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Abstract. We investigate a class of isolated hypersurface singularities, the so-called
purely elliptic singularities, of complex algebraic varieties of dimension greater than or equal
to two. We show that, for hypersurface purely elliptic singularities defined by nondegenerate
polynomials, Calabi-Yau varieties arising among the irreducible components of the essential
divisors are concretely associated with the defining equations of these singularities, and that
the birational class of the Calabi-Yau varistidoes not depend on thedducible components.

Introduction. A purely elliptic singularity is by definition a normal isolated singular-
ity (X, x) of anr-dimensional complex algebraic variety with (X, x) = 1 for any positive
integerm, wherer > 2 ands,, (X, x) denotes then-th /2-pluri-genus of the normal isolated
singularity (cf. [14]). Purely elliptic singularities can be thought of as higher dimensional ana-
logues of simple elliptic singularities and cusps in dimension two. In general, for an isolated
singularity (X, x) of a complex algebraic variety, there exists a resolution of the singularity
7 : X — X such that the fibrer ~1(x)req is a divisor with simple normal crossings, which
we call agood resolution of (X, x). The exceptional set of a good resolution of a purely
elliptic singularity has a charactstic complex analytic subset; called the essential divi-
sor [2], [3]; for example, in the case of a simple elliptic singulariy, always consists of a
nonsingular elliptic curve, while in the case of a cugp, consists of a cycle of nonsingular
rational curves, which characterise the simgllgotic singularity and the cusp, respectively.

It was Ishii [2], [3] who first focused attention on the essential divisors of good res-
olutions of normal isolate-Gorenstein singularities and unveiled their general algebro-
geometric structures, by which we see that the essential divisors also have characteristic
significance for purely elliptic singularities. lwldition to this, Ishii-Watanabe [7] and Tomari
[12] showed that Calabi-Yau varieties or Abelian varieties arise in general in the essential di-
visors of (partial) resolutions of purely elliptic singularities.

In contrast to these general results, our results in this paper is more explicit and sum-
marised as follows. When purely elliptic singuties are hypersurface singularities defined
by nondegenerate polynomials, the Calabi-Yau varieties, arising among the irreducible com-
ponents of the essential divisors of good resolutions obtained by means of toric geometry,
are concretely associated with the leading parts of the defining functions of the singularities,
and the birational class of the Calabi-Yau varieties does not depend on the irreducible compo-
nents. We note that a relationship between the leading parts of the defining functions of purely
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elliptic singularities and Calabi-Yau varietiesindicated in Yonemura [16] and Tomari [12],
which motivated us to investigate this subject.

This paper is organised as follows. Section 1 is devoted to preliminaries and the state-
ments of our results. We prove our main result in Section 2 with the help of a key lemma,
which is proved in Section 3.

The author would like to express his gratitude to Professor Kimio Watanabe for his valu-
able comments and continuous stimulation during the preparation of this paper. He is also
grateful to the referee for many thoughtful suggestions which improved the paper.

1. Preliminaries and results. 1.1. Preliminaries. First, we recall relevant defi-
nitions and known results about purely ellipsingularities. In what follows, a resolution
7 : X — X of a singularity(X, x) is called agood resolution if the fibre 7 ~1(x)req is @
divisor with simple normal crossings.

DEeFINITION 1 (Watanabe [14]). A normalisolated singularity is callgalieely elliptic
singularity if §,, (X, x) = 1 for any positive integew. Here then-th pluri-genuss,, (X, x) is
defined to be

8m(X, x) :=dimc ' (X \ {x}, OmK))/L¥™ (X \ {x})
=dimc I'(X \ E, O(mK))/T' (X, O(mK + (m — 1)E)),

wherer : X — X is a good resolution of the singulariX, x) and E is the reduced
exceptional divisor. (We note that, (X, x) is independent of the choice of a good resolution
w for everym.)

DEFINITION 2 (Ishii [2], [3]). For a good resolution : X — X of a normal isolated
Q-Gorenstein singularityX, x), we defineK g = 7*Kx + 3 ;c,miEi =) ;c, m; E;, where
m; (i € I)andm; (j € J) are rational numbersy; > Ofori € I, m; > Oforj € J, and
E; (i € ) andE; (j € J) are the irreducible components Bf = 77 1(x)req. Denote by
[m ] the integer such that; — 1 < [m;] < m;. The divisort; := }_,,[m;]E; is called
theessential divisor.

The essential divisors characterise purely elliptic singularities in the following manner.

PrROPOSITION 1 (Ishii [2]). Suppose that (X, x) is a normal isolated Gorenstein sin-
gularity. Then (X, x) is a purely elliptic singularity if and only if the essential divisor of a
good resolution is a reduced divisor.

In order to describe the configuration of the irreducible components of the essential di-
visor Ey, it is convenient to use théual complex I'g, of E;, which is a simplicial complex
defined as follows:

(0) We associate a vertex widach irreducible compone#t, ;

(1) If a pair of irreducible components,, Eg intersect, then we associate a line seg-
ment between the vertices corresponding{o Eg;
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(2) Ifthree irreducible components,, Eg, E, intersect, we associate a triangle (two-
dimensional simplex) with the vertices correspondingio Eg, E,; and

(k-1) If k irreducible components intersect, then we associdfe-a 1)-dimensional
simplex with the vertices corresponding®,, E,,, ..., Ey,.

In [3], Ishii investigated more general pedically elliptic singularities. In that article,
she introduced the notion of the “type” of armalically elliptic singularity and classified
r-dimensional periodically elliptic singularities intoclasses as follows: The type of a 1-
Gorenstein periodically elliptic singularityamely a 1-Gorenstein purely elliptic singularity,
is defined by the “Hodge type” of the cohomology gratip—1(E, C) (see [3] for the precise
definition). The type of a general periodicadifiptic singularity is defined by the type of the
purely elliptic singularity on its canonical cover. In addition, she gave a descriptidg 0in
connection with the types of periodically ellipgingularities, especiallywhen the dimensions
of the singularities are three. The followingdsly a part of her whole results on periodically
elliptic singularities.

PROPOSITION 2 (Ishii [5], [2]). Let f : X — X be a good resolution of an -
dimensional 1-Gorenstein purely elliptic singularity (X, x). If (X, x) is of type (0, i), then
dimIg, > r —1—i. Inparticular, the equality holdsincasei =0or r — 1.

PropPoOsSITION 3 (Ishii [3]). Let (X, x) bea three-dimensional Gorenstein purely ellip-
tic singularity with the essential divisor E; of a good resolution f : X — X. Then the
essential divisor E; isasfollows.

(D) If(X,x)isoftype(0,2), E, isanirreducible surface birationally equivalent to a
K 3-surface.

(2) If(X,x)isoftype(0, 1), E; isachainof surfaces E1, Eo, ..., Es (s > 2) withra-
tional surfaces E1, E and ellipticruled surfaces E», . .., Es_1, where E; and E;1 intersect
along anéllipticcurvefori =1,...,5s — 1.

(3) If (X, x)isoftype(0,0), E; consistsof rational surfaceswith rational intersection
curvesand I'g, is atriangulation of the real two-dimensional sphere.

On the other hand, Tomari[12] investigated the canonical modifications of purely elliptic
singularities by means of filtered blow-ups. In that work, he described a property of the excep-
tional set of the canonical modificati@f a purely elliptic singularity of typ€0, » — 1) under
the assumption of the existence of the canonical modification. Note that, in such a case, the
exceptional set of the canonical modification is birationally equivalent to the essential divisor
of any good resolution of the singularity.

PROPOSITION 4 (Tomari [12]). If an r-dimensional Gorenstein purely eliptic singu-
larity of type (0, » — 1) hasthe canonical model, the exceptional set consists of an (r — 1)-
dimensional Calabi-Yau variety.

Here, we use the teri@alabi-Yau variety in the following sense.
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DEeFINITION 3. A complex normal irreducible-dimensional projective algebraic va-
riety V with only Gorenstein canonical singularities is calle@alabi-Yau variety if V has
trivial canonical bundle an#&’(V, Oy) = 0forO < i < n.

1.2. Problem and results. Among theuks in the preceding subsection, what we
would like to emphasise is that Calabi-Yau varieties arise in general in the essential divisors
of (partial) resolutions of Gorenstein purely elliptic singularities if they are not of (9p@).

Then our problem is to describe explicitly how it appears in special cases. We now consider
the case where purely elliptic singularities are hypersurface singularities.

Let(X,x) = ({f = 0}, O0) be arr-dimensional isolated hypersurface singularity defined
by a polynomial

mo _mj
f = Z Amg,my,...m g 21 " ZTr € Clzo, 21, -+, 2r],

mo,mi,...,my >0

where 0 is the origin ofC"*1 andC[zo, z1, ..., z-] is a polynomial ring over the complex
number fieldC. Throughout this paper, we always assume that2. We regard an ordered
collection of indicesn = (mo, m1, ..., m,) of each monomiaty°z]"* - - -z as an element
of M := Z'+1, and writez™ (resp. am) for z5 021" - 2" (resp.amg,ms....m,). We define
I (f) to be the convex hull of the union of the subsets- (Rzo)“rl of MR . =M ®7 R=
R'*1 for all m such thatz, # 0, and denote by (f) the union of the compact faces of
Iy (f). With each facey of I'(f), we associate a polynomigl, (z2) = ZmemM amz™.
We say thatf is nondegenerate on y if df), /dz0 = --- = 3f},/9z, = 0 has no solution in
(C**1, and thatf is nondegenerate if fy is nondegenerate on any fagef I"( f).

Here is a criterion fotX, x) to be a purely elliptic singularity.

PROPOSITION 5 (Watanabe [15]). Assume that f is nondegenerate. Then (X, x) =
({f =0}, 0)isapurelyeliptic singularity ifand only if 1 := (1,1, ..., 1) € I'(f).

By Proposition 5, for a purely elliptic singularity defined by a nondegenerate polynomial
f, there exists a unique fagg of I'(f) containingl in its relative interior. This facg; has a
direct connection with the nature of the hypersurface purely elliptic singularity in many ways,
which we will see in the following.

Tomari [12] showed that the weighted blow-up with respect to the unique weight asso-
ciated with the face/, gives the canonical model of andimensional hypersurface purely
elliptic singularity of type(0, r — 1) if the defining function is nondegenerate. Therefore, as
a corollary to Proposition 4, we have the following:

COROLLARY 6 (Tomari [12]). The essential divisor E; of a good resolution of a hy-
persurface purely elliptic singularity of type (0, r — 1) isbirational to an (» — 1)-dimensional
Calabi-Yau variety if the defining function is nondegenerate.

Now, we investigate in detail the essential divisor of a hypersurface purely elliptic singu-
larity by means of toric geometry. We have a standard method using toric geometry to resolve
a hypersurface isolated singularity defined by a nondegenerate polynomial as follows (see [13]
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for details): LetN := Homz(M, Z) be the freeZz-module dual taV andNg := N ®z R the
scalar extension bR. SinceMg andNRg are dual to each other as vector spaces Byan ele-
mentn = (ng, n1, ..., n,) € Nr givesrise to a family of parallel hyperplanesiifg. Denote
by (x, ) the standard bilinear form aWfr x Ng and definé(n) := min{{m, n) | m € I'.(f)}
forn € N N (Rs0)"*1. For a facey of I'\(f), definey* := {n € (Rs0)"** | (m,n) =
[(n) foranym € y}. Then the sef(f) := {y* | y < I'(f)} forms a finite subdivision
of the positive orthan® := (R-0)" ™, wherey < I',(f) means thay is a face ofl",(f).
Take a finite subdivisiorE ( f) of X(f) consisting of cones each of which is generated by
a part of a basis oN. ThenX(f) is also a subdivision of. Dually, we obtain a proper,
birational, Ty -equivariant morphisni7 : Vﬁ(f) — Vs = C*tl with Vﬁ(f) a nonsingular
variety. Denote byX the proper transform of by I7. It is well-known that if the defining
polynomial of (X, x) is nondegenerate, then the restriction X — X of IT to X is a good
resolution of the singularityX, x). In this paper, we call a good resolution of the singularity
obtained in this way #oric good resolution for convenience.

The following proposition shows that the faggof I"( /) has topological information of
the dual complex, .

PROPOSITION 7 ([8]). Let (X,x) = ({f = 0}, O) be an r-dimensional hypersurface
purely elliptic singularity defined by a nondegenerate polynomial f. Then the dual complex
I'g, of the essential divisor of a toric good resolution isisomorphic to a triangulation of the
(r — dimyy)-dimensional sphereif dimy, > 2.

Furthermore, the leading polynomig), = 3",c,, ~y amz™ have algebro-geometric in-
formation about the intersections of the irreducible components corresponding to the definite
parts ofI'z, . Indeed, from the polynomiaf,, and the latticeM; := R(y1 — 1) N M, we can
construct adimy; — 1)-dimensional projective toric hypersurface, sayas we will see in
Section 2.1, and we have the following:

PROPOSITION 8 ([8]). Under the assumption of Proposition 7, the intersection of the
irreducible components of E; corresponding to a simplex of I'g, of maximal dimension is
birational to Y, and every irreducible component of the essential divisor E, corresponding
to a vertex contained in the interior of I'z, isbirational to Y xc Pg_d'myl.

Now, we state our main result, which shows that the polynorfiials concretely asso-
ciated with Calabi-Yau varieties arising ity .

PROPOSITION 9. Thevariety Y ishirationally equivalent to a (dim y1—1)-dimensional
Calabi-Yau variety.

Combining Propositions 8 and 9, we obtain the following (cf. Propositions 3 and 4 and
Corollary 6), which is our answer to the problem mentioned at the beginning of this subsection
when a purely elliptic singularity is a hypersace singularity defined by a nondegenetare
polynomial.
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THEOREM 1. Assume that E; is the essential divisor of a toric good resolution of
a hypersurface purely elliptic singularity defined by a nondegenerate polynomial f. Then
every irreducible component of E; corresponding to a vertex contained in the interior of
Ik, is birational to the product of a (dimy1 — 1)-dimensional Calabi-Yau variety and the
(r — dimy1)-dimensional projective space. Furthermore, the birational class of the Calabi-
Yau variety is determined uniquely by the leading part f,, of f and does not depend on the
choice of an irreducible component.

2. Proof of theresults. In this section, we prove the main result stated in the previ-
ous section. We state a key lemma i.e., Lemma 1 in Section 2.1 and prove Proposition 9 in
Section 2.2.

2.1. Preparations for the proof of Proposition 9. Here, we recall some techniques from
toric geometry and introduce a key lemma for the proof of Proposition 9. We refer the reader
to [10] for general background on toricgmetry and [1] for toric hypersurfaces.

First of all, we fix a compactification of hypersurfaces of algebraic tori defined by Lau-
rent polynomials: LetM be a freeZ-module of rankn (> 2) and N = Homz(M, 2)
the Z-module dual toM as before. Denote b€[M] = Py C- x™ the group algebra
of M, namely, the Laurent polynomial ring. If andimensional convex polyhedras in
Mgr = M ®z Ris given, we can compactify the algebraic tofiis = SpedC[M] to a projec-
tive toric variety as follows. For everlydimensional face& of A, denote bys (®) c Mg the
convexn-dimensional cone consisting of all vectorg — p’), wherei € R>g, p € A and
p’ € ©. Leta(®) C Ng be the(n — I)-dimensional dual cone relative éq®). Then the set
X (A) of all coneso (@), where® runs over all faces oft, determines a complete fan. As a
result, we obtain a projective toric varie®y, associated withZ' (A) containingZy as an open
dense subset. A Laurent polynomigd = > ., ecmx™ € C[M] defines a hypersurface
Z 1y = {f" = 0}in Ty. By taking its closure itP 4, a compactificatio ;. , of Z .
is obtained.

Next, let us recall the notion ah-regularity for Laurent polynomials. Recall that there
is a one-to-one correspondence between the orbits of the actibin of P, and the faces
of A. By using this correspondencB, can be written as a direct sufr,, _ 4 7o, where
® < A means tha® is a face ofA andTy denotes the orbit corresponding to a fazef A.
Then a Laurent polynomiaf’ is said to beA-regular if for every face® < A, the variety
m N Tp is an empty set or a smooth subvariety of codimensionZin

We denote byA( fL) the Newton polyhedron of &, namely, the convex hull of the set
{me MR | cm # 0} in MR.

Keeping these in mind, we now consider the projective varfetyentioned in Proposi-
tions 8 and 9. In fact, itis constructed as foll Recall that we identify indices of monomials
with elements ofvf = z"+1, DefineM1 r := R(y1 — 1), namely, theR-vector subspace of
MR generated by the subsgf — 1, and setM; := M1 r N M, which is a freeZ-module
of ranki + 1. We define a Laurent ponnomia],L1 = Zmean amx™1 e C[M4] for the
defining polynomialf = )" ,,.,; amz™ € C[z] of the singularity. TherY is just the closure
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nyLl’A(fyLl) of the hypersun‘acéfyLl,Ml C SpedC[M1] in PA(fVLl). Proposition 9 claims that
Y is birational to a Calabi-Yau variety.

In order to state our key Lemma 1 below for proving Proposition 9, we give two defini-
tions. Although these are weaker modifications of Batyrev's reflexive paivs@imensional
convex polyhedra i and of A-regularity for Laurent polynomials, they remain to be re-
lated to Calabi-Yau varieties as we will see in the lemma.

DEFINITION 4 (cf. Batyrev [1, Definition 4.1.5]). LetA be annr-dimensional convex
polyhedron inMq containing the zer@ € M in its interior. Then the paifA, M) is said to
be Q-reflexive if the affine hyperplane generated by ainy— 1)-dimensional face ofA is of
the form{m € Mg |(m, n) = —1} for a primitive integral vecton € N.

DEFINITION 5 (cf. Batyrev [Definition 3.1.1]). Assume than, M) is a Q-reflexive
pair and thatfL e C[M] is a Laurent polynomial witiA(fL) c A. We say thatf” is
quasi-regular with respect to A if A(fL) is n-dimensional and contains the z&& M in its
interior andf” is A(fL)-regular.

LEMMA 1. Let (A, M) be a Q-reflexive pair. If fL is quasi-regular with respect to
A, then VAT ishirational to a (dim A — 1)-dimensional Calabi-Yau variety in the sense of
Definition 3.

We prove this lemma in Section 3 and we prove Proposition 9 with the help of this
lemma.

2.2. Proof of Proposition 9. We show that there exists a compact convex polyhedron
A’ such that(A}, My) is aQ-reflexive pair and thafVL1 is quasi-regular with respect ta.
Then the proposition is proved by Lemma 1, since the cIosungngl in P,, and inPA/1
are birational to each other.

Now, assume that digyy = r — k. Then there exist exactly + 1 compact faces
8O s® . 8% of I'(f) such that diras® = r foranys (0 < s < k) andy; =
O NsD ... ns® Let HO HD .. H® pe the hyperplanes dffr spanned by
80 s . 5® respectively. Then we haye C (R=0)" 1N (Nf_y H*)). We now define
A= R0 TN (NS HY) - L.

CLAIM. Thepair (A}, M1) is Q-reflexive and fyL1 is quasi-regular with respect to A].

PROOF. The first part of the claim is proved in [8]. Thus we prove the second part. As
we saw beforey; —1 C A} and dimy;—1 = dim A} = dim M1 r hold. Note thay; —1is the
Newton polyhedron oﬁ‘yLl and thaty; — 1 contains the zer0 in its interior by the definition
of 1. The nondegeneracy of the defining polynonjiajuarantees thA(fVLl)-reguIarity of

L
fu: U

3. Proof of Lemma 1.
3.1. Proof of Lemma 1. Letus prove Lemma 1. By Batyrev [1, Proposition 2.2.19],
there exists a complete faxty with the following properties: (o is simplicial, (i) Xo(1) =
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X (A)(1), whereXy(1) (resp.X'(A)(1)) denotes the set of one-dimensional conesgr{resp.
X (4)), and (iii) the toric varietyVs,, associated wittEy is projective. Note that the condition
(i) implies thatVs, has at worsQ-factorial log-terminal singularities. Léf be the closure
of Z 1y in Vs,. Thenitis birational tdm. We show thaty is a Calabi-Yau variety by
proving the following Lemmas 2, 3 and 4.

LEMMA 2. Ypisananticanonical divisor of Vs, that is, Yo + Kon ~ 0.
LEMMA 3. Ypisanormal projective variety with at worst canonical singularities.
LEMMA 4. H*(Yo, Oy,) =0for0 <k <n — 1.

Indeed, it follows that is a Calabi-Yau variety from these lemmas. By Lemmag3,
is a normal irreducible projective varietyith at worst canonical singularities. Théfy, is a
Cartier divisor in codimension two, and hence the adjunction forfiya= (Kv;  + Yo)ly,
holds (see Kollar-Mori [9, Corollary 5.18 and Remark 5.47]). Hence, by Lemnfay.is
linearly equivalent to zero, that is, the canonical bundl&®fs trivial. Therefore, all the
singularities onty are rational and Gorenstein. In addition, by Lemmai#4(Yo, Oy,)) =0
for 0 < k < n — 1. HenceYy is a Calabi-Yau variety.

PROOF OFLEMMA 2. For a Laurent polynomiat’ = >",.,; cmx™ € C[M] and an
integral vectop € N, definep(fL) := min{(m, p) | cm # 0}. Then we have diyxo(fL) =
Yo+ Y pexym No(f1) - Dy, where diw, (f©) denotes the principal divisor of" on Vx,
andn,, is the primitive integral generator pf

Take a one-dimensional copein Xy. Then, sinceXp(1l) = ¥ (A)(1), the half-space
{me Mg | (m,n,) > —1} containsA, and the intersection of the boundary of the half-space
and A is a codimension-one face af. Since f is quasi-regular with respect t and the
Newton polyhedrom(fX) c A is an integral polyhedron containing the z&e M in its
interior, there exists at least one integral pomtvith ¢,y 7 0 on each codimension-one face
of A. Thereforen, (f£) = —1 holds.

Consequently, we have djyo(fL) =Yo+ (=X e Do) = Yo+ Kvy, - 0

In order to prove Lemmas 3 and 4, let us define another compactifidatiofiZ .. ,, and
birational morphism$V — YpandW — Y7 from a nonsingular variety¥ as follows: Define
Y1 to be the closure of ;. in Py 4zy. We note thaty is an ample divisor oP 4 ). Put
1 := Y (A(fL)) and take a finite common subdivisidh of X and X1 consisting of cones
each of which is generated by a part of a basigfofThen we obtain a complete nonsingular
variety V., and proper birational morphisni, : Vg — Vxyandily : Vg — Vx,. LetW
be the proper transform af with respecttdi;. Thenry := IT1|w : W — Y1 is aresolution
of singularities, sincef’ is A(fL)-regular. From this, it follows thaW is also the proper
transform ofYy with respect tallp, and thatrg := ITp|w : W — Ygp is also a resolution of
singularities.

PrRoOF oFLEMMA 3. The following lemma due to Ishii is of essential use in our ar-
gument.
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PrRoOPOSITION 10 (Ishii [4, Lemma 2.7]). Let Y C Z be an irreducible Weil divisor
on a variety Z. Assume that Z admits at worst Q-factorial log-terminal singularities. Let
¥ : Y — Y bearesolution of singularities on Y. Assume that

Ky =v*(Kz+YV)ly)+ Y _ miE;

withm; > —1for all i, where E;’s are the irreducible components of the exceptional divisor
of ¢. ThenY isnormal, and Y hasat worst log-terminal singularities. In particular, if m; > 0
for all i, then Y hasat worst canonical singularities.

Recall thatVy, has at worsQ-factorial log-terminal singularities. On the other hand,
as was seen in the proof of Lemmalg,+ Kyy, = divvxo(fL) holds. Because of this, we
obtain

g (Yo + Kvy,) = g divyy (f) = divy (T3 f5)
=W+ Z n;(f5) - D;
pe ()
=W+Kv)+ Y. 0;(fH+1-D;,
peE D\ Zo(D)
and hence

Ky, + W =TI§(Kvy, +Yo)+ Y, (=n;(f")—1-D;.
pES(D\ Zo(1)

Since the Newton polyhedron( f) of fL contains the zer® € M in its interior, we have
ns(f*) = min{(m,n;) | em # 0} < —1,

and henc&nﬁ(fL) —1>0foranyp € 2(1)\20(1). Therefore, by the adjunction formula,
we obtain

Kw = (Kvg + W)lw = 75(Kvs, + Yo)lvo) + ) Bi - Ei
i
with 8; > 0. Hence, by Proposition 10 is normal and has at worst canonical singularities.
SinceVy, is projective, so igp. O

PROOF OFLEMMA 4. Recall that the other compactification of Z ;. j, in Pa(ry
is an ample divisor oP,,.,. By the vanishing theorem for arbitrary ample divisors on
toric varieties, we havéf*(Y1, Oy,) = 0 for 0 < k < n — 1. Moreover, by Batyrev [1,
Corollary 3.1.6], every singularity ofi; is analytically equivalent to a toric singularity, so
that it is a rational singularity.

SinceYy (resp.Y1) has at worst rational singularities angl: W — Yg (resp.ry: W —
Y1) is a resolution of singularities, we haw& 7o.Ow = 0 (resp.R¥r1,Ow = 0) for 0 < k.
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Hence, for O< k,
HY(W, Ow) = H* (Yo, 70.Ow) = H* (Yo, Oy,)
(resp  HY(W, Ow) = H* (Y1, 11.0w) = H (Y1, Oy,)) .

Therefore, we obtai#l % (Yo, Oy,) =0for0 <k <n — 1. 0
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