
On the Definition of Service Granularity and Its
Architectural Impact

Raf Haesen1,2, Monique Snoeck1, Wilfried Lemahieu1, and Stephan Poelmans2

1 Department of Decision Sciences & Information Management,
Katholieke Universiteit Leuven, Belgium
firstName.lastName@econ.kuleuven.be

2 Hogeschool-Universiteit Brussel, Belgium
firstName.lastName@hubrussel.be

Abstract. Service granularity generally refers to the size of a service.
The fact that services should be large-sized or coarse-grained is often pos-
tulated as a fundamental design principle of service oriented architecture
(SOA). However, multiple meanings are put on the term granularity and
the impact of granularity on architectural qualities is not always clear.
In order to structure the discussion, we propose a classification of ser-
vice granularity types that reflects three different interpretations. Firstly,
functionality granularity refers to how much functionality is offered by
a service. Secondly, data granularity reflects the amount of data that is
exchanged with a service. Finally, the business value granularity of a ser-
vice indicates to which extent the service provides added business value.
For each of these types, we discuss the impact of granularity on a set of
architectural concerns, such as performance, reusability and flexibility.
We illustrate each granularity type with small examples and we present
some preliminary ideas of how controlling granularity may assist in alle-
viating some architectural issues as we encounter them in a large-sized
bank-insurance company that is currently migrating to SOA.

Keywords: granularity, service oriented architecture, component based
development, architectural qualities, impact analysis.

1 Introduction

Service granularity generally refers to the size of a service. The fact that ser-
vices should be large-sized or coarse-grained is often postulated as a fundamental
design principle of service oriented architecture (SOA). This advice is a rather
obvious consequence of the quest for design artefacts that are defined at a high
level of abstraction. Indeed, business people are generally not interested in fine-
grained, implementation-level concepts for the construction of automated sup-
port for their work. Instead, they prefer to use and reuse automated chunks
of functionality (or services) that correspond to units of work as they are used
to handle them. These units are typically broader in scope than units that are
processed in a software program. For example, services that provide support

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 375–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



376 R. Haesen et al.

for (parts of) business processes offer a high amount of functionality and are
therefore labelled as coarse-grained.

It is interesting to compare services to other units of software construction that
were proposed earlier, such as objects and components. The transition from ob-
jects to components and then to services is generally associated with an increase
in granularity, i.e. from fine-grained objects, to coarser-grained components and
even more coarse-grained services [1,2]. In what follows we briefly elaborate on
these transitions.

The object oriented paradigm introduced, among others, the idea to create
units of abstraction that are close to real-world concepts. However, the resulting
objects turned out to be too fine-grained and biased towards implementation
to be useful for the development of business applications. These issues were
partly solved with the introduction of component based development (CBD),
which promotes the creation of coarser-grained components. To further stress
the importance of making abstractions that are recognisable for the business,
the difference between generic software components and business components
was made. A business component is generally defined as a software component
that implements functionality from a particular business domain [3,4]. In general,
a business component encapsulates a business-level entity or process. Therefore
business components tend to be defined at higher (and hence improved) levels
of abstraction.

The step towards service oriented computing (SOC) caused a further increase
in granularity. While components are building blocks for applications, services
are access points to an implementation that potentially covers multiple applica-
tions. As already stated, these services encapsulate business-level functionality
that may even cover (parts of) enterprise-wide processes. As a consequence, their
granularity is coarser than that of objects and components.

Instead of merely advocating for coarse-grained services, it is more appro-
priate to firstly acknowledge that the spectrum of possible service granularity
levels has become wider. Indeed, we will show that both coarse-grained and fine-
grained services can have positive impact on the architecture. As a consequence
more refined judgments to control granularity are required. A few unanswered
questions concerning service granularity are:

– What is the impact of service granularity on architectural qualities, such as
performance, reusability and flexibility?

– How can service granularity be measured?
– Is there an upper limit for service granularity? In other words, are there any

criteria that rather favour finer-grained services?

Defining granularity is quite complex since it cannot draw on theoretical
groundings. Indeed, granularity can hardly be measured in terms of absolute
numbers, because of the subjectivity of the related concepts that may deter-
mine the granularity in question. For example, a service may be defined in terms
of an activity that is executed by that service. However, the concept ‘activity’
itself has a vague, hierarchical nature: it can represent a simple state change, the



On the Definition of Service Granularity and Its Architectural Impact 377

work performed by one actor in one unit of time, or even a complete business
process (see e.g. [5]). This makes it far from straightforward to define granularity
in terms of executed activities.

In what follows we attempt to provide initial answers to the above questions
about service granularity. The paper is organised as follows. Section 2 gives an
overview of related work. Section 3 classifies multiple interpretations of service
granularity from an interface point of view. For each granularity type, we present
some small examples and we discuss the impact of granularity on architectural
qualities. In Section 4, we discuss the difference between the interface and realisa-
tion viewpoint on granularity. Section 5 briefly discusses some evaluation tracks
and outlines areas of future research. Finally Section 6 concludes the paper.

2 Related Work

A multitude of scientific papers, industrial papers and web entries touch upon
the topic of service and component granularity. Until now, most attention was
paid to measuring and assessing the impact of granularity of components. As
argued by Herzum and Sims [4, pg. 38], component granularity is defined re-
cursively, since a component can be defined as the composition of finer-grained
components. This recursion can be discrete or continuous, respectively depend-
ing on whether the granularity levels are predefined or not. Herzum and Sims
prefer the discrete form since it caters for reduced levels of design complexity.
They distinguish between system-level components, business components and
distributed components in descending order of granularity. System-level com-
ponents are composed of business components, while a business component is
composed of distributed components.

Since component based development mainly focuses on reuse, the relation-
ship between granularity and reusability is widely discussed. Despite the general
tendency towards design artefacts of increasing granularity levels, some refined
observations were made [6,7]. Firstly, coarse-grained components have high reuse
efficiency (because of a high contribution to the system) but low reusability (be-
cause of highly specific problem solving capabilities). Furthermore, the coarser
the granularity is, the lower the composition cost is because of the fewer num-
ber of components and interactions that are required. Finally, Wang et al. [8]
argue that, if a component cannot absorb requirement changes through config-
uration (e.g. business rules, parameterisation, etc.), then its granularity should
be decreased. Besides the impact on reusability, Vitharana et al. [9] concluded a
negative correlation between granularity and other managerial goals such as cost
effectiveness, customization and maintainability. On the other hand, increasing
levels of granularity tend to ease component assembly.

Sims [10] gives some clues of how service granularity may be measured, i.e. (1)
by counting the number of components invoked through an operation on a ser-
vice interface, (2) by counting the number of function points for a component, or
(3) by counting the number of database tables updated. As an alternative to the



378 R. Haesen et al.

latter, the number of update operations invoked on a component can be counted
or the number of types in the information model if both read and update access
are relevant.

Besides these quantitative results, many authors provide an overview of gen-
eral design principles to optimize service and component granularity. In what
follows we give an overview of some of these principles:

– The ‘right’ granularity of a service or component generally varies over time
[4]. A service or component that seems appropriate nowadays was maybe
unsuited a few years ago because both markets and technology constantly
evolve. For example, since SOA enables searching for services at runtime
(e.g. facilitated by the UDDI standard), registry management and brokering
are typical services that were less important before the introduction of SOA.
Moreover, when particular vertical service or component standards mature,
the corresponding industries can be relieved from searching for appropriate
granularity levels.

– Good candidates for business components or services represent real and in-
dependent concepts to business domain people [4,11,12]. In other words, they
should not be based on implementation concepts and the scope should be
understandable without further context information.

– Herzum and Sims [4] give additional heuristics to identify right-sized business
components: they should be easily marketable, highly usable and reusable;
they should support autonomous development and should correspond to
units of stability. Furthermore they should adhere to several cohesion prin-
ciples, i.e. temporal (provide for development and evolution stability), func-
tional (combine logically related functions), run-time (run e.g. computing-
intensive tasks in the same address space) and actor (users of a given com-
ponent should be similar) cohesion.

– If service granularity is defined in terms of the number of operations delivered
[12], a service should not be too coarse as it will increase the number of
consumers. Hence, a possible service change may impact many consumers.
Furthermore, a huge list of operations does not provide a clear overview of
which functionality is offered.

– A service should contain support for transaction integrity and compensation
[13,14]. Put otherwise, all activities executed by the service should be in the
scope of one transaction. If a service fails during a transaction, it should
provide a compensation mechanism to undo possible changes.

– Finding the right granularity is a matter of balancing between multiple crite-
ria [15]. For example, coarse-grained services require less network roundtrips
as the execution state is contained in the message. On the other hand, small
services generally require uncomplicated input data and are more easily
composed.

This literature overview shows that the existing knowledge about service gran-
ularity is quite fragmented: each author takes a particular view on the subject
to devise criteria for granularity optimisation, without making the considered



On the Definition of Service Granularity and Its Architectural Impact 379

context explicit. In the following section we attempt to consolidate and extend
the insights on service granularity.

3 Service Granularity Types

In order to structure the discussion of service granularity, we propose a classi-
fication of service granularity types that reflects three different interpretations:
firstly, functionality granularity refers to how much functionality is offered by a
service. Secondly, data granularity reflects the amount of data that is exchanged
with a service. Finally, the business value granularity of a service indicates to
which extent the service provides added business value. For each of these types,
we describe the impact of granularity on a set of architectural concerns, such as
performance, reusability and flexibility.

It should be noticed that we define different granularity types only by looking
at the interface of the service. In other words, we describe granularity from the
point of view of a consumer, although we assess the impact for both the consumer
and the provider. In section 4 we briefly describe service granularity from the real-
isation viewpoint, which inspects the implementation of the service. Furthermore
we indicate the differences between the interface and realisation perspectives.

The classification of service granularity is schematically represented in Figure 1.
Concerning data granularity, a distinction is made between data that is sent to the
service (input data granularity) anddata that is returnedby the service (output data
granularity). For functionality granularity, we distinguish between the amount of
functionality that is always offered when calling the service (default functionality
granularity) and the functionality that can optionally be offered (parameterised
functionality granularity).

Data
Granularity

Business Value
Granularity

Functionality
Granularity

Default
Functionality
Granularity

Parameterised
Functionality
Granularity

Output Data
Granularity

Input Data
Granularity

Granularity
Service

Fig. 1. Classification of service granularity types



380 R. Haesen et al.

Table 1 gives an overview of the architectural impact of coarse-grained services
for each of the five granularity types. In the last column we indicate whether the
impact is advantageous or disadvantageous for the consumer and the provider.
In the following sections we go into more detail.

Table 1. Architectural impact of coarse-grained services

granularity type
architectural impact party

of coarseness involved

Input Data Granularity

less communication overhead p+,c+
better transactional support p+

data possibly outdated p-
no state lost p+

better scalability p+
no coordination required c+

Output Data Granularity
less communication overhead p+,c+

higher reusability c+

Default Functionality Granularity
higher reuse efficiency c+

lower reusability c-
stability problems c-

higher reuse efficiency c+
Parameterised Functionality higher reusability c+

Granularity no stability problems c+
difficult implementation p-

Business Value Granularity
clear architecture control points p+

consumer needs satisfied c+

Legend: p = provider, c = consumer,
+ = possitive impact, - = negative impact

3.1 Input Data Granularity

The input data granularity of a service reflects how much data is passed on
to that service by a service consumer. A coarse-grained service requires one
or more business objects as parameters while a fine-grained service has few or
even no input parameters. Not only the number of parameters influences gran-
ularity but also their type. For example, the (data) granularity of insurance
contract is bigger than that of zip code, hence when used as input parameter,
they influence the input data granularity of the service accordingly. In general,
a data element is coarser-grained if it is composed of other data elements and
if the datatypes of its attributes are other data elements instead of primitive
datatypes.



On the Definition of Service Granularity and Its Architectural Impact 381

Example. With respect to input data granularity, the service ValidateContract
(Contract c) is coarser-grained than the service ValidateAddress (Address a).1

Discussion. It is generally recommended to create coarse-grained services of
this type for several reasons: Firstly, if the business objects are transferred by
value, the communication overhead is reduced since the number of network trans-
fers is decreased. Especially in the case of Web services, this overhead is high
since asynchronous messaging requires multiple queuing operations and numer-
ous XML transformations [16]. Moreover, if a service has to update multiple data
elements in one transaction, it is best to pass all data at the same time, since
this approach makes compensation mechanisms unnecessary. On the other hand,
the input data of a coarse-grained service may be outdated if it was collected
during previous service calls (i.e. not in the same transaction). Therefore the
input data should be validated by the service.

It is common practice to make a service document-based, i.e. to include the
entire execution context in the input message of a service, which makes the
service coarse-grained. Since the provider service itself does not maintain state
in this case, it is called stateless [17]. Statelessness is generally considered as
a desired property for many reasons: firstly, the call of a service (operation)
does not depend on previous calls, which eliminates the risk of losing state
between different calls. Secondly, statelessness ensures higher scalability since
more provider instances can be added if demand is high. Finally, the consumer
is relieved from coordinating several fine-grained services if all data can be sent
at once.

3.2 Output Data Granularity

The output data granularity of a service indicates how much data is returned to
the service consumer. A coarse-grained service returns one or more (references
to) business objects while a fine-grained service rather returns nothing or a few
attributes. The above-mentioned remark about granularity of data elements also
applies to output data granularity.

Example. With respect to output data granularity, the service Client SearchCus-
tomer() is coarser-grained than the service Date SearchBirthDate().

Discussion. Generally it is beneficial to create services that are coarse-grained
with respect to output data: similarly as for input data granularity, the number
of consequent calls can be kept small if much data is returned by value. Secondly
a coarse-grained service of this type doesn’t hamper reuse since the superfluous
part can simply be discarded by the service consumer. Although in this case

1 All examples follow the format OutputParameterType ServiceName (InputParameter-
Type name), whereby both the input and output parameter are only specified if they
influence the corresponding level of granularity. Although all service examples are
represented as a single conceptual operation, their interface might consist of multiple
operations that can be invoked.



382 R. Haesen et al.

some network bandwidth might be wasted, this generally doesn’t pose any severe
problems, certainly not for intra-enterprise service interactions.

It is possible to make the output data granularity more dynamic by specifying
a list of data elements that should be returned. However, this increases the
amount of input data and may decrease the comprehensibility of the service.
Alternatively it is possible to develop multiple services with different output
data granularities, whereby a coarser-grained service is composed of the finer-
grained services. These services are called multi-grained in [1, chap. 2].

3.3 Default Functionality Granularity

The default functionality granularity of a service indicates how much functional-
ity is offered in any case, i.e. the amount of functionality that cannot be adjusted
by setting some parameters. A service that performs CRUDS (create, read, up-
date, delete, search) functionality is finer-grained than a service that also ex-
ecutes logic. Moreover, services that aggregate (e.g. orchestrate) other services
are typically coarser-grained than their constituents. For example a service that
supports a business process is coarser-grained that a service that executes a
single activity of that process.

Example. With respect to default functionality granularity, the service Handle-
ClaimProcess() is coarser-grained than the service IdentifyCustomer().

Discussion. This definition of service granularity is usually implied since it di-
rectly reflects the amount of work that is performed by the service. As we already
discussed earlier, business people prefer to use and reuse services that correspond
to units of work as they are used to handle them. These units of work are typi-
cally coarser-grained than the units that are processed in a software program.

The architectural consequences of coarse-grained services are similar to those
of coarse-grained components, which were discussed in section 2. Firstly, the
reuse efficiency is high because of the large contribution that is made by the ser-
vice. Secondly, the reusability of coarse-grained services is low since the service
can only be used to solve specific problems. For example the service HandleClaim-
Process() will only be used in the claims domain, whereas IdentifyCustomer() may
be used in multiple domains. Finally, chances are high that a change to some
of the many functionalities in a coarse-grained service will cause changes to its
interface. In other words, the service is unstable since it has limited capabilities
to adapt to changes. The latter two arguments may be valid reasons to limit the
granularity of a service.

3.4 Parameterised Functionality Granularity

The parameterised functionality granularity of a service defines the amount of
functionality that optionally can be offered by a service. A coarse-grained (fine-
grained) service offers many (a few) facilities to let the consumer configure the
desired functionality, e.g. by means of input parameters. Not only the number of
parameters, but also their type defines the coarseness of the service. For example



On the Definition of Service Granularity and Its Architectural Impact 383

the parameter may be a boolean which represents a binary choice, or it may as
well be a structured file that is being interpreted by the service. With other things
being the same, the former case will yield a service with a smaller parameterised
functionality granularity than the latter.

Example. With respect to parameterised functionality granularity, the service
HandleProcess (Process aProcess) is coarser-grained than the service WriteCredit
(boolean alsoValidate).

Discussion. Since a coarse-grained service of this type makes the service rather
generic, it can easily be used in different contexts. Indeed, each different combina-
tion of input parameters yields a different behaviour of the service and therefore
the service is highly reusable. Schmelzer [18] argues that, if we push this line
of reasoning to the extreme, we would create a service DoSomething() that ful-
fils every possible need. He continues that, despite the apparent advantages of
this service construction method, it has a major drawback in that it shifts the
problem to the implementation of the service. Additionally, the usage tends to
become more complex to the consumers as well, as they need to understand how
the – often complicated – parameterisation mechanism works.

Whereas a small-grained service obviously is not reuse efficient, the consumer
can control the reuse efficiency of coarse-grained services through parameter set-
ting. For example, the service HandleProcess (Process aProcess) is reuse efficient
if a complex process description is provided as input, while a straightforward
process with only a few activities as input will limit the contribution of the
service. Finally, a coarse-grained service is typically protective to changes (or
stable) since these changes can be absorbed through configuration.

3.5 Business Value Granularity

Business value granularity measures the appropriateness of a service for the busi-
ness. In other words, this type of granularity indicates the value being attached
to a service. The analysis of value creation is an essential part of business mod-
elling techniques, such as the e3-value approach [19] or the i∗ framework [20]. In
most general terms, those approaches capture value exchanges or the extent to
which the creation of value (i.e. the execution of services in our case) contributes
to the goals and visions of an organisation. The extent to which a service directly
contributes to a high-level business goal can therefore be seen as a metric for
business value granularity. As an example, consider the goal-oriented derivation
of services as proposed by Rolland et al. [21]. More specifically, each service re-
alises the fulfilment of an intention or goal by following a particular strategy. A
goal can be seen as a state to be reached while a strategy represents an approach
to reach a particular state. Because the resulting services have close ties to busi-
ness goals, they have high levels of business value granularity by construction.

Example. With respect to business value granularity, the service ConcludeInsur-
anceAgreement() is coarser-grained than the service AddClient(), which is coarser-
grained than the service ValidateAccountNumber().



384 R. Haesen et al.

Discussion. The business value granularity obviously is an important indicator
for business people since it gives an overview of which services should receive
most attention. Dreyfus and Iyer argue that, given the complexity of architecture
and limited organisational resources to implement and modify the architecture,
it is indispensable to choose a subset of systems that are deemed important
because of their influence on the emergence of the architecture [22]. These sys-
tems support the business goals of the enterprise and are denoted as architecture
control points (ACP). With respect to business value granularity, coarse-grained
services and their implementing systems are the ACPs of an organisation. Ser-
vices with high business value are beneficial to their consumers as well since
they are more likely to satisfy the needs of those consumers. On the contrary,
the composition of multiple fine-grained services with respect to business value
generally causes more overhead for the consumer. Therefore companies tend to
bundle multiple services into one package with increased business value gran-
ularity. We refer the reader to the work of Baida for more information about
service bundling [23].

One could argue that high levels of functionality granularity automatically im-
ply high levels of business value granularity. For example, a service that supports
insurance claim handling consists of many process steps (i.e. it has high func-
tionality granularity) and that service is highly valued in the insurance domain
(i.e. it has high business value granularity). However, other examples indicate
a negative relationship between these two types of granularity. Firstly, consider
a service that consolidates accounting data from different information systems
once a month, in batch mode. As this service executes multiple steps (data re-
trieval, comparison, cleansing, etc.) it has a high functionality granularity. On
the other hand, the business value granularity is low since it merely corrects (or
even just reports on) inconsistencies between data sources. As a second example,
consider an accurate and zero-latency currency conversion service that is being
used inside the company as well by external clients. Although the service has a
low functionality granularity, its business value granularity is high because of its
high Quality of Service (QoS) and level of reuse.

4 Interface Versus Realisation View on Granularity

In the discussions of the different service granularity types we only took the inter-
face viewpoint into account. In other words, only the externally visible properties
of a service were considered during the evaluation of the influence of service gran-
ularity on both the consumer and the provider. However, this viewpoint does not
reveal all architectural consequences. Indeed, granularity can also be discussed
by looking at how the service is realised in the information system(s). This view-
point is therefore of particular interest to the service provider. In what follows,
we briefly discuss the differences between the interface and realisation view on
the three types of granularity. By means of a few examples, we will show that
both views on granularity are not always in accordance with each other.



On the Definition of Service Granularity and Its Architectural Impact 385

– Data granularity: Many industrial consortia have proposed sets of stan-
dardised messages that can be exchanged between different parties. For ex-
ample, the ACORD (Association for Cooperative Operations Research and
Development) standards define messages for the insurance and related finan-
cial services industries; likewise SWIFT (Society for Worldwide Interbank
Financial Telecommunication) defines messages that are exchanged between
banks and other financial institutions. These messages are typically very
extended since they ought to cover all data that may be relevant during a
particular transaction. Since services in these particular domains may (and
should) rely on standards for their data exchange, these services are coarse-
grained with respect to (input and output) data granularity. Although a lot
of data is exchanged, this does not imply that all data is effectively being
used during the service execution. Hence from the interface viewpoint the
service is coarse-grained while from the realisation point of view it may be
fine-grained.

– Functionality granularity: We argued that an orchestration service is
coarser-grained that its constituents with respect to default functionality
granularity. In fact, the granularity of the former is the sum of the granu-
larities of the orchestrated services plus the granularity of the coordination
logic. From the realisation point of view however, the orchestration service
only implements the coordination logic. Therefore the service can be imple-
mented without much effort, although it is coarse-grained from the interface
viewpoint.

– Business value granularity: The difference between the interface and
realisation viewpoint is particularly relevant to business value granularity.
Suppose that a provider wants to determine how much business value is
attached to the services that are delivered by ICT infrastructure components.
For example, consider a database management system (DBMS) that delivers
data storage, data retrieval and transaction processing services. From an
interface point of view, these services are fine-grained with respect to business
value granularity, since they do not directly contribute to high-level business
goals. Suppose that from a realisation viewpoint, not much business value
would be attached to these services either. This would imply that ICT could
just as well reimplement the data services for each business case that would
require these services. Obviously this inefficient approach would repeatedly
generate pointless ICT costs. Therefore the business should appreciate the
use of a DBMS that is proven to be reliable, reusable and high-performing.
In other words, from a realisation viewpoint, the business value granularity
of ICT infrastructure components is high.

Note that the distinction between the two viewpoints on business value
granularity has far-reaching consequences for the interrelation between busi-
ness and ICT. From the interface viewpoint, business would only be inter-
ested in the fulfilment of their requirements towards ICT without considering
the approach adopted by ICT. From the implementation viewpoint though,
business would appreciate the optimisation strategies that are chosen by
ICT, such as the construction of reusable and flexible infrastructures. In this



386 R. Haesen et al.

case costs should be distributed among all consumers that (will) use these
infrastructures. This may not be a straightforward task if not all consumers
are known in advance.

5 Evaluation and Future Work

The results of this work are currently being validated at KBC Bank & Insurance
Group, one of the top three bankinsurers in Belgium with a key position in
Central-Europe. To have control over granularity is one of the major concerns in
their migration to SOA. The validation of this work consists of two parts: firstly,
the presented classification is in general adopted by KBC. This means that the
impact of each service under development is verified with respect to each type of
granularity. Moreover, to the best of our knowledge, our classification covers all
aspects of granularity that are discussed in the existing literature. The second
part of validation considers each type of the granularity in more detail. Whereas
the validation of functionality and business value granularity are left for future
work, we already focused on data granularity.

In general it can be observed that current services research mainly focuses on
the issue of flexibility because services generally represent “units of functional-
ity” that need to be coordinated. Therefore, too little attention is paid to the
data perspective on services. To alleviate this problem, we elaborated guidelines
to optimise the input data granularity of services. This resulted in the active-
passive hybrid data collection pattern [24], which distributes the responsibility
of collecting data across the service consumer and provider. The decisions are
mainly based on the properties of the data to be collected, such as their avail-
ability, visibility and accessibility.

As part of future research, we will propose concrete metrics for all granularity
types in two different contexts. Firstly, we will define metrics in an event-driven
SOA that is based on the MERODE methodology [25]. Although the architecture
is object based (as a possible service implementation) and therefore of limited
use on enterprise level, all models and concepts are formally defined, which allows
inferring formal metrics as well. Secondly, we will extend our approach in the
context of BECO [26]. BECO itself is an extension to MERODE that defines
the enactment of business processes by means of an event-based coordination of
components. This approach allows incorporating enterprise-class concerns, such
as the integration of legacy and the treatment of business processes as first-class
citizens.

Finally, we perform research on rules to determine which granularity levels are
appropriate in a particular context. At the ICT department of KBC, all projects
are firstly analysed in the ‘work preparation’ stage before they are effectively
being implemented in the ‘work execution’ stage. It is obvious that the concerns
of the people in the two stages are different, and yet, the same service concept
is used by both. For example during work preparation, the problem is firstly as-
signed to a particular service domain, such as the claims domain. Subsequently,



On the Definition of Service Granularity and Its Architectural Impact 387

the architects have to delineate the relevant services that will be implemented
in the scope of the project. Now the services should be defined at such a level
of granularity that changes to the existing service portfolio can be assessed.
For example, the introduction of a service for claim handling will affect other
domains such as accounting, payments, etc. Finally, to enable work execution, the
services must be decomposed into even more fine-grained services. For example,
the service for claim handling will rely on some backend services that contain
business logic, some services that maintain process state, some services that
generate user interfaces, etc. We will verify how the proposed granularity types
can be used to derive appropriate granularity levels in a given context.

6 Conclusion

In this paper we attempted to structure the discussion of service granularity.
Although the importance of coarse-grained services is often stated, we argued
that enterprise architects nowadays have to deal with a broad spectrum of pos-
sible service granularity levels for different granularity types. From an interface
perspective, we distinguished between data granularity, functionality granularity
and business value granularity. By means of some extreme values for each granu-
larity type we discussed the impact on architectural concerns such as reusability,
reuse efficiency, stability, performance, etc. Although the interface perspective
reveals several consequences of granularity for both consumer and provider, the
provider will also be interested in the realisation view on granularity. By means
of some examples, we showed that both views are not always in accordance
with each other. Finally we presented some preliminary ideas of how granular-
ity may assist in alleviating some architectural issues as we currently encounter
them at KBC, such as the data issues around services and a granularity-driven
delineation of services.

Acknowledgements

This work was funded by the KBC-Vlekho-K.U.Leuven research chair on ‘Service
andComponentBasedDevelopment’ sponsoredbyKBCBank& InsuranceGroup.

References

1. McGovern, J., Tyagi, S., Stevens, M., Mathew, S.: Java Web Services Architecture.
Morgan Kaufmann, San Diego (2003)

2. Hanson, J.: Coarse-grained interfaces enable service composition in soa (August
2003), http://articles.techrepublic.com.com/5100-22-5064520.html

3. Fellner, K.J., Turowski, K.: Classification framework for business components. In:
Proceedings of the 33rd Annual Hawaii International Conference on System Sci-
ences (HICSS-33). IEEE Computer Society, Maui (2000)

4. Herzum, P., Sims, O.: Business Components Factory: A Comprehensive Overview
of Component-Based Development for the Enterprise. John Wiley & Sons, Inc.,
New York (2000)

http://articles.techrepublic.com.com/5100-22-5064520.html


388 R. Haesen et al.

5. Goedertier, S., Haesen, R., Vanthienen, J.: EM-BrA2CE v0.1: A vocabulary and
execution model for declarative business process modeling. FETEW Research Re-
port KBI 0728, K.U.Leuven (2007)

6. Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse-Based Software Engineering: Tech-
niques, Organizations, and Controls. John Wiley & Sons, Chichester (2002)

7. Wang, Z., Xu, X., Zhan, D.: A survey of business component identification methods
and related techniques. International Journal of Information Technology 2, 229–238
(2005)

8. Wang, Z., Zhan, D.C., Xu, X.F.: STCIM: a dynamic granularity oriented and stabil-
ity based component identification method. ACM SIGSOFT Software Engineering
Notes 31(3), 1–14 (2006)

9. Vitharana, P., Jain, H., Zahedi, F.: Strategy-based design of reusable business
components. IEEE Transactions on Systems, Man and Cybernetics, Part C: Ap-
plications and Reviews 34(4), 460–474 (2004)

10. Sims, O.: Developing the architectural framework for SOA - part 2-service granu-
larity and dependency management. CBDI Forum Journal (June 2005)

11. Erradi, A., Anand, S., Kulkarni, N.: SOAF: An architectural framework for service
definition and realization. In: Proceedings of the IEEE International Conference
on Services Computing (SCC 2006), pp. 151–158. IEEE Computer Society, Wash-
ington, DC (2006)

12. Artus, D.J.: SOA realization: Service design principles. IBM Developer Works
(February 2006),
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-
design/

13. Wang, Z., Xu, X., Zhan, D.: Normal forms and normalized design method for busi-
ness service. In: ICEBE 2005: Proceedings of the IEEE International Conference on
e-Business Engineering, pp. 79–86. IEEE Computer Society, Washington, DC (2005)

14. Foody, D.: Getting web service granularity right (August 2005),
http://www.soa-zone.com/index.php?/archives/11-Getting-web-service-
granularity-right.html

15. Wilkes, L., Veryard, R.: Service-oriented architecture: Considerations for agile sys-
tems (April 2004), http://msdn2.microsoft.com/en-us/library/aa480028.aspx

16. Bussler, C.: The fractal nature of web services. IEEE Computer 40(3), 93–95 (2007)
17. Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann,

F., Nally, M., Sedukhin, I., Snelling, D., Storey, T., Vambenepe, W., Weerawarana,
S.: Modeling stateful resources with web services (March 2004)

18. Schmelzer, R.: Solving the service granularity challenge (March 2006),
http://www.zapthink.com/report.html?id=ZAPFLASH-200639

19. Gordijn, J., Akkermans, H.: Value based requirements engineering: exploring inno-
vative e-commerce ideas. Requirements Engineering Journal 8(2), 114–134 (2003)

20. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering (RE 1997), pp. 226–235. IEEE Computer Society, Annapolis
(1997)

21. Rolland, C., Kaabi, R.S., Kräıem, N.: On ISOA: Intentional Services Oriented
Architecture. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp. 158–172. Springer, Heidelberg (2007)

22. Dreyfus, D., Iyer, B.: Enterprise architecture: A social network perspective. In:
Proceedings of the 39th Hawaii International International Conference on Systems
Science (HICSS-39), January 2006. IEEE Computer Society Press, Kauai (2006)

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design/
http://www.soa-zone.com/index.php?/archives/11-Getting-web-service-granularity-right.html
http://www.soa-zone.com/index.php?/archives/11-Getting-web-service-granularity-right.html
http://msdn2.microsoft.com/en-us/library/aa480028.aspx
http://www.zapthink.com/report.html?id=ZAPFLASH-200639


On the Definition of Service Granularity and Its Architectural Impact 389

23. Baida, Z.: Software-aided Service Bundling - Intelligent Methods & Tools for
Graphical Service Modeling. PhD thesis, Vrije Universiteit, Amsterdam, The
Netherlands (2006)

24. Haesen, R., De Rore, L., Snoeck, M., Lemahieu, W., Poelmans, S.: Active-passive
hybrid data collection. In: Proceedings of the 11th European Conference on Pat-
tern Languages of Programs (EuroPLoP 2006), Irsee, Germany, Universitaetsverlag
Konstanz, pp. 565–577 (2006)

25. Snoeck, M.: Object-Oriented Enterprise Modelling with Merode. Leuven University
Press (1999)

26. Lemahieu, W., Snoeck, M., Goethals, F., De Backer, M., Haesen, R., Vandenbulcke,
J., Dedene, G.: Coordinating cots applications via a business event layer. IEEE
Software 22(4), 28–35 (2005)


	On the Definition of Service Granularity and Its Architectural Impact
	Introduction
	Related Work
	Service Granularity Types
	Input Data Granularity
	Output Data Granularity
	Default Functionality Granularity
	Parameterised Functionality Granularity
	Business Value Granularity

	Interface Versus Realisation View on Granularity
	Evaluation and Future Work
	Conclusion


