

1 Preprint:
D. Taibi, V. Lenarduzzi. “On the Definition of Microservice Bad Smells” IEEE Software. Vol 35, Issue 3, May/June 2018

On the Definition of Microservice Bad Smells
Davide Taibi and Valentina Lenarduzzi, Tampere University of Technology

Abstract: Code smells and architectural smells (also called bad smells) are symptoms of poor design that

can hinder code understandability and decrease maintainability. Several bad smells have been defined in the
literature for both generic architectures and specific architectures. However, cloud-native applications based
on microservices can be affected by other types of issues. In order to identify a set of microservice-specific
bad smells, researchers collected evidence of bad practices by interviewing 72 developers with experience in
developing systems based on microservices. Then, they classified the bad practices into a catalog of 11
microservice-specific bad smells frequently considered harmful by practitioners. The results can be used by
practitioners and researchers as a guideline to avoid experiencing the same difficult situations in the systems
they develop.

Keywords: microservice, antipattern, anti-pattern, code smell, architectural smell, bad smell, cloud
computing, software development, software engineering

Microservices are currently enjoying increasing popularity and diffusion in industrial environments, being
adopted by several big players such as Amazon, LinkedIn, Netflix, and SoundCloud. Microservices are
relatively small and autonomous services that work together, are modeled around a business capability, and
have a single and clearly defined purpose.1,2 Microservices enable independent deployment, allowing small
teams to work on separated and focused services by using the most suitable technologies for their job that
can be deployed and scaled independently.1,2 Microservices are a newly developed architectural style. Several
patterns and platforms such as nginx (www.nginx.org) and Kubernetes (kubernetes.io) exist on the market.
During the migration process, practitioners often face common problems, which are due mainly to their lack
of knowledge regarding bad practices and patterns.3,4

In this article, we provide a catalog of bad smells that are specific to systems developed using a
microservice architectural style, together with possible solutions to overcome these smells. To produce this
catalog, we surveyed and interviewed 72 experienced developers over the course of two years, focusing on
bad practices they found during the development of microservice-based systems and on how they overcame
them. We identified a catalog of 11 microservice-specific bad smells by applying an open and selective
coding5 procedure to derive the smell catalog from the practitioners’ answers.

The goal of this work is to help practitioners avoid these bad practices altogether or deal with them more
efficiently when developing or migrating monoliths to microservice-based systems.

As with code and architectural smells, which are patterns commonly considered symptoms of bad
design,1,6 we define microservice-specific bad smells (called “microservice smells” hereafter) as indicators
of situations—such as undesired patterns, antipatterns, or bad practices—that negatively affect software
quality attributes such as understandability, testability, extensibility, reusability, and maintainability of the
system under development.

Background
Several generic architectural-smell detection tools and practices have been defined in the past years.7–9
Moreover, several microservice-specific architectural patterns have been defined.10 However, to the best of
our knowledge, no peer-reviewed work and, in particular, no empirical studies have proposed bad practices,
antipatterns, or smells specifically concerning microservices.

However, some practitioners have started to discuss bad practices in microservices. In his ebook
Microservices AntiPatterns and Pitfalls, Mark Richards introduced three main pitfalls: Timeout, I Was
Taught to Share, and Static Contract Pitfall.11 Moreover, in the past two years, practitioners have given
technical talks about bad practices they experienced when building microservices. In Table 1, we summarize
the main bad practices presented in these works. Unlike these works, we identified a set of microservice
smells based on bad practices reported by 72 participants. Later, we map our set of microservice smells to
the bad practices identified in Table 1.

2 Preprint:
D. Taibi, V. Lenarduzzi. “On the Definition of Microservice Bad Smells” IEEE Software. Vol 35, Issue 3, May/June 2018

Table 1. The main pitfalls proposed in non-peer-reviewed literature and practitioner
talks.

Bad practice Description

Timeout11

(also named Dogpiles12)

The service consumer cannot connect to the microservice.

Mark Richards recommends using a time-out value for service responsiveness or sharing the

availability and the unavailability of each service through a message bus, so as to avoid useless calls

and potential time-outs due to service unresponsiveness.11

I Was Taught to Share11 Sharing modules and custom libraries between microservices.

Static Contract Pitfall11,12 Microservice APIs that aren’t versioned, possibly causing service consumers to connect to older

versions of the services.

Mega-Service13 A service that is responsible for many functionalities and should be decomposed into separated

microservices.

Shared Persistence13,14 Using shared data among services that access the same database.

Data Ownership14 Data should not be directly shared among different services.

Microservices should own only the data they need and possibly share it via APIs.

Leak of Service Abstraction13 Designing service interfaces for generic purposes and not specifically for each service.

Hardcoded IPs and Ports12 Hard-coding the IP address and ports of communicating services, therefore making it harder to

change the service location afterward.

Not Having an API Gateway15 Services directly exposed to the outside and connected to each other.

Services should not be exposed through an API gateway layer and should not be connected directly,

so as to simplify the connection and support monitoring, and authorization issues should be

delegated to the API gateway. Moreover, changes to the API contract can be easily managed by the

API gateway, which is responsible for serving the content to different consumers, providing only the

data they need.

Lust16 Using the latest technologies.

Gluttony16 Using too many different communication protocols such as HTTP, protocol buffers, Thrift, etc.

Greed16 Services all belonging to the same team.

Sloth16 Creating a distributed monolith due to the lack of independence of microservices.

Wrath16 Blowing up when bad things happen.

Envy16 The shared-single-domain fallacy.

Pride16 Testing in the world of transience.

Setting the Stage
We conducted a survey among experienced developers, collecting bad practices in microservice architectures
and how they overcame them. We collected information in interviews, both in a structured fashion, via a
questionnaire with closed answers, and in a less structured way, by asking the interviewees open-ended
questions to elicit additional relevant information (such as possible issues when migrating to microservices).

One of the most important goals of the questionnaire was to understand which bad practices have the
greatest impact on system development and which solutions are being applied by practitioners to overcome
them. Thus, we asked the interviewees to rank every bad practice on a scale from 0 to 10, where 0 meant “the
bad practice is not harmful” and 10 meant “the bad practice is extremely harmful.” Moreover, we clarified
that only the ranking of the bad practices has real meaning.

For example, a value of 7 for the Hardcoded IPs bad practice and 5 for Shared Persistence shows that
Hardcoded IPs is believed to be more harmful than Shared Persistence, but the individual values of 7 and 5
have no meaning in themselves. A harmful practice is a practice that has created some issue for the

3 Preprint:
D. Taibi, V. Lenarduzzi. “On the Definition of Microservice Bad Smells” IEEE Software. Vol 35, Issue 3, May/June 2018

practitioner, such as increasing maintenance effort, reducing code understandability, or increasing faultiness.
The interviews were based on a questionnaire organized into four sections, according to the information

we aimed to collect:

• Personal and company information. The interviewee’s role and company’s application domain.
• Experience in developing microservice-based systems. The number of years of experience in

developing microservices. This question was asked to ensure that data was collected only from
experienced developers.

• Microservice bad practices’ harmfulness. A list of the practices that created some issues during the
development and maintenance of microservice-based applications, ranked according to their
harmfulness on a 10-point Likert scale. Moreover, for each practice, we asked the practitioners to
report what problems it generated and why they considered it harmful. For this answer, the
interviewer did not provide any hints, letting the participants report the bad practices they had faced
while developing or maintaining microservice-based systems. Moreover, in order to avoid
influencing the interviewees, we asked them to list their own bad practices, without providing them
with a list of pitfalls previously identified by practitioners.4,12–15

• Bad-practice solutions. For each bad practice identified, how the participants overcame it.

All interviews were conducted in person. We understand that an online questionnaire might have yielded
a larger set of answers. However, we believe that face-to-face interviews are more reliable for collecting
unstructured information, as they allow establishing a more effective communication channel with the
interviewees and make it easier to interpret the answers to open-ended questions.

The interviewees were asked to provide individual answers, even if they worked in the same group. This
allowed us to get a better understanding of different points of view, and not only of the company point of
view. The interviews were designed to take 15 minutes per participant. However, the open discussion took
longer than expected, resulting in an average of 21 minutes per participant.

We selected the participants from the attendees of practitioner events and conferences. That is, we
interviewed 21 participants of the 2016 International Conference on Agile Software Development (XP 2016),
seven participants of the 2017 Workshop on Microservices in Agile Software Development,17 13 participants
of XP 2017, and 31 practitioners at several minor developers’ events in Italy and Germany between January
and July 2017.

During the interviews, we first introduced our goals to the participants. We then asked them if they had at
least two years of experience in developing microservice-based systems, so as to save time and avoid
bothering inexperienced practitioners.

The Survey Results
We conducted 72 interviews with participants belonging to 61 different organizations. No inexperienced
participants, such as students, academics, or nonindustrial practitioners, were considered for the interviews.
Of all the interviewees, 36% were software architects, 19% were project managers, 38% were experienced
developers, and 7% were agile coaches. All the interviewees had at least five years of experience in software
development. Of all the interviewees, 28.57% worked for banks, 28.57% worked for companies that produce
and sell only their own software as a service (e.g., website builders, mobile app generators, and others),
23.81% worked in consultancy companies specializing in migration to microservices, 9.52% worked in the
IT department of public administrations, and 9.52% worked in telecommunications companies. Seventeen
percent had adopted microservices for more than five years, 60% had adopted them for three to four years,
and the remaining 23% had adopted them for two to three years.

The practitioners reported a total of 265 different bad practices together with the solutions they had applied
to overcome them. Each of us grouped similar practices (considering both the description and the justification
of the harmfulness provided by the participants) by means of open and selective coding.5 In cases where we
interpreted the descriptions differently, we discussed incongruences so as to achieve agreement on similar
issues. Each participant reported an average of 3.68 bad practices, which, after the selective-coding process,
resulted in 11 microservice smells.

The list of the resulting smells, together with their descriptions and the possible solutions indicated by the
practitioners, is reported in Table 2.

4 Preprint:
D. Taibi, V. Lenarduzzi. “On the Definition of Microservice Bad Smells” IEEE Software. Vol 35, Issue 3, May/June 2018

Table 2. Catalog of microservice smells.
Microservice smell Description (Desc.) / Detection (Det.) Problem it may cause (P) / Adopted solutions (S)

API Versioning Desc.: APIs are not semantically versioned.

Det.: A lack of semantically consistent versions of

APIs (e.g., v1.1, 1.2, etc.)

Also proposed as Static Contract Pitfall.11,12

P: In the case of new versions of non-semantically-

versioned APIs, API consumers may face

connection issues. For example, the returning data

might be different or might need to be called

differently.

S: APIs need to be semantically versioned to allow

services to know whether they are communicating

with the right version of the service or whether they

need to adapt their communication to a new

contract.

Cyclic Dependency Desc.: A cyclic chain of calls between

microservices exists.

Det.: The existence of cycles of calls between

microservices; e.g., A calls B, B calls C, and C calls

back A.

P: Microservices involved in a cyclic dependency

can be hard to maintain or reuse in isolation.

S: Refine the cycles according to their shape,4 and

apply the API Gateway pattern.2

ESB Usage Desc./Det.: The microservices communicate via an

enterprise service bus (ESB). An ESB is used for

connecting microservices.

P: An ESB adds complexities for registering and

deregistering services on it.

S: Adopt a lightweight message bus instead of the

ESB.

Hard-Coded Endpoints Desc./Det.: Hardcoded IP addresses and ports of

the services between connected microservices

exist.

Also proposed as Hardcoded IPs and Ports.9

P: Microservices connected with hardcoded

endpoints lead to problems when their locations

need to be changed.

S: Adopt a service discovery approach.

Inappropriate Service

Intimacy

Desc.: The microservice keeps on connecting to

private data from other services instead of dealing

with its own data.

Det.: A request for private data of other

microservices. A direct connection to other

microservices’ databases.

P: Connecting to private data of other microservices

increases coupling between microservices. The

problem could be related to a mistake made while

modeling the data.

S: Consider merging the microservices.

Microservice Greedy Desc.: Teams tend to create new microservices for

each feature, even when they are not needed.

Common examples are microservices created to

serve only one or two static HTML pages.

Det.: Microservices with very limited functionalities

(e.g., a microservice serving only one static HTML

page).

P: This smell can generate an explosion of the

number of microservices composing a system,

resulting in a useless huge system that will easily

become unmaintainable because of its size.

S: Carefully consider whether the new microservice

is needed.

Not Having an API

Gateway

Desc.: Microservices communicate directly with

each other. In the worst case, the service

consumers also communicate directly with each

microservice, increasing the complexity of the

system and decreasing its ease of maintenance.

Det.: Direct communication between microservices.

Also proposed as Not Having an AP Gateway.15

P: Our interviewees reported being able to work with

systems consisting of 50 interconnected

microservices. However, if the number was higher,

they started facing communication and maintenance

issues.

S: Apply the API Gateway pattern2 to reduce the

communication complexity between microservices.

Shared Libraries Desc./Det.: Shared libraries between different

microservices are used.

P: Microservices are tightly coupled together,

leading to a loss of independence between them.

Moreover, teams need to coordinate with each other

when they need to modify the shared library.

5 Preprint:
D. Taibi, V. Lenarduzzi. “On the Definition of Microservice Bad Smells” IEEE Software. Vol 35, Issue 3, May/June 2018

S: Two possible solutions are to

1. accept the redundancy to increase dependency

among teams, or

2. extract the library to a new shared service that

can be deployed and developed independently by

the connected microservices.

Shared Persistency Desc./Det.: Different microservices access the

same relational database. In the worst case,

different services access the same entities of the

same relational database.

Also proposed as Data Ownership.14

P: This smell highly couples the microservices

connected to the same data, reducing team and

service independence.

S: Three possible solutions are to

1. use independent databases for each service,

2. use a shared database with a set of private tables

for each service that can be accessed by only that

service, or

3. use a private database schema for each service.

Too Many Standards Desc./Det.: Different development languages,

protocols, frameworks, etc. are used.

Also proposed as the Lust and Gluttony bad

practices.16

P: Although microservices allow the use of different

technologies, adopting too many different

technologies can be a problem in companies,

especially in the event of developer turnover.

S: Carefully consider the adoption of different

standards for different microservices, without

following the latest hype.

Wrong Cuts Desc.: Microservices are split on the basis of

technical layers (presentation, business, and data

layers) instead of business capabilities.

P: The wrong separation of concerns and increased

data-splitting complexity can occur.

S: Perform a clear analysis of business processes

and the need for resources.

Data Analysis and Interpretation
The answers were analyzed mainly using descriptive statistics. No noticeable differences emerged among
different roles or domains. Three smells (Wrong Cuts, Hard-Coded Endpoints, and Shared Persistency)
were reported and were considered very harmful or moderately harmful by more than 50% of the participants.
Wrong Cuts turned out to be the most frequently mentioned smell and one of the two smells considered the
most harmful. Based on the practitioners’ answers, splitting a monolithic application is always a complex
task, especially because developers are used to splitting applications into horizontal layers (database, business
logic, etc.) and tend to adopt such an approach out of habit instead of considering splitting applications based
on business processes.

Some smells were reported as symptoms of a lack of experience in using microservices on the part of the
company or the developers. The practitioners reported facing most problems in the early stage of adopting
microservices (from six months to one year). All the smells except for Not Having an API Gateway were
perceived as harmful from the beginning of the adoption of microservices, while Not Having an API Gateway
was usually perceived as a problem only when the number of microservices increased and communication
between services became hard to manage. Cyclic Dependency, also considered a bad practice in different
architectures,18 was reported to be a very harmful practice, even though it was reported by only nine of the
72 practitioners (3.4%).

Most smells are easily removed by means of simple technical solutions; however, Wrong Cuts,
Microservice Greedy, and Too Many Standards do not have a straightforward solution. In these cases, teams
need to be trained and agree on the development strategies, such as when to create a new microservice or
how to select the technology to be adopted in different services. Other smells, if experienced during the
migration of a monolithic system, may be symptoms of an incomplete migration. For instance, the
practitioners reported that using an enterprise service bus (ESB) for communication between microservices
may be acceptable in early migration phases, but the ESB should be replaced by a lightweight message bus

6 Preprint:
D. Taibi, V. Lenarduzzi. “On the Definition of Microservice Bad Smells” IEEE Software. Vol 35, Issue 3, May/June 2018

as soon as possible.
Table 3 lists the microservices smells together with the number and percentage of the reported bad

practices and the median of the reported perceived harmfulness.

Table 3. The microservice smells identified in the survey.

Microservice smell Bad practices

reported

Median perceived

harmfulness (0–10)*

No. %

Wrong Cuts 51 19.2 8
Hard-Coded Endpoints 38 14.3 8
Cyclic Dependency 9 3.4 7
Shared Persistency 41 15.5 6.5
API Versioning 19 7.2 6.5
ESB Usage 24 9.1 6
Not Having an API
Gateway

17 6.4 5

Inappropriate Service
Intimacy

15 5.7 5

Shared Libraries 31 11.7 4
Too Many Standards 7 2.6 4
Microservice Greedy 13 4.9 3
* Harmfulness was measured on a 10-point Likert scale, where 0 meant “the bad practice is not harmful”

and 10 meant “the bad practice is extremely harmful.”

The results of this work are subject to some threats to validity, due mainly to the selection of the survey

participants and to the data interpretation phase. Different respondents might have provided a different set of
answers. To mitigate this threat, we selected a relatively large set of participants working in different
companies and different domains. During the survey, we did not propose a predefined set of bad practices to
the participants; therefore, their answers are not biased by the results of previous work. However, as the
surveys were carried out during public events, we are aware that some participants may have shared some
opinions with others during breaks; therefore, some answers might have been partially influenced by previous
discussions. Finally, the answers were aggregated independently by each of us by means of open and selective
coding.5 If this process had been carried out by different researchers, it might have led to a different set of
smells.

In this article, we identified a set of 11 microservice smells based on 265 bad practices experienced by 72
practitioners while developing microservice-based systems. Out of the 16 bad practices described in
practitioners’ talks (see Table 1),4,12–15 only six were confirmed by our interviewees.

The results show that splitting a monolith, including splitting the connected data and libraries, is the most
critical issue, resulting in potential maintenance issues when the cuts are not done properly. Moreover, the
conversion to a distributed system increases the system’s complexity, especially when dealing with connected
services that need to be highly decoupled from any point of view, including communication and architecture
(the smells involved here are Hard-Coded Endpoints, Not Having an API Gateway, Inappropriate Service
Intimacy, and Cyclic Dependency).

7 Preprint:
D. Taibi, V. Lenarduzzi. “On the Definition of Microservice Bad Smells” IEEE Software. Vol 35, Issue 3, May/June 2018

This work resulted in the following five lessons learned:

• Lesson learned 1. Besides traditional smells, microservice smells can also be problematic for the
development and maintenance of microservice-based systems. Developers can already benefit from
our catalog by learning how to avoid experiencing the related bad practices.

• Lesson learned 2. The role of the software architect is becoming important again. Architectural,
system-level decisions must be made based upon deep knowledge of microservices.

• Lesson learned 3. Splitting a monolith into microservices is about identifying independent business
processes that can be isolated from the monolith, and not only about extracting features in different
web services.

• Lesson learned 4. The connections between microservices, including the connections to private data
and shared libraries, must be carefully analyzed.

• Lesson learned 5. As a general rule, developers should be alerted if they need to have deep
knowledge of the internal details of other services or if changes in a microservice require changes
in another microservice.

The proposed catalog of smells can be used by practitioners as a guideline to avoid the same problems
happening to them that were faced by our interviewees. Moreover, the catalog is also a starting point for
additional research on microservices. It is important to note that, even though the identified smells reflect the
opinion of 72 developers working in 61 different companies, the rating of the harmfulness of the reported
smells is based only on the perception of the practitioners and needs to be empirically validated.

Indeed, a deeper investigation is needed to evaluate the harmfulness and the comprehensiveness of our
catalog. This, together with more in-depth empirical studies (such as controlled experiments), will be part of
our future work.

References
1. J. Lewis and M. Fowler, “Microservices,” 25 Mar. 2014; www.martinfowler.com/articles/microservices.html.

2. S. Newman, Building Microservices, O’Reilly, 2015.

3. C. Richardson, Microservices Patterns, Manning Publications, 2017.

4. D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and Issues for Migrating to Microservices
Architectures: An Empirical Investigation,” IEEE Cloud Computing, vol. 4, no. 5, 2017, pp. 22–32;
doi:10.1109/MCC.2017.4250931.

5. A.L. Strauss and J. Corbin, Basics of Qualitative Research: Techniques and Procedures for Developing
Grounded Theory, SAGE Publications, 2008.

6. D. Taibi, A. Janes, and V. Lenarduzzi, “How Developers Perceive Smells in Source Code: A Replicated Study,”
Information and Software Technology, Dec. 2017, pp. 223–235, doi:10.1016/j.infsof.2017.08.008.

7. N. Moha et al., “DECOR: A Method for the Specification and Detection of Code and Design Smells,” IEEE
Trans. Software Eng., vol. 36, no. 1, 2010, pp. 20–36.

8. J. Garcia et al., “Identifying Architectural Bad Smells,” Proc. 13th European Conf. Software Maintenance and
Reengineering, 2009, pp. 255–258.

9. I. Macia et al., “Are Automatically-Detected Code Anomalies Relevant to Architectural Modularity? An
Exploratory Analysis of Evolving Systems,” Proc. 11th Ann. Int’l Conf. Aspect-Oriented Software
Development (AOSD 12), 2012, pp. 167–178.

10. D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural Patterns for Microservices: A Systematic Mapping Study,”
to be published in Proc. 8th Int’l Conf. Cloud Computing and Services Science (CLOSER 18), 2018.

11. M. Richards, Microservices AntiPatterns and Pitfalls, O’Reilly, 2016.

12. T. Saleh, “Microservices Antipatterns,” presentation at QCon London 2016, 2016;
www.infoq.com/presentations/cloud-anti-patterns.

8 Preprint:
D. Taibi, V. Lenarduzzi. “On the Definition of Microservice Bad Smells” IEEE Software. Vol 35, Issue 3, May/June 2018

13. R. Shoup, “From the Monolith to Microservices: Lessons from Google and eBay,” presentation at Craft Conf.
2016, 2016; www.ustream.tv/recorded/61479577.

14. J. Bogard, “Avoiding Microservice Megadisasters,” presentation at 2017 NDC London Conf., 2017;
www.youtube.com/watch?v=gfh-VCTwMw8.

15. V. Alagarasan, “Microservices Antipatterns,” presentation at API360 Microservices Summit, 2016;
www.youtube.com/watch?v=uTGIrzzmcv8.

16. D. Bryant, “The Seven (More) Deadly Sins of Microservices,” presentation at O’Reilly OSCON 2016, 2016;
www.youtube.com/watch?v=VG5ZOOb5T9o&list=PL055Epbe6d5ZfLyERAIRXVCATx9BUP3-
Q&index=7.

17. D. Taibi et al., “Microservices in Agile Software Development: A Workshop-Based Study into Issues,
Advantages, and Disadvantages,” Proc. XP2017 Scientific Workshops (XP 17), 2017, article 23.

F.A. Fontana et al., “Automatic Detection of Instability Architectural Smells,” Proc. 2016 IEEE Int’l Conf.
Software Maintenance and Evolution (ICSME 16), 2016, pp 433–437

