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Example: Trees

A directed tree with regular 3-branching T consists of

the empty set ∅,
3 sequences of length 1 with terms chosen from the set
{0,1,2},
9 sequences of length 2 with terms chosen from the set
{0,1,2},
· · ·
3r sequences of length r with terms chosen from the et
{0,1,2}

and so on. The elements of T are called vertices.

Juan Manfredi, Mikko Parviainen, and Julio Rossi On the definition and properties of p-harmonious functions



logo

Calculus on Trees

Each vertex v al level r has three children (successors)

v0, v1, v2.

Let u : T 7→ R be a real valued function.

Gradient

The gradient of u at the vertex v is the vector in R3

∇u(v) = {u(v0)− u(v),u(v1)− u(v),u(v2)− u(v)}.

Divergence
The averaging operator or divergence of a vector
X = (x , y , z) ∈ R3 as

div(X ) = x + y + z.
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Harmonic Functions on Trees

Harmonic functions
A function u is harmonic if satisfies the Laplace equation

div(∇u) = 0.

The Mean Value Property
A function u is harmonic if and only if it satisfies the mean value
property

u(v) =
u(v0) + u(v1) + u(v2)

3
.

Thus the values of harmonic function at level r determine its
values at all levels smaller than r .
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The boundary of the tree

Branches and boundary
A branch of T is an infinite sequence of vertices, each followed
by on of its immediate successors (this corresponds to the level
r =∞.) The collection of all branches forms the boundary of
the tree T is denoted by ∂T .

The mapping g : ∂T 7→ [0,1] given by

g(b) =
∞∑

r=1

br

3r (also denoted by b)

is a bijection (think of an expansion in base 3 of the numbers in
[0,1]).
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The Dirichlet problem

•We have a natural metric and natural measure in ∂T inherited
from the interval [0,1].
• The classical Cantor set C is the subset of ∂T formed by
branches that don’t go through any vertex labeled 1.

The Dirichlet problem
Given a (continuous) function f : ∂T 7→ R find a harmonic
function u : T 7→ R such that

lim
r→∞

u(br ) = f (b)

for every branch b = (br ) ∈ ∂T .
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Dirichlet problem, II

Given a vertex v ∈ T consider the subset of ∂T consisting of all
branches that start at v . This is always an interval that we
denote by Iv .

Solution to the Dirichlet problem, p = 2
The we have

u(v) =
1
|Iv |

∫
Iv

f (b) db.

Note that u is a martingale.

We see that we can in fact solve the Dirichlet problem for
f ∈ L1([0,1]).
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Game interpretation

Random Walk
Start at the top ∅. Move downward by choosing successors at
random with uniform probability. When you get at ∂T at the
point b you get paid f (b) dollars.

Two player random Tug-of-War game
A coin is tossed. The player who wins the coin toss chooses
the successor vertex (heads for player I, tails for player II.) The
game ends when we reach ∂T at a point b in which case player
II pays f (b) dollars to player I.
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More on Random Walk Game interpretation

Every time we run the game we get a sequence of vertices

v1, v2, . . . , vk , .....

that determines a point on b the boundary ∂T .
If we are at vertex v1 and run the game, player II pays f (b)
dollars to player I. Let us average out over all possible plays
that start at v1.

The value function is harmonic, p = 2.

Expected pay-off = Ev1 [f (t)] = u(v1) =
1
|Iv1 |

∫
Iv1

f (b) db.
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Two player random Tug-of-War game, p =∞

In this case, say that f is monotonically increasing. When
player I moves he tries to move to the right. When player II
moves he moves to the left.These are examples of strategies.

Definition of Value functions

uI(v) = sup
SI

inf
SII

Ev [f (b)] and uII(v) = inf
SII

sup
SI

Ev [f (b)]

DPP (Dynamic Programming Principle)

We have uI = uII . Moreover, if we denote the common function
by u, it is the only function on the tree such that:

u = f on ∂T , u(v) =
1
2

[
max

i
{u(vi)}+ min

i
{u(vi)}

]
.
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Random Walk + Tug-of-War

Let us combine random choice of successor plus tug of war.
Choose α ≥ 0, β ≥ 0 such that α + β = 1. Start at ∅. With
probability α the players play Tug-of-War. With probability β
move downward by choosing successors at random. When you
get at ∂T at the point b player II pays f (b) dollars to player I.

DPP for Tug-of-War with noise, DPP = MVP
The value function u verifies the equation

u(v) =
α

2

(
max

i
{u(vi)}+ min

i
{u(vi)}

)
+β

(
u(v0) + u(v1) + u(v2)

3

)
.
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Where are the PDEs?

Setting
div∞(X ) = max{x , y , z}+ min{x , y , z}

the value function u of the tug-of-war game satisfies

div∞ (∇u) = 0

Setting

divp(X ) =
α

2
(max{x , y , z}+ min{x , y , z}) + β

(
x + y + z

3

)
the value function u of the tug-of-war game with noise satisfies

divp (∇u) = 0.

This operator is the homogeneous p-Laplacian.
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The (homogeneous) p-Laplacian on trees

The equations

div2(∇u) = 0, divp(∇u) = 0, div∞(∇u) = 0

DPP for Tug-of-War with noise

u(v) =
α

2

(
max

i
{u(vi)}+ min

i
{u(vi)}

)
+β

(
u(v0) + u(v1) + u(v2)

3

)
.

1 The case p = 2 corresponds to α = 0, β = 1.
2 The case p =∞ corresponds to α = 1, β = 0.
3 In general, there is no explicit solution formula for p 6= 2
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Formulas for f monotone, p =∞

Suppose that f is monotonically increasing. In this case the
best strategy S?

I for player I is always to move right and the best
strategy S?

II for player II always to move left. Starting at the
vertex v at level k

v = 0.b1b2 . . . bk , bj ∈ {0,1,2}

we always move either left (adding a 0) or right (adding a 1). In
this case Iv is a Cantor-like set Iv = {0.b1b2 . . . bkd1d2 . . .},
dj ∈ {0,2}

Formula for p =∞

u(v) = sup
SI

inf
SII

Ev
SI ,SII

[f (b)] = Ev
S?I ,S

?
II
[f (b)] =

∫
Iv

f (b)dCv (b)
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Formulas for f monotone, 2 ≤ p ≤ ∞

The best strategy S?
I for player I is always to move right and the

best strategy S?
II for player II always to move left.

Formula for 2 ≤ p ≤ ∞

u(v) = sup
SI

inf
SII

Ev
SI ,SII

[f (b)] = Ev
S?I ,S

?
II
[f (b)]

= α

∫
Iv

f (b)dCv (b) + β

∫
Iv

f (b) db
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p-harmonious and p-harmonic functions

Plan of the rest of the talk:

1 Asymptotic Mean Value Properties for p-harmonic
functions.

2 Definition, existence and uniqueness of p-harmonious
functions.

3 Strong comparison principle for p-harmonious functions for
2 ≤ p <∞.

4 Approximation of p-harmonic functions by p-harmonious
functions.
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1. Asymptotic mean-value properties
for p-harmonic functions.

Let u ∈ C2(Ω), Ω ⊂ RN . Consider the Taylor expansion:

u(x+h) = u(x)+〈∇u(x),h〉+ 1
2
〈D2u(x)h,h〉+o(|h|2), as h→ 0.

Averaging on a ball Bε(x) ⊂ Ω we get:∫
Bε(0)

u(x+h) dh = u(x)+
1

2(N + 2)
ε2∆(u)(x)+o(ε2), as ε→ 0.

Lemma

u ∈ C2(Ω) is harmonic in Ω if and only if for all x ∈ Ω∫
Bε(0)

u(x + h) dh = u(x) + o(ε2), as ε→ 0.
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The case p = 2 :

Since viscosity harmonic functions are harmonic in the
classical sense, we indeed have:

Lemma
u ∈ C(Ω) is harmonic in Ω if and only if for all x ∈ Ω∫

Bε(0)
u(x + h) dh = u(x) + o(ε2), as ε→ 0
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The case p =∞, ∇u(x) 6= 0

Let u ∈ C2(Ω), Ω ⊂ RN . In the Taylor expansion, use

h = ε
∇u(x)

|∇u(x)|
and h = −ε ∇u(x)

|∇u(x)|
,

add, and compute to get:

1
2

(
sup
Bε(x)

u + inf
Bε(x)

u

)
= u(x) + ε2∆∞u(x) + o(ε2) as ε→ 0,

where

∆∞u(x) =
1

|∇u(x)|2
〈D2u(x)∇u(x),∇u(x)〉

is the homogeneous ∞-Laplacian.
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The case p =∞, ∇u(x) 6= 0

Lemma

u ∈ C2(Ω), ∇u(x) 6= 0, is∞-harmonic in Ω if and only if for all
x ∈ Ω

1
2

(
sup
Bε(x)

u + inf
Bε(x)

u

)
= u(x) + o(ε2) as ε→ 0.

Lemma
Let u ∈ C(Ω) be just continuous. Suppose that for all x ∈ Ω we
have

1
2

(
sup
Bε(x)

u + inf
Bε(x)

u

)
= u(x) + o(ε2) as ε→ 0,

then u is∞-harmonic in Ω.
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The case p =∞, ∇u(x) 6= 0

The converse to the previous lemma does not hold.

Example: Aronsson’s function near (x , y) = (1,0)

u(x , y) = |x |4/3 − |y |4/3

Aronsson’s function is∞-harmonic in the viscosity sense but it
is not of class C2. A calculation shows that

lim
ε→0+

1
2

{
max

Bε(1,0)
u + min

Bε(1,0)
u

}
− u(1,0)

ε2 =
1
18
.

But if an asymptotic expansion held in the classical sense, this
limit would have to be zero.
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The case 1 < p <∞, ∇u(x) 6= 0

Let u ∈ C2(Ω) and α, β non-negative such that α + β = 1.

α

2

(
sup
Bε(x)

u + inf
Bε(x)

u

)
+ β

∫
Bε(x)

u = u(x)

+ α∆∞u(x) + β 1
(N+2) ∆u(x)

+ o(ε2), as ε→ 0,

Let us rewrite the second order operator

α∆∞u(x)+β
1

(N + 2)
∆u(x) = β

1
(N + 2)

(
∆u(x) +

α

β 1
(N+2)

∆∞u(x)

)
.
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The case 1 < p <∞, ∇u(x) 6= 0

Next, choose 2 < p <∞ such that

p − 2 =
α

β 1
(N+2)

.

We then have

∆u(x) +
α

β 1
(N+2)

∆∞u(x) = |∇u(x)|2−pdiv
(
|∇u(x)|p−2∇u(x)

)
.

Lemma

u ∈ C2(Ω), ∇u(x) 6= 0, is p-harmonic in Ω if and only if for all
x ∈ Ω

α

2

(
sup
Bε(x)

u + inf
Bε(x)

u

)
+ β

∫
Bε(x)

u = u(x) + o(ε2), as ε→ 0,
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The case 1 < p <∞

Lemma
Let be u ∈ C(Ω). Suppose that for all x ∈ Ω we have

α

2

(
sup
Bε(x)

u + inf
Bε(x)

u

)
+ β

∫
Bε(x)

u = u(x) + o(ε2), as ε→ 0,

where α ≥ 0, β ≥ 0, and α + β = 1 and

p − 2
N + 2

=
α

β
,

then u is p-harmonic in Ω

Question: Can we modify these lemmas so that they
characterize p-harmonic functions?
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The case 1 < p ≤ ∞

Theorem
u ∈ C(Ω) is p-harmonic in Ω if and only if for all x ∈ Ω we have
that the asymptotic expansion

α

2

(
sup
Bε(x)

u + inf
Bε(x)

u

)
+ β

∫
Bε(x)

u = u(x) + o(ε2), as ε→ 0,

holds in the VISCOSITY SENSE, where α ≥ 0, β ≥ 0, α + β = 1
and

p − 2
N + 2

=
α

β
.

Similar results hold for p-subharmonic and p-superharmonic
functions.
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Asymptotic Mean Value Expansions

Definition
A continuous function u verifies

u(x) =
α

2

{
max
Bε(x)

u + min
Bε(x)

u

}
+ β

∫
Bε(x)

u(y) dy + o(ε2)

as ε→ 0 in the viscosity sense if
(i) for every φ ∈ C2 that touches u from below at x (u − φ has a
strict minimum at the point x ∈ Ω and u(x) = φ(x)) we have

φ(x) ≥ α

2

{
max
Bε(x)

φ+ min
Bε(x)

φ

}
+ β

∫
Bε(x)

φ(y) dy + o(ε2).
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Asymptotic Mean Value Expansions

Definition (continued)

(ii) for every φ ∈ C2 that touches u from above at x (u − φ has a
strict maximum at the point x ∈ Ω and u(x) = φ(x)) we have

φ(x) ≤ α

2

{
max
Bε(x)

φ+ min
Bε(x)

φ

}
+ β

∫
Bε(x)

φ(y) dy + o(ε2).

Sketch of the proof
u p-harmonic ⇐⇒ u p-harmonic in the viscosity sense ⇐⇒
Use Taylor theorem applied to the test function φ.
(We can safely avoid points x for which ∇u(x) = 0)
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2. Definition, 2 ≤ p <∞ ( p =∞ Le Gruyer)

Let Ω be a (bounded) domain in RN and consider

Γε = {x ∈ RN \ Ω : dist(x , ∂Ω) ≤ ε}, Ωε = Ω ∪ Γε

The function uε is p-harmonious in Ω with continuous boundary
values F : Γε → R if uε(x) = F (x), x ∈ Γε and

uε(x) =
α

2

{
sup
Bε(x)

uε + inf
Bε(x)

uε

}
+ β

∫
Bε(x)

uε dy for every x ∈ Ω,

where
α =

p − 2
p + N

, and β =
2 + N
p + N

.

WARNING! Solutions to this equation may be discontinuous as
1-d examples show.
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Tug-of-War Games with Noise 2 ≤ p <∞

Fix 1 > α ≥ 0, β > 0 such that α + β = 1.
Fix ε > 0 and place a token at starting point x0 ∈ Ω. Move the
token to the next state x1 as follows:

With probability α play tug-of war: a fair coin is tossed and
the winner of the toss moves the token to any x1 ∈ Bε(x0).
With probability β the token moves according to a uniform
probability density to a random point in the ball Bε(x0).

This procedure yields an infinite sequence of game states
x0, x1, . . . where every xk , except x0, is a random variable.
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Tug-of-War Games with Noise

A run of the game is x = (x0, x1, . . . , xk , . . .), where
x(k) = xk .
The game stops the first time it hits Γε. Write

τ(x) = min{k : xk ∈ Γε}.

The random variable τ is a STOPPING TIME. We write

x(τ(x)) = xτ .

F : Γε → R is a given (Lipschitz, bounded) payoff function.
The game payoff is F (x) = F (xτ ).
Player I earns $ F (xτ ) while Player II earns $ −F (xτ ).
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Tug-of-War Games with Noise

Fix strategies SI and SII for players I and II respectively.
Start the game at x0.
The probability measure Px0

SI ,SII
is defined on the set of all

game histories H ⊂ Ω∞ε by the transition probabilities

πSI ,SII (x0, . . . , xk ; A) =
α

2
(
δSI(x0,...,xk )(A) + δSII(x0,...,xk )(A)

)
+ β

∣∣∣A ∩ Bε(xk )
∣∣∣∣∣∣Bε(xk )

∣∣∣
and Kolmogorov’s extension theorem.
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Tug-of-War Games with Noise, 2 ≤ p <∞

Games end almost surely
Px

SI ,SII
(H) = 1 because β > 0.

Value of the game for player I

uεI (x) = sup
SI

inf
SII

Ex
SI ,SII

[F (xτ )]

Value of the game for player II

uεII(x) = inf
SII

sup
SI

Ex
SI ,SII

[F (xτ )]

Comparison Principle

uεI (x) ≤ uεII(x)
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DPP =⇒ existence of p-harmonious functions

THEOREM
The value functions uεI and uεII are p-harmonious. They satisfy
the equation

u(x) =
α

2

{
sup
Bε(x)

u + inf
Bε(x)

u

}
+ β

∫
Bε(x)

u(y) dy , x ∈ Ω,

u(x) = F (x), x ∈ Γε.

(In the case p =∞ Le Gruyer showed that the mapping

T (u) =
1
2

{
sup
Bε(x)

u + inf
Bε(x)

u

}

has a fixed point.)
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Comparison I

Theorem
Let Ω ⊂ Rn be a bounded open set.

If vε is a p-harmonious function with boundary values Fv in
Γε such that Fv (y) ≥ uεI (y) for y ∈ Γε , then vε(x) ≥ uεI (x)
for x ∈ Ωε.
If vε is a p-harmonious function with boundary values Fv in
Γε such that Fv (y) ≤ uεI (y) for y ∈ Γε , then vε(x) ≤ uεII(x)
for x ∈ Ωε.

That is uεI is the smallest p-harmonious function with given
boundary values and uεII is the largest p-harmonious function
with given boundary values.
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Comparison I, Proof

Player I arbitrary strategy SI , player II strategy S0
II that almost

minimizes vε, vε(xk ) ≤ infy∈Bε(xk−1) vε(y) + η2−k

Key Point

Mk = vε(xk ) + η2−k

is a supermartingale for any η > 0.

Ex0
SI ,S0

II
[Mk | x0, . . . , xk−1] = Ex0

SI ,S0
II
[vε(xk ) + η2−k | x0, . . . , xk−1]

≤ α

2

{
inf

y∈Bε(xk−1)
vε(y) + sup

y∈Bε(xk−1)

vε(y) + η2−k

}

+ β

∫
Bε(xk−1)

vε dy + η2−k ≤ vε(xk−1) + η2−(k−1) = Mk−1
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Comparison I, Proof

By optimal stopping

uεI (x0) = sup
SI

inf
SII

Ex
SI ,SII

[F (xτ )]

≤ sup
SI

Ex
SI ,S0

II
[F (xτ )]

≤ sup
SI

Ex
SI ,S0

II
[vε(xτ )]

≤ sup
SI

Ex0
SI ,S0

II
[vε(xτ ) + η2−τ ]

≤ sup
SI

Ex0
SI ,S0

II
[Mτ ]

≤ sup
SI

M0 = vε(x0) + η
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The game has a value

Theorem

Mk = uεI (xk ) + η2−k is a supermartingale.
We have uεI = uεII

The proof is a variant of the proof of comparison.
Player II follows a strategy S0

II such that at xk−1 ∈ Ωε, he always
chooses to step to a point that almost minimizes uεI ; that is, to a
point xk such that

uεI (xk ) ≤ inf
y∈Bε(xk−1)

uεI (y) + η2−k
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3. Maximum and Comparison Principles

Theorem
Let Ω ⊂ Rn be a bounded domain. If uε is p-harmonious in Ω
with a boundary data F , then supΓε F ≥ supΩ uε. Moreover, if
there is a point x0 ∈ Ω such that uε(x0) = supΓε F , then uε is
constant in Ω.

Theorem
Let Ω ⊂ Rn be a bounded domain. and let uε and vε be
p-harmonious with boundary data Fu ≥ Fv in Γε. Then if there
exists a point x0 ∈ Ω such that uε(x0) = vε(x0), it follows that
uε = vε in Ω, and, moreover, the boundary values satisfy
Fu = Fv in Γε.
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Proof of Strong Comparison

The proof uses the fact that p <∞. The strong comparison
principle does not hold for p =∞.

Fu ≥ Fv =⇒ uε ≥ vε.

We have

uε(x0) =
α

2

{
sup

Bε(x0)

uε + inf
Bε(x0)

uε

}
+ β

∫
Bε(x0)

uε dy

and

vε(x0) =
α

2

{
sup

Bε(x0)

vε + inf
Bε(x0)

vε

}
+ β

∫
Bε(x0)

vε dy .

Next we compare the right hand sides. Because uε ≥ vε, it
follows that
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Proof of Strong Comparison, II

sup
Bε(x0)

uε − sup
Bε(x0)

vε ≥ 0,

inf
Bε(x0)

uε − inf
Bε(x0)

vε ≥ 0, and∫
Bε(x0)

uε dy −
∫

Bε(x0)
vε dy ≥ 0

But since
uε(x0) = vε(x0),

and β > 0 must have uε = vε almost everywhere in Bε(x0). In
particular,

Fu = Fv everywhere in Γε

since Fu and Fv are continuous. By uniqueness uε = vε
everywhere in Ω.
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4. Approximation of p-harmonic functions

Boundary Regularity Assumption
Ω bounded domain in Rn satisfying an exterior sphere
condition: For each y ∈ ∂Ω, there exists Bδ(z) ⊂ Rn \ Ω such
that y ∈ ∂Bδ(z). R > 0 is chosen so that we always have
Ω ⊂ BR/2(z).

THEOREM
F is Lipschitz in Γε for small 0 < ε < ε0. Let u be the unique
viscosity solution to{

div(|∇u|p−2∇u)(x) = 0, x ∈ Ω

u(x) = F (x), x ∈ ∂Ω,

and let uε be the unique p-harmonious function with boundary
data F in Γε, then uε → u uniformly in Ω as ε→ 0.

Juan Manfredi, Mikko Parviainen, and Julio Rossi On the definition and properties of p-harmonious functions



logo

Approximation of p-harmonic functions, Proof I

Ascoli-Arzelá type theorem

Let {uε : uε : Ω→ R, ε > 0} be a set of functions such that
1 there exists C > 0 so that |uε(x)| < C for every ε > 0 and

every x ∈ Ω,
2 given η > 0 there are constants r0 and ε0 such that for

every ε < ε0 and any x , x ′ ∈ Ω with |x − x ′| < r0 it holds

|uε(x)− uε(x ′)| < η.

Then, there exists a sequence εj → 0 and a uniformly
continuous function u : Ω→ R such that

uεj → u

uniformly in Ω.
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Approximation of p-harmonic functions, Proof I

Condition 1 is clear:

min
y∈Γε

F (y) ≤ F (xτ ) ≤ max
y∈Γε

F (y) =⇒ min
y∈Γε

F (y) ≤ uε(x) ≤ max
y∈Γε

F (y).

Condition 2, OSCILLATION ESTIMATE
The p-harmonious function uε with the boundary data F
satisfies

|uε(x)− uε(y)| ≤ Lip(F )δ + C(R/δ)(|x − y |+ o(1)),

for every small enough δ > 0 and for every two points
x , y ∈ Ω ∪ Γε. Here C(R/δ)→∞ as R/δ →∞. Furthermore
the constant in o(1) is uniform in x and y .
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Ingredients in the Proof of the Oscillation Estimate

Exterior sphere condition =⇒ there exists there exists
Bδ(z) ⊂ Rn \ Ω such that y ∈ ∂Bδ(z).
When Player I chooses the strategy of pulling towards z,
denoted by Sz

I , Player II an arbitrary strategy.

Mk = |xk − z| − Cε2k

is a supermartingale for a constant C large enough
independent of ε.

By the optional stopping theorem

Ex0
Sz

I ,SII
[|xτ − z| − Cε2τ ] ≤ |x0 − z|

Ex0
Sz

I ,SII
[|xτ − z|] ≤ |x0 − z|+ Cε2Ex0

Sz
I ,SII

[τ ]
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Sketch of the Proof of the Oscillation Estimate

Random Walk Exit Time Estimates

Consider a random walk on BR(z) \ Bδ(z) such that when at
xk−1, the next point xk is chosen uniformly distributed in
Bε(xk−1) ∩ BR(z). For τ? = inf{k : xk ∈ Bδ(z)}. we have

Ex0(τ?) ≤ C(R/δ) dist(∂Bδ(z), x0) + o(1)

ε2 ,

for x0 ∈ BR(y) \ Bδ(y). Here C(R/δ)→∞ as R/δ →∞.

This is surely known by experts in probability. We proved it by
showing that g(x) = Ex (τ?) can be estimated by the solution of
a mixed Dirichlet-Newman problem in the ring BR(z) \ Bδ(z)
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