indﬁ 4 L for all L € (MA)*. By Anh’s reciprocity theorem, the
problem of finding Indf,, 4 L for uo-almost all L € (MA)* is equivalent to
finding ()4 (note that the measure in this decomposition must be absolutely
continuous with respect to u) for pg-almost all 7 € 6 We now show to what
extent we can solve this last problem when G has real-rank one.

From now on, we assume that G is a connected semisimple real-rank one
Lie group with finite center. From Theorems 1 and 2, we know how to decompose
the tensor product of two principal series representations of G once we know
how to decompose (m)y, for us-almost all 7 € 6, i.e., for almost all principal
series and all discrete series representations of G.

We now proceed to find (m),,, when 7 is a principal series representation
by using Mackey’s subgroup theorem.

LeMMA 3. Let MA act on V by inner automorphism. Then up to a set
of measure zero, this action corresponds to the canonical action (on the right)
of MA on P\G. If SCV isa cross-section for V/MA, then up to a set of
measure zero S also serves as a cross-section for P\G/MA.

PrROOF. Let g=bv, bEP, vEV and ma € MA. Then
ma + MANg = MANbvma = NMAvma = NMA(ma)~'v(ma) = MAN(ma)™ ' v(ma)
and so the first part is clear. Now define a map ¥: V/MA — P\PV/MA via
¥: 0 — D where () € V/MA, D is the double coset containing v, and v
is any point in 0. That ¥ is well defined and onto is clear. Now suppose
v;, U, €V lie in the same double coset. Then v, = nm'a'v,ma for some
mm €M, a,d €A, and n €EN. So v, = n(m'a'ma)((ma)~'v,ma) and
since elements in NMAV are expressed uniquely, we have (ma)‘lvlma =0,
and v,,v, lie in the same orbit in V/MA. Thus ¥ isalso 1-1 (in facta
Borel isomorphism) and the second part is also clear.

Wenow fix X_,€8_,— {0} and X_,, € g_,, — {0}

LEMMA 4. Let V' = {exp Wexp T=exp(W+T): WE g*,, TE ¢*,,}
and set
{exp(xX_,)} if dimg_,,=0, dimg_, =1,
{exp(X_p)} if dmg_,,=0, dimg_,>1,
{exp(X_o2Y_5,): t>0} if dim8_,, =1,
Lisnse o copyrignt AsAER U Komaro Fdimaadte o€ @bins Uy HiM B e > 1-
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Then S is a Borel cross-sectionin V' for the orbits under the action of MA.

PrROOF. As discussed in §4, we may assume that G is simple. For the
classical simple real-rank one Lie groups it is immediate, by looking at the realiza-
tions of these groups and the action of MA on V¥ given in §4, that the above
sets form cross-sections for V/MA. That essentially the same arguments hold for
the exceptional case, F, g, is not so clear and we thank K. Johnson for forwarding
a paper [6] which made clear some of the underlying results in Kostant [9]. So
now let G =F, o and suppose exp(t;X_o +Y_,,), exp(t,X_o +Y_,,)
lie in the same orbit in V/MA. Then there exists ¢ = ma € MA such that
clexp(t, Xy +Y s )c=exp(t,X_o +Y_,,). Soa=e, mEMy_, =
meM: m-Y_,,=Y_,,} and Ad(mr, X_, =t,X_,, ie., Ad(m)X_, =
(t,/t)X_, and t, =t,. So S meetsany orbit in V/MA in at most one
point. What we must show is that S does indeed meet each orbit.

We know that K = Spin(9), M = Spin(7), dim g_, =8, dim g_,, =7,
and that M actsonboth g_, and g_,,. From the lemma of §4, we see
that M acts transitively on spheres in both g _,, g_,, and hence that M must
act irreducibly on g_, and g_,,. If we put an Ad(M)-invariant inner product
on V=g_, ®g_,,, then we have that M actsas SO(7) on g_,, and
as the Spin respresentation on g_, (since these are the only irreducible repre-
sentations of M in these dimensions). If welet S_,, S_,, denote the unit
spheresin g_,, ga_»o Iespectively, then we obtain an action of M on S_, ©
S_,, for which we now show: given (u,,v,), (uy,v,)ES_, ®S_,,, there
isan m €M such that m * (u,, v,) = (4,, v,). Since M = Spin(7) is transi-
tive on S_,,, we may assume v; =v, =v. The subgroup of Spin(7) which
leaves v fixed is Spin (6) ~ SU(4) and when the spin representation of Spin (7)
acting on g _,, is restricted to Spin(6), we obtain the irreducible representa-
tion of SU(4) on C*~ R®. Since SU(4) is transitive on S7, we obtain our
result.

Now we know that MA acts transitively on g_,, and My_, A acts
transitively on g_,. Solet (W, T)E v, with 0FWeEg_,, 0+ T€E g_,,.
Choose ¢ € MA such that Ad(c)T=Y_,, and then choose m EMy_,
such that Ad(m)(Ad(c)W) =tX_,, t > 0. Then mc EMA and Ad (mc)(W n
=({tX_y,Y_,,) asdesired.

Note. (1) Since Ad(miX =tAd(m)X, t€ER, mEM, XE v, the
stability subgroup at any point in S C V' under the action of MA is equal to

meM: Adm)Y_z,=Y_ 4, AdmX_,=X_,}=M,

and so along our cross-section § all the stability subgroups are equal to M,,.

Q) Aside from a set of Haar measure zero in G, P\G/MA can be iden-
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LEMMA 5. MA and MAN are regularly related.
LEMMA 6. For s €S, MA Ns~'MANs = M,,.

Proor. In light of the correspondence between the action of M4 on ¥V
by inner automorphism and the natural action of MA on P\PV, it suffices to
prove the following:

Claim. Suppose H, acts on H;\G on the right. Then H,\G is the
union of orbits (;. Let x; € 0; and M, = the isotropy subgroup at X;.
Then M, =H, N x;'Hx,

Proof of claim.

M, ={h€Hy: h-Hx)=Hx}={h€H, Hxhxi'=H,}

= {h€H,: h€x7'Hx;}=H, Nx]H x,.

LEMMA 7. Let nE€M, = {mE€M: m~'vm=v} for vEV and let
L eMA. Then n—>L(vnv_l) is (L)Mv.
PROOF. nE€EM, v~ ! =7 and L

(vnv’l) = L("l)'
Now define

#S) =

cardinality of S, if the cardinality of S is finite,
o0, otherwise.

THEOREM 8. Let S, M, be as above, 0E€EM 1€ A, and AR denote
the regular representation of A. Then

(0, pr4 = KS) Ind%‘; (U)Mo = #(S)(Indﬁ’,,o (O)Mo x 4R).

ProoF. We apply Mackey’s subgroup theorem by identifying the collec-
tion of P:MA double cosets in G with S and choosing any admissible mea-
sure v on S (note that when #(S) = oo, there are no orbits of positive mea-
sure in ¥V and so v will be nonatomic). Then

@0, Myra = o A4 0)yr, d(s) = #S)Indf2 @)y,
= #(S) Ind}f 221, 1 (0)yy, X 1 = #S)(Indjf (), X Inda D

= #S)(Indjf (0pry * “R).

Note that in determining Ind% o(o)M o> We may use the compact version of the
reciprocity theorem and that the multiplicity of a o' x 7' € MA occurring in
(n(0, 7))pr4 does not depend on 7'. So the above decomposition can be written

License or copyright restncti(qf(@; ﬂ)ﬁiﬂismn#(g) Jpg/w"(w’s.dwgl-txmf%@c(a" T')



196 R. P. MARTIN

where p. denotes Planchere]l measure on MA = C and n(#, ") can be ex-
plicitly computed (see Theorem 16).

Now let &, denote the discrete series representations for G. We now
attempt to find (7)y,, for m € &d. We first find (Ind$ o)y, for o € k.

LEMMA 9. The action of M on N by inner automorphism corresponds
to the action of MA on K\G on the right and if S, CN denotes a cross-
section for N/M, then S, also serves as a cross-section for K\G/MA.

PROOF. Let g=kma, k€K, a €A, nE€N and ma’' € MA. Then
ma' + Kg = Knama' = Km~'nmaa' and so the first part is clear. Define ¥:
N/M — K\G/MA by sending an orbit ( to the double coset D, where D is
the double coset containing v, and v is any point in (. Two points in the
same orbit in N/M clearly lie in the same K:MA double coset and so ¥ is
well defined. That ¥ is onto is clear. Now suppose n,, n, lie in the same
K:MA double coset. Then n, = kn,ma for some k €K, ma € MA. Thus
n, = (km)(m‘lnlm)a and since elements in KNA are expressed uniquely, we
have m~'n,m =n,, ie., n,, n, are in the same orbit in N/M and ¥ is
1-1. Lemma 9 is now clear.

LEMMA 10. Let X, =0X_, €g4 = {0}, Yy, =0Y_,, € g5, — {0},
and set

{exp(tX,): t €R} if dim g,, =0, dimg, =1,
{exp(¢X,): t >0} if dim g,, =0, dim g, > 1,
{exp(tX, +sY,): t>0, s€R} if dim g,, =1,
{exp(tX, +5Y,): t >0, s =0} if dim g,, > 1.

Then S, isa Borel cross-section in N for the orbits under the action of M,

ProoF. We proceed as in Lemma 4. Since the classical cases are again
clear by inspection, we shall deal only with the exceptional case. First suppose
exp(t; X, +5,Y,), exp(t,X, +5,Y,) lie in the same orbit in N/M. Then
there exists m €M such that Ad(m)t, X, = Ad(m)t,X,, Ad(m), Y, =
Ad(m)s,Y, where t,,¢,,5,,5, areall >0. Thus ¢, =¢,, 5, =s5,, and
S, meets any orbit in at most one point.

Asin Lemma 4, M acts transitively on spheresin g,, while My  acts
transitively on spheresin g,. So for (W, T) € n = LA(N) we may choose
m €M such that Ad(m)T =sY, for some s >0 and then an m' €My,
such that Ad(m")Ad (m)W =tX, for some t>0. Then m'm €M and
Ad(m'm)(W, T) = (tX,, sY,) and hence S, meets every orbit in N/M.
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(2) Since Ad(m)X, =0(AdmX,) for me€M and X, €g,,, k
1, 2, we have that {m €M: Ad (m)Xa =X, }={meM AdmPX,=0X,}
So M, = {m EM: AdmX_, =X_,, Ad(m)Y__Za =Y _,,}={mEM:
Ad(m)X, = X,, Ad(m)Y, = Y, }= the isotropy subgroup (s) along S,.

3 We may identify S, with K\G/MA and so the following is clear.

LEmMMA 11. K and MA are regularly related in G.
LemMMA 12. For s€S;, MAN sT1Ks = M,

PrROOF. Same as claim in Lemma 6.

THEOREM 13. Let S,, M, beasaboveand o € K. Then

(Ind§ 0),,, = °(Ind}f o @ty X AR).

PrROOF. Mackey’s subgroup theorem implies that

®
(Ind$ o)y, = f 5 Indjf4 (0)yr, (6
where v is any admissible measure on §,. So as before

(Indg 0)y4 == #(S,)(And}7  (0)p, x “R) 2 o(Ind}f (O X 4R).

LEMMA 14. 7, € &d = 35€k 3 Ty is contained in Indg &.

PROOF. We use Ahn’s reciprocity theorem. We know that, forall 7 € 6,
(M ~ Zsep n(m, 8)8 and so, for all & €K, we have Ind§ & ~
i) 2 n(m, 8)ndug(m). Now there existsa § € K for which n(my, 8) # 0 (lest
(mg)x = 0) and since pg({my}) >0, we have founda & € K for which Ty
is contained in IndG 6.

THEOREM 15. m€ G, = > (Mia = =~ J2 n(o, 7, M0 x 7)duc(o, 1') where
¢ is Plancherel measure on C=M- (M4) and n(o,7,mME{0, 1,2, ,}

PrROOF. By Lemma 14, 38 € R such that 7 is contained in Ind§ 5
and by Theorem 13

(Ind§ 8),,4 = f 2 n'(e, 8, o x 1)drc(o, 1)
where n'(g, 5, ) € {0, «}. So by [4, p. 273] we have
Mya = [21"(0, 7, 8, )0 x T)d(0, T)

where v <p- and n"(o, 7,8, 1) <n'(0,7,8,m) for v almost all (o, 7). We
may now write n"(o, 7, 8, 7) = n"(g, 7, ) since, if 7 is also contained in
L\c‘!ﬁagco&#i,ght#treﬁ'ox;naym%o %trW%f& Wgww.ams.org/journal-terms-of-use
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8", 1,8 x 1)d(o, ) = (M4 = 21300, 7,8, 1)(0 x T)dv,(0, 7)
an(oa‘rs ,1()(0 T) (O’T)‘—( IMA — é 20373 » TIO T 20, T
and hence that v ~», and n" =nj for v almost all (o, 7). If we now
choose a pi-measurable set £ C C' such that » and x, * uo (xg is the
characteristic function of £) have the same null sets, then by [12, p. 123] we
obtain

s = [E1"(0, 7, M0 x TYA0Xg * B0, 7).

If we now define

n"(e, 7, m) if (o, 7) EE,
0 otherwise,

n(o, 7, T) = g

then we have ()4 ~f g n(o, 7, m)(¢ % 7)du(0, 7) and the proof is com-
plete.
Combining Theorems 8 and 15, we now see that for u; almostall 7€ G

Maa = f 2 n(o, 7, )¢ x 7)du(o, 7)

where n(o, 7, m) is a measurable function on Mx4x6. So by Anh’s
reciprocity theorem and Theorem 2, we have for all (o, 7) € (MA)*

Indf“ OXT zfg n(o, 7, mrdug(m)

where n(o, 7, ) can be computed explicitly for 7 in the principal series and
n(e,7,m) € {0, 1,2,++>,} for € G, Note that since Indf“ OXTis
independent of 7 € A, we may now conclude that n(o, 7, 1) = n(o, 7).

THEOREM 16. Let G be a connected semisimple real-rank one Lie group
with finite center, let u(o,,7,), m(0,,7,) be two principal series representa-
tions, let ¢, ® 0, = Zi_, b;o;, let M, beasin Lemma 6,and for X;,x, €
Rep (M,) let 1(x,,X,) denote the intertwining number for x, and X,.
Then (0, 7,)@m0,,7,) =T, ® T, where T, is a continuous direct integral with re-
spect to Plancherel measure on G of representations from the principal series
of G and T, isa discrete direct sum of discrete series representations. If
dim g_,, # 0, then the multiplicity of n(o, ) in T, is either O or = ac-
cording to whether EI'.'=1 I((o)Mo, (oj)Mo) is 0 ornot. If dimg_,,=0,
then the multiplicity of =n(s, 1) in T, is finite and equals
€ 2;;1 I((o)Mo, (oj)Mo)b,- where € =2 if dimg, =1 and e=1 if
dim g, > 1.

PrOOF. All but the multiplicity of 7(0o, 7) in T, is clear. Recall that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DECOMPOSITION OF TENSOR PRODUCTS 199

44
ﬂ(al’ Tl) ® ﬂ(azy 72) == zl b]Ind]lG,,A Oi X T', T' = 1-11-2’
]=

and that the multiplicity of (o, 7) in Indf,, 4 0 X 7' equals the multiplicity
of o; x 7 in (m(0, Ty =~ #(S)(Ind,’{,’,o(a)M0 x 4R), viz., #S) * (the
multiplicity of o; in Ind%o(o)M o).
Now let
(O)MO = Z,; n(o, p)p’ (oj)Mo = Z n(Gj’ p’)p"
PEMg p'EMg
and
Ind% o Oy 0= Z av.
veEM
Then by compact reciprocity, the multiplicity of o; in Ind% 0(ar)M o is given
by:

“a,- = n(Ind% 0 @y 0’ oj) = 2; n(o, p)n(Ind% o P oj)
PEM

= 2 n(o, py(C, g P)= 22 n(0, P)(0, p) = 1((@9> Oar4)-

PEMg PEM

So the multiplicity of n(e, 7) in (o, 7,) ® 7(0,, 7,) will be
n
#S) - ,_Zl IO CAN 2

and the theorem is then clear from Lemma 4.

Note that even though we are not able to give the multiplicity of a discrete
series representation occurring in T at this time, Theorem 13 does provide us
with some information about discrete series representations which do not occur
in T,.

VI. Examples.

A. G complex. When G is a connected complex semisimple Lie group,
we may use the techniques of §5 to simplify some of the recent work of Floyd
Williams [18]. When G 1s complex, MA is a Cartan subgroup and the princi-
pal series {n(0,7): © eMre A} consitute almost all of G. So by Theorems
1 and 2 of §5 and Anh’s reciprocity theorem, we know how to decompose
70,,7,) ® 1(0,, 7,) ~ Ind$§; , (0,0,)r,7,) once we know (n(, 7))y, for
almost all (o, 7) EMx A.

Let {a;,***, o} denote the simple roots of g, {aj,**°,q,
041> **, 0} the positive roots, X € g_a {0},

HexszEV: Z€C z;#0 for 1<j<I >
j=1
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and

k
V' = ]I=Il expzX; €V: z;=0, 1<j<I}
Then V -V, has Haar measure zero and Williams shows that V,/MA can be
identified with ¥’ (= C¥~!). Choosing § = V', we see that S is either one
point or infinite depending upon whether N is abelian (if and only if all posi-
tive roots are simple) or not and that up to a set of Haar measure zeroin G, §
may be identified with MAN\G/MA. For v € S, let M, = {c € MA: c lue
= v}. Then:

LEMMA. M, = Z(G), the center of G, for each v ES.

ProoF. Clearly Z(G) C M, foreach vES. Solet ¢ €M, where
v=expX, X=2,50X_p X €08, {0} If exp H=c, then o) =
0 forall e [infact my={HEh: H*- X=X}={HEh: Ee"‘(H)X_a =
X, ={HEh: oH)=0, all a}= {0}]. Let g =exp(hy, + Z X,).
Then

¢ lgc=exp (e"‘”"hO + 2 eadHXa>

= exp (ho + E ea(H)Xa) = exp (ho + Z Xa) =g,

i.e., ¢ € Z(G). Thus by applying Mackey’s subgroup theorem, we obtain
®
(0, pa = f ¢ Indif4 (0 x )y du) ~e - 1nd 5 (0)z()

where € =1 or o according to whether NN is abelian or not. Note that
(0)z(G) is irreducible for o € M. Hence we have the following:

THEOREM (WILLIAMS, 1972). Let G be a connected complex semisimple
Lie group and MA a Cartan subgroup of G. Suppose m(0,,7,), (0, 73)
are two principal series representations where o,,0, € ]?l, 7,,7y €A Then

n(oy, 7y) @ 7(0o,, 75) = fz € * (o, T)dug(m

where the elements n = n(0, T) occurring in this decomposition are precisely
those for which ¢ and ¢,0, coincideon Z(G) and € =1 or ° according
to whether N is abelian or not.

B. G=SL(2,R). When G = SL(2, R), our techniques yield a complete
solution to the problem of decomposing the tensor product of two principal
series represefitations, since we are able to compute (m),,, for m €G,4. Recall
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a b
G= ;( d>: ad —bc=1,a,b, c,dERf, K = S0(2),
c

a O { 1 0
A= :a>0p =(0, =), V= : VERY,
{(0 a—l> } \<v 1> }

% 0
M=Z(G)=( (1) il)’

A~ R, and M= {o*}. The discrete series for SL(2, R) (see [16]) can be
parameterized by nonzero half-integers and briefly described as follows: On the
upper half plane P, for n =1, 3/2,2,+++ (resp. n=-1,-3/2,=2,+++),

we take the Hilbert space H, ,(P) of holomorphic (resp. conjugate holomorphic)
functions on P with the inner product

¢ e, = Wnl——l—). fpf(x +i)g(x + 1:y)y-2+2lm 'dxdy

while for n =% (resp. n =—), H, ,,(P) (resp. H, _,(P)) is the space of
holomorphic (resp. conjugate holomorphic) functions on P with the property
that . If(x +iy)I2dx is bounded uniformly in ¥ for y > 0. In this case,
S has boundary values almost everywhere on the real axis and if f(x), g(x) de-
note the boundary values of f(z), g(z), then the inner product is given by

2. f(x)g(x)dx. For n = {#1/2, 1, #3/2, +++}, we have a representation
D, e G acting on H, , via

D,e)f () = (bz+d)-2"f<§‘,§if,> n=1/2,1,32,+",

D,@)f () = 6F +d)-2‘"'f<‘,jjif,> n==1/2,-1,-3/2,+ ",

where g = (¢ 3). The discrete series of G = SL(2, R) is the family of repre-
sentations fr‘d = {D,: n=%1,%3/2, +2, »++ }. The representations D,,, D_,,
are not square-integrable and it is known that D,, ®D_,, ~ n(¢™, 0). For
TEA~ (0, ), let du(t) =dt/t denote Haar measure on 4 and L%(4) =
L?((0, =), dy). For a, t €A, fE€ L*(A4), let p(@)f(t) = f(at) be the regular
representation of 4 and p @) (¢) = f(a*t). Then

LEMMA. p~p.

PrOOF. Let W: L2(4) — L%(4) by ¥(f(t)) = 2~ %f(1), t €(0, ).
Then
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o at - dt
eI = 3 I\I’f(t)lz—.-:_.fo v

. O S = [7 vors =i

and for F=¥~If
@YX = 27 %p@FW/1) = 2% FaVt)
= f@*) = P @NE).
LEMMA.
txp if n=%1,£2, ¢,

g Xp fn—il :t;

(Dn)MA =

ProOOF. Let n=1/2,1,3/2,¢+* and

t1 0\/a! 0
g=ma= EMA.
0 %1 /\0 a
Asin [16], for n> % welet H, ,;~(P) be the Hilbert space of functions on
(0, ) with the inner product

l ) TN -
@V =5 o $OUO+ 1 at
and define the inverse Fourier-Laplace transform of a holomorphic function f
in H, ,(P) by

(FN®) = @ny™* [7 fx +ip)e Wy,

This integral is independent of y > 0, Ff(f) vanishes almost everywhere for
t<0, and F: H, ,(P)— H(, ,,«(P) is an isometric isomorphism.

For n=1%, the inverse Fourier-Laplace transform on H, ,,(P) reduces
to the ordinary Fourier transform on L,(R), i.e.,

FOXO = @n™* [7, fee ™= ax

and, as is well-known, Ff(t) vanishes almost everywhere for ¢ < 0. Setting
Hy yy"(P) = L,((0, =), dt), we have that F is an isometric isomorphism from
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For f€H, ,(P), n=1/2,1,3/2,+++, and g =ma €MA, we have
D,@)f(2) = (ma)"*"f@@=2z). We now use F torealize (D,)y, on Hey ny(P):

(FD,@)F 'g)(t) = (FD,@)f)2) where F'g=F.
= Q% [, (ma)2"f@22)e " dx
(with the obvious changes for n = 1)
= (2.”)—% f R (ma)—2nf(z)e—ita2za2 dx

= m g2 -2y % fR f(z)e‘““zzdx

= m 242 _2"g(a2t).

Set  (Wm)*f(t) = (2)""*%f(t). Then (W(n))* is a unitary mapping from
Hy ny(P) to Hp yy~(P) and we may now realize (D,)y4 on Hy 1 )~(P):

NN AN
(WD, W)™ 1)) = Wm™>"a>~2"Fla*1)

=(2)™" +¥%y—2n,2— 2"F(a2t)
= (21‘)-" + l/§m—2na2 - 2n(2a2 t)n - %f(aZ f)

= m~2"gf (a%1).

Now set ®(f()) = t/%f(¢). Then @ is a unitary mapping of H, y,)-(P)
= L*((0, 9, dt) into L2((0, *0), dt/t) = L*(4) and

(2D, (@)%~ 1)2) = (@D, ©Q)F)() = t*m™>"aF(a*r)

= t®m~ 2071t~ % @21) = m~2"f(@%1).

For n=1,2,++-, this last representation is equivalent to o% x p
while for n = 1/2, 3/2, -+ », this last representation is equivalent to o~ x p.
A similar argument holds for n =-1/2, -1, -3/2, *++ and so the lemma is
now clear.
Now recall that MA actson V in two nonzero orbits and so (m(0, 7))y 4
~2IndM4 g~2g x p) for 0 € M, T €A. Thus we have

THEOREM (PUKANSZKY, 1960). Let n(oy,7,), (0, 05), 0,,0, €
M= {o*}, 7y, T, € A be two representations from the principal series of
G =SL(2,R). Then
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2[2 et Dapgme L @D,

=$1,£2,000

: +
if 0,0,=0
n(0y, 7,) @ n(0,, 7,) = 172 ’

® .
2(% n0™, 1d ® ®D
fc (@™, T)dug(m) ,,=132/2,... n

if o,0,=0".

C. G=S0,(3, 1)~ SL(2, C)/{ze}. When G =S0,(3, 1) S 1sone point,
= {e}, (0, pra _Ind’fA}l ~MAR forall (0,7) €M x A, and there
is no discrete series for G. Thus we obtain:

THEOREM (MACKEY 1952- NAIMARK 1958). Let n(o,,7,), m(0,,7;)
where 0y, 0, eM= 0", 74,7, € A be two representations from the
principal series of G = 80,(3, 1). Then

n(0,, T,) @ 7(0,, 75) zfg n(o, T)dug(m).

Note that Theorem 16 also yields a complete solution to the decomposition
of the tensor product of two principal series representations for G =
SO,(2n + 1, 1), n =1, since in this case 6,, =¢.

D. G=SL(n, R), n > 3. We shall now show how the techniques de-
veloped in §5 yield a complete solution to the problem of decomposing the
tensor product of two (minimal) principal series representations of G = SL(n, R),
n=3. Let D@,,***,a,) denote the diagonal matrix in G with entries

ay,***,a, andlet e(D(a,,***,a,))=a; i=1,°°-,n We have that

8={XEgn R): t(X)=0}, I={Xe€g X =-X},
p={Xeg: X=X} ﬁ={D(a,---,an): aIER,iai=(?},

0 is negative transpose, A = {(¢; —¢;): 1 <i<j<n}, At = {e; - e
1<i<j<n}, g, —e; = R Ey (E;; is the n x n matrix consisting of all
zeros and a single one in the ijth place) the simple roots are {e; — e,, e, — €3,
ces,e,_1-¢,), K=380(), A is the subgroup of all diagonal matrices with
positive diagonal elements, N is the subgroup of all matrices which are one on
the diagonal and zero below and M is the subgroup of all matrices which are
+1 on the diagonal and zero elsewhere. For n odd, the center of G is Z(G)
= {e} while for n even, Z(G) = {te}. For n even, we put (Z(G))* =
{x*, x"}. The group of all diagonal matrices in G, MA, is a Cartan subgroup
of G and the principal senes of G is the family of representations {m(a, 7)
=Ind§,y 0 x 7: o €M, rEA).
For n >3, Rank G # Rank K and so there is no discrete series to con-
Heense oropiid 'With.” "HEWeVer; 6" fias CartiA  SbEISUPT HO¥ conjugate to MA and for
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each conjugacy class there is a cuspidal parabolic subgroup and a corresponding
family of continuous series representations, F, for which ug(F)# 0. Let

P, = MAN, a minimal parabolic subgroup of G. We now construct a complete
set of nonassociate cuspidal parabolic subgroups of G. If ¢ is the largest integer
such that 2t < n, then there are exactly ¢ mutually nonconjugate Cartan sub-
groups which are not conjugate to MA [17, vol. I, p. 95] and so there are

t + 1 nonassociate cuspidal parabolic subgroups for G. The following con-
struction is detailed in [17, vol. I, pp. 66—78]. Let 8, = {¢;, —e,}, 0, =

le, —eye5meg}, o0, 0,={ey —eje5-¢€4,0 00,65,y —€y, ) Let

9, denote the set of those A € A which are linear combinations of the ele-
mentsin 8;, 0)*=A*N@), and n*@;) = Ty y+ 8, (note that @p*
=0,). If g(6,) denotes the subalgebra of g generated by n*(9,) +n=@),
then g(6;)= 1) + p(@,) where t(@)=80)N L, P@B)=80)NP.
Furthermore, 8(6,) is semisimple and g(9,) = ¥(8,) + P(8,) is a Cartan de-
composition. For A€ 0; we fix X € g, with ~B(X, 0X) = 1. Then

[6X, X] = Q, € 8(6,). Let a; denote the orthogonal complement (relative

to By) of Ty, R+ Q) in a. For x = xEy; € 8y_ep Oa =
D(+x*,~x2,0,+++,0) and tr(D(a,, ***,4a,)Q,) = x*(a, —a,). Since

B(X, Y) is a multiple of tr(XY), we have that a, =D(a,, a,,a5,°**,a,).
Similarly, we have for k <t, @, =D@,,a,,a,, a;,***,a, @G, ayp1,""", a,)
Now set n; = Z)cpt—y, ga» 9;=06(n), and

P,=p, +n7@) = n*t@,) +n"@,) + é:; RQ, +a,+m

(po = LA(P,)). Denote by A, N, V; the analytic subgroups of G corre-
sponding respectively to @, n;, v;. Note that V; has the following form

10
01

O -
- O

O -
- O

1

.
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where there are i blocks of the form () 9). Let
m, = n¥@) + 1@ + X RQ;,
A€

ie.,
X, Y,

Let M,, denote the analytic subgroup of G with Lie algebra m; and M, i(K)
denote the centralizer of a; in XK. Then

/SL,(2, R)

SL,(2, R)
1

1
[the indices indicate copies of SL(2, R)] while M, 1(K) has the form

$01(2)

SO;(2)
+1
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where the determinant must, of course, be 1. Finally, let M; =M, ;=

SL(2, R)

x]

x1

P, = M;A;N; is a parabolic subgroup of G containing P, (with Langlands de-
composition M;A;N;), and P;V; is a dense open submanifold of G whose
complement has zero Haar measure. Clearly each P; for i=0,1,°°°,¢ is
cuspidal and since dim A4; # Ai’ i #J, they are all nonassociate. Thus P,
*++,P, isacomplete set of nonassociate cuspidal parabolic subgroups of G.
We shall denote the continuous series corresponding to P; by {m/(o, 1) =
Indgi g X7 oEﬁl,d, 762,.}.

Theorem 1 now says my(0,, 7,) ® 74(0,, 7,) ~ Ind$,, (0,0, x 7,7,).
Thus, by Theorem 2 and Anh’s reciprocity formula, we need only find the
multiplicity of 6,0, x 7,7, in (@), for pg-almost all 7 € G, ie., for al-
most all (0, 7), i =0, **°, . Since the various continuous series representa-
tions are all induced representations, we may apply the subgroup theorem.

(1) Let my(o, 7) be a principal series representation. Since the action of
MA on MAN\G on the left corresponds to the action of M4 on V by inner
automorphism, we may identify MAN\G/MA with V/MA. Let ©® = LA(V)
and %= {Z .- X,: X, #0 foreach «a €A"}. Then b° isan open,
dense, conull subset of b invariant under the action of MA. Let ¥° =exp v°.
Then VP is a dense, conull subset of ¥ and the subgroups MAN, MA will
be regularly related in G if we can show VO9/MA is countably separated.
Since V°/MA ~ 9%/MA (recall that exp is a diffeomorphism and takes orbits
to orbits), it suffices to show 9%/MA is countably separated. This will follow
from [3, p. 42] once we show that the orbits in 9%/MA are locally closed [a
subset Z of a topological space Y is locally closed if Z is the intersection of
an open and closed set]. Since M is compact, it suffices to show that the
orbits in ©°/4 are locally closed.

Nowlet X=ZX,€0° Y=2ZY,€ 0% and {exp H,} be a se-
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(exp Hy) - X = 2. x, - T v,
- W) _, /Xy >0 foreach a € A”

= afH,) converges for each a € A™
= B(H,) converges for each § € a*

= JH € a such that f(H,) — f(H) forall g€ a*.
Now exp HE A and

(expH,)* X = > ea(H")Xa > ea(H")Xa = (exp H) * X.
aEAT acEA™
Thus
(expH):X=Y, Y€E(QO,=1{a*X: a€A4}

and Oy isclosed in b0,
We now show that the stability subgroup of any X € v° under the action
of MA equals Z(G). Let ¢ =D(cy,***,c,) EMA and let
1
X5, 1

X3l X32 1

an Xn2 et Xnn—l 1

= (%31, X310 X325 ** "3 X2 ** "5 Xpp) €V
Then

— -1
C* (x21’.“’xij’.."xnn-l)_c(le’...’xij’...’xnn—-l)c
= (Cpe7 Xy, tr o0 e e e x )
2C1 X215 s €€ "Xy » Cnln—1%¥nn—1)

Now let x = xEj; € 8,,_,;» j <i. Then exp X =1+ xE;, and exp (' X%
= ¢ * exp(X) = exp Ac‘(c)X =exp(c* X). Thus ¢+ X = c,-cj"xE,-j and MA
acts in one nonzero orbit on each root space. Now suppose X = Z;; x;E; €
v® and c=D(c,,***,¢,) EMA with ¢+ X=X. Then c* X =

Zi¢; 07 \xyEy = T x;E; and x;#0, j<i, implies that ¢,_,c;1; =
c,,cl‘l = = c,,c;l2 =1, i€, ¢, =¢Ccy=Cy=r°" =C,_ 5 =Cp_y-

Since 1 =M%, ¢; = ¢}, we have that ¢ €Z(G). Thus
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{cEMA: ¢+ X=X for XE€ 0}
={cEMA: c-v=uv for v EV° =exp v%}= Z(G).
Now by Mackey’s subgroup theorem, we have

®
(ndfjsy 0 X Typa = .fyo M4 Ind’g(Ac) (0)z(G) dv(V)

= “(Ind’é’(c,-) ©)zG) * P)
where p denotes the regular representation of 4 and » is any admissible
measure on V/MA.

(2) We now find (Indg 0 xT)yy, for i=1,+++,¢t. Since the action
of MA on P\G corresponds to the action of M4 on V; by inner auto-
morphism, we may identify P\G/MA with V,/MA. Let V? =V, N V°. Then
V? is a dense, conull subset of ¥; such that the stability subgroup at any v €
V9 isequal to Z(G) (same proof as in (1)). By an argument similar to that in
(1), we have that V?/MA is countably separated. If we now let »; denote any
admissible measure on V;/MA, we have by Mackey’s subgroup theorem

[}
(nd§, 0 x 1)y = [ v ma M) @z dn®.

For

n=3 t=1, ¥V, =

* O =

0 0
1 0) Z(G) = {e},
* 1

there is one nonzero orbit in V/MA, M, = SL*(2,R), and for ¢ Eﬁfl a Ve
have (0)z(g) = 1. Thus

Ma
(Indf, 0 x Ty = wlnd’::’ﬁl ~ o0 MAR,

For n>3, dim(V;/MA)>1 andsofor i=1,¢**,¢

(Ind}G,i O X Ty = °°(Ind%’(G) (©)zG) * P)-

Sofor n oddand i =0,1,+++,¢ we have (Indgi O X Thyy = MAR. For
n even, we let
T = > o and T™= > c.
oEM,(0) Z(G)=x+ oEM ,(o)z(G)=x‘
Thenfor i=0,1,°°,¢t
+ H ~ +
G oo(T X P) if (o)z((;) = X *
(Indpi O X Ty =
ofT™ x p) if (o)Z(G) 22 ooy,
L\c;.her M&mgiotmﬁmokdﬂﬂWmclm’Js://www.ams.org/journal-terms-of-use
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THEOREM. Let my(0y, 7,), (0,5, 7,) be two principal series representa-
tions for G =8SL(n, R) for n>3. Thenif n isodd, my(o,,7,) ®ny(0,, 7;)
~GR, while if n iseven

fg+ o':'Wdllc(‘") l:f (OIOZ)Z(G) = X+,

mo(0y, 71) ® my(0,, 7,) =
® , -
f&_ °<”TdﬂG(‘") lf (0102)2(0) =X ’

where G, = {1 €G: (1)) =°x*}, G_= (1E€G: (m)yy =%}
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