On the definition and properties of p-harmonious functions

Juan Manfredi, Mikko Parviainen, and Julio Rossi

University of Pittsburgh, UBA, UAM

Workshop on New Connections Between Differential and Random Turn Games, PDE's and Image Processing

Pacific Institute of Mathematical Sciences

July 28, 2009

Inspiration: Games Mathematicians Play

- Y. Peres, O. Schramm, S. Sheffield and D. Wilson; Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc., 22, (2009), 167-210.
- Y. Peres, S. Sheffield; Tug-of-war with noise: a game theoretic view of the p-Laplacian. Duke Math. J. 145(1), (2008), 91-120.
- E. Le Gruyer; On absolutely minimizing Lipschitz extensions and PDE $\Delta_{\infty}(u)=0,2007$ NoDEA.
MPR1 An asymptotic mean value property characterization of p-harmonic functions, 2009 preprint.
MPR2 On the definition and properties of p-harmonious functions, 2009 preprint.

Example: Trees

A directed tree with regular 3-branching T consists of

- the empty set \emptyset,
- 3 sequences of length 1 with terms chosen from the set $\{0,1,2\}$,
- 9 sequences of length 2 with terms chosen from the set $\{0,1,2\}$,
- ...
- 3^{r} sequences of length r with terms chosen from the et $\{0,1,2\}$
and so on. The elements of T are called vertices.

Calculus on Trees

Each vertex v al level r has three children (successors)

$$
v_{0}, v_{1}, v_{2}
$$

Let $u: T \mapsto \mathbb{R}$ be a real valued function.

Gradient

The gradient of u at the vertex v is the vector in \mathbb{R}^{3}

$$
\nabla u(v)=\left\{u\left(v_{0}\right)-u(v), u\left(v_{1}\right)-u(v), u\left(v_{2}\right)-u(v)\right\} .
$$

Divergence

The averaging operator or divergence of a vector $X=(x, y, z) \in \mathbb{R}^{3}$ as

$$
\operatorname{div}(X)=x+y+z
$$

Harmonic Functions on Trees

Harmonic functions

A function u is harmonic if satisfies the Laplace equation

$$
\operatorname{div}(\nabla u)=0
$$

The Mean Value Property

A function u is harmonic if and only if it satisfies the mean value property

$$
u(v)=\frac{u\left(v_{0}\right)+u\left(v_{1}\right)+u\left(v_{2}\right)}{3}
$$

Thus the values of harmonic function at level r determine its values at all levels smaller than r.

The boundary of the tree

Branches and boundary

A branch of T is an infinite sequence of vertices, each followed by on of its immediate successors (this corresponds to the level $r=\infty$.) The collection of all branches forms the boundary of the tree T is denoted by ∂T.

The mapping $g: \partial T \mapsto[0,1]$ given by

$$
\left.g(b)=\sum_{r=1}^{\infty} \frac{b_{r}}{3^{r}} \text { (also denoted by } b\right)
$$

is a bijection (think of an expansion in base 3 of the numbers in $[0,1]$).

The Dirichlet problem

- We have a natural metric and natural measure in ∂T inherited from the interval $[0,1]$.
- The classical Cantor set C is the subset of ∂T formed by branches that don't go through any vertex labeled 1.

The Dirichlet problem

Given a (continuous) function $f: \partial T \mapsto \mathbb{R}$ find a harmonic function $u: T \mapsto \mathbb{R}$ such that

$$
\lim _{r \rightarrow \infty} u\left(b_{r}\right)=f(b)
$$

for every branch $b=\left(b_{r}\right) \in \partial T$.

Dirichlet problem, II

Given a vertex $v \in T$ consider the subset of ∂T consisting of all branches that start at v. This is always an interval that we denote by I_{V}.

Solution to the Dirichlet problem, $p=2$

The we have

$$
u(v)=\frac{1}{\left|I_{v}\right|} \int_{I_{v}} f(b) d b
$$

Note that u is a martingale.
We see that we can in fact solve the Dirichlet problem for $f \in L^{1}([0,1])$.

Game interpretation

Random Walk

Start at the top \emptyset. Move downward by choosing successors at random with uniform probability. When you get at ∂T at the point b you get paid $f(b)$ dollars.

Two player random Tug-of-War game

A coin is tossed. The player who wins the coin toss chooses the successor vertex (heads for player I, tails for player II.) The game ends when we reach ∂T at a point b in which case player II pays $f(b)$ dollars to player I.

More on Random Walk Game interpretation

Every time we run the game we get a sequence of vertices

$$
v_{1}, v_{2}, \ldots, v_{k}, \ldots \ldots
$$

that determines a point on b the boundary ∂T.
If we are at vertex v_{1} and run the game, player II pays $f(b)$ dollars to player I. Let us average out over all possible plays that start at v_{1}.

The value function is harmonic, $p=2$.

$$
\text { Expected pay-off }=\mathbb{E}^{v_{1}}[f(t)]=u\left(v_{1}\right)=\frac{1}{\left|v_{v_{1}}\right|} \int_{v_{v_{1}}} f(b) d b .
$$

Two player random Tug-of-War game, $p=\infty$

In this case, say that f is monotonically increasing. When player I moves he tries to move to the right. When player II moves he moves to the left.These are examples of strategies.

Definition of Value functions

$$
u^{\prime}(v)=\sup _{s_{I}} \inf _{S_{\|}} \mathbb{E}^{v}[f(b)] \quad \text { and } \quad u^{\prime \prime}(v)=\inf _{S_{\|}} \sup _{s_{I}} \mathbb{E}^{v}[f(b)]
$$

DPP (Dynamic Programming Principle)

We have $u^{\prime}=u^{\prime \prime}$. Moreover, if we denote the common function by u, it is the only function on the tree such that:

$$
u=f \text { on } \partial T, u(v)=\frac{1}{2}\left[\max _{i}\left\{u\left(v_{i}\right)\right\}+\min _{i}\left\{u\left(v_{i}\right)\right\}\right] .
$$

Random Walk + Tug-of-War

Let us combine random choice of successor plus tug of war. Choose $\alpha \geq 0, \beta \geq 0$ such that $\alpha+\beta=1$. Start at \emptyset. With probability α the players play Tug-of-War. With probability β move downward by choosing successors at random. When you get at ∂T at the point b player II pays $f(b)$ dollars to player I.

DPP for Tug-of-War with noise, DPP = MVP

The value function u verifies the equation

$$
u(v)=\frac{\alpha}{2}\left(\max _{i}\left\{u\left(v_{i}\right)\right\}+\min _{i}\left\{u\left(v_{i}\right)\right\}\right)+\beta\left(\frac{u\left(v_{0}\right)+u\left(v_{1}\right)+u\left(v_{2}\right)}{3}\right)
$$

Where are the PDEs?

Setting

$$
\operatorname{div}_{\infty}(X)=\max \{x, y, z\}+\min \{x, y, z\}
$$

the value function u of the tug-of-war game satisfies

$$
\operatorname{div}_{\infty}(\nabla u)=0
$$

Setting

$$
\operatorname{div}_{p}(X)=\frac{\alpha}{2}(\max \{x, y, z\}+\min \{x, y, z\})+\beta\left(\frac{x+y+z}{3}\right)
$$

the value function u of the tug-of-war game with noise satisfies

$$
\operatorname{div}_{p}(\nabla u)=0
$$

This operator is the homogeneous p-Laplacian.

The (homogeneous) p-Laplacian on trees

The equations

$$
\operatorname{div}_{2}(\nabla u)=0, \quad \operatorname{div}_{p}(\nabla u)=0, \quad \operatorname{div}_{\infty}(\nabla u)=0
$$

DPP for Tug-of-War with noise

$$
u(v)=\frac{\alpha}{2}\left(\max _{i}\left\{u\left(v_{i}\right)\right\}+\min _{i}\left\{u\left(v_{i}\right)\right\}\right)+\beta\left(\frac{u\left(v_{0}\right)+u\left(v_{1}\right)+u\left(v_{2}\right)}{3}\right)
$$

(1) The case $p=2$ corresponds to $\alpha=0, \beta=1$.
(2) The case $p=\infty$ corresponds to $\alpha=1, \beta=0$.
(3) In general, there is no explicit solution formula for $p \neq 2$

Formulas for f monotone, $p=\infty$

Suppose that f is monotonically increasing. In this case the best strategy S_{l}^{\star} for player I is always to move right and the best strategy $S_{\text {II }}^{\star}$ for player II always to move left. Starting at the vertex v at level k

$$
v=0 . b_{1} b_{2} \ldots b_{k}, \quad b_{j} \in\{0,1,2\}
$$

we always move either left (adding a 0) or right (adding a 1). In this case I_{v} is a Cantor-like set $I_{v}=\left\{0 . b_{1} b_{2} \ldots b_{k} d_{1} d_{2} \ldots\right\}$, $d_{j} \in\{0,2\}$

Formula for $p=\infty$

$$
u(v)=\sup _{S_{l}} \inf _{S_{I I}} \mathbb{E}_{S_{l}, S_{l}}^{v}[f(b)]=E_{S_{i}^{\star}, S_{\|}^{*}}^{v}[f(b)]=f_{l_{v}} f(b) d C_{v}(b)
$$

The best strategy S_{j}^{\star} for player I is always to move right and the best strategy $S_{\| I}^{*}$ for player II always to move left.

Formula for $2 \leq p \leq \infty$

$$
\begin{aligned}
u(v)=\sup _{S_{I}} \inf _{S_{I I}} \mathbb{E}_{S_{I}, S_{I I}}^{v}[f(b)] & =E_{S_{I}^{\star}, S_{I I}^{\star}}^{v}[f(b)] \\
& =\alpha f_{I_{v}} f(b) d \mathcal{C}_{v}(b)+\beta f_{I_{v}} f(b) d b
\end{aligned}
$$

p-harmonious and p-harmonic functions

Plan of the rest of the talk:
(1) Asymptotic Mean Value Properties for p-harmonic functions.
(2) Definition, existence and uniqueness of p-harmonious functions.
(3) Strong comparison principle for p-harmonious functions for $2 \leq p<\infty$.
(9) Approximation of p-harmonic functions by p-harmonious functions.

1. Asymptotic mean-value properties for p-harmonic functions.

Let $u \in C^{2}(\Omega), \Omega \subset \mathbb{R}^{N}$. Consider the Taylor expansion:
$u(x+h)=u(x)+\langle\nabla u(x), h\rangle+\frac{1}{2}\left\langle D^{2} u(x) h, h\right\rangle+o\left(|h|^{2}\right)$, as $h \rightarrow 0$.
Averaging on a ball $B_{\epsilon}(x) \subset \Omega$ we get:

$$
f_{B_{\epsilon}(0)} u(x+h) d h=u(x)+\frac{1}{2(N+2)} \epsilon^{2} \Delta(u)(x)+o\left(\epsilon^{2}\right), \text { as } \epsilon \rightarrow 0
$$

Lemma

$u \in C^{2}(\Omega)$ is harmonic in Ω if and only if for all $x \in \Omega$

$$
f_{B_{\epsilon}(0)} u(x+h) d h=u(x)+o\left(\epsilon^{2}\right), \text { as } \epsilon \rightarrow 0
$$

The case $p=2$:

Since viscosity harmonic functions are harmonic in the classical sense, we indeed have:

Lemma

$u \in C(\Omega)$ is harmonic in Ω if and only if for all $x \in \Omega$

$$
f_{B_{\epsilon}(0)} u(x+h) d h=u(x)+o\left(\epsilon^{2}\right), \text { as } \epsilon \rightarrow 0
$$

The case $p=\infty, \nabla u(x) \neq 0$

Let $u \in C^{2}(\Omega), \Omega \subset \mathbb{R}^{N}$. In the Taylor expansion, use

$$
h=\epsilon \frac{\nabla u(x)}{|\nabla u(x)|} \quad \text { and } \quad h=-\epsilon \frac{\nabla u(x)}{|\nabla u(x)|},
$$

add, and compute to get:

$$
\frac{1}{2}\left(\sup _{B_{\epsilon}(x)} u+\inf _{B_{\epsilon}(x)} u\right)=u(x)+\epsilon^{2} \Delta_{\infty} u(x)+o\left(\epsilon^{2}\right) \text { as } \epsilon \rightarrow 0
$$

where

$$
\Delta_{\infty} u(x)=\frac{1}{|\nabla u(x)|^{2}}\left\langle D^{2} u(x) \nabla u(x), \nabla u(x)\right\rangle
$$

is the homogeneous ∞-Laplacian.

The case $p=\infty, \nabla u(x) \neq 0$

Lemma

$u \in C^{2}(\Omega), \nabla u(x) \neq 0$, is ∞-harmonic in Ω if and only if for all $x \in \Omega$

$$
\frac{1}{2}\left(\sup _{B_{\epsilon}(x)} u+\inf _{B_{\epsilon}(x)} u\right)=u(x)+o\left(\epsilon^{2}\right) \text { as } \epsilon \rightarrow 0
$$

Lemma

Let $u \in C(\Omega)$ be just continuous. Suppose that for all $x \in \Omega$ we have

$$
\frac{1}{2}\left(\sup _{B_{\epsilon}(x)} u+\inf _{B_{\epsilon}(x)} u\right)=u(x)+o\left(\epsilon^{2}\right) \text { as } \epsilon \rightarrow 0,
$$

then u is ∞-harmonic in Ω.

The case $p=\infty, \nabla u(x) \neq 0$

The converse to the previous lemma does not hold.
Example: Aronsson's function near $(x, y)=(1,0)$

$$
u(x, y)=|x|^{4 / 3}-|y|^{4 / 3}
$$

Aronsson's function is ∞-harmonic in the viscosity sense but it is not of class C^{2}. A calculation shows that

$$
\lim _{\varepsilon \rightarrow 0+} \frac{\frac{1}{2}\left\{\frac{\max }{B_{\varepsilon}(1,0)} u+\frac{\min }{B_{\varepsilon}(1,0)} u\right\}-u(1,0)}{\varepsilon^{2}}=\frac{1}{18}
$$

But if an asymptotic expansion held in the classical sense, this limit would have to be zero.

The case $1<p<\infty, \nabla u(x) \neq 0$

Let $u \in C^{2}(\Omega)$ and α, β non-negative such that $\alpha+\beta=1$.

$$
\begin{aligned}
\frac{\alpha}{2}\left(\sup _{B_{\epsilon}(x)} u+\inf _{B_{\epsilon}(x)} u\right)+\beta f_{B_{\epsilon}(x)} u & =u(x) \\
& +\alpha \Delta_{\infty} u(x)+\beta \frac{1}{(N+2)} \Delta u(x) \\
& +o\left(\epsilon^{2}\right), \quad \text { as } \epsilon \rightarrow 0,
\end{aligned}
$$

Let us rewrite the second order operator
$\alpha \Delta_{\infty} u(x)+\beta \frac{1}{(N+2)} \Delta u(x)=\beta \frac{1}{(N+2)}\left(\Delta u(x)+\frac{\alpha}{\beta \frac{1}{(N+2)}} \Delta_{\infty} u(x)\right)$

The case $1<p<\infty, \nabla u(x) \neq 0$

Next, choose $2<p<\infty$ such that

$$
p-2=\frac{\alpha}{\beta \frac{1}{(N+2)}} .
$$

We then have

$$
\Delta u(x)+\frac{\alpha}{\beta \frac{1}{(N+2)}} \Delta_{\infty} u(x)=|\nabla u(x)|^{2-p} \operatorname{div}\left(|\nabla u(x)|^{p-2} \nabla u(x)\right) .
$$

Lemma

$u \in C^{2}(\Omega), \nabla u(x) \neq 0$, is p-harmonic in Ω if and only if for all $x \in \Omega$

$$
\frac{\alpha}{2}\left(\sup _{B_{\epsilon}(x)} u+\inf _{B_{\epsilon}(x)} u\right)+\beta f_{B_{\epsilon}(x)} u=u(x)+o\left(\epsilon^{2}\right), \quad \text { as } \epsilon \rightarrow 0
$$

The case $1<p<\infty$

Lemma

Let be $u \in C(\Omega)$. Suppose that for all $x \in \Omega$ we have

$$
\frac{\alpha}{2}\left(\sup _{B_{\epsilon}(x)} u+\inf _{B_{\epsilon}(x)} u\right)+\beta f_{B_{\epsilon}(x)} u=u(x)+o\left(\epsilon^{2}\right), \quad \text { as } \epsilon \rightarrow 0
$$

where $\alpha \geq 0, \beta \geq 0$, and $\alpha+\beta=1$ and

$$
\frac{p-2}{N+2}=\frac{\alpha}{\beta},
$$

then u is p-harmonic in Ω

Question: Can we modify these lemmas so that they characterize p-harmonic functions?

Theorem

$u \in C(\Omega)$ is p-harmonic in Ω if and only if for all $x \in \Omega$ we have that the asymptotic expansion

$$
\frac{\alpha}{2}\left(\sup _{B_{\epsilon}(x)} u+\inf _{B_{\epsilon}(x)} u\right)+\beta f_{B_{\epsilon}(x)} u=u(x)+o\left(\epsilon^{2}\right), \quad \text { as } \epsilon \rightarrow 0
$$

holds in the viscosity sense, where $\alpha \geq 0, \beta \geq 0, \alpha+\beta=1$ and

$$
\frac{p-2}{N+2}=\frac{\alpha}{\beta}
$$

Similar results hold for p-subharmonic and p-superharmonic functions.

Asymptotic Mean Value Expansions

Definition

A continuous function u verifies

$$
u(x)=\frac{\alpha}{2}\left\{\frac{\max }{B_{\varepsilon}(x)} u+\frac{\min }{B_{\varepsilon}(x)} u\right\}+\beta f_{B_{\varepsilon}(x)} u(y) d y+o\left(\varepsilon^{2}\right)
$$

as $\varepsilon \rightarrow 0$ in the viscosity sense if
(i) for every $\phi \in C^{2}$ that touches u from below at $x(u-\phi$ has a strict minimum at the point $x \in \bar{\Omega}$ and $u(x)=\phi(x))$ we have

$$
\phi(x) \geq \frac{\alpha}{2}\left\{\frac{\max }{B_{\varepsilon}(x)} \phi+\frac{\min }{B_{\varepsilon}(x)} \phi\right\}+\beta f_{B_{\varepsilon}(x)} \phi(y) d y+o\left(\varepsilon^{2}\right)
$$

Asymptotic Mean Value Expansions

Definition (continued)

(ii) for every $\phi \in C^{2}$ that touches u from above at $x(u-\phi$ has a strict maximum at the point $x \in \bar{\Omega}$ and $u(x)=\phi(x)$) we have

$$
\phi(x) \leq \frac{\alpha}{2}\left\{\frac{\max }{B_{\varepsilon}(x)} \phi+\frac{\min }{B_{\varepsilon}(x)} \phi\right\}+\beta f_{B_{\varepsilon}(x)} \phi(y) d y+o\left(\varepsilon^{2}\right)
$$

Sketch of the proof

$u p$-harmonic $\Longleftrightarrow u p$-harmonic in the viscosity sense
 Use Taylor theorem applied to the test function ϕ. (We can safely avoid points x for which $\nabla u(x)=0$)

2. Definition, $2 \leq p<\infty$ ($p=\infty$ Le Gruyer)

Let Ω be a (bounded) domain in \mathbb{R}^{N} and consider

$$
\Gamma_{\epsilon}=\left\{x \in \mathbb{R}^{N} \backslash \Omega: \operatorname{dist}(x, \partial \Omega) \leq \epsilon\right\}, \quad \Omega_{\varepsilon}=\Omega \cup \Gamma_{\varepsilon}
$$

The function u_{ε} is p-harmonious in Ω with continuous boundary values $F: \Gamma_{\varepsilon} \rightarrow \mathbb{R} \quad$ if $\quad u_{\varepsilon}(x)=F(x), x \in \Gamma_{\varepsilon}$ and
$u_{\varepsilon}(x)=\frac{\alpha}{2}\left\{\sup _{\bar{B}_{\varepsilon}(x)} u_{\varepsilon}+\inf _{\bar{B}_{\varepsilon}(x)} u_{\varepsilon}\right\}+\beta f_{B_{\varepsilon}(x)} u_{\varepsilon} d y \quad$ for every $x \in \Omega$,
where

$$
\alpha=\frac{p-2}{p+N}, \quad \text { and } \quad \beta=\frac{2+N}{p+N}
$$

WARNING! Solutions to this equation may be discontinuous as 1-d examples show.

Tug-of-War Games with Noise $2 \leq p<\infty$

Fix $1>\alpha \geq 0, \beta>0$ such that $\alpha+\beta=1$.
Fix $\varepsilon>0$ and place a token at starting point $x_{0} \in \Omega$. Move the token to the next state x_{1} as follows:

- With probability α play tug-of war: a fair coin is tossed and the winner of the toss moves the token to any $x_{1} \in \bar{B}_{\varepsilon}\left(x_{0}\right)$.
- With probability β the token moves according to a uniform probability density to a random point in the ball $\bar{B}_{\varepsilon}\left(x_{0}\right)$.
This procedure yields an infinite sequence of game states x_{0}, x_{1}, \ldots where every x_{k}, except x_{0}, is a random variable.
- A run of the game is $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$, where $\mathbf{x}(k)=x_{k}$.
- The game stops the first time it hits Γ_{ε}. Write

$$
\tau(\mathbf{x})=\min \left\{k: x_{k} \in \Gamma_{\varepsilon}\right\}
$$

The random variable τ is a STOPPING TIME. We write

$$
\mathbf{x}(\tau(\mathbf{x}))=x_{\tau}
$$

- $F: \Gamma_{\varepsilon} \rightarrow \mathbb{R}$ is a given (Lipschitz, bounded) payoff function. The game payoff is $F(\mathbf{x})=F\left(x_{\tau}\right)$.
- Player I earns $\$ F\left(x_{\tau}\right)$ while Player II earns $\$-F\left(x_{\tau}\right)$.

Tug-of-War Games with Noise

- Fix strategies $S_{\text {I }}$ and $S_{/ /}$for players I and II respectively.
- Start the game at x_{0}.
- The probability measure $\mathbb{P}_{S_{I}, S_{I I}}^{x_{0}}$ is defined on the set of all game histories $H \subset \Omega_{\varepsilon}^{\infty}$ by the transition probabilities

$$
\begin{aligned}
\pi_{S_{l}, S_{l l}}\left(x_{0}, \ldots, x_{k} ; A\right) & =\frac{\alpha}{2}\left(\delta_{S_{l}\left(x_{0}, \ldots, x_{k}\right)}(A)+\delta_{S_{I /}\left(x_{0}, \ldots, x_{k}\right)}(A)\right) \\
& +\beta \frac{\left|A \cap \bar{B}_{\varepsilon}\left(x_{k}\right)\right|}{\left|\bar{B}_{\varepsilon}\left(x_{k}\right)\right|}
\end{aligned}
$$

and Kolmogorov's extension theorem.

Tug-of-War Games with Noise, $2 \leq p<\infty$

Games end almost surely

$\mathbb{P}_{S_{I}, S_{I I}}^{x}(H)=1$ because $\beta>0$.

Value of the game for player I

$$
u_{l}^{\varepsilon}(x)=\sup _{S_{I}} \inf _{S_{I I}} \mathbb{E}_{S_{l}, S_{I I}}^{x}\left[F\left(x_{\tau}\right)\right]
$$

Value of the game for player II

$$
u_{I /}^{\varepsilon}(x)=\inf _{S_{\|}} \sup _{S_{I}} \mathbb{E}_{S_{I}, S_{\| I}}^{X}\left[F\left(x_{\tau}\right)\right]
$$

Comparison Principle

$$
u_{I}^{\varepsilon}(x) \leq u_{I /}^{\varepsilon}(x)
$$

DPP \Longrightarrow existence of p-harmonious functions

THEOREM

The value functions u_{I}^{ε} and $u_{\| \|}^{\varepsilon}$ are p-harmonious. They satisfy the equation

$$
\begin{aligned}
& u(x)=\frac{\alpha}{2}\left\{\sup _{\bar{B}_{\varepsilon}(x)} u+\inf _{\bar{B}_{\varepsilon}(x)} u\right\}+\beta f_{B_{\varepsilon}(x)} u(y) d y, \quad x \in \Omega, \\
& u(x)=F(x), \quad x \in \Gamma_{\varepsilon} .
\end{aligned}
$$

(In the case $p=\infty$ Le Gruyer showed that the mapping

$$
T(u)=\frac{1}{2}\left\{\sup _{\bar{B}_{\varepsilon}(X)} u+\inf _{B_{\varepsilon}(x)} u\right\}
$$

has a fixed point.)

Comparison I

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set.

- If v_{ε} is a p-harmonious function with boundary values F_{v} in Γ_{ε} such that $F_{v}(y) \geq u_{l}^{\varepsilon}(y)$ for $y \in \Gamma_{\varepsilon}$, then $v_{\varepsilon}(x) \geq u_{l}^{\varepsilon}(x)$ for $x \in \Omega_{\varepsilon}$.
- If v_{ε} is a p-harmonious function with boundary values F_{V} in Γ_{ε} such that $F_{v}(y) \leq u_{I}^{\varepsilon}(y)$ for $y \in \Gamma_{\varepsilon}$, then $v_{\varepsilon}(x) \leq u_{I /}^{\varepsilon}(x)$ for $x \in \Omega_{\varepsilon}$.

That is u_{I}^{ε} is the smallest p-harmonious function with given boundary values and $u_{I I}^{\varepsilon}$ is the largest p-harmonious function with given boundary values.

Comparison I, Proof

Player I arbitrary strategy S_{I}, player II strategy $S_{\| /}^{0}$ that almost minimizes $v_{\varepsilon}, \quad V_{\varepsilon}\left(x_{k}\right) \leq \inf _{y \in \bar{B}_{\varepsilon}\left(x_{k-1}\right)} V_{\varepsilon}(y)+\eta 2^{-k}$

Key Point

$$
M_{k}=v_{\varepsilon}\left(x_{k}\right)+\eta 2^{-k}
$$

is a supermartingale for any $\eta>0$.

$$
\begin{aligned}
\mathbb{E}_{S_{I}, S_{\|}^{0}}^{x_{0}}\left[M_{k} \mid\right. & \left.x_{0}, \ldots, x_{k-1}\right]=\mathbb{E}_{S_{I}, S_{\|}^{0}}^{x_{0}}\left[v^{\varepsilon}\left(x_{k}\right)+\eta 2^{-k} \mid x_{0}, \ldots, x_{k-1}\right] \\
& \leq \frac{\alpha}{2}\left\{\inf _{y \in \bar{B}_{\varepsilon}\left(x_{k-1}\right)} v^{\varepsilon}(y)+\sup _{y \in \bar{B}_{\varepsilon}\left(x_{k-1}\right)} v^{\varepsilon}(y)+\eta 2^{-k}\right\} \\
& +\beta f_{B_{\varepsilon}\left(x_{k-1}\right)} v^{\varepsilon} d y+\eta 2^{-k} \leq v^{\varepsilon}\left(x_{k-1}\right)+\eta 2^{-(k-1)}=M_{k-1}
\end{aligned}
$$

Comparison I, Proof

By optimal stopping

$$
\begin{aligned}
u_{l}^{\varepsilon}\left(x_{0}\right) & =\sup _{S_{l}} \inf _{S_{I I}} \mathbb{E}_{S_{l}, S_{I I}}^{x}\left[F\left(x_{\tau}\right)\right] \\
& \leq \sup _{S_{I}} \mathbb{E}_{S_{l}, S_{I I}^{0}}^{x}\left[F\left(x_{\tau}\right)\right] \\
& \leq \sup _{S_{I}} \mathbb{E}_{S_{l}, S_{I I}^{0}}^{x}\left[v_{\varepsilon}\left(x_{\tau}\right)\right] \\
& \leq \sup _{S_{I}} \mathbb{E}_{S_{l}, S_{I I}^{0}}^{x_{0}}\left[v_{\varepsilon}\left(x_{\tau}\right)+\eta 2^{-\tau}\right] \\
& \leq \sup _{S_{l}} \mathbb{E}_{S_{l}, S_{I I}^{0}}^{x_{0}}\left[M_{\tau}\right] \\
& \leq \sup _{S_{I}} M_{0}=v^{\varepsilon}\left(x_{0}\right)+\eta
\end{aligned}
$$

The game has a value

Theorem

$M_{k}=u_{l}^{\varepsilon}\left(x_{k}\right)+\eta 2^{-k}$ is a supermartingale.
We have $u_{I}^{\varepsilon}=u_{I I}^{\varepsilon}$
The proof is a variant of the proof of comparison. Player II follows a strategy $S_{\| l}^{0}$ such that at $x_{k-1} \in \Omega_{\varepsilon}$, he always chooses to step to a point that almost minimizes u_{l}^{ε}; that is, to a point x_{k} such that

$$
u_{I}^{\varepsilon}\left(x_{k}\right) \leq \inf _{y \in \bar{B}_{\varepsilon}\left(x_{k-1}\right)} u_{l}^{\varepsilon}(y)+\eta 2^{-k}
$$

3. Maximum and Comparison Principles

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain. If u_{ε} is p-harmonious in Ω with a boundary data F, then $\sup _{\Gamma_{\varepsilon}} F \geq \sup _{\Omega} u_{\varepsilon}$. Moreover, if there is a point $x_{0} \in \Omega$ such that $u_{\varepsilon}\left(x_{0}\right)=\sup _{\Gamma_{\varepsilon}} F$, then u_{ε} is constant in Ω.

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain. and let u_{ε} and v_{ε} be p-harmonious with boundary data $F_{u} \geq F_{v}$ in Γ_{ε}. Then if there exists a point $x_{0} \in \Omega$ such that $u_{\varepsilon}\left(x_{0}\right)=v_{\varepsilon}\left(x_{0}\right)$, it follows that $u_{\varepsilon}=v_{\varepsilon}$ in Ω, and, moreover, the boundary values satisfy $F_{u}=F_{V}$ in Γ_{ε}.

Proof of Strong Comparison

The proof uses the fact that $p<\infty$. The strong comparison principle does not hold for $p=\infty$.

$$
F_{u} \geq F_{v} \Longrightarrow u_{\varepsilon} \geq v_{\varepsilon}
$$

We have

$$
u_{\varepsilon}\left(x_{0}\right)=\frac{\alpha}{2}\left\{\sup _{\bar{B}_{\varepsilon}\left(x_{0}\right)} u_{\varepsilon}+\inf _{\bar{B}_{\varepsilon}\left(x_{0}\right)} u_{\varepsilon}\right\}+\beta f_{B_{\varepsilon}\left(x_{0}\right)} u_{\varepsilon} d y
$$

and

$$
v_{\varepsilon}\left(x_{0}\right)=\frac{\alpha}{2}\left\{\sup _{\bar{B}_{\varepsilon}\left(x_{0}\right)} v_{\varepsilon}+\inf _{\bar{B}_{\varepsilon}\left(x_{0}\right)} v_{\varepsilon}\right\}+\beta f_{B_{\varepsilon}\left(x_{0}\right)} v_{\varepsilon} d y
$$

Next we compare the right hand sides. Because $u_{\varepsilon} \geq v_{\varepsilon}$, it follows that

$$
\begin{gathered}
\sup _{\bar{B}_{\varepsilon}\left(x_{0}\right)} u_{\varepsilon}-\sup _{\bar{B}_{\varepsilon}\left(x_{0}\right)} v_{\varepsilon} \geq 0, \\
\inf _{\bar{B}_{\varepsilon}\left(x_{0}\right)} u_{\varepsilon}-\inf _{\bar{B}_{\varepsilon}\left(x_{0}\right)} v_{\varepsilon} \geq 0, \quad \text { and } \\
f_{B_{\varepsilon}\left(x_{0}\right)} u_{\varepsilon} d y-f_{B_{\varepsilon}\left(x_{0}\right)} v_{\varepsilon} d y \geq 0
\end{gathered}
$$

But since

$$
u_{\varepsilon}\left(x_{0}\right)=v_{\varepsilon}\left(x_{0}\right),
$$

and $\beta>0$ must have $u_{\varepsilon}=v_{\varepsilon}$ almost everywhere in $B_{\varepsilon}\left(x_{0}\right)$. In particular,

$$
F_{u}=F_{v} \quad \text { everywhere in } \Gamma_{\varepsilon}
$$

since F_{u} and F_{v} are continuous. By uniqueness $u_{\varepsilon}=v_{\varepsilon}$ everywhere in Ω.

4. Approximation of p-harmonic functions

Boundary Regularity Assumption

Ω bounded domain in \mathbb{R}^{n} satisfying an exterior sphere condition: For each $y \in \partial \Omega$, there exists $B_{\delta}(z) \subset \mathbb{R}^{n} \backslash \Omega$ such that $y \in \partial B_{\delta}(z) . R>0$ is chosen so that we always have $\Omega \subset B_{R / 2}(z)$.

THEOREM

F is Lipschitz in Γ_{ε} for small $0<\varepsilon<\varepsilon_{0}$. Let u be the unique viscosity solution to

$$
\begin{cases}\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)(x)=0, & x \in \Omega \\ u(x)=F(x), & x \in \partial \Omega\end{cases}
$$

and let u_{ε} be the unique p-harmonious function with boundary data F in Γ_{ε}, then $u_{\varepsilon} \rightarrow u$ uniformly in Ω as $\varepsilon \rightarrow 0$.

Approximation of p-harmonic functions, Proof I

Ascoli-Arzelá type theorem

Let $\left\{u_{\varepsilon}: u_{\varepsilon}: \bar{\Omega} \rightarrow \mathbb{R}, \varepsilon>0\right\}$ be a set of functions such that
(1) there exists $C>0$ so that $\left|u_{\varepsilon}(x)\right|<C$ for every $\varepsilon>0$ and every $x \in \bar{\Omega}$,
(2) given $\eta>0$ there are constants r_{0} and ε_{0} such that for every $\varepsilon<\varepsilon_{0}$ and any $x, x^{\prime} \in \bar{\Omega}$ with $\left|x-x^{\prime}\right|<r_{0}$ it holds

$$
\left|u_{\varepsilon}(x)-u_{\varepsilon}\left(x^{\prime}\right)\right|<\eta .
$$

Then, there exists a sequence $\varepsilon_{j} \rightarrow 0$ and a uniformly continuous function $u: \bar{\Omega} \rightarrow \mathbb{R}$ such that

$$
u_{\varepsilon_{j}} \rightarrow u
$$

uniformly in $\bar{\Omega}$.

Approximation of p-harmonic functions, Proof I

Condition 1 is clear:

$$
\min _{y \in \Gamma_{\varepsilon}} F(y) \leq F\left(x_{\tau}\right) \leq \max _{y \in \Gamma_{\varepsilon}} F(y) \Longrightarrow \min _{y \in \Gamma_{\varepsilon}} F(y) \leq u_{\varepsilon}(x) \leq \max _{y \in \Gamma_{\varepsilon}} F(y) .
$$

Condition 2, OSCILLATION ESTIMATE

The p-harmonious function u_{ε} with the boundary data F satisfies

$$
\left|u_{\varepsilon}(x)-u_{\varepsilon}(y)\right| \leq \operatorname{Lip}(F) \delta+C(R / \delta)(|x-y|+o(1))
$$

for every small enough $\delta>0$ and for every two points $x, y \in \Omega \cup \Gamma_{\varepsilon}$. Here $C(R / \delta) \rightarrow \infty$ as $R / \delta \rightarrow \infty$. Furthermore the constant in $o(1)$ is uniform in x and y.

Ingredients in the Proof of the Oscillation Estimate

Exterior sphere condition \Longrightarrow there exists there exists $B_{\delta}(z) \subset \mathbb{R}^{n} \backslash \Omega$ such that $y \in \partial B_{\delta}(z)$.
When Player I chooses the strategy of pulling towards z, denoted by S_{l}^{z}, Player II an arbitrary strategy.

$$
M_{k}=\left|x_{k}-z\right|-C \varepsilon^{2} k
$$

is a supermartingale for a constant C large enough independent of ε.

By the optional stopping theorem

$$
\begin{aligned}
\mathbb{E}_{S_{T}^{2}, S_{l l}}^{x_{0}}\left[\left|x_{\tau}-z\right|-C \varepsilon^{2} \tau\right] & \leq\left|x_{0}-z\right| \\
\mathbb{E}_{S_{I}^{2}, S_{l l}}^{x_{0}}\left[\left|x_{\tau}-z\right|\right] & \leq\left|x_{0}-z\right|+C \varepsilon^{2} \mathbb{E}_{S_{T}^{2}, S_{l \mid}}^{x_{0}}[\tau]
\end{aligned}
$$

Sketch of the Proof of the Oscillation Estimate

Random Walk Exit Time Estimates

Consider a random walk on $B_{R}(z) \backslash \bar{B}_{\delta}(z)$ such that when at x_{k-1}, the next point x_{k} is chosen uniformly distributed in $B_{\varepsilon}\left(x_{k-1}\right) \cap B_{R}(z)$. For $\tau^{\star}=\inf \left\{k: x_{k} \in \bar{B}_{\delta}(z)\right\}$. we have

$$
\mathbb{E}^{x_{0}}\left(\tau^{\star}\right) \leq \frac{C(R / \delta) \operatorname{dist}\left(\partial B_{\delta}(z), x_{0}\right)+o(1)}{\varepsilon^{2}}
$$

for $x_{0} \in B_{R}(y) \backslash \bar{B}_{\delta}(y)$. Here $C(R / \delta) \rightarrow \infty$ as $R / \delta \rightarrow \infty$.
This is surely known by experts in probability. We proved it by showing that $g(x)=\mathbb{E}^{x}\left(\tau^{\star}\right)$ can be estimated by the solution of a mixed Dirichlet-Newman problem in the ring $B_{R}(z) \backslash \bar{B}_{\delta}(z)$

