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ON THE DEFORMATION OF ARTIN-SCHREIER
TO KUMMER

BY T. SEKIGUCHI (*), F. OORT AND N. SUWA

Let k be an algebraically closed field of characteristic p > 0. We denote by W (k) the
Witt vector ring of k. Let C be a (complete, non-singular) curve of genus g over fc,
and let G be a subgroup of the automorphism group Au4(C) of C. Our aim is to
treat the following problem:

(I) Lift a given pair (C, G) to a pair (^, G) of a smooth proper curve ̂  and a subgroup
GcAut(^) over a suitable discrete valuation ring A dominating^ (k).

This problem is equivalent to the following problem:

(II) Let C/D be a Galois covering of curves over k mth Galois group G. Then lift C/D

to a Galois covering ^ / ^ over a suitable discrete valuation ring A dominating^(k).

If C/D is unramified, it is well known that C/D has a lifting over W(fe) (cf. SGA1,
Exp.X, Th.2.1). Moreover, if C/D is tamely ramified, Laudal and L^nsted[8] show
that C/D has a lifting over W (k). On the contrary, if C/D is wildly ramified, the answer
to our problem is generally negative. For example, if we take as G the full automorphism
group Au4(C), then there exists a curve C with ttG>84(^-l) (c/.[19], Satzl, [22],
Th. 3.3, 3.3', or [23], TeilII, Satz 5,6). But in char. 0, the order of the automorphism
group of a curve of genus g is at most 84(^—1) (as Hurwitz proved).

In this paper, we devote ourselves to the study of the problem in the case of G = < a >
with ord a=pm and (p, m)= 1. Our result is as follows:

Let C be a (complete non-singular) curve over k, and a be an automorphism of C of
order pm mth (p, m)= 1. Then there exists a lifting (^, a) o/(C, a) over W(fe) R] where
£, is a primitive p-th root of unity (cf. Ch. IV, Th. 2.6).

To attack our problem, we have two methods generally. One is to pile up the
infinitesimal arguments (cf. Grothendieck, FGA and SGA 1, Exp. III). Unfortunately,
there is an obstruction to succeed in solving the lifting problems by this method in the
case of characteristic p>0. In fact, we have examples of (C, o) with ord a=p which
cannot be lifted over W(fe) (cf. Oort-Sekiguchi [17], Lemma 2.3, Nakajima[12]). This
leads us another method: class field theory (cf. Serre[21]), namely to look at our problem
from the view point (II). The main tool is the exact sequence

0 -, j_lp -, ̂ ) -, ̂ p) - o^

(*) Partially Supported by Z. W. 0. (Netherlands Organization for the Advancement of Pure Research),
under the contract « Moduli », 10-80-004.
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346 T. SEKIGUCHI, F. OORT AND N. SUWA

which combines the Artin-Schreier sequence

O-^Z/^G^G^O,

where ̂  = x^ - x for x e G,,, and the Kummer sequence

0-Hp-^G^O.

(For definition, see Ch. I).

Now we explain the organization of this paper.

In Ch. I, we will construct the deformations of G^ to G^ and discuss the connection
between the theories of Artin-Schreier and of Kummer.

In Ch. II, we calculate the cohomology groups with coefficients in certain group
schemes. In the last section, we arrange, following the argument expanded by Breen
[3], one of his results restricting ourselves to our case.

In Ch. Ill, we will construct singular curves over a discrete valuation ring, following
Serre's argument, and analyze their generalized Jacobian schemes.

After the preparation mentioned above, in Ch. IV, we give a proof of the main
theorem. First we treat tamely ramified Galois coverings of curves by our method,
because it would give a visual explanation how to treat the ramification points in our
deformation. Next we treat Galois coverings of degree /?, which is our main subject.

This article is a souped up version of "On the deformation of Artin-Schreier to
Kummer" published as Preprint Nr. 369, the University of Utrecht, 1985.

Tatsuji Kanbayashi and Ryuji Sasaki pointed out the existence of articles [7], [24] and
[25], [26] respectively. The authors would like to express their thanks to them. The
first author would like to express his hearty thanks to the University of Utrecht for
hospitality and excellent working conditions.

Notations

In the first three chapters, A denotes a discrete valuation ring and SR (resp. K, k)
denotes the maximal ideal (resp. the fraction field, resp. residue field) of A, if there is no
restrictions. We denote by v the valuation on A. We put S=SpecA, and we denote
by T| (resp. s) the generic (resp. closed) point of S.

X^ (resp. ^fppf) denotes the etale site (resp. fppf-site) of X.

Contents

I. Deformations ̂  ofG^ to G^

1. Definition

2. Artin-Schreier to Kummer

I I . Extensions of an abelian scheme by ^a)

1. The cohomology group H1 (X, ̂ ))

4° SERIE - TOME 22 - 1989 - N° 3



ARTIN-SCHREIER TO KUMMER

2. The extension group Ext1 (X, ^(x))

3. The cohomology group H
1 (X, Zip)

4. A variant of Breen's theorem *

I I I . Construction of singular curves over a discrete valuation ring
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2. Proof of the main theorem.
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DEFINITION 1.1. — For any ^eSJT^O}, we define an affine flat commutative group
S-scheme ^a) in the following way:

( I . I . I ) ^=Spec(A[x, l/(^x+l)])

with

1. Law of multiplication:

(1.1.2)
Cm: ^Xs^-^^

[ (x, y)\-^'kxy-\-x-\-y

i.e.,

(1.1.3)
\m*'. A[x, I/(^X+I)]®AA[X, 1/(X x +!)]<- A [x, l/(?ix+l)]

^ ^(x®x)+x® l+ l®x<-^x

2. Law o/ inverse:

(1.1.4)

L .̂,

(1.1.5)

f I: <^)-.^)

lxi-^-x/(^x+l)9

'i*: A[x, l/()ix+l)]^A[x, l/(5ix+l)]^

-X/(X.X;+1)«-IX

3. Law of identity:

( 1 . 1 . 6 ) . e: S -> ̂ : the morphism defined by

e*: A<-A[x, l/(Xx+l)].

0<-ix

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



348 T. SEKIGUCHI, F. OORT AND N. SUWA

1.2. We define an S-homomorphism a^: ^a) -> G^ ^ by

(1.2.1)
a^*: A [x, \l(k x + 1)] <- A [u, I/M]

X x + 1 <-^M

Obviously the generic fibre of a^:

(1.2.2) a^:^=SpecK[x, l/(^x+ 1)] ̂  G,, „

is an isomorphism. On the other hand, the special fibre of ̂ ) is clearly isomorphic to

^a,^

(1.2.3) ^=Spec(A[x, l/(^x+l)]®Afe)^Speck[x]^G,, „.

That is, the group scheme ̂ ) gives a deformation of (£„ to G^ over S=SpecA.

1.3. Let X,, 1̂ be two elements of 9W\{ 0}. Then we get the canonical injection

(1.3.1) h: Hom^(^\ ̂ )) c, HomK-^(G,, ̂  G,, ^}^Z

defined by ^ ((p) = oc^ o (p^ oc^"1 for any (peHomA-g^^, ̂ )). The image of h is

described in the following way.

PROPOSITION 1.4. — Let ^, p,e9M\{0}, and let h be the injection (1.3.1).
(i) The equality h ((p) = n means that (p (x) = {(^ x +1)" -1 } / [ i .

(ii) When \ve identify Hom^_y(^\ ̂ )) mth the image ofh,

( 1 . 4 . 1 ) Hom,_,(^,^)={±n ^-0^^>o^ LZ.

1 ^(nVifori=\, . . . .n 3

\^7

(iii) If char. k=0, then

(1.4.2) Hom,_,^,^)={0 ^/^
^ /z- I/ P' | A,

(iv) If char. K = char. k =/? > 0, then

(1.4.3) HomA-g^, ̂ ^"Z,

\vhere n is the smallest non-negative integer such that

v^^vCk).

(v) If char. K = 0 and char. k =p > 0, t/i^n

(1.4.4) HomA-^W ^(p)) =P6^

where e=the smallest non-negative integer satisfying the inequality

v^)^ev(p)+vW

4s SERIE - TOME 22 - 1989 - N° 3



ARTIN-SCHREIER TO KUMMER 349

[resp., y(H)^max(^ ^-/+l)i;(^)+^^ f+l\v(k)}, if

v(p)^(p-l)v(^)

[resp. pf (p — 1) v (k) < v (p) ̂ pf +1 (p — 1) v (k) for some non-negative integer j].
(vi) Two group schemes ̂ ) and ̂ ) are isomorphic if and only if v (^) = v (n).

Proof. — We will check only (v), and the rest remains for the reader.

Let n€Z(^HomK-gr(G^ ^ ^m, ic)). and put n=pem with ( ,̂ m)=l. Then for r with
1 ̂ r ̂  n, we get easily

(1.4.5) ,((;))+,̂ (^((^J)+(,+1)^)

for f== 1, . . ., [n/y] with ^^f+1. Hence we get the equivalence of

(1.4.6) i^^ff^1) for f = l , . . . , n
\ \V /

and

(1.4.7) v ( [ l ) ^ v ( ( n } K i } for l^i=pr^n.
\V7 /

Using this equivalence and the fact that Hom^-g^^^, ̂ )) is a submodule of Z, we
can see that (1.4.7) is equivalent to the condition:

(1.4.8) vW^v^^^A for f = 0 , . . . , 6 ? .

On the other hand,

(1.4.9) vtt^^-vtt^^^^^^

Hence (1.4.8) is equivalent to the inequality

(1.4.10) vW^ev(p)+v(K\

if v(p)^(p— l)v(k), and equivalent to the inequality

(1.4.11) u(^)^max(0, e-f-^v^+p^^ ^^.r^),

if pf (p -1) v (7.) < u (p) ̂ pf +1 (p -1) v (^), respectively. Thus we get our assertion.

Moreover, we have the

THEOREM 1. 5 (Watherhouse-Weisfeiler [25], Th. 2.5) .— Let ̂  be aflat S-group scheme
mth ̂  ̂  G^ K and ̂  ̂  G^ ^ Then ̂  is isomorphic to ̂ ) for some 'k e 9M\{ 0 }.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



350 T. SEKIGUCHI, F. OORT AND N. SUWA

DEFINITION 1.6. — By this theorem and Proposition 1.5, (vi), a deformation ^ of G^
to G^ over S is determined by 'k (unique up to a unit) with ^^^(x). We call ^ [or v(K)]
the speed of the deformation ̂ ^^).

Waterhouse and Weisfeiler gave a proof of theorem 1.5 in [25]. Here we give another
elementary proof. For our purpose, we prepare the following lemma without proof.

LEMMA 1.7. — Let B be an integral domain, and let (t) be a non-trivial principal ideal
in B. Then B is a unique factorization domain if and only ifB[l/t\ is so. Moreover, in
this case, if an element f of B [1/t] is irreducible and n is the smallest integer such that
t" fe B, then t11 f is an irreducible element of B.

Proof of Theorem 1.7. — Put B=F(^, Oy). Then we have an isomorphism
B^A^^K-I^ M-l]- By the lemma 1.7, B is a unique factorization domain. Since B
is smooth over A and A is a discrete valuation ring, B is regular. Let a be the augmented
ideal of B. Then we have ^a+dimB/a=dimB. Since we have dimB/a=dimA==l,
we obtain hta= 1. Since B is a unique factorization domain, a is a principal ideal. Put
a=tB. B is isomorphic to A©a as A-module. Then B®^^ ls isomorphic to
K©(a(g)AK). Consider B as a subring of K[u, M'^^Bg)^^ since ^®AK is the

augmented ideal, tB(SA}^=(u~^)^[u9 M'^^K^, u~1}. Then there exists aeK such
that t=a(u—\). Since i*(d)=a, u and u~1 are units of B. In fact, \*(t)=a(u~l—l),
and therefore, a(^~l—\)/a(^—\)=(^~l—l)/(^—\)= —u~1 is a unit of B.

Moreover, since B is faithfully flat over A and ^ is isomorphic to G^,, B®^ is
isomorphic to the polynomial ring fe[s]. Since B(S>Ak=k@((tV)®^k), tB is not contai-
ned in WB. Here we see that aeK\A. In fact, if aeW, tBaWB. Then
a£K\9EW. Moreover, if aeA\W, tB=(u-l)B. The image of u in B g^fe is a unit

of B®A^ ^d transcendental over k. But (B®^^ =kx.

Put fk=a~le<3R. The embedding A[t, 1/(X?+1)]-^B is a homomorphism of Hopf
algebras. Let (p: ^ -> Spec B -> ̂ ) be the corresponding homomorphism of group S-
schemes. Since (p is surjective fiber by fiber, (p is surjective. Since ^ is flat over A and
^a) is smooth over A, (p is flat ([9], Chap. 6, §2, Lemma 6.12). Then Kercp is flat
over A. Since we have (Ker(p)^=0, we obtain Kerq>=0, that is, the homomorphism
q> : ̂  -> ̂ (x) is an isomorphism and we are done.

Example 1.8. — Let (A, W) be as above, and XeSDl\{0}. We define a plane curve
^by

:̂ y2z-'kxyz=x3(^^.

Then ^ is a deformation over A of a cuspidal curve to a nodal curve:

Pi

^

Spec A -»
T| : generic point

We can see that Pic$/s is isomorphic to ^a) (cf. Ex. 3.11).

4® SfiRIE - TOME 22 - 1989 - N° 3
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ARTIN-SCHREIER TO KUMMER 351

Remark 1.9. - The existence of deformations of G^ to G^ was first given by
T. Kambayashi and M. Miyanishi [7], and the groups of extensions of such deformation
schemes by the additive group scheme G^ are treated by B. Weisfeiler [24]. Waterhouse
and Weisfeiler [25] develop a more general theory concerning the deformations of 1-
dimensional algebraic tori.

2. ARTIN-SCHREIER TO KUMMER. - 2.1. Put A=W(k)K], where W(fe) is the Witt
vector ring of an algebraically closed field k of characteristic p(>0) and ^ is a primitive
p-th root of unity. Put ^=^—1. We note that A is a complete discrete valuation ring
with uniformizing parameter 'k, and

(2.1.1) ^-^up,

where u is the unit defined by

(2 .1 .2) ^={(1+0 (l+i;+i;2). . . (1+^+. . . +^-2)}-1.

Now we define an S-homomorphism

(2.1.3) v|/: ^=Spec(A [x, l/(Xx+1)]) ̂  ̂ =Spec(A [x, l/(Vx+1)])

by

(2.1.4) x ̂  { (^ x +1 Y -1 }/̂ .

By the equality (2.1.1), this morphism is well-defined. Moreover, \|/ is faithfully flat
and finite. In fact, we have

(2.1. 5) Kerv|/=Spec(A [x, l/(^x+ l)]/(((^x+ ̂ p-1)/^)).

By (2.1.1), the coefficient of the highest term of {(Xx+1^-1 }/V is a unit, and
therefore Ker\|/ is flat over S. On the other hand, we have

(2 .1 .6 ) xp+/?xp- lA+. . . +^x/V-l=\|/(x),

(2.1.7) l/^x+iy^O/^x+l)).

This implies that v|/ is finite.

2.2. Put J^=Kerv[/. By the definition of \|/, we can see that the following diagram
is commutative:

^ ———^——— G...

vk P

,(̂ )
yw ——————^ G

m.A»

where p denotes the p-th power and that J^ is isomo^phic to ̂  ̂  [̂  Prop.l. 5. (i)].

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE1 ,



352 T. SEKIGUCHI, F. OORT AND N. SUWA

Moreover, by the definition of v|/ and the fact u= — 1 (mod ^) (cf. 2.1.2), we see that
the special fibre

(2.2.2) v|^: ^G^^^G^

is nothing but the homomorphism

(2.2.3) p: G,^G^

defined byp (x)=xp—x. Then ̂  is isomorphic to Z//?. Since J^ is flat over S, J^ is
etale over S, and therefore J^ is (non-canonically) isomorphic to J-jp. So the exact
sequence

(2.2.4) 0 -^ JV -^ ̂ } ̂  ̂ w -> 0

gives the connection between the exact sequences of Artin-Schreier and of
Kummer. Note that

(2.2.5) ^(A)={0, 1, 1+^, . . . , !+( ;+. . .+^-2} c=^)(A).

We also remark that this ^) is the unique deformation of G^ to G^ containing the
constant group scheme ̂  ^ (^-/p)^

2.3. Now we embed ^a) into P^ by x\->(x:l). Then the action of ^ on ^a) is
/ r i \

extended over P^ by ( ). Moreover we get the commutative diagram

^).^p^(^o),(l:-X)}^Pi

( 2 . 3 . 1 ) ^ ) I -F

^^)2,p^{(i;o),(l:-^)}cp^

where ^F is defined by x ¥ ( x : y ) = ( ( , x - } - y ) / ^ ) p - y p / ^ p : y p ) . That is, the morphism ^ gives
the quotient morphism Pjt -^ P^/J^ by the action of ^ on P^ passing through the
embedding ^w q, P^. Moreover, if we denote by the dotted arrows P^ • • • -> ̂ ) and
P^. • • -> ̂ w the rational maps defined by (x: y ) \-> x / y , then ^ fits into the cartesian
product:

PJI
(2.3.2)

--* ^»

*

-* ^fr")

4' SERIE - TOME 22 - 1989 - N° 3



ARTIN-SCHREIER TO KUMMER 353

The ramification locus of ^P is given by the following figure:

Pj, P,1

(2.3.3) oo =(1:0)

(1:-V)

Spec (A)

This collapse describes the wild ramification of the Artin-Schreier extensions.

Remark 2.4. — It is known by Mumford-Oort [16] that every finite commutative
group scheme in char. p can be liftable to one in char. 0. Finally, we note that by using
our group scheme ̂ \ we can construct also some deformations of finite group schemes.

For example, let ^ be a primitive ^"-root of unity with n^2. We put A=ZpK]
and ^=^—1. Note that ^ is a uniformaizing parameter of A and (p)=(km) with
m=pn~l(p-l). Now we take the subgroup scheme u^ (with l ^ f^n ) in the generic
fibre ̂  ^ G^ ̂  and its Oat extension J^, in ̂ a) (cf. EGA IV, Prop. 2.8.5). According
to the uniqueness of the flat extension, the extension J^\. is also a group scheme. In
^)=Spec(A[x, l/(Xx+l)]), the subgroup scheme J^ is defined by the equation F,=0,
where F, = ̂ -pl { (k x + \Y -1}. Obviously F, is a polynomial with coeffitiants in A, and

(2.4.1) -r- /• i ^ \ i -/v lu

F,(modX)=
X1'

x^1
-x^

for l^i^n-1

for i=n.

Therefore, the group scheme N, gives the following deformation:

i the generic fibre (^^ ̂  Upi,

(2.4.2) ^i=
the special fibre (^j)s ̂

j.pi for

Z/p xa

l^i^n-1,

for i = n.

Here, ^^=Spec(K[x]/(xpi-l)), a^=Spec(F^[x]/(xpl)) and Z/^=Spec(F^[x]/(xp-x)).

No^. — Waterhouse and Weisfeiler [25] discuss finite subgroup schemes of ^a).
Moreover, Waterhouse [26] gives the exact sequence (2.2.4) completely independently.

II. Extensions of an abelian scheme by ̂
)

1. THE COHOMOLOGY GROUP H
1
 (X, ^a))

LEMMA 1.1. — Let X be aflat S-scheme of finite type. Then the sequence on the etale
site X,

,a<^
(I.I.I)

is exact (i denotes the closed immersion X^=X (>OA(A/?I) ̂  X).

0-^-^x-^G^-O

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



354 T. SEKIGUCHI, F. OORT AND N. SUWA

It is enough to show the exactness for the geometric fibers at each point of X. Then
the lemma follows from the

SUBLEMMA 1 . 2 . — Let B be a local ring, flat over A. Then the sequence

aa)

(1.2.1) O-^^B)-^ -^(B/XB)" -^0

i5 exact.

Remark 1 . 3 . — a^: ̂ ) -> G^ x is not injective in the category of S-schemes.

1.4. Let X be a flat proper S-scheme with irreducible fibers. (1.2.1) defines an exact
sequence

(1.4.1) O^F(X, ̂ )-r(x, G,,x)^r(x,, G,,x.)
- H

1 (X, ^)) - H
1 (X, G,, x) - H

1 (X,, G,. x,).

Since X/S has irreducible fibers, F(X, G^^)=AX and r(X^, G^x^A/^, and there-

fore F(X, G^x) -^ ^(X),, G^X},) ls surjective. Then we obtain

THEOREM 1.5. - H1 (X^, ̂ )) = H1 (X,,, ̂ )) == Ker [He (X) -. Re (X,)].

2, THE EXTENSION GROUP Ext1 (X, ^a)). — 2 . 1 . Let X be a commutative group S-
scheme and G be an abelian sheaf on (Sch/s)^^.. Then the functorial homomorphism
Horns -gr(X, G) -^ Horns (X, G) induces homomorphisms

(2.1.1) a^ : Ext̂ s (X, G) -> W (X, Gx) for j ̂  0.

Remark 2.2. — Let (E):0->G->"Y ->X->0 be an extension of abelian sheaves on
(Sch/s)fppf. o^ (E) is nothig but the class of the Gx-torsor Y of X for the ̂ /-topology.

DEFINITION 2.3. — a e W (X, Gx) is said to be primitive if m* (a) =/?f (a) +/?$ (a), where
m : X x g X - ^ X is the multiplication and / ^ : X x s X - > X is the projection to the f-th
factor.

LEMMA 2.4. — Let X be a commutative group S-scheme and G be an abelian sheaf on
(Schfs)fppf. Then o^: Ext^(X, G) ->W(X, Gx) has the image in the set of primitive
elements.

Proof. — Let I. be an injective resolution of G. Then we have an exact sequence

m*-p\-p\

(2.4.1) 0-^Homs-g,(X, I.)^Homs(X, I . )————^HomgtXXgX, I.).

This implies the lemma.

LEMMA 2.5. —Suppose that X is an abelian scheme over S and G is a flat affine
commutative groupe S-scheme. Then Ext^ (X, G) -> H

1 (X, Gx) is injective.

Proof. — Let (E): 0 -> G -> Y -> X -^ 0 be an extension of abelian sheaves on
(Sch/s)fppf. Since G is affine over S, Y is representable. Suppose that Y is trivial as
Gx-torsor of X and choose u a section of Y/X. By a translation in Y, we may assume

46 SERIE - TOME 22 - 1989 - N° 3



ARTIN-SCHREIER TO KUMMER 355

that Moex=£Y(£x? ̂  denote the section of X or Y respectively). By the rigidity lemma
([9], Cor. 6.4), u is a group homomorphism, that is to say, the extension (E) is trivial.

THEOREM 2.6.— Suppose that S is strictly henselian, X is an abelian scheme
over S and G is a smooth affine commutative group S-scheme. Then
o^ : Ext^ (X, G) -^ H

1 (X, Gx) is injective. Moreover, the image ofo^ ls ̂ e set of primitive
elements.

Proof. — It is enough to show that a^ is surjective on the set of primitive elements. Let
Y be a G-torsor of X which defines a primitive element of H1 (X, Gx). Consider the
cartesian diagram

Y'— Y

(2.6.1)
t -x \

X x sX -^ X.

Then Y' is a G-torsor of X X g X . By the hypothesis, Y' is isomorphic to the G-torsor
( Y x g Y ) /\GXSGG, where Gx§G acts on G by the multiplication. Then we obtain a
commutative diagram my

Y x ^ Y ^ Y

(2.6.2)
^

XxgX-^X,

where my is compatible with the action of G. Since Y is smooth over X and S is strictly
henselian, there exists £y a section of Y/S (EGA. IV. Th. 18.5.17). By the translation
by G, we may assume my(sy, Cy) =£x• Then my is a group law on Y (cf. [21], Chap. VII,
§ 3, No. 15).

Example 2.7. - Exti(X, G^s)=Kc°(X) c Pk^X)^^, G^x).

In fact, ^ is primitive oA(^f)=0, where A:Pic(X) -^Hoing-g^X^ xt) is the homo-
morphism defined by A (J^) (x) = T? (^f) (g) ̂  ̂ ~1 <s> 50 e He0 (X), by the rigidity lemma
([9], Prop. 6.1 or Cor. 6.2).

Example 2.8.- Extg
1 (X, G,, g) ̂  H

1 (X, G,, x) ̂  H
1 (X, ^x).

In fact, by the Klinneth formula, we have a canonical bijection
H1 (H x g X, ^x) ̂  H1 (X, ^x) © H1 (X, d?x). This implies that any element of
H^X, G^x) ls primitive.

Combining Theorem 1.5 and Theorem 2.6, we get the following.

Example 2.9:

Extg
1 (X, ̂ )) ̂  H

1
 (X, ^)) = Ker [He (X) -^ Pic (X ®A A/X)]

= Ker [Pic° (X) ̂  He
0 (X (9 A AA)],

where ^e9[»\{0}.

Example 2.10. - Exti(X, Z/n) ^H^X, Z/n).
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In fact, by the Kiinneth formula, we have a canonical bijection
H1 (X x s X, Z/n) ^ H1 (X, Z/n) ® H1 (X, Z/a). This implies that any element of

H1 (X, Z/n) is primitive.

2.11. Let /:X ->S be a proper flat morphism. Then there exist functorial isomor-

phisms

(2.11.1) F(X, Z/n)4Homx-g,(^,x, G^x) ̂  Horns _^(^,s./^m.x).

Then we have a spectral sequence

(2.11.2) E^ExtjOi,^ R'XG^x^H^X, Z/n)

and therefore an exact sequence

(2.11.3) O^ExtiOi^/^x^H^X, Z/n)4Homs_^OA,^ PiCx/s)

^ Exts
2
 (^, s, ̂  G,, x) ̂  H

2 (X, Z/n).

LEMMA 2.12. — J/S is strictly henselian, then Pg is bijective.

See [18]. No. 6.

THEOREM 2.13. — Suppose that S is strictly henselian. Let X be an abelian scheme

over S and X^ be the fiber ofX over .s. In the commutative diagram

Exts
1 (X, Z/n) ̂  H

1 (X, Z/n) ̂  Homg-gr (^, s. ^x/s)

(2 .13 .1)

Ext,1 (X,, Z/n) 4 H1 (X,, Z/n) 4 Hom,_^(^ „ Pic )̂.

a/J ̂  maps are bijective.

Proof. - By the proper base change theorem (SGA4, Exp. XII, Th. 5.1), the middle
vertical arrow is bijective. By 2.12 and 2.10, all the horizontal arrows are bijective.

3. THE COHOMOLOGY GROUP H1 (X, Z/p). - In this section, let k be an algebraically

closed field of characteristic p> 0. Suppose that A is a complete discrete valuation ring
dominating W(fe)K] with (3 a primitive p-th root of unity. Put ^ = ^ — 1 as in
Ch. I. Under these notations, we look at the exact sequence (Ch. I, 2.2.4):

( 3 . 1 . 1 ) 0 -̂  Z / p -> ̂ w ̂  ̂ w -^ 0.

Let X be a flat proper S-scheme with irreducible fibers. Then (3.1.1) gives an exact

sequence

(3.1.2) o ̂  r (x, z / p ) -^ r (x, ^)) ̂  r (x, ̂ ))
^ H

1 (X, Z / p ) -^ H
1 (X, ^)) ̂  H

1 (X, ̂ \
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Since X/S has irreducible fibers,

F(X, ^^(I+^A)', F(X, ^r)=(l+^A)s

and therefore F(X, ̂  -^ F(X, ̂ )) is surjective.

On the other hand, consider the commutative diagram

^p
^0) _^ ̂ p)

( 3 . 1 . 3 ) ' aW <x<^

Gm.X-^m.X-

We have therefore a commutative diagram

H^X.^^H^X,^)

(3.1.4)

Then we obtain the
Pic (X)-^ Pic (X)

THEOREM 3.2. — H^X, Z//?)=Ker[^Pic(X) -^Pic(X ®A(AA))].

Remark 3.3. - We have shown that H^X, Z/^) ^Homs_gr(Hp,s» ^x/s)
(c/Th.2.13). Then Hom^.g^Hp,^ PiCx/s) is (non canonically) isomorphic to
Ker[^Pic(X)]-^Pic(X®A(AA))]. For example, g}-.g(S)(Q gives a bijection of
Homs-^.s, Picx/s) to Ker[^Pic(X) ^^Pic(X ®A(AA))].

COROLLARY 3.4. — Let X ^ an abelian scheme over S. Tnen
Ext^X, Z/^)=H1(X, Z/^)=Ker[^(A)-^^Xt(AA)].

4. A VARIANT OF BREEN'S THEOREM. — In this section, we assume that A is strictly
henselian and the residue field is of characteristic p > 0.

THEOREM 4.1. (cf. Breen [3], p. 339, Th.). — Let G be a finite flat group S-
scheme. Then Extj (G, Z/V) = 0.

Proof. — There exists a filtration 0=Go <= Gi c . . . c G^=G formed by finite flat
subgroup S-schemes such that Gf/G,_i is finite etale or finite flat connected. Therefore
we may assume that G is etale or connected.

Suppose at first that G is etale. Then the theorem is a consequence of vanishing of
Ext'O'^) in the category of the abelian groups.

Suppose now that G is connected. In this case, the order of G is a power of /?. Let
A (G) be the complex of Eilenberg-MacLane algebra of fppf-sheaves over S associated
to G (cf. [2]). We have two spectral sequences

(^) /Ey=ExtJs(A(G),, W ̂ Ext^WG), Z/^)

W //E^=Exts(H,(A(G)), W ̂ ExtFWG), Z/^).
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(b) defines an exact sequence

(4.1.1) O^Exts1 (Ho(A(G)), Z / p " ) ̂  Exts1 (A (G), Z/^)^Homs-^(Hi(A(G)), W

^ Exts2 (Ho (A (G), Z / p " ) -^ Extj (A (G), Z/^).

Since the order of G is a power of p,

(4.1.2) H,(A(G))=J0 if 7=0
J [ 0 if 0<j<2p-2.

([3], p. 343). Then we get an injection Extj(G, Z / p " ) c; Extj (A (G), Z/p").

On the other hand, we have

(4.1.3) Exti(A(G)„Z|pn)=0 for 7>0

(loc. cit. p. 345). Then (a) defines isomorphisms

(4.1.4) tf(Homs_^(A (G), Zip")) ̂  Exti(A (G), Z///1) for j^O.

Moreover, we have an isomorphism of complexes

(4.1.5) Homs_^(A (G), Z/^) ̂  Honis(X., Z / p " ) ,

where X. is a simplicial pointed S-scheme whose components are cartesian products of
the copies of G over S, and Homg denotes the set of morphisms of pointed S-schemes
(loc. cit. p. 345). Since X, is connected and A is strictly henselian, we have
Horn; (X., Zip") = 0 and therefore Extj (A (G), Zip") = 0. This implies the theorem.

COROLLARY 4.2. — Let G be a finite flat group S-scheme. Then Extj (G, Z/n) =0.

COROLLARY 4.3. — Extj(G^, Z/n) = Extj (G^, Z/n)=0.

Proof — Consider the exact sequence

( 4 .3 .1 ) Extj (G,, Z/n) ̂  Extj (G^, Z/n) ̂  Extj (̂ , Z/n)

- Extj (G,, Z/n) ̂  Extj (G,, Z/n).

Since n: Extg(G^, Z/n) -^ Extg(G^, Z/n) is zero, we obtain an exact sequence

(4.3.2) 0 -^ Extj (G,, Z/n) ̂  Extj (̂ , Z/n) ̂  Extj (G,, Z/n) ̂  0.

Then 4.2 implies 4.3.

COROLLARY 4.4. — Let X be an abelian scheme over S. Then

Extj (X, Z/n) = Extj (X, Z/n) = 0.
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Proof. — Consider the exact sequence

(4.4.1) Extj (X, Z/n) -"> Extj (X, Z/n) -> Extj (^X, Z/n) -̂  Extj (X, Z/n) -"> Extj (X, Z/n),

induced from the exact sequence 0->^X^X->X-^0 . Since

n: Extg(X, Z/n) -^ Extg(X, Z/n)

is zero, we obtain an exact sequence

(4.4.2) 0-^Extj(X, Z/n) -> Extj (^X, Z/n) -̂  Extj (X, Z/n)-^0.

So it is sufficient to notice that ^X is finite flat over S.

III. Construction of singular curves over a discret valuation ring

In this chapter, for simplicity and safety we assume that A is complete and fe is
algebraically closed.

1. CONSTRUCTION. — 1 . 1 . Let/: ̂  -> S a smooth proper morphism with geometrically
irreducible fibers of dimension 1. Note that in this case / becomes automatically
projective. Let b be an effective divisor of ^ flat over S, <^ c 0^ the definition ideal of
b and ̂  the subsheaf of/"^^g)-algebras of (9^ generated by ^- Let {U,} be an
affine open covering of c€. Glueing Spec r(Ua, ^)» we obtain a S-scheme ^' Let
g : ̂ ^->S be the structure morphism and v|/: ^ -> ̂  the morphism corresponding to
the homomorphism of rings j^ -> (P^.

THEOREM 1.2. — (i) g : ̂  -> S is flat and proper with geometrically irreducible fibers
of dimension 1.

(ii) v|/: ̂ -^b is finite surjective and induces an isomorphism of^—b onto ^^—^(V),
and the closed subscheme \|/ (b) defines a section p : S -> ̂ -

Proof. — Since 0^1^^ is of finite type as/"^^^-module, 0^ is of finite type as j^-
module. Then \|/ is finite surjective, and therefore, g is proper. Moreover, since (9^ is
torsion-free as /^(^-module, ̂  is torsion-free as /"^^-module, that is to say, g
is Hat.

1.3. Since g : ̂  "> S is flat and proper with geometrically integral fibers, Pic^/g is
represented by a separated group S-scheme locally of finite type. Moreover, since g is
relatively dimension 1, Pic<^/sls smooth and we have an exact sequence of commutative
groupe S-schemes

dea
(1.3.1) O^Pic^s^Pic^s^2^0.
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1.4. For any S-scheme X and T, we denote by Div(XxsT/T) the set of relative
Carrier divisors of X XgT/T and by Divx/s the contravariant functor on (Sch/s) defined
byTh-^Div(XXsT/T).

In our case, we have an exact sequence

(1.4.1) 0 -> Div. Princ. (^ x sT/T) -> Div (^ x gT/T) -^ Pic (^ x gT/T) -> 0

for any spectrum T of discrete valuation rings (A7, W) dominating A, where Div. Princ.

(^b x s r T / T ) is the subgroup of Div(^ x T/T) generated by principal divisors.

In fact, we have only to check the exactness of the last part of (1.4.1). So let ^ be
an element of Pic (^XgT/T). Since ^^x^T ls an integral scheme, ^ is given by a
Carrier divisor Z on ̂  x gT. Let/be a local equation of Z at the point 0(5'), where s'
is the closed point of T. Here we put ^f=Z—(/) . Then obviously 2f is an element of

Div^^s^) ly^g
 over J2f-

PROPOSITIONI . 5. (universal property of Albanese type). — Let G be a connected com-
mutative group S-scheme, and h: ^^—<j(b)=^—t)->G be an S-morphism such that
h(T)(Z/)=Ofor any T=Spec A' mth finite extension A' of A. and for any principal Cartier
divisor Z' of^Q x gT. Then there exists a unique S-homomorphism

h: P</s-G

Di</s^P</s

\vhich makes the diagram

(1 .5 . I )

commutative.

Proof. - By Serre ([21], Chap. V, n° 22, Prop. 13), such a K exists over S^ and S,,
which we denote h^ and h^ respectively. That is to say, we get a diagram

G, ————h!——— (P</s)s

r f
( 1 - 5 . 2 ) G pic^

G, ————^——— (P</s)n.
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Now we take a point xe(Pic^/s)s, and we put y=^(x), ^=^,Pic^/s and
(9y=(9y^ o. Then the diagram (1.5.2) induces a diagram

^G,=^y®fc——————'————— ^x®Afe

f ^ t

^ ^

^ *K ^
^®AK—————————————————— ^c®AK.

Suppose that there exists an element be(Py such that %(fc)e^. Then ^(fc)^"^ with
^1, ae^x ^d ^ae^, where r is a uniformizing parameter of A. So the residual
class a in (9y® ^k represented by a is not zero. Hence for a suitable DVR (A',
SB") dominating A, there exists a local ring homomorphism (p* : d)y -^ A' such that

(p*(a)itA/. The morphism (p : T=SpecA/ ^-4 Spec^^Hc^/s defines an element
JSfePic(^ x sT/T). On the other hand, by our assumption and the exactness of (1.4.1),
there exists a homomorphism A' : Pic(^ x s^/T) -> G(T) which makes the diagram

Div (^ x s T/T) ̂  He (^ x s T/T)

A(T)\ /h-

G(T)

commutative. Let \|/ be the T-valued point of G defined by ^(o^f). Then by our
construction we get easily that

i|/ OH = ̂ / (<p (TH) = ̂ ' W) and v|/ (5') = V ((p (̂  = ̂  (5-),

where TI' and s' are the generic and the closed points of T, respectively, and
K/==/./. A'. These equalities yield the commutativity of the diagram

Oy®^———————————————— ^c®A^

t " !' ** »• '
(9y ———————————————————————————^ A' , ^

r .« f
^®AK—————————————K—————————. ^®AK.

Hence A/^\|/*(fc)=(p*(%(fc))=cp*(rea)=re(p*(a). This contradicts the fact that
(p*(fl)irA /. So we get that %(^y)c=^ for each point xe(Pic^/s),, and ^ defines a
unique homomorphism ^ : Pic^/g -> G which we want.

Q.E.D.
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2. GENERALIZED JACOBIAN SCHEMES. --2.1. The exact sequence of ^/-sheaves on ̂

(2.1.1) O^G^^G^^G^/G^^O

defines an exact sequence

(2.1.2) O^g^^-^g^G^^^g^G^^G^^

^R^^G^^-^R^^^G^^^R^^^G^^/G^^.

Since g (resp. /) is proper with geometrically integral fibers, we get
^G^^=G^,s(resp./^G^^=G^s). and so g^G^ c^g*^*^. <y=/*G^ is
nothing but id : G^ s -> ̂ m, s- Moreover, we have R1 g^ (\|/^ G^ <^) = R1 f^ G^ y by the
following

LEMMA 2.2. — Let \|/: X ->• Y be a finite morphism of locally noetherian schemes and
G be a smooth commutative group scheme over X. Then ̂ ^^0=0 for j>0.

Proof. — By the definition, R^v^G is the fppf-sheaf associated to the presheaf
T^H^T^, GT). Since G is smooth over X, H^T^^, G^tfCI^, GT) (GB, Th.
11.7). Since \|/ is finite, we have R^^G^ for;>0 (SGA4, Exp. VIII, Cor. 5.6),
and therefore, R^vl/G^O for;>0.

2.3. By 2.1 and 2.2, we get an exact sequence

(2.3.1) 0^(v|^G,.A,^)

-^R'^^^^R^^^G^^^R^^^G^^/G^^.

The sheaf v|/^ G^^/G^ ^ has the support in a(S) and isomorphic to a^(n^ G^ b/^m, s)»
where 7i==/ |b:-^S. So ^(^G^^ is isomorphic to ^ G ^ ^ / G ^ g sin(^
R^+^^c^m, ^W^m. <^b)^- 7l*(^m, b ^ represented by a smooth affine S-scheme (Weil
restrictiction of G^ n with respect to n: b-^S) (cf. [4], Chap. I, § 1.6.6). Then we
obtain exact sequences of group S-schemes

(2.3.2) 0 -^ 71^ G,, ,/G,, s -+
 Pic^/s ̂  Pi^/s ̂  0,

and

(2.3.3) 0 -. ̂  G,, ,/G,, s -^ Pi</s ̂  Pic^/s ̂  0.

Hereafter we put ^^=Pic^^ <X=Plc^/s an(l o^b==7c* ̂ m, b/^m. s ̂ or a ̂ ed (€.
Example 2.4. - When b is isomorphic to Spec(A[T]/(T-a)2), ^=G^ g.

Example 2.5. - When b is isomorphic to Spec(A[T]/(T-a)(T-&)) (a^b), ̂ =^
i{'k=a-bf=W\{0} and ^b=([Jm. s^^ -^^ a unit of A.
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2.6. Next, we will study the difference between / y ^0-> /^ when the Hat effective
divisors b' and b of ^/S satisfy b'>b. By virtue of the construction of ̂  and ̂ y, there
exist canonical commutative diagrams:

^^ and A'^A.
^b y

Now we put ^b7b=ker0^-^). In particular, ^/b=^b- The we get exact
sequences

O^^'/b-^b'^A^O

(2.6.1) and

0^^/b^^b'^^b^O.

PROPOSITION 2.7. — // b is an effective divisor of ^/S, then ^^=n^G^ b/Gn,, s is a
successive extension ofG^ s's, G^ g's and ^ '̂s.

Proo/. — The proposition follows from 2.5 and 2.6 by induction on r.

2.8. For later use, we investigate more explicit structure of ^^^^m. b/Cm. s for a

divisor b of type as in the above proposition.

Let s^0, . . ., <4° : S-^ be given n, sections with s? (s) = s^ (s) =. .. =s^°(s); say
P,e^o c^ for each f = = l , . . . , r . We denote by b^ (f= 1, . . ., r) and b the formal sums

(2.8.1) b^ = s? + . . . + ̂  and b = ̂  b^.
1=1

Moreover, we put ^l) (r|) = Q .̂0 e ̂  <= ̂  for each (i, 7). Here we assume that

P^Pi if k^l
and

Q^^^ if (U)^(r,/).

We can draw the following figure:

If we take an affine open subset U=Spec(B) of ^ containing the points Pi, . . . , P ,̂

then since s^'s are closed subschemes of (^, these sections s^'s are contained in U. So,
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the section ^i) is defined by a prime ideal p^0 of B for each (i, j). Our assumption
implies that

(2.8.3) P^A^-.^P^Afc^BOAfe for f = l , . . . , r .

We denote p^ (g) k = W(pf) for each f. The equations (2.8.3) imply that

(2.8.4) ' p^+tB=p} i )+tB for any k, I,

which we denote by 9M(Pf). If we take U to be suitably small, then we can choose an
element xGJ^0^k such that x--^0* ® fc)(x) is a local parameter of SEtt(Pf) for each
f. Let x be an element of B lying over x by the canonical surjection B -> B (S\k. We
put x^ =x— ̂ °* (x) e p^0 for each (f, j). Then we can see that

(2.8.5) P^W

Obviously by the definition, we get

(2.8.6) B^niW^A+nP^.
», j

Moreover we get the isomorphy

(2.8.7) r(S,7i,G,.,/G,,s)=r(U,A)

= ( n ̂ . pT /(A + n wx /A x ̂  n (^^ p./n (^l)))>< /A x.
\ l=l / / I, J 1=1 I, J

Moreover, in our case,

(2.8.8) B=D(t, x^=(t, 4°)= . . . =(t, ^)=W(P,)

and

(2.8.9) ^ p .̂ = Bjoi (P^): regular local ring.

Hence, by the structure theorem of complete local rings, we get

(2.8.10) ^. ̂  = B^ ̂  ̂  A [[̂ l)]] O* = 1, . . ., ^).

Therefore, we can rewrite (2.8.7) in the following form:

r

(2.8.11) r(S, J^ n (Allx^Mn^'/A'.
1=1 i, J

Now we consider the A-algebra

A^lM]-^0),J
l. J
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and its spectrum

TIT : T = Spec (A [[xf|]/(n ̂ )) -^ S == Spec A.
i, J

Then obviously we get

F(S, (Ti^G,. T)=(A[[^]]/(^^)))X ^A-,
i. j

and the canonical injection G^ g -+ (^^(G^ j).
Here we put

(2.8.12) J^ •••• ̂  = (T^), (G,. T)/G., s.

Then we get the isomorphism

r

(2.8.13) ^b^(G,. s)'"1 x ]"[ ^(s¥)•••••^).
1=1

365

IV. The liftability of ^-cyclic coverings

Throughout this chapter, k denotes an algebraically closed field of characteristic p >0.

1. TAMELY RAMIFIED CASE. — 1.1. Let CQ be a complete non-singular curve of genus
g over fe. Go be a finite abelian subgroup of the automorphism group Aut(Co) of
Co. We denote by n : CQ -> Do : = Co/Go the canonical morphism, by bo the conductor
of Co/Do, and by J^ the generalized Jacobien variety of the singular curve Do^. Then
we get the canonical exact sequence

(1.1.1) (Eo) O^L^J^J=J(Do)^0.

Moreover, by Lang's class field theory, there exists an extension

(1.1.2) 0-.Go^J^J^O,

which gives the covering Co/Do:

Co"—————— J,

(1 .1 .3 ) | |

DO——————————————————————————————————— ^
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where the dotted arrow of the bottom is the natural rational map. The sequence (1.1.2)
can be decomposed into the following commutative diagram:

0 0 0

I 1 1
0 —No -Go —He-0

(1.1.4) t ̂  ^
0 - 4 -J,, -r -o

/o \ a \ ^o
0 -L,, -J.O-J -0.

\ \ \
0 0 0

We denote by Eo and Eo the second and the third horizontal lines in (1.1.4),
respectively. Moreover, we choose arbitrarily a lifting Q) over W(fe) of Do (cf. SGA 1,
Exp. Ill, Cor. 7.4.).

THEOREM 1.2. — Suppose Go has order n mth (n, p)=\. In this case, the conductor
r

bo is given by bo= ^ Pop where Poi's are mutually distinct ramification points (cf. [21],
i=i

Chap. VI, § 2, n° 12, Ex. 1°). We choose arbitrary sections 5i, . . ., 6y of the structure
morphism 3> -> Spec(W(k)) such that ^(s)=Poifor each i= 1, . . ., r ^here s is the special

r

point o/Spec(W(fe)). We put b= ^ $». Then there exists a lifting ^jQi of Co/Do oi^r

W(fe) with ramification locus b.

Proo/ — By our assumption, the exact sequence

(1.2.1) (E) Q^^^/^/=/(Q)^Q

is a deformation of the exact sequence Eo over W(fc) (cf. Ch. 11,2). Now we take the
decompositions into cyclic groups:

r! '•2 '•3

(1.2.2) No= ft ̂ , „ Ho= n Hbj.k, and Go= n ̂  ^
1=1 J = l 1=1

and we put

r! '•2

(1.2.3) ^= n ̂  w(fe), jr= n ̂  ww,
» = 1 j-l

'•8

^=n ^ww,(=1
where a^ bp c/s are the invariants of No, Ho and Go, respectively.
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Since the reduction maps

Ext1 ( / , Jf) -^ Ext1 (J, Jf,)

(1.2.4) ^ ^

n^wwwy-njwfe)i i
are bijective, there exists a unique lifting

(1.2.5) 0-^Jf-^-^-^O

of the third vertical line of (1.1.4), over W(k). In our case,

^(^.Ar^L^G^r1

and the reduction map
Ext

1
 (^,^)^ Ext

1 (L,,, No)

(1.2.6) 'i 'i
(nZ/a.y-^d-IZ/a,/-1

i i

is an isomorphism. Therefore, there exists also a unique lifting

(1.2.7) 0 -> ̂  -> ̂ -> ̂  -^ 0

of the first vertical line of (1.1.4) over W(fe). Moreover, since Ext2^/', JQ=0
(c^ Ch. II, 4), we get the exact sequence

(1.2.8) 0 ̂  Ext1 (/\ ̂ ) -^ Ext
1 (/\ ̂  ̂  Ext

1 (/\ ̂ ) -. 0.

Hence, there exists an extension

(1.2.9) (E') O-^^b-^'^O

such that /^(E')=g*(E). Now we take the special fiber E, of the extension E'. Since
the reduction map

(1.2.10) Ext1 (/\ ̂ } -^ Ext1 (r. No)

is surjective (cf. Ch. 11.2), and noting that

(1 .2 .11 ) Eo-E^Kerrt/o^Ext^r, No),
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there exists an extension E^eExt1^, JS^) such ^at E^=Eo-E,. Replacing E' by
E'+E^eExt1^', J^)» which we denote also by E', we get the commutative diagram

0 0 0

\ \ ^
o-^^r -^ ^ -^ jf ->o

^ 1 1
(1.2.12) o^J^^^-^0

^ I \
0-^ ̂ ^/^ / ̂ 0

\ \ \
0 0 0

whose special fiber is just equal to (1.1.4). Now we take the fiber product
^=Qx^/,.

^ - - - - -^-- - -^ ̂

(1.2.13)

Q - - - - - - - - - - - - - ̂

where the dotted arrow of the bottom is the natural rational map. Then obviously this
covering ^/^ is the required one.

Q.E.D.

2. PROOF OF THE MAIN THEOREM. — 2.1. We assume now G Q = < C T O > be a cyclic
subgroup of order p of Aut(Co). We put A =W(fe) R], where ^ is a primitive p-th root
of unity. Then we get our main theorem.

THEOREM 2.2. — There exists a lifting ^/Q> of the given p-cy die covering Co/Do, over A.

We will prove the main theorem in two steps: (1) Do=P^; (2) Do general. We start
with the following general lemma.

LEMMA 2.3. —Let (A, 901) be a discrete valuation ring. We put S=SpecA. We

denote by T| and s the generic and special points of S, respectively. Let n: ̂  -^ S be a
projective flat morphism with geometrically integral curves as fibres. Assume that
8(<^r\)=8(^s\ ^here g means the geometric genus. Then the normalization n'.^-^Sof^
has the non-singular models of^^ and ^5 as fibres.

Proof. — By the compatibility of the normalization and the localization, we get
^ =(^ )^, where the symbol - means the normalization. Hence the generic fibre ̂
is\ ncLsingular model of ^, and pa(^r)=g(^^ where ^ means the arithmetic
genus. Since the structure morphism n is flat, we get pa^r^^Pa^s)- Hence we get

the equality g^s^Pa^s)' on the other hand' there exists the q̂11211111^
Pa(^s)^8(^s)^g^s)' nence we get the equalities pa(<Vs)=g^s)=8(vs) which imply

that ̂  is non-singular.
Q.E.D.
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2.4. Let (Co, <Jo) be a pair of complete non-singular curve Co over k and an
automorphism CTQ of Co of order p. We assume that Co/<<Jo>=P^. Let

r

mo= Z ^-Poi [with Pof=(aof : l )eP^; ao»efe; ao^cXojO'^7')] be the conductor of
1=1

^o/P^ where (x:y) are the homogeneous coordinates of P^. It is well-known that n^2
and (Hi -1, p)= 1 for each i (cf., e. g., [21], Chap. VI, n° 12, Ex. 2°). Moreover, by the
theory of Artin-Schreier, there exists a function

(2.4.1) /M=^)/n oc-ao.y11"1,

with (x-QLo i ) ^ g ( x ) and deg (g)= ̂  (n,-1), such that Co can be given by the following
1=1

cartesian products:

Co————————— P^ - - - - - - - - - - G,.,

<I> | \ P '• x \———»" xP - x.
(2.4.2)

P; ———f-———— P,1 ------^^ G,,

In this case, the genus of Co is given by

(2.4.3) ^(Co)=(p-l)(-2+^n,)/2

(cf. Hasse [5], p. 43). Under these notations, we get the following.

PROPOSITION 2.5. — There exists a pair (̂ , CT) of a proper smooth curve ̂  over A and

an automorphism a of^ such that (̂ , CT)®A^^(CO, <^o).

Proof. - We choose elements a^, . .., a,. € A so that a, (mod TO) = ao»for each L Now
we put

(2.5.1) G^x,y)=y^g(x/y),

r

where N= ^ (^—1). Then we can choose a homogeneous polynomial
1=1

G(x, y)eA [x, y\ of degree N satisfying the following conditions:

(2.5.2) G (x, y) (mod W) = Go (x, y\

and the equation

(2.5.3) F(x, 1)==-1/^

has simple roots, where

(2.5.4) F(x,^)=G(x,^/n Oc-oc,^-1.
/ 1=1
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In fact, first we choose arbitrary a homogeneous polynomial Gi satisfying (2.5.2). Then
the equation (2.5.3) can be rewritten in the form:

(2.5.5) ^Gi(x, 1)+]~[ (x-a,)"1"1^.
i

Let
s

(2.5.6) ^Gi(x, ^n^-^)"1"1^-1) ]"[ H.W
i J= l

be the decomposition of the left hand side of (2.5.5) into monic irreducible factors
H^(xys in A [x]. Now we choose elements 0^(7 = 1, . . ., s; 1= 1, . . ., €j) of A so that

(2.5.7) H, (x - dji ̂ p) + H,. (x - ay y ^p) if (A 0 + (J\ 0.

Here we put

(2.5.8) G(x, ^^—IJn A H,(x-a,^)-n H,(x)4+Gi(x, 1).
^p (^=1 1=1 j=i )

Then obviously this satisfies our conditions.

Now we define ̂  by the cartesian product:

^——>P\

(2.5.9) |Q *

pj,—.PL

where \|/ is the morphism defined by Ch. 1.1. Obviously, the fibres F'^l, —^p) and
F~1 (1, 0) consist of N distinct points and r distinct points, respectively, and these points
are all the ramification points of ^/PjL [note (n»-l, ^)=1]. Hence, by Hurwitz' theo-
rem, we get

/ r \ /
(2.5.10) g(^)=(p-\) -2+E n, /2.

\ 1=1 / /

So, by (2.4.3), we get the equality

(2.5.11) ^(^)=^(^o)=^(Co)=(P-l)(-2+En,)/2.

Therefore, by Lemma 2.3, the normalization ̂ ^^ gives a lifting of the Galois covering
Co -^ P1 [i. e,, of (Co, Oo)] over A.

2.6. We pass to the proof in the general case. Since the unramified case is already
known, we may assume that Co/Do has ramifications, and so the conductor bo of Co/Do
is non-trivial. In our case, the conductor bo is of the type

r

(2.6.1) bo=E n,Po.,
f = i
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with n,^2 and (n.-1, p)= \(cf. [21], Chap. VI, n° 12, Ex. 2), and in the diagram (4.1.3),
No = Go and Ho = {0}. Now we choose arbitrary distinct elements do i , . . . , 0,0,6 k and
we put

(2.6.2)

Moreover we put

(2.6.3)

^-(ao.^eP,1 (i=l,...,r).

^ = £ • »i PO i [compare with (4.2.1)],
> = i

and take the singular curve (P^)bg. Then obviously we get a natural isomorphism

(2.6.4) JrtP^o)̂ ;,.

Hence, by (loc. cit.. Chap. VI, n° 11, Prop. 9.10), the first vertical line of (1.1.3)
determines a cyclic covering Co/P^ by the cartesian product:

0

Nn

(2.6.5)

Cn ——— Uo

A)

p1-—— jap^o)^-
Obviously the conductor of this covering is just equal to bo. By virtue of
Proposition 2.5, we can extend the diagram (2.6.5) over A:

0

N

(2.6.6)

V J5?'

^,
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where ^=(Z/p)^ By the proof of Proposition 2.5, there exist elements P^eA
(i == 1, . . ., r; j = 1, . . ., n,) such that when we put P;0 = (P^0:1) e P^

r

(2.6.7) .^(G^Ar'Xsn ^•••••^\
1=1

where S=Spec(A), x^^x-P^ and x is the affine coordinate of Pi (cf. Ch. Ill, 2.8.12,
2.8.13). By the isomorphy (2.8.13) of Ch. Ill, we can choose N sections Si , . . . , SN

N

of ^/S such that if we put b= ̂  s,., then the special fibre b,=bo (cf. 2.6.1), and
i= l

^ = ̂ . Hence we get the diagram:

0

\

^V

(2.6.8) \

^'

^

O^^^^^/^/^O,

where /^=/(S>^ and /=/{3>). By Ch. II, Cor. 4.4, we get the exact sequence

(2.6.9) 0 ̂  Ext1 (/, JQ ̂  Ext1 ( ,̂ S") ̂  Ext1 ( ,̂ ̂ ') ̂  0.

By the surjectivity of/,, we can complete the diagram (2.6.8) in the following way:

0 0

\ \

^===- <S

\ \

(2.6.10) °-f————/'-/^

s'^s'^/^/^o.
\ \
0 0

Let EeExt1 ( / , £") be the element corresponding to the extension

(2.6.11) Q - ^ ^ ' - ^ / ' - ^ / ^ Q .
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Since (/o)» (E,) = (/o)» (Eo), EQ - E, e Ext1 (J, Z/p). Then, by virtue of Ch. II, Th. 2.13,
there exists an element E'eExt^^, Wp)^ such that E;=Eo-E,. So if we replace
(2.6.11) by the extension corresponding to the element E+E'eEx^C/, J^f')
(NB. 2.6.11), then we get such a commutative diagram like (2.6.10), whose special fibre
is just equal to (1.1.4). We denote again this modified diagram by (2.6.10). Now we
take the fibre product

^=2x^/f'^——^ //

^——^A.

By the choice of /, the conductor of the generic fibre ^/^ is just equal to
^i(&i\. Hence, by Hurwitz' theorem,

(2.6.13) g(^)=^.g(Do)+(^-l)(-2+£n,)/2.

This is nothing but the genus of ̂  = Co. Therefore, by Lemma 2.2, the normalization ^
of V gives the required one.

Q.E.D.

Combining Theorem 1.2 and Theorem 2.2, we get the following.

COROLLARY 2.7. — Under the notation in 1.1, suppose that the Galois group Go=< CTQ >
is a cyclic group of order pm mth (p, m) = 1. Then there exists a lifting ( ,̂ o) of (Co, Oo),
over A.

Proof. - We put aoi=o-g and 002 =cr?. Moreover, we put Doi=Co/<Ooi X
^o2:==Co/^ao2 )• Then Co is nothing but the normalization of the cartesian product
Co:

(5.7.1) Dor^Do^.
-^Do^

By the theorem 2.6, there exists a lifting 3>^ ->Q! over A of Doi ->-Do. On the other
hand, by the theorem 1.2, we can choose a lifting 2^ -> Q> over A of DQ^/Q so that if a
point PeDo is ramefied in both extensions Doi/Do and Doi/Do, the ramification A-
section of 2^2 passing through P is one of 2^0). Now we take the fibre product

^^^x^^- Then obviously the geometric genera of the generic and the special
fibres of ̂  coincide. Hence by Lemma 2.3, the normalization ^ of ^ has the non-
singular models of the fibres of ,̂ and it is the one we wanted.

Q.E.D.
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