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Abstract We study in detail the nuclear aspects of a

neutron-star merger in which deconfinement to quark mat-

ter takes place. For this purpose, we make use of the Chi-

ral Mean Field (CMF) model, an effective relativistic model

that includes self-consistent chiral symmetry restoration and

deconfinement to quark matter and, for this reason, predicts

the existence of different degrees of freedom depending on

the local density/chemical potential and temperature. We

then use the out-of-chemical-equilibrium finite-temperature

CMF equation of state in full general-relativistic simulations

to analyze which regions of different QCD phase diagrams

are probed and which conditions, such as strangeness and

entropy, are generated when a strong first-order phase tran-

sition appears. We also investigate the amount of electrons

present in different stages of the merger and discuss how

far from chemical equilibrium they can be and, finally, draw

some comparisons with matter created in supernova explo-

sions and heavy-ion collisions.

1 Introduction

The interior of neutron stars covers an incredible range of

densities going from about 104 g/cm3 in the crust to about

1015 g/cm3 in the core, corresponding to several times the

nuclear saturation density [1]. During a neutron-star merger

this value can increase to several times 1015 g/cm3 in the cen-

ter, corresponding to more than 10 times the nuclear satura-

tion density (see Refs. [2,3] for some recent reviews). Such

extreme densities combined with temperatures of several tens

of MeV are particularly relevant if the equation of state (EOS)
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allows for a deconfinement to quark matter takes place [4–6].

Clearly, the investigation of these scenarios requires, from

one hand, the use of accurate numerical-relativity calcula-

tions and, from the other hand, a microscopic description that

allows for the existence exotic degrees of freedom, such as

hyperons and quarks (see Ref. [7] for a review of the relation

between gravitational waves and the microscopic description

of neutron stars).

It has been shown in Refs. [8,9] that hyperons can modify

the frequency and amplitude of gravitational waves emitted

by neutron-star mergers. These changes are expected to be

visible even before the merger takes place, as hyperons are

usually triggered at intermediate densities, specially when

temperature effects are pronounced. Deconfinement to quark

matter, on the other hand, was found to modify the frequency

and amplitude of gravitational waves emitted only at [6] or

after the merger [5]. The possibility of the merger of pure

quark stars have also investigated in the past [10]. More

recently, attention has been paid to the merger of twin stars in

terms of equilibrium models [11,12] or through simulations

in full general relativity of the merger of a hadronic and a

quark star [13] and quark stars with hadronic crusts [14]. In a

holographic approach, Ref. [15] has found not to be possible

to reach the phase transition to the quark phase before col-

lapsing to a black hole. The complex dynamics found in these

works, as well as the impact on the electromagnetic counter-

part to be expected from this process [16], clearly calls for

more extended and detailed work.

It has been shown that a deconfinement phase transition

can produce shock waves in stars [17]. In a previous work

[5], we reported that a strong first-order phase transition to

quark matter can lead to a post-merger gravitation-al-wave

signal that is different from the one expected from the inspi-
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ral, which can only probe the hadronic part of the EOS. In

particular, within the scenario investigated in Ref. [5], small

amounts of quarks in hot regions of the hypermassive neu-

tron star (HMNS) lead to a dephasing of the signal, while the

appearance of a strong first-order phase transition induces

an early collapse of the remnant to a black hole, producing

a ringdown signal which is different from the collapse of

a purely hadronic remnant. Here, we provide a number of

additional pieces of information and expand on the analy-

sis carried out in Ref. [5]. In particular, we here focus on

the nuclear aspects of a merger event in which a deconfine-

ment phase transition takes place in order to understand how

the outcome compares to matter generated in core-collapse

supernova explosions or in heavy-ion collisions. For this, we

analyze the light and strange-quark content at the time when

a hot quark-phase is formed in the HMNS. We also show

what thermodynamical conditions, such as temperature and

entropy, and compositions (charge, lepton, and strangeness

fractions) are generated and which baryon, charge, and elec-

tron chemical potentials they correspond to. This can serve

as a guide for nuclear physicists who want to study the effects

of neutron-star merger conditions in their EOSs that contain

exotic degrees of freedom.

The plan of the paper is as follows: first, we discuss the

microscopic EoS and the hydrodynamical code used for the

merger simulation. Then, we present the outcome of our sim-

ulations and discuss our results. Finally, we compare our find-

ings with other hot and dense environments and present our

conclusions.

2 Methods

2.1 Equation of state

Due to the extreme conditions expected to be found in

neutron-star mergers, it is compelling to construct the EOS

applying a formalism that includes the basic features pre-

dicted by QCD, namely chiral-symmetry restoration and

quark deconfinement. In the absence of a fundamental theory

that can be applied in the whole energy regime and conditions

necessary for our study, we make use of an effective model,

the Chiral Mean Field (CMF) model, which is based on a non-

linear realization of the SU(3) chiral sigma formalism [18]. It

is a relativistic model constructed from symmetry relations,

which allows it to be chirally invariant in the expected regime.

The baryon and quark masses are generated by interactions

with the medium and, therefore, decrease with temperature

and or chemical potential/density. The Lagrangian density

of the CMF model in the mean field approximation reads

[19,20]

L = Lkin + L int + Lself + Lsb − U, (1)

where, besides the kinetic energy term for hadrons, quarks

and electrons (Lkin), the terms remaining correspond to the

interaction between the octet of baryons wit spin 1/2, the 3

lighter quarks, and mesons (L int), self interactions of scalar

and vector mesons (Lself ), an explicit chiral symmetry break-

ing term necessary to produce vacuum masses for the pseudo-

scalar mesons (Lsb), and the effective potential U for the

scalar field Φ. This scalar field was named in an analogy to

the Polyakov loop in the (Polyakov) Nambu and Jona-Lasinio

(PNJL) approach [21,22] and its potential in our approach

depends on the temperature T and the baryon chemical poten-

tial µB

U = (aoT 4 + a1µ
4
B + a2T 2µ2

B)Φ2

+a3T 4
o ln (1 − 6Φ2 + 8Φ3 − 3Φ4). (2)

The mesons included are the vector-isoscalars ω and φ

(strange quark-antiquark state), the vector-isovector ρ, the

scalar-isoscalars σ and ζ (also strange quark-antiquark state),

and the scalar-isovector δ. They are treated as classical fields

within the mean-field approximation. Finite-temperature cal-

culations include the heat bath of hadronic and quark quasi-

particles within the grand canonical ensemble. The grand

potential density of the system is defined as

Ω

V
= −L int − Lself − Lsb − Lvac + U

+T
∑

i

γi

(2π)3

∫ ∞

0

d3k ln
(

1 + e− 1
T

(E∗
i (k)∓µ∗

i )
)

, (3)

where Lvac is the vacuum energy, γi is the fermionic degen-

eracy (which for the quarks also includes color degeneracy),

E∗
i (k) =

√

k2
i + M∗

i
2, is the single particle effective energy

and

µ∗
i = µi − giωω − gφφ − giρτ3ρ, (4)

is the effective chemical potential of each species. The − and

+ signs in the grand potential density (3) refer to particles and

antiparticles, respectively. The chemical potential for each

species µi is determined by the conditions imposed to the

system, conserved baryon number and electric charge,

µi = Q B,i µB + Qi µQ, (5)

where µB and µQ represent the chemical potentials corre-

sponding to the conserved quantities and the values Q B,i and

Qi are the baryon charge (1 for baryons and 1/3 for quarks)

and electric charge of a particular species i .

The coupling constants of the hadronic sector of the model

were fitted to reproduce vacuum masses of baryons and

mesons, nuclear saturation properties (density ρ0 = 0.15

fm−3, binding energy per nucleon B/A = −16 MeV, and

compressibility K = 300 MeV), the asymmetry energy

(Esym = 30 MeV with slope L = 88 MeV), and reason-

able values for the hyperon potentials (UΛ = −28.00 MeV,
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UΣ = 5 MeV, and UΞ = −18 MeV). The reproduced crit-

ical point for the nuclear liquid–gas phase transition lies at

Tc = 16.4 MeV, µB,c = 910 MeV, while the vacuum expec-

tation values of the scalar mesons are constrained by repro-

ducing the pion and kaon decay constants.

Due to their interactions with the mean field of mesons

and the field Φ, the effective masses of baryons and quarks

take the following form in our approach

M∗
B = gBσ σ + gBδτ3δ + gBζ ζ + M0B

+ gBΦΦ2, (6)

M∗
q = gqσ σ + gqδτ3δ + gqζ ζ + M0q + gqΦ(1 − Φ), (7)

where M0 are small bare-mass terms. Notice that for low val-

ues of Φ, M∗
B is small while M∗

q is very large. This essentially

indicates that, for low Φ, the presence of baryons is promoted

while quarks are suppressed, and vice versa. In this sense, Φ

acts as an order parameter for deconfinement. The potential

U , together with the quark couplings, has been fit to repro-

duce several features expected from the QCD phase diagram,

including lattice data for pure gauge and with quarks (proce-

dure explained in detail in Ref. [20]). In the latter case, we

reproduce a crossover at vanishing and small chemical poten-

tial, after which a first-order coexistence line starts, contin-

uing all the way to the zero temperature axis. The values of

all coupling constants can be found in Ref. [23].

It should be mentioned that the CMF model allows for the

existence of soluted quarks in the hadronic phase and soluted

hadrons in the quark phase at finite temperature. This is dif-

ferent from a Gibbs construction and the appearance of mix-

ture of phases, which eliminates discontinuities in the first

derivatives of the grand potential (see Refs. [24–28] with ref-

erences therein for details). Regardless, quarks always give

the dominant contribution in the quark phase, and hadrons

in the hadronic phase. We assume that this inter-penetration

of quarks and hadrons is indeed physical, and is required to

achieve the crossover transition, known to take place at low

µB values [29].

For cold chemically equilibrated matter, the formalism

leads to a neutron star with maximum mass of 2.07 M⊙ and

a radius of 12 km when quarks are suppressed. Otherwise,

the model presents a very strong deconfinement phase tran-

sition that destabilizes stars (as no quark-vector interactions

are included in agreement with lattice QCD [30]), unless a

mixtures of phases is allowed. In the latter case, we repro-

duce a stable maximum-mass star with 1.93 M⊙ and a radius

of 13 km [23], more than 2 km of which contain quarks.

For the canonical star with mass 1.4 M⊙, a corresponding

radius of 14 km is found. In addition, when we consider non-

linear isovector singlet to isovector triplet coupling of the

vector mesons for the baryons, the radius of the 1.4 M⊙ star

reduces to less than 13 km [31]. These values of the max-

imum mass and radii are compatible with the expectations

matured after the first detection of gravitational waves from

a binary neutron-star merger (GW170817) [32–40]. For pro-

neutron stars, we reproduce a stable maximum-mass star with

2.03 M⊙ and a radius of 18 km, more than 7 km of which

contain quarks [23].

In order to use our microscopic formalism in neutron-

star merger simulations, we build 3-dimensional tables in

which we vary the baryon number density, charge fraction,

and temperature. The baryon number density is defined as

nB = −
∂Ω/V

∂µB

∣

∣

∣

∣

T,V,µQ

=
∑

i

ni −
∂U

∂µB

, (8)

where ni is the number density of particle species i . The extra

contribution of the gluons to the baryon density represents

color bound states and mimics extra possible states, as for

example the contribution of higher resonances.

The charge fraction is calculated as the amount of electric

charge per baryon (and quark) and it is only summed over

baryons and quarks

YQ =
Q

B
=

∑

i Qi ni
∑

i Q B,i ni

. (9)

The electrons, which are not considered to be in chemical

equilibrium with the rest of the system, are then added in

order to fulfill electric charge neutrality

ne = −
∑

i

Qi ni = YQ

∑

i

Q B,i ni . (10)

In Ref. [41], it was described in detail the construction of

the three-dimensional table, which is already available online

on the CompOSE repository [42,43] for hadronic matter.

In the future, equivalent tables but that also contain quark

degrees of freedom will be uploaded. Figures (3) and (4) of

Ref. [41] show the effect of the increase of charge fraction in

the CMF model. At zero temperature, going from YQ = 0 to

YQ = 0.5 essentially eliminates hyperons and pushes strange

quarks to densities that are too high to be important for cold

neutron stars.

2.2 Numerical infrastructure

For completeness, we quickly summarize the numerical

methods used for the simulations reported here and first

discussed in Ref. [5]. More specifically, we solve a cou-

pled system of the Einstein and general-relativistic mag-

netohydrodynamics (GRMHD) equations using the code

Frankfurt/IllinoisGRMHD (FIL), which is a high-

order extension of the publicly available IllinoisGRMHD

code [44] part of the Einstein Toolkit [45]. In the

following, we give an overview of the numerical details and

implementation of the formalism.

To solve the Einstein equations, FIL provides its own

spacetime evolution module, which implements the Z4c

[46,47] and CCZ4 [48,49] formulations using forth-order
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accurate finite differencing [50] with different choices for

the conformal factor. In this work, we choose ψ−2 and adopt

the Z4c formulation with a damping coefficient κ = 0.02

[46,51]. The space-time gauges are evolved using the stan-

dard 1+log slicing and shifting-shift Gamma driver con-

ditions [52,53], where a uniform damping parameter of

η = 2/M is adopted.

The GRMHD equations are solved using the ECHO

scheme [54], making our code overall formally fourth-order

accurate. The fluxes are computed from the reconstructed

primitive variables using a HLLE Riemann solver [55].

The reconstruction step R is performed using the WENO-

Z method [56], with the optimal weights and stencils for a

conservative finite difference scheme taken from Ref. [54].

Our initial data is represented by an irrotational equal-

mass neutron star binary with a total mass of 2.9 M⊙ con-

structed using the LORENE code having an initial proper

separation of 45 km. The simulation domain is modeled by a

series of seven nested boxes extending up to ≃ 1500 km for

which the finest-grid box has a resolution of 250 m.

3 Results

We start by analyzing the evolution of the densest and hottest

parts of the HMNS in the left panel of Fig. 1, which reports

the regions of the standard QCD phase diagram (tempera-

ture vs. baryon chemical potential) that are probed in our

neutron-star merger simulation. In particular, we show with

a color-code in the background of the figure the quark frac-

tion Yquark (i.e., the number of quarks normalized by the total

number of baryons and quarks B) predicted by CMF model

when the charge fraction for the baryons and quarks is fixed to

YQ = 0.05. This is a good approximation for the charge frac-

tion present at intermediate densities when the merger event

starts (see discussion below for Fig. 3). As expected from

our formalism, the phase transition is quite sharp at zero and

low temperatures, reproducing pure hadronic matter to the

left (black region) and pure quark matter to the right (white

region) of the coexistence line. On the other hand, the phase

transition becomes smoother for larger temperatures to the

point that, if we had extended the figure to larger tempera-

tures, the first-order coexistence line would had disappeared

before reaching the zero baryon chemical potential axis, at a

critical temperature of Tc = 169 MeV.

The finite width for the coexistence line in the left panel

of Fig. 1 is related to the use of the baryon chemical potential

for the horizontal axis, which is not the Gibbs free energy per

baryon of the system in the case of a fixed charge fraction.

The independent chemical potential and Gibbs free energy

per baryon of the system in this case is µ̃ = µB + YQµQ

[28,42].

The different symbols in Fig. 1 describe the evolution

of the largest baryon density and largest temperature points

encountered during the simulation. The largest density rep-

resented by diamonds corresponds, first, to the reminiscent

of the original neutron stars and, later, to the center of the

HMNS formed by the merger. As time evolves, these points

correspond to larger baryon chemical potentials and, on aver-

age, larger temperatures, except for the earlier stage when

the densest points switch between the two reminiscent stars.

After ≃ 4.5 ms, the coexistence line is crossed and a large

amount of deconfined quark matter appears in the center of

the newly formed HMNS. The hottest region represented by

circles on the figure corresponds to different regions of the

merger and, only after deconfinement to quark matter takes

Fig. 1 Left panel: Evolution of the densest and hottest parts of the

hypermassive neutron star in the QCD phase diagram. The background

color refers to the total quark fraction predicted by the CMF model for

charge fraction YQ = 0.05. The different symbols describe the evolution

of the largest baryon density and largest temperature points encountered

during the simulation. Right panel: Same as in the left panel, but show-

ing in the background the strange-quark fraction predicted by the CMF

model for charge fraction YQ = 0.05
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place, it coincides with the center of the HMNS (brown cir-

cles). Before that, the hottest region appears off-center in

the shape of a ring [57,58], mostly as a manifestation of the

conservation of the Bernoulli constant [58].

The right panel of Fig. 1 also shows which regions of the

standard QCD phase diagram are probed in a neutron-star

merger but, now, we show in the background the amount of

strange quarks Ys−quark (number of s-quarks normalized by

B) predicted by the CMF model for YQ = 0.05. Note that

strange quarks do not appear immediately after the decon-

finement phase transition at low temperatures (black region),

a consequence of their large bare mass. Even at intermedi-

ate and larger temperatures, the amount of strange quarks

is roughly an order of magnitude less than that of up and

down quarks combined. Nevertheless, in the final stages of

the merger, a combination of large densities and temperatures

can produce Ys−quark > 10% in the center of the HMNS.

Fig. 2 Portion of the QCD phase diagram covered by the simulation

immediately after deconfinement to quark matter has taken place in its

center. The background color is the same as in the left panel of Fig. 1.

The blue scale shows the distance to the center of the hypermassive

neutron star

To better highlight the various regions of the phase dia-

gram probed by the HMNS, Fig. 2 shows the temperature and

baryon chemical potential values covered at a fiducial time

when the quark phase has already formed after the merger,

about 5 ms for the case a total mass of 2.9 M⊙. The blue

color code shows the distance to the center of the HMNS up

to 8 km of radius. We can see that the hadronic part of the

HMNS covers a large area of the phase diagram extending up

to T > 55 MeV [59,60]. In the region where the deconfine-

ment takes place, there is a large temperature increase related

to the gravitational collapse due to the softening of the EoS

across the first-order phase transition. The softening is related

to the extent of the energy or baryon number density jump

across the phase transition, the latter having already being

shown in the horizontal axis of Fig. 3 of Ref. [5]. Note that

our deconfinement phase transition is not an adiabatic pro-

cess. During this stage, even if the temperature was kept con-

stant, the entropy SB would increase by a factor ∼ 3, related

to the appearance of color degrees of freedom and differ-

ent interactions in the quark phase. In the deconfined phase,

the temperature reaches even larger values T ≃ 60 MeV.

Beyond the rightmost point of the phase diagram, an appar-

ent horizon starts to form and, as the simulation proceeds,

the HMNS collapses to black hole in a few ms.

Note that the time-averaged charge fraction measured dur-

ing the whole simulation is larger than YQ = 0.05, as shown

in the left panel of Fig. 3. This panel is similar to the left

panel Fig. 1, in the sense that it also follows the evolution of

the densest and hottest points of the merger simulation, but

it relates the charge fraction and the baryon chemical poten-

tial. Overall, the charge fraction achieved is larger for larger

chemical potentials, going up to YQ ≃ 0.12, right before the

temperature starts to increase. When this happens, YQ drops

as a result of the appearance of the quarks (medium-green dia-

monds). This occurs before the phase transition takes place

for the densest points. For the hottest points, YQ increases at

Fig. 3 Left panel: The charge fraction vs. baryon chemical potential phase diagram. The symbols once more follow the densest and hottest points

of the hypermassive neutron star. Right panel: Same as in the left panel but for the charged chemical potential
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the deconfinement phase transition (orange to brown circles),

beyond which they they correspond to the stellar center.

Since electric charge neutrality is always required for stel-

lar stability, the charge density of electrons has to balance the

charge density of baryons and quarks. As a consequence, the

lepton fraction Ye, defined as the number of electrons over

the number of baryons and quarks, is the same as the charge

fraction

Ye =
L

B
=

ne
∑

i Q B,i ni

=
∑

i Qi ni
∑

i Q B,i ni

= YQ . (11)

It was found in Ref. [61] using several hadronic equations

of state that the electron fraction does not go above Ye =
0.12 in neutron star mergers, the same limiting value we

obtained.

The right panel of Fig. 3 again follows the evolution of

the densest and hottest points of the merger simulation, but

now relates the charged chemical potential and the baryon

chemical potential. It is interesting to note that, separately in

each phase, the relation between the two quantities is approx-

imately linear (the light-green diamonds present a slightly

different slope because they represent a cold region with

no quarks). The very different slopes at different times (top

and bottom of panel) stem from the fact that the charged

chemical potential increases (in absolute value) with den-

sity much faster in the hadronic phase than in the quark

one. This behaviour has already been shown in Ref. [23]

for both charged and lepton chemical potentials for the par-

ticular case of fixed temperature and in chemical equilib-

rium. The jump from the bottom to the top line points to the

first-order deconfinement transition that takes place in the

simulation.

Next, we concentrate again on a specific (same as in

Fig. 2) time during the simulation after the deconfinement

to quark matter has taken place to discuss how the differ-

Fig. 4 Snapshot of the hypermassive neutron star immediately after

deconfinement to quark matter has taken place in its center showing

the charge chemical potential (left part) and electron chemical potential

(right part). Contours refer to the rest-mass density

Fig. 5 Same as Fig. 4 but showing entropy density per baryon density

(left part) and temperature (right part)

Fig. 6 Same as Fig. 4 but showing strangeness fraction YS (left part)

and strange-quark fraction Ys−quark (right part)

ent chemical potentials are spatially distributed within the

HMNS. The contours in Figs. 4, 5, 6 refer to values of the

rest-mass density boundaries between 1012 − 1015 g/cm3,

the latter being equivalent to 0.6 fm−3. The left part of

Fig. 4 shows the charged chemical potential. It can be seen

how it increases (in absolute value) with density towards

the center of the HMNS until the phase transition takes

place, when it decreases rapidly (in absolute value). The

right part of Fig. 4, on the other hand, reports the electron

chemical potential and shows that it increases (on average)

toward the center of the HMNS, being almost not sensi-

tive to the deconfinement phase transition. The difference

between these two quantities can be seen as a measure of the

distance from chemical equilibrium, when by construction

µe = −µQ .

At zero temperature, we can use the definition of the num-

ber density ni = (γi/6π2)k3
Fi

and of the Fermi momentum

kFi
=

√

(µi + vec2 − M∗
i

2), together with Eqs. (5) and (11)

to write a general relation connecting electron and charged

chemical potential
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µe =
[

(

∑

i

γi

γe

Qi [(Q Bi
µB + QiµQ + vec)2 − M∗

i
2]3/2

)2/3

+m2
e

]1/2

. (12)

We used “vec” referring to general vector interactions, but

they are specified in Eq. (4) for our model. In the case in which

both quark and hyperon degrees of freedom are suppressed,

the expression above reduces to

µe =
[

(µB + µQ + vec)2 − M∗
p

2 + m2
e

]1/2
. (13)

The left part of Fig. 5 shows how the entropy density per

baryon number density SB = s/nB is distributed in space

inside the HMNS at the same time of Fig. 4. On average, it

decreases towards the center, reaching values close to SB = 1

right before the deconfinement phase transition takes place,

beyond which it increases to SB � 2.5. The right part of Fig. 5

shows instead the temperature distribution, highlighting that,

at intermediate densities, a hot ring appears around the center

of the HMNS (see Ref. [58] for an extended discussion of this

feature). More importantly, the center of the HMNS becomes

very hot at this point in time, i.e., with temperatures T > 60

MeV. This is consequence of the gravitational collapse we

already discussed. Globally, the entropy SB increases as the

simulation evolves in time, which is related to the appearance

of shock waves that develop due to the large compressions

experienced by matter as the HMNS settles. This is in a way

similar to the dynamics produced in heavy-ion collisions [62,

63] or in supernova explosions [64].

The amount and location of exotic particles (not nucleons)

can be seen in Fig. 6 for the same time as in the previous

figures. More specifically, the left part reports the baryon

and quark strangeness fraction

YS =
S

B
=

∑

i QSi
∑

i Q B,i

, (14)

showing that it increases almost continuously towards the

center of the HMNS, reaching YS ≃ 40%. This fraction

is composed mainly of hyperons until the phase transition,

when they are replaced by strange quarks. The right part of

Fig. 6 shows how the strange quark fraction is present in low

numbers and only in the hot region before the deconfine-

ment transition, but increases reaching Ys−quark ≃ 40% in

the HMNS center.

4 Comparison with other scenarios: supernovae and

heavy-ion collisions

The physical conditions discussed so far and potentially

encountered after the merger of a binary system of neutron

stars could be produced also in two other and different scenar-

ios, namely, supernovae explosions and relativistic heavy-ion

collisions.

Right after supernova explosions, the hot and dense

medium of young protoneutron stars causes the mean free

path of neutrinos to drop dramatically and becoming smaller

than the radius of the star [65–68]. This is usually modeled

in nuclear physics assuming a large electron lepton fraction

(electron and electron neutrinos) with an electron fraction up

to Ye = 0.4 (= YQ), a value obtained from numerical simu-

lations of protoneutron-star evolution [69,70]. From Fig. 3, it

can be seen that the values reached in our merger simulations

are much smaller (∼ 1/3 of the typical protoneutron-star

value), and decrease further (to ∼ 1/6 of the protoneutron-

star value in the center of the HMNS after the first-order

phase transition has taken place.

Similarly, the temperature evolution in protoneutron stars

is usually approximated by means of a fixed entropy den-

sity per baryon number density (or entropy per baryon) SB .

When the entropy per baryon is fixed in a EOS, it allows the

temperature to increase almost linearly with density (e.g.,

towards the stellar center), with typical values of SB ≃ 1−2

[65,71], again as deduced from numerical simulations of

protoneutron-star evolution. Figure 5 shows that the values

reached in our merger simulations are comparable with those

typically encountered in protoneutron-star, being only a bit

higher, SB = 2.6, in the region where the first-order phase

transition has taken place. Note, however, that in a super-

nova explosion in which quark deconfinement takes place,

the entropy per baryon can be even higher than in our case,

reaching SB = 3 [72].

In our simulations, as it is typical of matter in astrophys-

ical scenarios, the net strangeness is nonzero, i.e., amount

of strange particles is larger than that of strange antiparti-

cles. This is not the case for matter generated in relativistic

heavy-ion collisions, since in this case there is no time for

net strangeness to be produced, and a new constraint needs to

added to the formalism YS = 0 [28,73]. Note, however, that

in a heavy-ion collision large numbers of pions and kaons can

and do escape from the system’s surface during the expan-

sion phase, enriching strangeness. As a consequence, at the

final chemical freezeout, the strangeness fraction can reach

rather high values in the collision core made up of quarks

and gluons YS ≃ 0.7. This is to be contrasted with the max-

imum value obtained in our merger simulation YS ≃ 0.40.

Notwithstanding this difference and and the fact that no elec-

trons are involved in heavy-ion collisions, we draw some

rough comparisons. For instance, typical Au–Au and Pb–

Pb (and even U) collisions create environments with charge

fraction YQ ≃ 0.4, which is once more much larger than the

maximum value produced in our merger simulations, i.e.,

YQ ≃ 0.12.
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Finally, low-energy collisions with energy per nucleon

pair
√

sN N < 3 GeV are expected to produce densities of

several times saturation density. These densities are even

beyond the scope of the second phase of the Beam Energy

Scan performed in the Relativistic Heavy Ion Collider at

the Brookhaven National Laboratory (RHIC BES-II), but

will be the focus of the Facility for Antiproton and Ion

Research at the Gesellschaft fur Schwerionenforschung in

Germany (GSI FAIR) and the Nuclotron-Based Ion Col-

lider Facility in Russia (NICA). In particular, energies per

nucleon pair of
√

sN N = 2.2, 2.4, 2.6 GeV are expected to

generate initial-state temperatures of T = 60, 70, 80 MeV,

respectively, hence, corresponding to entropies per baryon

of SB = 3, 3.5, 4 (see Tab. II and discussion in Ref. [74]

for details). Some of these temperatures and entropies are

comparable or only marginally above what we found in our

merger simulations.

5 Discussion and conclusions

We have recently presented the first fully general-relativistic

simulations showing that quark deconfinement can generate

observable signatures in the gravitational waveforms from

merging neutron-star binaries [5]. In order to better under-

stand the details and the impacts of the deconfinement first-

order phase transition, we have discussed here a number of

phase diagrams illustrating the properties of the resulting

hypermassive neutron star (HMNS) in terms of the evolution

of temperature, baryon chemical potential, charged chemical

potential, and charge fraction.

In particular, we have shown which parts of the phase dia-

gram can be probed in a representative neutron-star merger

that generates a ≃ 2.9 M⊙ HMNS in which a deconfine-

ment to quark matter takes place and indicated the approx-

imate amounts of light and strange quark fractions that are

created in this way. In turn, this has revealed that a consid-

erable amount of strange quarks, i.e., Ys−quark ≃ 40%, can

appear in the hot center of the HMNS after the deconfine-

ment phase transition has taken place. Of course, this does not

mean that strangeness is not present before the actual phase

transition, since light quarks can appear in small amounts in

earlier stages of the merger. In addition, hyperons, are gener-

ated in large amounts before the transition, as a result of the

increase in density and temperature. Therefore, even before

the deconfinement phase transition, strangeness fraction can

reach YS ≃ 40%.

Our study has also revealed that the charged fraction

achieved in the simulation decreases when the deconfinement

takes place, not exceeding YQ ≃ 0.12. This value is much

smaller than that encountered in typical protoneutron star

calculations YQ ≃ 0.4 or the the ones present in relativistic

heavy-ion collisions, where again YQ ≃ 0.4. Furthermore,

the charged chemical potential decreases (in absolute value)

when the transition takes place and does not match the value

of the electron chemical potential. This difference highlights

the fact that the merged system is far from chemical equilib-

rium. Very informative are also the spatial distributions of the

various thermodynamical quantities at a representative time

after the deconfinement phase transition has taken place. We

have illustrated that, while the charged chemical potential is

reduced dramatically across the phase transition, the chemi-

cal potential of the electrons is not affected significantly.

Finally, we note that the study of all these key thermo-

dynamical quantities is useful to validate whether the phys-

ical conditions produced in neutron-star mergers are indeed

similar to the those generated in other physical scenarios,

such as supernova explosions or relativistic heavy-ion col-

lisions [40]. More specifically, we have found this analogy

to hold reasonably well when comparing our temperatures

and entropies with the conditions encountered in the matter

ejected in supernova explosions or in heavy-ion collisions at

low energies, such as the ones to be produced in FAIR and

NICA. On the other hand, both the supernova and the heavy-

ion collision scenarios are not able to reproduce the extremely

high baryon chemical potentials (i.e., µB > 1.5 GeV, equiv-

alent to more than 10 times saturation density) that can be

achieved in neutron-star mergers. In this way, neutron-star

mergers can provide a unique piece to the understanding of

matter at extreme conditions of density and temperature.

As a concluding remark, we note that soon after our results

were presented [5], Aloy et al. [75] presented interesting

results from a systematic investigation of the convexity of

equations of state (EOSs).1 In particular, they showed that

non-convex thermodynamics, which can appear if the adi-

abatic index decreases sufficiently rapidly with increasing

density, can affect the equilibrium structure of stable com-

pact stars, as well as the dynamics of unstable neutron stars.

In the latter case, a compression shock can be formed at

the inner border of the convex region and affect the gravi-

tational collapse to a black hole, leaving imprints on gravi-

tational waveforms, which would be of increased amplitude

[75]. This result was shown to hold when using our Chi-

ral Mean Field (CMF) EOS, but also other EOSs that did

not include a deconfinement phase transition. More impor-

tantly, it was found in Ref. [75] that those EOSs develop-

ing non-convex thermodynamics without a deconfinement

first-order phase transition had a non-consistent treatment

1 We recall that fluids following convex EOSs are such that their

fluid elements increase their specific volume and decrease their pres-

sure when overtaken by a rarefaction wave (i.e., rarefaction waves are

“expansive”); similarly, they are compressed when overtaken by a com-

pression wave (i.e., compression waves are “compressive”). Conversely,

fluids following non-convex equations of state are such that their fluid

elements behave rather “anomalously”, that is, they are compressed by

rarefaction waves and rarefied by compression waves [53].
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of matter constituents (non-relativistic instead of relativistic)

or used specific sets of parameter in their relativistic mean-

field approach that resulted in unphysical properties. A sim-

ilar conclusion has been drawn by Schneider et al. in Ref.

[76], who found that a pion-condensation transition does not

mimic a quark deconfinement phase transitions, as it is usu-

ally less extreme and does not generate a second neutrino

burst in supernova explosions. When taken together, these

arguments strengthen our conclusion that a deconfinement

phase transition can indeed leave distinguishable observable

signals in different stages of neutron-star evolution.
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4. R. Oechslin, K. Uryū, G.S. Poghosyan, F.K. Thielemann, Mon.

Not. Roy. Astron. Soc. 349, 1469 (2004). https://doi.org/10.1111/

j.1365-2966.2004.07621.x. arXiv:astro-ph/0401083 [astro-ph]

5. E.R. Most, L.J. Papenfort, V. Dexheimer, M. Hanauske, S.

Schramm, H. Stöcker, L. Rezzolla, Phys. Rev. Lett. 122,

061101 (2019). https://doi.org/10.1103/PhysRevLett.122.061101.

arXiv:1807.03684 [astro-ph.HE]

6. A. Bauswein, N.-U.F. Bastian, D.B. Blaschke, K. Chatziioan-

nou, J.A. Clark, T. Fischer, M. Oertel, Phys. Rev. Lett. 122,

061102 (2019). https://doi.org/10.1103/PhysRevLett.122.061102.

arXiv:1809.01116 [astro-ph.HE]

7. L. Baiotti, Prog. Part. Nucl. Phys. 109, 103714 (2019). https://doi.

org/10.1016/j.ppnp.2019.103714. arXiv:1907.08534

8. Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, Phys. Rev.

Lett. 107, 211101 (2011). https://doi.org/10.1103/PhysRevLett.

107.211101. arXiv:1110.4442 [astro-ph.HE]

9. D. Radice, S. Bernuzzi, W. Del Pozzo, L.F. Roberts, C.D. Ott,

Astrophys. J. Lett. 842, L10 (2017). https://doi.org/10.3847/

2041-8213/aa775f. arXiv:1612.06429 [astro-ph.HE]

10. A. Bauswein, H.-T. Janka, R. Oechslin, G. Pagliara, I. Sagert,

J. Schaffner-Bielich, M.M. Hohle, R. Neuhäuser, Phys. Rev.

Lett. 103, 011101 (2009). https://doi.org/10.1103/PhysRevLett.

103.011101. arXiv:0812.4248

11. G. Montaña, L. Tolós, M. Hanauske, L. Rezzolla, Phys. Rev. D

99, 103009 (2019). https://doi.org/10.1103/PhysRevD.99.103009.

arXiv:1811.10929 [astro-ph.HE]

12. C. Zhang, (2019), arXiv e-prints arXiv:1908.10355 [astro-ph.HE]

13. R. De Pietri, A. Drago, A. Feo, G. Pagliara, M. Pasquali, S. Traversi,

G. Wiktorowicz, Astrophys. J. 881, 122 (2019). https://doi.org/10.

3847/1538-4357/ab2fd0. arXiv:1904.01545 [astro-ph.HE]

14. H. Gieg, T. Dietrich, M. Ujevic, (2019), arXiv e-prints

arXiv:1908.03135 [gr-qc]

15. C. Ecker, M. Järvinen, G. Nijs, W. van der Schee, (2019), arXiv

e-prints arXiv:1908.03213 [astro-ph.HE]

16. N. Bucciantini, A. Drago, G. Pagliara, S. Traversi, (2019), arXiv

e-prints arXiv:1908.02501 [astro-ph.HE]

17. I. Mishustin, R. Mallick, R. Nandi, L. Satarov, Phys. Rev. C

91, 055806 (2015). https://doi.org/10.1103/PhysRevC.91.055806.

arXiv:1410.8322 [astro-ph.HE]

18. P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich,

H. Stoecker, W. Greiner, Phys. Rev. C 59, 411 (1999). https://doi.

org/10.1103/PhysRevC.59.411. arXiv:nucl-th/9806087 [nucl-th]

19. V. Dexheimer, S. Schramm, Astrophys. J. 683, 943 (2008). https://

doi.org/10.1086/589735. arXiv:0802.1999 [astro-ph]

20. V.A. Dexheimer, S. Schramm, Phys. Rev. C 81, 045201 (2010).

https://doi.org/10.1103/PhysRevC.81.045201. arXiv:0901.1748

[astro-ph.SR]

21. C. Ratti, M.A. Thaler, W. Weise, Proceedings, 18th Interna-

tional Conference on Ultra-Relativistic Nucleus-Nucleus Colli-

sions (Quark Matter 2005): Budapest, Hungary, August 4-9, 2005,

Rom. Rep. Phys. 58, 13 ( 2006)

22. S. Roessner, C. Ratti, W. Weise, Phys. Rev. D 75,

034007 (2007). https://doi.org/10.1103/PhysRevD.75.034007.

arXiv:hep-ph/0609281 [hep-ph]

23. J. Roark, V. Dexheimer, Phys. Rev. C 98, 055805 (2018). https://

doi.org/10.1103/PhysRevC.98.055805. arXiv:1803.02411 [nucl-

th]

24. N.K. Glendenning, Phys. Rev. D 46, 1274 (1992). https://doi.org/

10.1103/PhysRevD.46.1274

25. B. Lukacs, J. Zimanyi, N.L. Balazs, Phys. Lett. B 183, 27 (1987).

https://doi.org/10.1016/0370-2693(87)91411-0

26. U.W. Heinz, K.S. Lee, M.J. Rhoades-Brown, Mod. Phys. Lett. A

2, 153 (1987). https://doi.org/10.1142/S0217732387000197

27. R. Poberezhnyuk, V. Vovchenko, M.I. Gorenstein, H. Stoecker,

Phys. Rev. C 99, 024907 (2019). https://doi.org/10.1103/

PhysRevC.99.024907. arXiv:1810.07640 [hep-ph]

28. M. Hempel, V. Dexheimer, S. Schramm, I. Iosilevskiy, Phys. Rev. C

88, 014906 (2013). https://doi.org/10.1103/PhysRevC.88.014906.

arXiv:1302.2835 [nucl-th]

29. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo,

Nature 443, 675 (2006). https://doi.org/10.1038/nature05120.

arXiv:hep-lat/0611014 [hep-lat]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-97616-7
https://doi.org/10.1088/1361-6633/aa67bb
http://arxiv.org/abs/1607.03540
https://doi.org/10.1088/1361-6382/aa61ce
http://arxiv.org/abs/1611.01519
https://doi.org/10.1111/j.1365-2966.2004.07621.x
https://doi.org/10.1111/j.1365-2966.2004.07621.x
http://arxiv.org/abs/astro-ph/0401083
https://doi.org/10.1103/PhysRevLett.122.061101
http://arxiv.org/abs/1807.03684
https://doi.org/10.1103/PhysRevLett.122.061102
http://arxiv.org/abs/1809.01116
https://doi.org/10.1016/j.ppnp.2019.103714
https://doi.org/10.1016/j.ppnp.2019.103714
http://arxiv.org/abs/1907.08534
https://doi.org/10.1103/PhysRevLett.107.211101
https://doi.org/10.1103/PhysRevLett.107.211101
http://arxiv.org/abs/1110.4442
https://doi.org/10.3847/2041-8213/aa775f
https://doi.org/10.3847/2041-8213/aa775f
http://arxiv.org/abs/1612.06429
https://doi.org/10.1103/PhysRevLett.103.011101
https://doi.org/10.1103/PhysRevLett.103.011101
http://arxiv.org/abs/0812.4248
https://doi.org/10.1103/PhysRevD.99.103009
http://arxiv.org/abs/1811.10929
http://arxiv.org/abs/1908.10355
https://doi.org/10.3847/1538-4357/ab2fd0
https://doi.org/10.3847/1538-4357/ab2fd0
http://arxiv.org/abs/1904.01545
http://arxiv.org/abs/1908.03135
http://arxiv.org/abs/1908.03213
http://arxiv.org/abs/1908.02501
https://doi.org/10.1103/PhysRevC.91.055806
http://arxiv.org/abs/1410.8322
https://doi.org/10.1103/PhysRevC.59.411
https://doi.org/10.1103/PhysRevC.59.411
http://arxiv.org/abs/nucl-th/9806087
https://doi.org/10.1086/589735
https://doi.org/10.1086/589735
http://arxiv.org/abs/0802.1999
https://doi.org/10.1103/PhysRevC.81.045201
http://arxiv.org/abs/0901.1748
https://doi.org/10.1103/PhysRevD.75.034007
http://arxiv.org/abs/hep-ph/0609281
https://doi.org/10.1103/PhysRevC.98.055805
https://doi.org/10.1103/PhysRevC.98.055805
http://arxiv.org/abs/1803.02411
https://doi.org/10.1103/PhysRevD.46.1274
https://doi.org/10.1103/PhysRevD.46.1274
https://doi.org/10.1016/0370-2693(87)91411-0
https://doi.org/10.1142/S0217732387000197
https://doi.org/10.1103/PhysRevC.99.024907
https://doi.org/10.1103/PhysRevC.99.024907
http://arxiv.org/abs/1810.07640
https://doi.org/10.1103/PhysRevC.88.014906
http://arxiv.org/abs/1302.2835
https://doi.org/10.1038/nature05120
http://arxiv.org/abs/hep-lat/0611014


59 Page 10 of 11 Eur. Phys. J. A (2020) 56 :59

30. J. Steinheimer, S. Schramm, Phys. Lett. B 736, 241 (2014). https://

doi.org/10.1016/j.physletb.2014.07.018. arXiv:1401.4051 [nucl-

th]

31. V. Dexheimer, R. de Oliveira Gomes, S. Schramm, H. Pais, J.

Phys. G: Nucl. Phys. 46, 034002 (2019). https://doi.org/10.1088/

1361-6471/ab01f0. arXiv:1810.06109 [nucl-th]

32. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C.

Adams, T. Adams, P. Addesso, R.X. Adhikari, V.B. Adya et al.,

LIGO scientific collaboration and virgo collaboration. Phys. Rev.

Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.

119.161101. arXiv:1710.05832 [gr-qc]

33. E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett. 120,

172703 (2018). https://doi.org/10.1103/PhysRevLett.120.172703.

arXiv:1711.02644 [astro-ph.HE]

34. A. Bauswein, O. Just, H.-T. Janka, N. Stergioulas, Astrophys. J.

Lett. 850, L34 (2017). https://doi.org/10.3847/2041-8213/aa9994.

arXiv:1710.06843 [astro-ph.HE]

35. B. Margalit, B.D. Metzger, Astrophys. J. Lett. 850, L19 (2017).

https://doi.org/10.3847/2041-8213/aa991c. arXiv:1710.05938

[astro-ph.HE]

36. D. Radice, A. Perego, F. Zappa, S. Bernuzzi, Astrophys. J.

Lett. 852, L29 (2018). https://doi.org/10.3847/2041-8213/aaa402.

arXiv:1711.03647 [astro-ph.HE]

37. L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. Lett.

852, L25 (2018). https://doi.org/10.3847/2041-8213/aaa401.

arXiv:1711.00314 [astro-ph.HE]

38. M. Ruiz, S.L. Shapiro, A. Tsokaros, Phys. Rev. D 97,

021501 (2018). https://doi.org/10.1103/PhysRevD.97.021501.

arXiv:1711.00473 [astro-ph.HE]

39. M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku,

Y. Sekiguchi, M. Tanaka, Phys. Rev. D 96, 123012 (2017). https://

doi.org/10.1103/PhysRevD.96.123012. arXiv:1710.07579 [astro-

ph.HE]

40. E.R. Most, L.R. Weih, L. Rezzolla, J. Schaffner-Bielich, Phys. Rev.

Lett. 120, 261103 (2018). https://doi.org/10.1103/PhysRevLett.

120.261103. arXiv:1803.00549 [gr-qc]

41. V. Dexheimer, Publ. Astron. Soc. Aust. 34, e066 (2017). https://

doi.org/10.1017/pasa.2017.61. arXiv:1708.08342 [astro-ph.HE]

42. S. Typel, M. Oertel, T. Klähn, Phys. Part. Nucl. 46, 633 (2015).

https://doi.org/10.1134/S1063779615040061

43. Compose website, https://compose.obspm.fr/

44. Z.B. Etienne, V. Paschalidis, R. Haas, P. Mösta, S.L. Shapiro,

Class. Quantum Grav. 32, 175009 (2015). https://doi.org/10.1088/

0264-9381/32/17/175009. arXiv:1501.07276 [astro-ph.HE]

45. F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener,

R. Haas, I. Hinder, B.C. Mundim, C.D. Ott, E. Schnetter,

G. Allen, M. Campanelli, P. Laguna, Class. Quantum Grav.

29, 115001 (2012). https://doi.org/10.1088/0264-9381/29/11/

115001. arXiv:1111.3344 [gr-qc]

46. D. Hilditch, S. Bernuzzi, M. Thierfelder, Z. Cao, W. Tichy, B.

Brügmann, Phys. Rev. D 88, 084057 (2013). https://doi.org/10.

1103/PhysRevD.88.084057. arXiv:1212.2901 [gr-qc]

47. S. Bernuzzi, D. Hilditch, Phys. Rev. D 81, 084003 (2010). https://

doi.org/10.1103/PhysRevD.81.084003. arXiv:0912.2920 [gr-qc]

48. D. Alic, C. Bona-Casas, C. Bona, L. Rezzolla, C. Palenzuela, Phys.

Rev. D 85, 064040 (2012). https://doi.org/10.1103/PhysRevD.85.

064040. arXiv:1106.2254 [gr-qc]

49. D. Alic, W. Kastaun, L. Rezzolla, Phys. Rev. D 88,

064049 (2013). https://doi.org/10.1103/PhysRevD.88.064049.

arXiv:1307.7391 [gr-qc]

50. Y. Zlochower, J.G. Baker, M. Campanelli, C.O. Lousto, Phys. Rev.

D 72, 024021 (2005). gr-qc/0505055

51. A. Weyhausen, S. Bernuzzi, D. Hilditch, Phys. Rev. D D85,

024038 (2012). https://doi.org/10.1103/PhysRevD.85.024038.

arXiv:1107.5539 [gr-qc]

52. M. Alcubierre, Introduction to 3+1 numerical relativity (Oxford

University Press, Oxford, 2008). https://doi.org/10.1093/acprof:

oso/9780199205677.001.0001

53. L. Rezzolla, O. Zanotti, Relativistic Hydrodynamics (Oxford Uni-

versity Press, Oxford, 2013). https://doi.org/10.1093/acprof:oso/

9780198528906.001.0001

54. L. Del Zanna, O. Zanotti, N. Bucciantini, P. Londrillo, Astron.

Astrophys. 473, 11 (2007). https://doi.org/10.1051/0004-6361:

20077093. arXiv:0704.3206

55. A. Harten, P.D. Lax, B. van Leer, SIAM Rev. 25, 35 (1983). https://

doi.org/10.1137/1025002

56. R. Borges, M. Carmona, B. Costa, W. Don, J. Comput. Phys. 227,

3191 (2008). https://doi.org/10.1016/j.jcp.2007.11.038

57. W. Kastaun, R. Ciolfi, B. Giacomazzo, Phys. Rev. D

94, 044060 (2016). https://doi.org/10.1103/PhysRevD.94.044060.

arXiv:1607.02186 [astro-ph.HE]

58. M. Hanauske, K. Takami, L. Bovard, L. Rezzolla, J.A. Font, F.

Galeazzi, H. Stöcker, Phys. Rev. D 96, 043004 (2017). https://doi.

org/10.1103/PhysRevD.96.043004. arXiv:1611.07152 [gr-qc]

59. M. Hanauske, J. Steinheimer, A. Motornenko, V. Vovchenko, L.

Bovard, E.R. Most, L.J. Papenfort, S. Schramm, H. Stöcker, Parti-

cles 2, 44 (2019a). https://doi.org/10.3390/particles2010004

60. M. Hanauske, L. Bovard, E. Most, J. Papenfort, J. Stein-

heimer, A. Motornenko, V. Vovchenko, V. Dexheimer, S.

Schramm, H. Stöcker, Universe 5, (2019b). https://doi.org/10.

3390/universe5060156

61. A. Perego, S. Bernuzzi, D. Radice, Eur. Phys. J. A

55, 124 (2019). https://doi.org/10.1140/epja/i2019-12810-7.

arXiv:1903.07898 [gr-qc]

62. I. Bouras, E. Molnar, H. Niemi, Z. Xu, A. El, O. Fochler, C. Greiner,

D.H. Rischke, Phys. Rev. Lett. 103, 032301 (2009). https://doi.org/

10.1103/PhysRevLett.103.032301. arXiv:0902.1927 [hep-ph]

63. I. Bouras, E. Molnar, H. Niemi, Z. Xu, A. El, O. Fochler, C. Greiner,

D.H. Rischke, Phys. Rev. C 82, 024910 (2010). https://doi.org/10.

1103/PhysRevC.82.024910. arXiv:1006.0387 [hep-ph]

64. A. Burrows, J.M. Lattimer, Astrophys. J. 270, 735 (1983). https://

doi.org/10.1086/161163

65. M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, J.M. Lattimer,

R. Knorren, Phys. Rep. 280, 1 (1997). https://doi.org/10.1016/

S0370-1573(96)00023-3. arXiv:nucl-th/9603042

66. S. Reddy, M. Prakash, J.M. Lattimer, Phys. Rev. D 58,

013009 (1998). https://doi.org/10.1103/PhysRevD.58.013009.

arXiv:astro-ph/9710115 [astro-ph]

67. C. Shen, U. Lombardo, N. Van Giai, W. Zuo, Phys. Rev. C

68, 055802 (2003). https://doi.org/10.1103/PhysRevC.68.055802.

arXiv:nucl-th/0307101 [nucl-th]

68. A. Pastore, M. Martini, D. Davesne, J. Navarro, S. Goriely, N.

Chamel, Phys. Rev. C 90, 025804 (2014). https://doi.org/10.1103/

PhysRevC.90.025804. arXiv:1408.2811 [nucl-th]

69. T. Fischer, S.C. Whitehouse, A. Mezzacappa, F.-K. Thielemann, M.

Liebendörfer, Astron. Astrophys. 517, A80 (2010). https://doi.org/

10.1051/0004-6361/200913106. arXiv:0908.1871 [astro-ph.HE]

70. L. Hüdepohl, B. Müller, H.-T. Janka, A. Marek, G.G. Raffelt,

Phys. Rev. Lett. 104, 251101 (2010). https://doi.org/10.1103/

PhysRevLett.104.251101

71. J.A. Pons, S. Reddy, M. Prakash, J.M. Lattimer, J.A. Miralles,

Astrophys. J. 513, 780 (1999). https://doi.org/10.1086/306889.

astro-ph/9807040

72. T. Fischer, N.-U.F. Bastian, M.-R. Wu, P. Baklanov, E. Sorokina,

S. Blinnikov, S. Typel, T. Klähn, D.B. Blaschke, Nat. Astron.

2, 980 (2018). https://doi.org/10.1038/s41550-018-0583-0.

arXiv:1712.08788 [astro-ph.HE]

73. M. Hempel, G. Pagliara, J. Schaffner-Bielich, Phys. Rev. D

80, 125014 (2009). https://doi.org/10.1103/PhysRevD.80.125014.

arXiv:0907.2680 [astro-ph.HE]

123

https://doi.org/10.1016/j.physletb.2014.07.018
https://doi.org/10.1016/j.physletb.2014.07.018
http://arxiv.org/abs/1401.4051
https://doi.org/10.1088/1361-6471/ab01f0
https://doi.org/10.1088/1361-6471/ab01f0
http://arxiv.org/abs/1810.06109
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
http://arxiv.org/abs/1710.05832
https://doi.org/10.1103/PhysRevLett.120.172703
http://arxiv.org/abs/1711.02644
https://doi.org/10.3847/2041-8213/aa9994
http://arxiv.org/abs/1710.06843
https://doi.org/10.3847/2041-8213/aa991c
http://arxiv.org/abs/1710.05938
https://doi.org/10.3847/2041-8213/aaa402
http://arxiv.org/abs/1711.03647
https://doi.org/10.3847/2041-8213/aaa401
http://arxiv.org/abs/1711.00314
https://doi.org/10.1103/PhysRevD.97.021501
http://arxiv.org/abs/1711.00473
https://doi.org/10.1103/PhysRevD.96.123012
https://doi.org/10.1103/PhysRevD.96.123012
http://arxiv.org/abs/1710.07579
https://doi.org/10.1103/PhysRevLett.120.261103
https://doi.org/10.1103/PhysRevLett.120.261103
http://arxiv.org/abs/1803.00549
https://doi.org/10.1017/pasa.2017.61
https://doi.org/10.1017/pasa.2017.61
http://arxiv.org/abs/1708.08342
https://doi.org/10.1134/S1063779615040061
https://compose.obspm.fr/
https://doi.org/10.1088/0264-9381/32/17/175009
https://doi.org/10.1088/0264-9381/32/17/175009
http://arxiv.org/abs/1501.07276
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/29/11/115001
http://arxiv.org/abs/1111.3344
https://doi.org/10.1103/PhysRevD.88.084057
https://doi.org/10.1103/PhysRevD.88.084057
http://arxiv.org/abs/1212.2901
https://doi.org/10.1103/PhysRevD.81.084003
https://doi.org/10.1103/PhysRevD.81.084003
http://arxiv.org/abs/0912.2920
https://doi.org/10.1103/PhysRevD.85.064040
https://doi.org/10.1103/PhysRevD.85.064040
http://arxiv.org/abs/1106.2254
https://doi.org/10.1103/PhysRevD.88.064049
http://arxiv.org/abs/1307.7391
https://doi.org/10.1103/PhysRevD.85.024038
http://arxiv.org/abs/1107.5539
https://doi.org/10.1093/acprof:oso/9780199205677.001.0001
https://doi.org/10.1093/acprof:oso/9780199205677.001.0001
https://doi.org/10.1093/acprof:oso/9780198528906.001.0001
https://doi.org/10.1093/acprof:oso/9780198528906.001.0001
https://doi.org/10.1051/0004-6361:20077093
https://doi.org/10.1051/0004-6361:20077093
http://arxiv.org/abs/0704.3206
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1016/j.jcp.2007.11.038
https://doi.org/10.1103/PhysRevD.94.044060
http://arxiv.org/abs/1607.02186
https://doi.org/10.1103/PhysRevD.96.043004
https://doi.org/10.1103/PhysRevD.96.043004
http://arxiv.org/abs/1611.07152
https://doi.org/10.3390/particles2010004
https://doi.org/10.3390/universe5060156
https://doi.org/10.3390/universe5060156
https://doi.org/10.1140/epja/i2019-12810-7
http://arxiv.org/abs/1903.07898
https://doi.org/10.1103/PhysRevLett.103.032301
https://doi.org/10.1103/PhysRevLett.103.032301
http://arxiv.org/abs/0902.1927
https://doi.org/10.1103/PhysRevC.82.024910
https://doi.org/10.1103/PhysRevC.82.024910
http://arxiv.org/abs/1006.0387
https://doi.org/10.1086/161163
https://doi.org/10.1086/161163
https://doi.org/10.1016/S0370-1573(96)00023-3
https://doi.org/10.1016/S0370-1573(96)00023-3
http://arxiv.org/abs/nucl-th/9603042
https://doi.org/10.1103/PhysRevD.58.013009
http://arxiv.org/abs/astro-ph/9710115
https://doi.org/10.1103/PhysRevC.68.055802
http://arxiv.org/abs/nucl-th/0307101
https://doi.org/10.1103/PhysRevC.90.025804
https://doi.org/10.1103/PhysRevC.90.025804
http://arxiv.org/abs/1408.2811
https://doi.org/10.1051/0004-6361/200913106
https://doi.org/10.1051/0004-6361/200913106
http://arxiv.org/abs/0908.1871
https://doi.org/10.1103/PhysRevLett.104.251101
https://doi.org/10.1103/PhysRevLett.104.251101
https://doi.org/10.1086/306889
https://doi.org/10.1038/s41550-018-0583-0
http://arxiv.org/abs/1712.08788
https://doi.org/10.1103/PhysRevD.80.125014
http://arxiv.org/abs/0907.2680


Eur. Phys. J. A (2020) 56 :59 Page 11 of 11 59

74. A. Motornenko, V. Vovchenko, J. Steinheimer, S. Schramm, H.

Stoecker, Nucl. Phys. A 982, 891 (2019). https://doi.org/10.1016/

j.nuclphysa.2018.11.028. the 27th International Conference on

Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2018

75. M.A. Aloy, J.M. Ibáñez, N. Sanchis-Gual, M. Obergaulinger, J.A.

Font, S. Serna, A. Marquina, Mon. Not. R. Astron. Soc. 484, 4980

(2019). https://doi.org/10.1093/mnras/stz293. arXiv:1806.03314

[astro-ph.HE]

76. A.S. Schneider, C. Constantinou, B. Muccioli, M. Prakash, Phys.

Rev. C 100, 025803 (2019). https://doi.org/10.1103/PhysRevC.

100.025803. arXiv:1901.09652 [nucl-th]

123

https://doi.org/10.1016/j.nuclphysa.2018.11.028
https://doi.org/10.1016/j.nuclphysa.2018.11.028
https://doi.org/10.1093/mnras/stz293
http://arxiv.org/abs/1806.03314
https://doi.org/10.1103/PhysRevC.100.025803
https://doi.org/10.1103/PhysRevC.100.025803
http://arxiv.org/abs/1901.09652

	On the deconfinement phase transition in neutron-star mergers
	Abstract 
	1 Introduction
	2 Methods
	2.1 Equation of state
	2.2 Numerical infrastructure

	3 Results
	4 Comparison with other scenarios: supernovae and heavy-ion collisions
	5 Discussion and conclusions
	Acknowledgements
	References


