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ARTICLE

On the degradation mechanisms of quantum-dot
light-emitting diodes
Song Chen1, Weiran Cao2, Taili Liu3, Sai-Wing Tsang3, Yixing Yang2, Xiaolin Yan2 & Lei Qian2

The operating lifetime of blue quantum-dot light-emitting diodes (QLED) is currently a short

slab for this emerging display technology. To pinpoint the origin of device degradation, here

we apply multiple techniques to monitor the electric-field distribution and space-charge

accumulation across the multilayered structure before and after lifetime tests. Evident by

charge-modulated electro-absorption and capacitance-voltage characteristics, the excited

electrons in blue quantum dots (QD) are prone to cross the type II junction between the QD

emission layer and the electron-transporting layer (ETL) due to the offset of conduction band

minimum, leading to space-charge accumulation and operating-voltage rise in the ETL.

Therefore, unlike those very stable red devices, of which the lifetime is primarily limited by

the slow degradation of hole-transporting layer, the poor lifetime of blue QLED originates

from the fast degradation at the QD-ETL junction. Materials engineering for efficient electron

injection is prerequisite for the boost of operating lifetime.
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Combining the features of light-emitting quantum dots and
solution processing, QLED has become an emerging dis-
play technology potentially capable of 100% Rec.2020

color gamut, high luminance efficiency and low-cost manu-
facturing1–3. Thanks to the development of quantum-dot synth-
esis4–7 and device architectures8–10, lab-scale devices with
external quantum efficiency from 10 to 20% and emission
FWHM ~25 nm have been demonstrated for all the three primary
colors for full-color display10–12. Moreover, since the technology
is highly compatible with printed display, growing number of
display manufacturers have included QLED in their roadmaps13.

Despite of these achievements, QLED is still in the early stage
of research and development. To productize this technology,
researchers have to solve the issue of device degradation. Based
upon published materials, red, green and blue QLED devices
exhibit greatly different operating lifetime, therefore they do not
share a universal degradation mechanism. For the ease of com-
parison, the following referred data are converted to LT50, the
time at which the intensity of electroluminescence decays to 50%
of its initial value—L0= 1000 cd m−2, using the raw data and
provided acceleration factors. As reported, the lifetime of red
QLED has well exceeded 3000 h11,12,14,15; green devices are
behind but still capable of 1000 h14; blue QLED is the worst
among the three, delivering lifetime just over 20 h12,14,16. Com-
paring with a rival technology, e.g., printed organic light-emitting
diodes (OLED), QLED is far behind because inkjet-printed OLED
have reached LT95 (L0= 1000 cd m−2) of 7000 h for red, 9000 h
for green, and 500 h for blue17,18.

QLED devices have been using device structures developed for
OLED, but their degradation mechanism is worth separated study
due to the difference in materials. Unlike organic emitters, the
ionization potentials and electron affinities of light-emitting QDs
cannot be consistently characterized by existing methods10,19,20.
Photo-electron spectroscopy, with an analysis depth about 1 nm21,
has difficulty in resolving the electronic structure of QDs with
core-shell or gradient-alloyed nanostructures. Currently, QLED
devices are mostly formed with a structure of four functional
layers plus a pair of electrodes. The highest occupied molecular
orbitals (HOMOs) of hole-transporting layer (HTL) materials,
which were designed for OLED, cannot match the deep-lying
valence-band maximum (VBM) of Cd-containing QDs. Besides
that, the effect of hole mobility and material stability should be
considered. For example, poly(9-vinlycarbazole) (PVK, hole
mobility μh ~ 10−6 cm2 V−1 s−1)22 is widely used in blue
devices for high quantum efficiency12,23, however, due to the very
low carrier mobility and the instability of C–N bond24, it is known
for the negative impact on operating lifetime23. In contrast, poly
(9,9-dioctylfluorene-co-N-(4-(3-methylpropyl))diphenylamine)
(TFB) has better stability and hole mobility (μh > 10−4 cm2 V−1

s−1). Currently, the best lifetime of blue QLED is achieved using
TFB as HTL despite of the mismatch of VBM14,16. Electron-
transporting layers (ETL) are commonly made of zinc oxide
nanoparticles (NPs)9–11. Based upon the reported data, ZnO
NPs can efficiently inject electrons into the red QDs shelled
by CdS10,11 or composed of a gradient-alloyed structure
(Cd1−xZnxSe1−ySy)9,12. For green and blue QDs, which are com-
monly terminated with ZnS at surface, the electronic property is
less reported. Without experimental data, reported band diagrams
cannot agree on whether an Ohmic or Schottky contact is formed
between ZnO and QDs25–27. As the electron affinity decreases in
the sequence of red, green and blue QDs28, the injection of elec-
tron may be a major difference between blue and red devices. So
far, reports of QLED mostly cover the topics of luminescence
efficiency, lifetime values, and printing methods. To our best
knowledge, experimental study on the degradation mechanisms is
very limited.

To study the degradation mechanisms, here we choose a pop-
ular device structure composed of a transparent anode, a poly-
meric hole-injection layer (HIL), a polymeric HTL, an emission
layer (EML) assembled of red (Cd1−xZnxSe1−ySy) or blue
(Cd1−xZnxS) dots, an ETL assembled of ZnO NPs, and a top
cathode. We choose to focus on blue devices because it is currently
the short slab of the full-color QLED display. Red devices are
chosen as controls because they outperform the blue ones by more
than 100 times. In particular, we choose red (Cd1−xZnxSe1−ySy)
and blue (Cd1−xZnxS) QDs with a composition gradient from core
to surface (x, y increases) which enables highly efficient electro-
luminescence for all the red, green and blue devices12. As blue
QDs are chemically similar to those very stable red QDs (Sup-
plementary Fig. 1d), here we assume the short lifetime of blue
devices is not primarily due to the chemical instability of QDs.

Red and blue devices will be compared side by side throughout
the following section. We begin with the results of lifetime tests.
To determine the source of degradation in blue QLED, we then
analyze electro-absorption (EA) spectra for the organic HTL, the
QD emission layer and the ETL to spot possible space-charge
accumulation. Finally we combined the results of EA and
capacitance–voltage (C–V) characteristics to determine the field
distribution across the whole device. Unexpectedly, the slightly
degraded HTL, in which oxidized molecules (HTL+) are spotted,
is barely responsible for device degradation. On the contrary, the
ZnO-based ETL is concluded as the major source of operating-
voltage rise due to the charge transfer across the QD–ZnO
junction and charge accumulation in the ETL. Although the result
appears counter-intuitive since oxides are usually more stable
than organic materials, the offset of conduction band maximum
(CBM) across the ZnO–QD junction causes the unwanted charge
transfer.

Results
Device performance. Figure 1 shows the result of lifetime tests.
Blue devices with TFB HTL show LT50 (L0= 1000 cd m−2) of
23 h which make sure the devices do not significantly degrade
during our EA and C–V measurements. As mentioned, the poor
lifetime of PVK device (LT50 ~ 2 h, L0= 1000 cd m−2) is attrib-
uted to the instability of PVK. In comparison, the red device with
TFB HTL shows a lifetime (LT90, L0= 1000 cd m−2) more than
800 h, indicating the primary degradation mechanism is different
between red and blue devices. Other regular characterization
results of QLED are summarized in Supplementary Fig. 1.

Despite of the same device structure, red and blue QDs have
different CBM and VBM values. Figure 1c shows the J–F
characteristics of electron-only devices. Obviously, the sample
with red dots has much higher electron current than the sample
with blue dots, indicating a large difference of electron-injection
barrier. In contrast, the hole injection from TFB to QDs does not
follow the same trend (Supplementary Fig. 1c). These results
suggest the charge balance in blue devices is poor, but they cannot
accurately reflect the situation in a real QLED device. In the
following, we decide to apply more powerful techniques to
monitor each functional layer of red and blue devices before and
after lifetime tests.

Hole-transporting layer. From the study of OLED, we learned
that a hole-injection barrier results in space-charge accumulation
and operating-voltage rise in organic HTLs29,30. Due to the large
ionization potentials, the VBM of Cd-containing QDs cannot be
matched by the HOMOs of the HTL materials designed for
OLED, therefore the HTL is a possible source of degradation. In
this part, we choose to first discuss TFB which currently enables
competitive lifetime results (LT50 ~ 23 h, L0= 1000 cd m−2,
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Fig. 1a)16. The discussion of another commonly used HTL (PVK)
is presented in supplementary information.

To study HTL, we measured EA spectra for red and blue QLED
devices before and after lifetime tests. As seen in Fig. 1b, the red
devices made and tested in the same batch exhibit LT90 (L0=
1000 cd m−2) over 800 h. In the EA test, the sample was placed
under reversed bias to avoid charge injection. As shown in Fig. 2a,
the electro-absorption of TFB ranges from 400 to 450 nm. The
signal at longer wavelengths is from red QDs. Comparing the
LT100 and LT90 device, we find them resemble very similar
spectra except the TFB region, which will later be attributed to the
emergence of TFB+. In Fig. 3a, the in-phase signal scales linearly
with the applied DC bias, suggesting a typical Stark effect of TFB
which is described as

ΔαðλÞ ¼ � 1
d
� ΔTðλÞ
TðλÞ / Imχð3Þ � ½EðtÞ�2

¼ Imχð3Þ � 2EdcEacsinωt þ
1
2
E2
accos 2ωt

� � ð1Þ

wherein λ is the wavelength of the probing light; α is the
absorption coefficient; T is the transmission; ΔT is change of
transmission due to electric field; χ(3) is the imaginary part of the
third-order susceptibility of the probed material31. A sinusoidal
reference field Eaccosωtð Þ is superimposed upon the DC bias
(Edc) for modulation and low-noise detection.

As seen in Fig. 1a, the blue devices made and tested in the same
batch show LT90 (L0= 1000 cd m−2) around 4.5 h and LT50
(L0= 1000 cd m−2) of 23 h. Figures 2b and 3b, respectively,
shows the EA spectra and its bias dependence (wavelength fixed
at 415 nm) of blue QLED devices. The EA signal from blue QDs
ranges from 430 to 470 nm which is the energy of optical
bandgap. Similar to what observed in the degraded red QLED
device, the in-phase signal from TFB, 415 nm in this case, is
relatively strengthened, resulting in a red-shift of this feature.
Spectrum change like this has been reported for small molecule
OLED wherein a portion of HTL molecules are permanently
oxidized (HTL+) after lifetime test due to the non-Ohmic contact
between HIL and HTL29. Since the optical transition energy of
HTL+ is smaller that of the corresponding HTL molecule, the
resultant EA spectrum appears to be red shifted comparing to

that of a LT100 sample. In our test, the concentration of space-
charge is modulated by the reference bias Vac and therefore it
contributes charge-modulated signals in addition to the Stark
shift29,32,33:

Δα ¼ � 1
d
� ΔT
T

¼ n � σ ð2Þ
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wherein n is the concentration; σ is the absorption cross section of
the charged species. Per Eq. 2, the charge-modulated signal is
proportional to n, thus a heavily degraded HTL layer may exhibit
a very different spectrum from that of a fresh sample. Also, since
space charges cannot stay in-phase with the modulating bias—
Vac, the growth of quadrature signal and a non-linear voltage
dependence should occur simultaneously. Reviewing the data in
Fig. 2, we find that although the emergence of TFB+ can be
spotted, the quadrature signal due to TFB degradation is
negligible (see Supplementary Fig. 2 and the arrowed part in
Supplementary Fig. 4a). Therefore, the in-phase signal from TFB
remains linear as a function of applied bias (Fig. 3a, b), suggesting
typical Stark effect with negligible charge-modulation.

In addition to spectra analysis, the signal strength of the Stark
effect can be used to study the electric-field distribution across the
multilayered devices34. As shown in Figs 2a and 3a, the signal
strength of TFB’s Stark effect increases slightly after the LT90 test
for the red device, suggesting small voltage rise across the HTL.
Per Eq. 1, the contribution of Edc is in the 1st harmonic portion.
When the HTL reaches flat-band condition, the voltage
consumption increases gently from ~1.6 to ~1.7 V after the
LT90 test, suggesting mild degradation in the HTL. In
comparison, as shown in Figs 2b and 3b, the field distribution
in the HTL changes differently after the LT90 test. First, TFB’s
signal strength decreases significantly after the LT90 test of the
blue device, indicating reduced voltage consumption across
the HTL. For a degraded blue QLED device, such voltage drop
in the HTL has to be over-compensated by the voltage rise across
other functional layers, i.e., the QD EML and the ZnO ETL,
because the operating-voltage of the whole device increases
significantly. Second, as marked by the intercept on the x-axis, the
voltage bias at which the HTL reaches flat-band condition is
almost unchanged despite of the fast degradation, again
confirming that the HTL is barely degraded after the LT90 test.

The result is also consistent with our finding that the hole
injection from TFB to red and blue QDs is not significantly
different (Supplementary Fig. 1c).

Combining Figs 2 and 3, the emergence of TFB+ in the HTL can
explain the slow degradation (LT90 > 800 h) of red QLED devices.
Further effort to improve the lifetime of red QLED should focus on
the HTL–QD junction15. For the blue QLED, the conclusion
depends on specific HTL materials. When the HTL is made of
PVK, although the Stark shift of PVK (Eg ~ 3.6 eV) is out of the
detection range (Supplementary Fig. 4b and c), the incorporation of
PVK reduces the operating lifetime (LT50 ~ 2 h, Fig. 1a). When
TFB is used instead, LT50 is improved to 23 h. Nevertheless, our
results show that the luminance decay is not primarily determined
by the degradation of HTL. As to be shown in the next part, other
degradation mechanisms should be considered.

Electron-transporting layer and emission layer. ZnO has a
bandgap energy over 3.4 eV, which is greater than our limit (3.1 eV)
for low-noise detection, therefore a direct measurement of ZnO’s
Stark shift cannot be done. In addition, the minimum-required
photon energy for persistent electron photoconductivity (PPC, or
persistent increase of capacitance) of ZnO is reported to be 3.1 eV35,
therefore charge-modulated signal due to PPC effect is not expected
either. We decided circumvent the issue by measuring the EA
response of QDs and finishing the analysis using capacitance-
voltage characteristics. To conclude the effect of ZnO using EA
experiments, we included not only QLED devices with regular
structures, but also two sets of specially designed samples—one with
a pair of electrodes sandwiching a single layer of (red or blue) QDs
and the other with electrodes sandwiching a (red or blue) QD layer
plus an additional layer of ZnO.

The EA spectra of red (Cd1−xZnxSe1−ySy) QDs without and
with the addition of a ZnO ETL are plotted in Fig. 4a, b,
respectively. Similar to single-compound QDs, the feature at the
optical bandgap (1st excitonic level) is due to the Stark shift of
QDs36,37. As detailed in supporting materials (Supplementary
Fig. 5), additional oscillating features at shorter wavelength are
attributed to higher excitonic levels38–40. As seen, the incorpora-
tion of ZnO does not change the profile of in-phase spectra. The
difference in the signal strength is due to the increase of built-in
potential (Vbi). For both samples, the quadrature signal is
negligible throughout the spectra, indicating that the junction
between red (Cd1−xZnxSe1−ySy) QDs and ZnO cannot generate
charges for electric-field modulation. With the probing wave-
length fixed at 570 nm, at which the feature is attributed to Stark
shift, the bias-dependent in-phase signal is plotted in Supple-
mentary Fig. 3. The amplitude scales linearly with the applied
bias, suggesting negligible charge-modulation effect.

The EA spectra of blue (Cd1−xZnxS) QDs without and with an
additional ZnO ETL are plotted in Fig. 4c, d, respectively. Around
the optical gap energy of blue (Cd1−xZnxS) QDs, two peaks can be
resolved in both figures. Comparing to the samples of red QDs, the
in-phase signals also increase with the addition of ZnO, however, the
EA spectra show very different characteristics. Without the ZnO
layer (Fig. 4c), the response of blue QDs is in-phase with the
modulating field—showing negligible quadrature signal. With
the addition of a ZnO layer (Fig. 4d), the quadrature signal around
the optical bandgap grows by more than an order of magnitude due
to the charge-modulation effect which is discussed later. The bias
dependence measurement at given probing wavelength was further
carried out to confirm the result of the spectra analysis. Without
ZnO (Fig. 5a), the linear relationship between the in-phase signal
and applied bias is maintained with a probe beam at the wavelength
of 455 nm, indicating that the EA response is dominated by the
effect of Stark shift. With the addition of ZnO (Fig. 5b), the −ΔT/T
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vs. bias relationship is completely irrelevant to Eq. 1. Instead, both
in-phase and quadrature signals (at 455 nm) resemble characteristics
of a leaky capacitor wherein the amount of charges for field
modulation reduces when E field increases. Therefore, the addition
of a ZnO layer to blue QDs introduces strong charge modulation
effect.

The contrasting effect of ZnO ETL on red and blue QDs is also
observed in standard QLED devices. First, as seen in the spectra
of Supplementary Fig. 2, red devices show no sign of quadrature
signals before or after the lifetime tests, while blue devices with
either TFB or PVK HTLs (Supplementary Fig. 4a and c) shows
strong quadrature spectra around the wavelength of 460 nm,
which is consistent with Fig. 4d. Second, as shown in Fig. 5c, d,
the bias dependence of QDs’ EA signal is measured for LT100
and degraded QLED devices. For the red QLED devices after the
LT90 test (Fig. 5c), the signal strength of red QDs increases

slightly comparing to that of the LT100 control device. Similar to
the observation from Fig. 3a, the voltage across the red QD layer
does not increase significantly during degradation, which is
consistent with the result that red devices experience marginal
operating-voltage rise after the LT90 test. The linear −ΔT/T vs.
bias relationship and negligible quadrature signal confirms there
is no charge modulation across the QD–ZnO junction in red
QLED devices. In Fig. 5d, the bias dependence of in-phase and
quadrature signal is consistent with that in Fig. 5b, demonstrating
strong charge modulation in the standard blue QLED device at
both negative and positive bias. The corresponding spectra taken
at Vdc=−1 V are shown in Supplementary Fig. 4a. Here, we need
to point out that, although the charge modulated signal is linked
with device degradation, the transfer function from |
−ΔT/Tquadrature| to the luminance degradation cannot be
established at this stage because the amount of charges available
for field modulation is cumulatively determined by the internal
electric field across the QD–ZnO junction and the generation of
charged species. In heavily degraded samples, the internal field at
given bias increases significantly due to the increased operating-
voltage. As a result, the −ΔT/T vs. bias curve is translated along
the voltage axis by +2 to +3 V (Fig. 5d), which is consistent with
the operating-voltage rise during the lifetime test, leading to
reduction of quadrature signal at given bias.

Summarizing the results of Figs 4 and 5 into Supplementary
Table 1, we notice that the charge modulation features, either in
the spectra (Fig. 4d) or bias dependence plot (Fig. 5b, d), only
occur to the samples with both blue QDs and ZnO ETL. To
explain the origin of charge modulation, electron-transfer from
blue (Cd1−xZnxS) QDs to ZnO NPs should be discussed. The
charge-transfer process between QDs and oxides is known as a
charge-generation mechanism in QD photovoltaic devices41. For
QLED, the QD–oxide junction is usually linked with single-dot
emission intermittency (known as blinking), Auger recombina-
tion and reduction of photoluminescence42,43. In specific, n-type
materials like ITO44, TiOx nanoparticles45,46 and p-type materials
like NiOx nanoparticles47 can suppress the blinking of single dot
at the expense of the photoluminescence quantum yield.
Proposed blinking dynamics begin with electron (or hole)
transfer from QD to n-type (or p-type) oxide (nanoparticles)
and leave the QD in the positively (or negatively) charged off
state; a back-transfer of charge is needed to turn the single dot on.
For the case of QD–ZnO, reduction of photoluminescence was
also observed and the model of electron transfer was proposed
correspondingly10,11. As known, although the accurate value
remains arguable, the electron affinity of blue (Cd1−xZnxS) QDs
is significantly smaller than that of red QDs due to the increased
bandgap energy and the small value of m�

e=m
�
h, wherein m�

represents effective mass. The resultant CBM offset across the
QD–ZnO junction is reflected by the J–F characteristics of
electron-only devices in Fig. 1c. From these curves, although we
cannot extract the barrier-height between QD and ZnO using
models like Richardson–Schottkly transport48 and Arkhipov’s
theory49,50 which consider one metal–semiconductor junction,
band diagram in Supplementary Fig. 6 suggests that ZnS at
surface leads to substantial CBM offset which is enough to result
in electrons transfer from blue dots to ZnO. For the same reason,
the back-transfer of electrons is not favored, eventually resulting
in charge accumulation in ZnO. Except for the offset of CBM
energy, such charge transfer and trapping can be further
facilitated by the structure and size of QDs. For example, the
QDs with gradient-alloyed structure have a soft confinement of
electrons which increases the chance of electron tunneling to the
surface of QDs. Also, the blue QDs has a similar diameter to ZnO
NPs (~5 nm), therefore ZnO NPs can get closer proximity to blue
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QDs and increase the chance of charge transfer. Therefore, we
can describe the charge modulation effect as following. First, upon
excitation of a blue dot, subsequent charge transfer leaves blue QDs
positively charged and ZnO negatively charged, and their carrier
concentration is modulated by the reference bias (Vac). Then, the
accepted electrons in ZnO experience trapping and de-trapping,
which slows down the response of charges to the modulating bias
and gives rise to the strong quadrature signals.

Through the spectra analysis (Fig. 4c, d) and the study of bias
dependence (Fig. 5), we conclude that the insertion of a ZnO NPs
layer results in charge transfer across the blue QD–ZnO interface
as long as the blue QD is excited, resulting in strong charge-
modulated signals. In the following, it shows that the charge
transfer process is responsible for the voltage rise in ETL. Again,
these effects are only observed in samples with both blue QDs and
ZnO. The consistence between EA and C–V results should
explain the different degradation mechanisms between red and
blue QLED devices.

Charge balance. C–V is an effective way to evaluate the charge
balance in QLED. To minimize the contribution from (deep level)
traps, a modulating frequency at 100 kHz is used. We are able to
obtain smooth curves even from heavily degraded devices. Under
reversed bias, the whole device can be roughly treated as three
planar capacitors connected in series, with each capacitor corre-
sponding to the depleted HTL, QD layer and ETL51. When the
applied bias turns to positive, a charge-unbalanced device will let
the fast carrier inject first, i.e., electrons (holes) in red (blue)
QLED, resulting in capacitance rise. The applied voltage con-
centrates on the transporting layer of the slow carrier, i.e., HTL
(ETL) in red (blue) QLED, until the bias is high enough to cause
efficient radiative recombination and capacitance drop. Given
that both red and blue QLED are charge-unbalanced systems,
measuring C–V is an adequate method to evaluate the field
distribution.

The C–V results of standard red and blue QLED devices are
plotted in the same semi-logarithmic scale. In Fig. 6a, the
capacitance values of red QLEDs stay almost constant until
the bias of 1.5 V and then decreases significantly after 2.5 V. The
relative constant value of 3.2 nF roughly matches the geometric
capacitance of HTL (4.2 nF), QD layer (>20 nF), and ETL (ZnO,
25 nF) connected in series. In a red QLED device, electron
injection is more efficient than that of holes, therefore the
capacitance rise at 1.8 V means that the HTL (TFB) is the only
layer remaining depleted and other layers have reached flat band
and charge injection. In fact, the peak capacitance value of 4.0 nF
agrees with the geometric capacitance of a 40 nm-thick TFB layer.
The bias at which capacitance starts to decrease sharply marks the
occurrence of efficient radiative recombination. A fresh red device
has a luminance turn-on voltage of at 1.6 V, however, reasonable
electroluminescence efficiency (~15 cd A−1) is not reached until a
bias of 2.4 V12, which is consistent with our C–V data. After the
LT90 test (Fig. 5c), the red device experiences a slight increase of
capacitance-transition voltage for about 0.1 V due to the same
voltage rise in the HTL. Combining the result with that in Fig. 3a,
we can conclude that slow degradation of red QLED originates
from the mild degradation of HTL.

The C–V results of blue QLED devices (TFB as HTL) are shown
in Fig. 6b. Under reversed bias, the capacitance is almost the same
as that of the red device due to similar device structure and
materials. For the LT100 device, capacitance starts to increase at
2.8 V, and the peak value reaches 5.2 nF. At a modulating
frequency of 100 kHz, such an increase of capacitance is unlikely
due to a depleted organic HTL. In fact, assuming the injection of
holes is more efficient than that of electrons, the HTL in the blue
device reaches the flat-band condition in prior to the ETL, leaving
voltage concentrated across the ETL. This is consistent with the
result of single-carrier devices (Fig. 1c and Supplementary Fig. 1c)
and the results of EA measurements (Fig. 2). When the blue
device degrades, the C–V characteristics change significantly. In
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Fig. 6b, the capacitance of the LT90 sample turns on at 3.2 V and
peaks at 6.6 nF. For the LT50 sample, the turn-on voltage and peak
capacitance further increases to 3.3 V and 24 nF, respectively. The
big shift of transition voltage is an evidence of significant charge
accumulation due to inefficient charge transport, which is similar to
the case of small-molecular OLED51,52. Further, the very high
capacitance confirms that the injection holes is more efficient that
electrons, and the charge accumulation occurs in the ETL. Here,
with a bulk dielectric constant (100 kHz) of εr ~ 3053, volume
fraction of solids ~0.7, and a device area of 4mm2, the geometric
capacitance of a 30 nm-thick ZnO NPs layer is roughly 25 nF,
which is in good agreement with the peak capacitance of our
LT50 sample. When the sample is biased to its peak capacitance, the
ZnO ETL is the only functional layer that remains depleted. In blue
QLED devices, the large barrier for electron injection and the charge
transfer at the QD–ZnO interface result in significant charge
accumulation during continuous driving, leading to increased
voltage drop across the ETL and device degradation. For blue
devices with PVK HTL (Supplementary Fig. 7), the carrier injection
of holes and electrons are both inefficient, resulting in even field
distribution. Since the degradation due to PVK is much faster than
that due to ETL, the increase of capacitance is not very significant
before the failure of device.

Discussion
To pinpoint the mechanism of device degradation in red
and blue QLED, measurements of electro-absorption and
capacitance–voltage characteristics are carried out. First, through
the analysis of EA spectra, the emergence of HTL+ was spotted in
both red and blue devices after their lifetime tests, but the
operating-voltage rise across the HTLs is insignificant. Therefore,
HTL is responsible the slow degradation of red devices, however,
it is not the culprit for the poor lifetime of blue devices. Next,

evident by the results of electro-absorption and capacitance
measurements, the voltage drop across the ETL (ZnO) was found
to increase significantly after the degradation of blue QLED
devices. Upon the formation of QD–ZnO junction, ZnO NPs
become the acceptor for the excited electrons in blue (Cd1−xZnxS)
QDs under the driving force of CBM offset, resulting in charge
transfer and accumulation. Finally, capacitance–voltage char-
acteristics of blue QLED confirm that the voltage consumption
across the ETL increases significantly during the lifetime test. To
solve the lifetime issue, it is necessary to develop ETL and QD
materials that enable smaller CBM offset.

Methods
Preparation of materials. The blue (Cd1−xZnxS), and red (Cd1−xZnxSe1−ySy)
quantum dots used here were prepared according to methods reported previously
in the literature, with appropriate modifications54,55. ZnO nanoparticles were
synthesized using a solution-precipitation process as reported in the literature9.
For a typical synthesis, a solution of zinc acetate in dimethyl sulphoxide (DMSO,
0.5 M) and 30 ml of a solution of tetramethylammonium hydroxide (TMAH) in
ethanol (0.55 M) were mixed and stirred for 1 h in ambient air, then washed and
dispersed in ethanol for device fabrication.

Device fabrication and characterization. Standard QLED devices were fabricated
by spin coating on glass substrates that were commercially pre-coated with an
indium-tin oxide anode (sheet resistance ∼25Ω□−1). The substrates were cleaned
consecutively in ultrasonic baths of deionized water, acetone and 2-propanol for 15
min each, and were then exposed to an ultraviolet ozone ambient for 15 min. The
substrates were spin-coated with PEDOT:PSS (AI 4083) and baked at 150 °C for 15
min in air. The coated substrates were then transferred into a nitrogen-filled glove
box for spin coating of layer of TFB, quantum dots and ZnO nanoparticles. TFB
was purchased from American Dye Source, and used as supplied. The TFB layers
were spin-coated at 4000 r.p.m. for 30 s using an 8 mgml−1 solution in chlor-
obenzene, followed by baking at 150 °C for 30 min. Quantum dots and ZnO
nanoparticle layers were then spin-coated and baked at 70 °C for 30 min. The
optimized quantum-dot layer thicknesses were ∼16 nm for red (15 mgml−1, 2500
r.p.m.), ∼20 nm for green (18 mgml−1 quantum-dot solution, 2000 r.p.m. spin
speed), and ∼20 nm for blue (18 mgml−1, 2000 r.p.m.), as determined from an
efficiency comparison of devices with various quantum-dot layer thicknesses.
Depending on the emitting wavelength, the thickness of the ZnO is controlled
between 30 and 65 nm by changing the solution concentration and spin speed.
Finally, the multilayer samples were loaded into a high-vacuum chamber (base
pressure ∼1 × 10−7 Torr) for deposition of an Al cathode (100 nm), patterned by a
shadow mask to form devices with an active area of 4 mm2. All devices were
encapsulated in commercially available ultraviolet-curing epoxy and cover glass.
For the lifetime test, the encapsulated samples were measured under ambient
conditions using a commercialized lifetime test system (Guangzhou New Vision
Opto-electronic Technology Co. Ltd.).

Electro-absorption. The samples were kept inside a cryostat (Janis VPF-100, liquid
nitrogen) with a pressure of 10−3 Torr. A monochromatic parallel beam probes the
sample through the ITO side with an incident angle of 45 and is reflected by the
back electrode. To modulate the internal electric field for low-noise detection, a
sinusoidal voltage with frequency of 1 K Hz was superimposed to the DC bias,
producing a periodical bias in the form of VðtÞ ¼ Vdc þ Vacsinωt, wherein ω is the
modulating frequency. When measuring the electro-absorption spectra, the DC
bias is negative to avoid carrier injection into the devices. The back-reflected signal
got further absorbed by the organic layer before being collected by the photo-
detectors. Calibrated silicon and germanium photodetectors were used to detect the
reflected signal. A current amplifier and a lock-in amplifier (SR830) were con-
nected to the detector and locked to 1st harmonic frequency for low-noise mea-
surement. The final signal was the ratio of the signals with and without the
modulation of Vac. To lower the noise, the time constant of the lock-in was set at
1 s. Each data point is averaged from 16 measurements.

Capacitance–voltage characterization. Measurements were carried out with an
Agilent 4282A precision LCR meter and the data was automatically acquired by a
computer. To avoid the effect of trapped charges, the modulating frequency and
the modulating amplitude is 100 kHz and 20 mV, respectively.

Data availability
Source data are available from corresponding authors upon request.
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