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Abstract. We investigate a class of isolated hypersurface singularities, the so-called
purely elliptic singularities, of complex algebraic varieties of dimension greater than or equal
to two. We show that, for hypersurface purely elliptic singularities defined by nondegenerate
polynomials, Calabi-Yau varieties arising among the irreducible components of the essential
divisors are concretely associated with the defining equations of these singularities, and that
the birational class of the Calabi-Yau varieties does not depend on the irreducible components.

Introduction. A purely elliptic singularity is by definition a normal isolated singular-
ity (X, x) of anr-dimensional complex algebraic variety withδm(X, x) = 1 for any positive
integerm, wherer ≥ 2 andδm(X, x) denotes them-th l2-pluri-genus of the normal isolated
singularity (cf. [14]). Purely elliptic singularities can be thought of as higher dimensional ana-
logues of simple elliptic singularities and cusps in dimension two. In general, for an isolated
singularity(X, x) of a complex algebraic variety, there exists a resolution of the singularity
π : X̃ → X such that the fibreπ−1(x)red is a divisor with simple normal crossings, which
we call agood resolution of (X, x). The exceptional setE of a good resolution of a purely
elliptic singularity has a characteristic complex analytic subsetEJ called the essential divi-
sor [2], [3]; for example, in the case of a simple elliptic singularity,EJ always consists of a
nonsingular elliptic curve, while in the case of a cusp,EJ consists of a cycle of nonsingular
rational curves, which characterise the simpleelliptic singularity and the cusp, respectively.

It was Ishii [2], [3] who first focused attention on the essential divisors of good res-
olutions of normal isolatedQ-Gorenstein singularities and unveiled their general algebro-
geometric structures, by which we see that the essential divisors also have characteristic
significance for purely elliptic singularities. In addition to this, Ishii-Watanabe [7] and Tomari
[12] showed that Calabi-Yau varieties or Abelian varieties arise in general in the essential di-
visors of (partial) resolutions of purely elliptic singularities.

In contrast to these general results, our results in this paper is more explicit and sum-
marised as follows. When purely elliptic singularities are hypersurface singularities defined
by nondegenerate polynomials, the Calabi-Yau varieties, arising among the irreducible com-
ponents of the essential divisors of good resolutions obtained by means of toric geometry,
are concretely associated with the leading parts of the defining functions of the singularities,
and the birational class of the Calabi-Yau varieties does not depend on the irreducible compo-
nents. We note that a relationship between the leading parts of the defining functions of purely
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elliptic singularities and Calabi-Yau varieties is indicated in Yonemura [16] and Tomari [12],
which motivated us to investigate this subject.

This paper is organised as follows. Section 1 is devoted to preliminaries and the state-
ments of our results. We prove our main result in Section 2 with the help of a key lemma,
which is proved in Section 3.

The author would like to express his gratitude to Professor Kimio Watanabe for his valu-
able comments and continuous stimulation during the preparation of this paper. He is also
grateful to the referee for many thoughtful suggestions which improved the paper.

1. Preliminaries and results. 1.1. Preliminaries. First, we recall relevant defi-
nitions and known results about purely ellipticsingularities. In what follows, a resolution
π : X̃ → X of a singularity(X, x) is called agood resolution if the fibreπ−1(x)red is a
divisor with simple normal crossings.

DEFINITION 1 (Watanabe [14]). A normal isolated singularity is called apurely elliptic
singularity if δm(X, x) = 1 for any positive integerm. Here them-th pluri-genusδm(X, x) is
defined to be

δm(X, x) := dimC Γ (X \ {x},O(mK))/L2/m(X \ {x})
= dimC Γ (X̃ \E,O(mK))/Γ (X̃,O(mK + (m− 1)E)) ,

whereπ : X̃ → X is a good resolution of the singularity(X, x) andE is the reduced
exceptional divisor. (We note thatδm(X, x) is independent of the choice of a good resolution
π for everym.)

DEFINITION 2 (Ishii [2], [3]). For a good resolutionπ : X̃ → X of a normal isolated
Q-Gorenstein singularity(X, x), we defineKX̃ = π∗KX+∑

i∈I miEi−
∑
j∈J mjEj , where

mi (i ∈ I ) andmj (j ∈ J ) are rational numbers,mi ≥ 0 for i ∈ I , mj > 0 for j ∈ J , and
Ei (i ∈ I) andEj (j ∈ J ) are the irreducible components ofE = π−1(x)red. Denote by
[mj ] the integer such thatmj − 1 < [mj ] ≤ mj . The divisorEJ := ∑

j∈J [mj ]Ej is called
theessential divisor.

The essential divisors characterise purely elliptic singularities in the following manner.

PROPOSITION 1 (Ishii [2]). Suppose that (X, x) is a normal isolated Gorenstein sin-
gularity. Then (X, x) is a purely elliptic singularity if and only if the essential divisor of a
good resolution is a reduced divisor.

In order to describe the configuration of the irreducible components of the essential di-
visorEJ , it is convenient to use thedual complex ΓEJ of EJ , which is a simplicial complex
defined as follows:

(0) We associate a vertex witheach irreducible componentEα ;
(1) If a pair of irreducible componentsEα, Eβ intersect, then we associate a line seg-

ment between the vertices corresponding toEα ,Eβ ;
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(2) If three irreducible componentsEα ,Eβ ,Eγ intersect, we associate a triangle (two-
dimensional simplex) with the vertices corresponding toEα, Eβ ,Eγ ; and

(k-1) If k irreducible components intersect, then we associate a(k − 1)-dimensional
simplex with the vertices corresponding toEν1, Eν2, . . . , Eνk .

In [3], Ishii investigated more general periodically elliptic singularities. In that article,
she introduced the notion of the “type” of a periodically elliptic singularity and classified
r-dimensional periodically elliptic singularities intor classes as follows: The type of a 1-
Gorenstein periodically elliptic singularity, namely a 1-Gorenstein purely elliptic singularity,
is defined by the “Hodge type” of the cohomology groupHr−1(EJ ,C) (see [3] for the precise
definition). The type of a general periodicallyelliptic singularity is defined by the type of the
purely elliptic singularity on its canonical cover. In addition, she gave a description ofΓEJ in
connection with the types of periodically ellipticsingularities, especiallywhen the dimensions
of the singularities are three. The following isonly a part of her whole results on periodically
elliptic singularities.

PROPOSITION 2 (Ishii [5], [2]). Let f : X̃ → X be a good resolution of an r-
dimensional 1-Gorenstein purely elliptic singularity (X, x). If (X, x) is of type (0, i), then
dimΓEJ ≥ r − 1 − i. In particular, the equality holds in case i = 0 or r − 1.

PROPOSITION 3 (Ishii [3]). Let (X, x) be a three-dimensional Gorenstein purely ellip-
tic singularity with the essential divisor EJ of a good resolution f : X̃ → X. Then the
essential divisor EJ is as follows.

(1) If (X, x) is of type (0,2), EJ is an irreducible surface birationally equivalent to a
K3-surface.

(2) If (X, x) is of type (0,1),EJ is a chain of surfacesE1,E2, . . . , Es (s ≥ 2) with ra-
tional surfaces E1,Es and elliptic ruled surfaces E2, . . . , Es−1, where Ei and Ei+1 intersect
along an elliptic curve for i = 1, . . . , s − 1.

(3) If (X, x) is of type (0,0),EJ consists of rational surfaces with rational intersection
curves and ΓEJ is a triangulation of the real two-dimensional sphere.

On the other hand, Tomari [12] investigated the canonical modifications of purely elliptic
singularities by means of filtered blow-ups. In that work, he described a property of the excep-
tional set of the canonical modification of a purely elliptic singularity of type(0, r − 1) under
the assumption of the existence of the canonical modification. Note that, in such a case, the
exceptional set of the canonical modification is birationally equivalent to the essential divisor
of any good resolution of the singularity.

PROPOSITION 4 (Tomari [12]). If an r-dimensional Gorenstein purely elliptic singu-
larity of type (0, r − 1) has the canonical model, the exceptional set consists of an (r − 1)-
dimensional Calabi-Yau variety.

Here, we use the termCalabi-Yau variety in the following sense.
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DEFINITION 3. A complex normal irreduciblen-dimensional projective algebraic va-
riety V with only Gorenstein canonical singularities is called aCalabi-Yau variety if V has
trivial canonical bundle andHi(V,OV ) = 0 for 0< i < n.

1.2. Problem and results. Among the results in the preceding subsection, what we
would like to emphasise is that Calabi-Yau varieties arise in general in the essential divisors
of (partial) resolutions of Gorenstein purely elliptic singularities if they are not of type(0,0).
Then our problem is to describe explicitly how it appears in special cases. We now consider
the case where purely elliptic singularities are hypersurface singularities.

Let (X, x) = ({f = 0},O) be anr-dimensional isolated hypersurface singularity defined
by a polynomial

f =
∑

m0,m1,...,mr≥0

am0,m1,...,mr z
m0
0 z

m1
1 · · · zmrr ∈ C[z0, z1, . . . , zr ] ,

whereO is the origin ofCr+1 andC[z0, z1, . . . , zr ] is a polynomial ring over the complex
number fieldC. Throughout this paper, we always assume thatr ≥ 2. We regard an ordered
collection of indicesm = (m0,m1, . . . ,mr) of each monomialzm0

0 z
m1
1 · · · zmrr as an element

of M := Zr+1, and writezm (resp. am) for zm0
0 z

m1
1 · · · zmrr (resp.am0,m1,...,mr ). We define

Γ+(f ) to be the convex hull of the union of the subsetsm + (R≥0)
r+1 ofMR := M ⊗Z R ∼=

Rr+1 for all m such thatam �= 0, and denote byΓ (f ) the union of the compact faces of
Γ+(f ). With each faceγ of Γ (f ), we associate a polynomialfγ (z) = ∑

m∈γ∩M amzm.
We say thatf is nondegenerate on γ if ∂fγ /∂z0 = · · · = ∂fγ /∂zr = 0 has no solution in
(C∗)r+1, and thatf is nondegenerate if fγ is nondegenerate on any faceγ of Γ (f ).

Here is a criterion for(X, x) to be a purely elliptic singularity.

PROPOSITION 5 (Watanabe [15]).Assume that f is nondegenerate. Then (X, x) =
({f = 0},O) is a purely elliptic singularity if and only if 1 := (1,1, . . . ,1) ∈ Γ (f ).

By Proposition 5, for a purely elliptic singularity defined by a nondegenerate polynomial
f , there exists a unique faceγ1 of Γ (f ) containing1 in its relative interior. This faceγ1 has a
direct connection with the nature of the hypersurface purely elliptic singularity in many ways,
which we will see in the following.

Tomari [12] showed that the weighted blow-up with respect to the unique weight asso-
ciated with the faceγ1 gives the canonical model of anr-dimensional hypersurface purely
elliptic singularity of type(0, r − 1) if the defining function is nondegenerate. Therefore, as
a corollary to Proposition 4, we have the following:

COROLLARY 6 (Tomari [12]). The essential divisor EJ of a good resolution of a hy-
persurface purely elliptic singularity of type (0, r − 1) is birational to an (r − 1)-dimensional
Calabi-Yau variety if the defining function is nondegenerate.

Now, we investigate in detail the essential divisor of a hypersurface purely elliptic singu-
larity by means of toric geometry. We have a standard method using toric geometry to resolve
a hypersurface isolated singularity defined by a nondegenerate polynomial as follows (see [13]
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for details): LetN := HomZ(M,Z) be the freeZ-module dual toM andNR := N ⊗Z R the
scalar extension byR. SinceMR andNR are dual to each other as vector spaces overR, an ele-
mentn = (n0, n1, . . . , nr ) ∈ NR gives rise to a family of parallel hyperplanes inMR. Denote
by 〈∗, ∗〉 the standard bilinear form onMR×NR and definel(n) := min{〈m,n〉 | m ∈ Γ+(f )}
for n ∈ N ∩ (R≥0)

r+1. For a faceγ of Γ+(f ), defineγ ∗ := {n ∈ (R≥0)
r+1 | 〈m,n〉 =

l(n) for any m ∈ γ }. Then the setΣ(f ) := {γ ∗ | γ ≺ Γ+(f )} forms a finite subdivision
of the positive orthantΣ := (R≥0)

r+1, whereγ ≺ Γ+(f ) means thatγ is a face ofΓ+(f ).
Take a finite subdivisionΣ̂(f ) of Σ(f ) consisting of cones each of which is generated by
a part of a basis ofN . ThenΣ̂(f ) is also a subdivision ofΣ. Dually, we obtain a proper,
birational,TN -equivariant morphismΠ : V

Σ̂(f )
→ VΣ ∼= Cr+1 with V

Σ̂(f )
a nonsingular

variety. Denote byX̃ the proper transform ofX byΠ . It is well-known that if the defining
polynomial of(X, x) is nondegenerate, then the restrictionπ : X̃ → X of Π to X̃ is a good
resolution of the singularity(X, x). In this paper, we call a good resolution of the singularity
obtained in this way atoric good resolution for convenience.

The following proposition shows that the faceγ1 of Γ (f ) has topological information of
the dual complexΓEJ .

PROPOSITION 7 ([8]). Let (X, x) = ({f = 0},O) be an r-dimensional hypersurface
purely elliptic singularity defined by a nondegenerate polynomial f . Then the dual complex
ΓEJ of the essential divisor of a toric good resolution is isomorphic to a triangulation of the
(r − dimγ1)-dimensional sphere if dimγ1 ≥ 2.

Furthermore, the leading polynomialfγ1 = ∑
m∈γ1∩M amzm have algebro-geometric in-

formation about the intersections of the irreducible components corresponding to the definite
parts ofΓEJ . Indeed, from the polynomialfγ1 and the latticeM1 := R(γ1 − 1) ∩M, we can
construct a(dimγ1 − 1)-dimensional projective toric hypersurface, sayY , as we will see in
Section 2.1, and we have the following:

PROPOSITION 8 ([8]). Under the assumption of Proposition 7, the intersection of the
irreducible components of EJ corresponding to a simplex of ΓEJ of maximal dimension is
birational to Y , and every irreducible component of the essential divisor EJ corresponding
to a vertex contained in the interior of ΓEJ is birational to Y ×C Pr−dimγ1

C .

Now, we state our main result, which shows that the polynomialfγ1 is concretely asso-
ciated with Calabi-Yau varieties arising inEJ .

PROPOSITION 9. The variety Y is birationally equivalent to a (dimγ1−1)-dimensional
Calabi-Yau variety.

Combining Propositions 8 and 9, we obtain the following (cf. Propositions 3 and 4 and
Corollary 6), which is our answer to the problem mentioned at the beginning of this subsection
when a purely elliptic singularity is a hypersurface singularity defined by a nondegenetare
polynomial.
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THEOREM 1. Assume that EJ is the essential divisor of a toric good resolution of
a hypersurface purely elliptic singularity defined by a nondegenerate polynomial f . Then
every irreducible component of EJ corresponding to a vertex contained in the interior of
ΓEJ is birational to the product of a (dimγ1 − 1)-dimensional Calabi-Yau variety and the
(r − dimγ1)-dimensional projective space. Furthermore, the birational class of the Calabi-
Yau variety is determined uniquely by the leading part fγ1 of f and does not depend on the
choice of an irreducible component.

2. Proof of the results. In this section, we prove the main result stated in the previ-
ous section. We state a key lemma i.e., Lemma 1 in Section 2.1 and prove Proposition 9 in
Section 2.2.

2.1. Preparations for the proof of Proposition 9. Here, we recall some techniques from
toric geometry and introduce a key lemma for the proof of Proposition 9. We refer the reader
to [10] for general background on toric geometry and [1] for toric hypersurfaces.

First of all, we fix a compactification of hypersurfaces of algebraic tori defined by Lau-
rent polynomials: LetM be a freeZ-module of rankn (≥ 2) andN = HomZ(M,Z)
the Z-module dual toM as before. Denote byC[M] = ⊕

m∈M C · χm the group algebra
of M, namely, the Laurent polynomial ring. If ann-dimensional convex polyhedron∆ in
MR = M ⊗Z R is given, we can compactify the algebraic torusTN = SpecC[M] to a projec-
tive toric variety as follows. For everyl-dimensional faceΘ of∆, denote by̌σ(Θ) ⊂ MR the
convexn-dimensional cone consisting of all vectorsλ(p − p′), whereλ ∈ R≥0, p ∈ ∆ and
p′ ∈ Θ. Letσ(Θ) ⊂ NR be the(n− l)-dimensional dual cone relative tǒσ(Θ). Then the set
Σ(∆) of all conesσ(Θ), whereΘ runs over all faces of∆, determines a complete fan. As a
result, we obtain a projective toric varietyP∆ associated withΣ(∆) containingTN as an open
dense subset. A Laurent polynomialf L = ∑

m∈M cmχ
m ∈ C[M] defines a hypersurface

ZfL,M := {f L = 0} in TN . By taking its closure inP∆, a compactificationZfL,∆ of ZfL,M
is obtained.

Next, let us recall the notion of∆-regularity for Laurent polynomials. Recall that there
is a one-to-one correspondence between the orbits of the action ofTN on P∆ and the faces
of ∆. By using this correspondence,P∆ can be written as a direct sum

∐
Θ≺∆ TΘ , where

Θ ≺ ∆means thatΘ is a face of∆ andTΘ denotes the orbit corresponding to a faceΘ of∆.
Then a Laurent polynomialf L is said to be∆-regular if for every faceΘ ≺ ∆, the variety
ZfL,∆ ∩ TΘ is an empty set or a smooth subvariety of codimension 1 inTΘ .

We denote by∆(fL) the Newton polyhedron off L, namely, the convex hull of the set
{m ∈ MR | cm �= 0} in MR.

Keeping these in mind, we now consider the projective varietyY mentioned in Proposi-
tions 8 and 9. In fact, it is constructed as follows. Recall that we identify indices of monomials
with elements ofM = Zr+1. DefineM1,R := R(γ1 − 1), namely, theR-vector subspace of
MR generated by the subsetγ1 − 1, and setM1 := M1,R ∩ M, which is a freeZ-module
of rank i + 1. We define a Laurent polynomialf Lγ1

:= ∑
m∈γ1∩M amχ

m−1 ∈ C[M1] for the
defining polynomialf = ∑

m∈M amzm ∈ C[z] of the singularity. ThenY is just the closure
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ZfLγ1
,∆(f Lγ1

) of the hypersurfaceZfLγ1
,M1

⊂ SpecC[M1] in P∆(fLγ1
). Proposition 9 claims that

Y is birational to a Calabi-Yau variety.
In order to state our key Lemma 1 below for proving Proposition 9, we give two defini-

tions. Although these are weaker modifications of Batyrev’s reflexive pairs forn-dimensional
convex polyhedra inMR and of∆-regularity for Laurent polynomials, they remain to be re-
lated to Calabi-Yau varieties as we will see in the lemma.

DEFINITION 4 (cf. Batyrev [1, Definition 4.1.5]). Let∆ be ann-dimensional convex
polyhedron inMQ containing the zero0 ∈ M in its interior. Then the pair(∆,M) is said to
beQ-reflexive if the affine hyperplane generated by any(n − 1)-dimensional face of∆ is of
the form{m ∈ MR |〈m,n〉 = −1} for a primitive integral vectorn ∈ N .

DEFINITION 5 (cf. Batyrev [Definition 3.1.1]). Assume that(∆,M) is a Q-reflexive
pair and thatf L ∈ C[M] is a Laurent polynomial with∆(fL) ⊂ ∆. We say thatf L is
quasi-regular with respect to ∆ if ∆(f L) is n-dimensional and contains the zero0 ∈ M in its
interior andf L is∆(f L)-regular.

LEMMA 1. Let (∆,M) be a Q-reflexive pair. If f L is quasi-regular with respect to
∆, then ZfL,∆ is birational to a (dim∆− 1)-dimensional Calabi-Yau variety in the sense of
Definition 3.

We prove this lemma in Section 3 and we prove Proposition 9 with the help of this
lemma.

2.2. Proof of Proposition 9. We show that there exists a compact convex polyhedron
∆′

1 such that(∆′
1,M1) is aQ-reflexive pair and thatf Lγ1

is quasi-regular with respect to∆′
1.

Then the proposition is proved by Lemma 1, since the closures ofZfLγ1
,M1

in P∆1 and inP∆′
1

are birational to each other.
Now, assume that dimR γ1 = r − k. Then there exist exactlyk + 1 compact faces

δ(0), δ(1), . . . , δ(k) of Γ (f ) such that dimR δ
(s) = r for any s (0 ≤ s ≤ k) and γ1 =

δ(0) ∩ δ(1) ∩ · · · ∩ δ(k). Let H(0), H (1), . . . , H (k) be the hyperplanes ofMR spanned by
δ(0), δ(1), . . . , δ(k), respectively. Then we haveγ1 ⊂ (R≥0)

r+1∩ (⋂k
s=0H

(s)). We now define
∆′

1 := (R≥0)
r+1 ∩ (⋂k

s=0H
(s))− 1.

CLAIM . The pair (∆′
1,M1) is Q-reflexive and f Lγ1

is quasi-regular with respect to ∆′
1.

PROOF. The first part of the claim is proved in [8]. Thus we prove the second part. As
we saw before,γ1−1 ⊂ ∆′

1 and dimγ1−1 = dim∆′
1 = dimM1,R hold. Note thatγ1−1 is the

Newton polyhedron off Lγ1
and thatγ1 − 1 contains the zero0 in its interior by the definition

of γ1. The nondegeneracy of the defining polynomialf guarantees the∆(f Lγ1
)-regularity of

f Lγ1
. �

3. Proof of Lemma 1.
3.1. Proof of Lemma 1. Let us prove Lemma 1. By Batyrev [1, Proposition 2.2.19],

there exists a complete fanΣ0 with the following properties: (i)Σ0 is simplicial, (ii)Σ0(1) =
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Σ(∆)(1), whereΣ0(1) (resp.Σ(∆)(1)) denotes the set of one-dimensional cones inΣ0 (resp.
Σ(∆)), and (iii) the toric varietyVΣ0 associated withΣ0 is projective. Note that the condition
(i) implies thatVΣ0 has at worstQ-factorial log-terminal singularities. LetY0 be the closure
of ZfL,M in VΣ0. Then it is birational toZfL,∆. We show thatY0 is a Calabi-Yau variety by
proving the following Lemmas 2, 3 and 4.

LEMMA 2. Y0 is an anticanonical divisor of VΣ0, that is, Y0 +KVΣ0
∼ 0.

LEMMA 3. Y0 is a normal projective variety with at worst canonical singularities.

LEMMA 4. Hk(Y0,OY0) = 0 for 0< k < n− 1.

Indeed, it follows thatY0 is a Calabi-Yau variety from these lemmas. By Lemma 3,Y0

is a normal irreducible projective varietywith at worst canonical singularities. ThenKY0 is a
Cartier divisor in codimension two, and hence the adjunction formulaKY0 = (KVΣ0

+ Y0)|Y0

holds (see Kollár-Mori [9, Corollary 5.18 and Remark 5.47]). Hence, by Lemma 2,KY0 is
linearly equivalent to zero, that is, the canonical bundle ofY0 is trivial. Therefore, all the
singularities onY0 are rational and Gorenstein. In addition, by Lemma 4,Hk(Y0,OY0) = 0
for 0< k < n− 1. HenceY0 is a Calabi-Yau variety.

PROOF OFLEMMA 2. For a Laurent polynomialf L = ∑
m∈M cmχ

m ∈ C[M] and an
integral vectorp ∈ N , definep(f L) := min{〈m,p〉 | cm �= 0}. Then we have divVΣ0

(f L) =
Y0 + ∑

ρ∈Σ0(1) nρ(f L) · Dρ, where divVΣ0
(f L) denotes the principal divisor off L onVΣ0

andnρ is the primitive integral generator ofρ.
Take a one-dimensional coneρ in Σ0. Then, sinceΣ0(1) = Σ(∆)(1), the half-space

{m ∈ MQ | 〈m,nρ〉 ≥ −1} contains∆, and the intersection of the boundary of the half-space
and∆ is a codimension-one face of∆. Sincef L is quasi-regular with respect to∆ and the
Newton polyhedron∆(f L) ⊂ ∆ is an integral polyhedron containing the zero0 ∈ M in its
interior, there exists at least one integral pointm with cm �= 0 on each codimension-one face
of ∆. Thereforenρ(f L) = −1 holds.

Consequently, we have divVΣ0
(f L) = Y0 + (− ∑

ρ∈Σ0(1) Dρ) = Y0 +KVΣ0
. �

In order to prove Lemmas 3 and 4, let us define another compactificationY1 ofZfL,M and
birational morphismsW → Y0 andW → Y1 from a nonsingular varietyW as follows: Define
Y1 to be the closure ofZfL,M in P∆(fL). We note thatY1 is an ample divisor ofP∆(fL). Put

Σ1 := Σ(∆(f L)) and take a finite common subdivision̂Σ of Σ0 andΣ1 consisting of cones
each of which is generated by a part of a basis ofM. Then we obtain a complete nonsingular
varietyV

Σ̂
, and proper birational morphismsΠ0 : V

Σ̂
→ VΣ0 andΠ1 : V

Σ̂
→ VΣ1. LetW

be the proper transform ofY1 with respect toΠ1. Thenπ1 := Π1|W : W → Y1 is a resolution
of singularities, sincef L is ∆(f L)-regular. From this, it follows thatW is also the proper
transform ofY0 with respect toΠ0, and thatπ0 := Π0|W : W → Y0 is also a resolution of
singularities.

PROOF OFLEMMA 3. The following lemma due to Ishii is of essential use in our ar-
gument.
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PROPOSITION 10 (Ishii [4, Lemma 2.7]). Let Y ⊂ Z be an irreducible Weil divisor
on a variety Z. Assume that Z admits at worst Q-factorial log-terminal singularities. Let
ψ : Ỹ → Y be a resolution of singularities on Y . Assume that

KỸ = ψ∗((KZ + Y )|Y )+
∑

i

miEi

with mi > −1 for all i, where Ei’s are the irreducible components of the exceptional divisor
ofψ . Then Y is normal, and Y has at worst log-terminal singularities. In particular, ifmi ≥ 0
for all i, then Y has at worst canonical singularities.

Recall thatVΣ0 has at worstQ-factorial log-terminal singularities. On the other hand,
as was seen in the proof of Lemma 2,Y0 + KVΣ0

= divVΣ0
(f L) holds. Because of this, we

obtain

Π∗
0 (Y0 +KVΣ0

) = Π∗
0 divVΣ0

(f L) = divV
Σ̂
(Π∗

0f
L)

= W +
∑

ρ̂∈Σ̂(1)
nρ̂ (f

L) ·Dρ̂

= (W +KV
Σ̂
)+

∑

ρ̂∈Σ̂(1)\Σ0(1)

(nρ̂ (f
L)+ 1) ·Dρ̂ ,

and hence

KV
Σ̂

+W = Π∗
0 (KVΣ0

+ Y0)+
∑

ρ̂∈Σ̂(1)\Σ0(1)

(−nρ̂ (f
L)− 1) ·Dρ̂ .

Since the Newton polyhedron∆(fL) of f L contains the zero0 ∈ M in its interior, we have

nρ̂ (f
L) = min{〈m,nρ̂〉 | cm �= 0} ≤ −1 ,

and hence−nρ̂ (f L)−1 ≥ 0 for anyρ̂ ∈ Σ̂(1)\Σ0(1). Therefore, by the adjunction formula,
we obtain

KW = (KV
Σ̂

+W)|W = π∗
0 ((KVΣ0

+ Y0)|Y0)+
∑

i

βi ·Ei

with βi ≥ 0. Hence, by Proposition 10,Y0 is normal and has at worst canonical singularities.
SinceVΣ0 is projective, so isY0. �

PROOF OFLEMMA 4. Recall that the other compactificationY1 of ZfL,M in P∆(fL)
is an ample divisor ofP∆(fL). By the vanishing theorem for arbitrary ample divisors on
toric varieties, we haveHk(Y1,OY1) = 0 for 0 < k < n − 1. Moreover, by Batyrev [1,
Corollary 3.1.6], every singularity onY1 is analytically equivalent to a toric singularity, so
that it is a rational singularity.

SinceY0 (resp.Y1) has at worst rational singularities andπ0 : W → Y0 (resp.π1 : W →
Y1) is a resolution of singularities, we haveRkπ0∗OW = 0 (resp.Rkπ1∗OW = 0) for 0< k.
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Hence, for 0< k,

Hk(W,OW) ∼= Hk(Y0, π0∗OW) = Hk(Y0,OY0)

(resp. H k(W,OW) ∼= Hk(Y1, π1∗OW) = Hk(Y1,OY1)) .

Therefore, we obtainHk(Y0,OY0) = 0 for 0< k < n− 1. �
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