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Abstract

This paper presents an analytical approach to model fault-tolerance in P2P overlays, represented as complex
networks. We define a distributed protocol for managing the overlay and reacting to node faults; peers try to
maintain a desired degree andmake (accept) requests for creating links only if their actual degree is lower than
their desired degree. Based on the protocol, evolution equations are defined and manipulated by resorting to
generating functions. Obtained outcomes provide insights on the nodes’ degree probability distribution. We
study different networks, characterized by three specific desired degree distributions, i.e. fixed desired degree,
random graphs and power law. All these networks are assessed via the analytical tool and simulation as well.
Results show that based on the provided mathematical model, it is possible to properly tune the average
attachment rate at peers so as they are enabled to maintain their own desired degree.
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1. Introduction

The mechanics of complex networks represent an
insightful research domain for those that try to
understand the behavior and the characteristics of a
network by looking at its general (statistical) properties.
Basically, the focus concerns the organization and
the interaction among multiple nodes in a dynamical
system [1–4]. The theory and methods of analysis can
be applied in the same fashion to existing real and
abstract networks belonging to several domains, like
biology, computer science, physics, sociology and so on
[5–10]. Examples of statistical properties of common
interest are the probability that nodes have a certain
degree (i.e. the number of nodes connected to them),
the probability that a node has links with the friends of
its friends (which allows to understand how much the
network is organized in clusters), the average number of
second (third, etc.) neighbours (which provides insights
on the size of the network component of a given
node), etc. All these metrics reveal some features of
a given network, such as its ability to disseminate
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information and/or propagate viruses, its resilience to
nodes’ departure, its connectivity [4, 11–15].
As for computer networks, modeling Peer-to-Peer

(P2P) overlays as complex nets allows to understand
how much these overlays are reliable, scalable and
tolerant to faults. In particular, in a network, nodes
correspond to peers while edges represent a communi-
cation connection between two peers [16–23].1

A P2P network is characterized by specifying: i)
the system model, i.e. the environment of execution
of the peers, together with the types of faults they
are subject to; and ii) the distributed communication
protocol, i.e. how peers interact with other nodes in
the net. In this work, we consider self-organizing P2P
architectures composed of a fixed set of peers that
may fail during the evolution of the network. Node
failures are modeled by resorting to an average failure
rate. A node failure does not cause the complete
removal of the peer from the network. Rather, the
peer loses all its links. Based on the protocol we
define, peers react to these disconnections by actively

1Since nodes of the modeled network represent peers in the
distributed system, hereinafter the terms node and peer will be used
as synonyms.
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creating novel links with their non-neighbours, trying
to maintain a specific desired degree. The overlay
is managed in a P2P fashion. Hence, it is assumed
that a self-organizing mechanism is employed to
govern the network dynamics, i.e. local decisions are
taken by peers to manage disconnections, without the
intervention of a central entity [18]. The procedure
related to the discovery of a non-neighbour and the
creation of a novel edge is periodically executed, based
on a random process controlled by a specific rate.
The novelty of this proposal is that it takes into

consideration the dynamic behavior of peers. Classic
works on complex networks concentrate usually on
node removals, and do not include counter-mechanisms
corresponding to a reconfiguration of the network
[4, 6, 11, 12]. Indeed, a “passive” behavior models
perfectly a viral propagation of diseases in human
contact nets, denial of services in computer nets, and
general sudden attacks in a network that does not
evolve during the period of the attack (or rather,
its evolution proceeds at a pace significantly slower
than the attack). Conversely, this kind of approaches
cannot model the typical interactions of self-organizing
P2P architectures, with peers being programmed to
dynamically react to possible node faults.
Based on the system model and the distributed pro-

tocol executed by peers, we provide an analytical model
describing the evolution of the degree probability of
nodes. This is accomplished by introducing an infinite
set of differential equations. Then, these equations are
turned into a single differential equation by exploiting
generating functions. Its solution allows to calculate the
nodes’ degree probability.
We compare the mathematical model with results

obtained from a simulative assessment that mimics
the corresponding distributed protocol. We vary the
desired topology of the network, i.e. the nodes’
desired degree distribution. Specifically, we study:
i) networks where all nodes have the same desired
degree, ii) random graphs, iii) scale-free networks.
Results show that the two different (theoretical and
simulative) approaches provide similar outcomes,
hence confirming the correctness of the proposal. Not
only, they provide insights on the degree that peers
succeed to maintain in presence of node faults. In fact,
being the network continuously affected by node faults,
and being nodes able to create novel links based on
local (self-regulated) choices, it turns out that peers can
maintain their own desired degree only when a high
attachment rate is utilized (w.r.t. the failure rate).
Clearly enough, the requirement that peers can

maintain an actual degree, which is near their desired
degree, is mandatory to guarantee that the P2P network
under consideration is structured following its desired
topology, and thus that it has certain specific properties
that characterize the network itself and the way its

nodes may interact. With this in view, the final
function provided by the proposed analytical tool can
be exploited to identify a proper attachment rate peers
should have, based on the experienced node failure rate,
in order to maintain the desired degree topology. For
instance, our results confirm that, with an appropriate
choice of the attachment rate, scale-free topologies
can be maintained by using the distributed protocol,
despite random node faults [3, 4]. Moreover, once
the degree distribution has been calculated, given the
system settings, it is possible to estimate the average
number of second (third, etc.) neighbours, the average
size of the component a peer is connected to, and the
network diameter.
The remainder of the paper is organized as follows.

Section 2 presents the distributed protocol peers
execute. Section 3 describes the analytical model of
such protocol. In Section 4, results coming from a
simulation study are outlined. These outcomes are
compared with the numerical results obtained through
the presented model. Finally, Section 5 provides some
concluding remarks.

2. The Distributed Protocol

Let consider a P2P system where communication amo-
ng peers occurs through an overlay network. The system
is faulty, in the sense that nodes may fail during their
interactions. When a node failure happens, the peer
loses all its links with its neighbours. After the failure,
the peer is instantaneously able to create novel link
connections, i.e. the time needed by the peer to restart
its local system and re-join the network is considered as
negligible.
In the system we consider node faults only, while

we neglect link faults. This is justified by the fact that
in a P2P system it is more likely that a peer fails,
rather than a single edge of the graph permanently
fails. A node may fail because of a voluntarily action
taken by the user that decides to leave the network,
or when the peer remains isolated from the rest
of the network, due to technical problems which
prevent that node to communicate with its Internet
Service Provider, or when it loses its (wireless) network
coverage (hence losing all its connections with the
rest of the world). Conversely, while still possible, the
removal of a single link in a P2P overlay network
(with both peers remaining active) is less frequent.
Of course, TCP/UDP connections among two hosts,
representing the transport-layer implementation of a
link among two peers, may be interrupted due to
several reasons. However, from a networking point of
view, several techniques can be exploited such as, for
instance, application/session-layer protocols in charge
of opening a novel transport-layer connection between
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Algorithm 1 Distributed Protocol: Attachment Process

vars: actualDegree: current degree of the node
dd: desired degree of the node

precondition: actualDegree < dd

found← false;
while (¬ found) do
p← NonNeighbourDiscovery();
sendLinkCreationRequest(p);
ans← receiveAnswer();
if (ans = “ok”) then
found← true;
createNovelLink(p);
actualDegree ++;

end if
end while
waitRandomTime();

the two peers, which augment the reliability of an end-
to-end communication [24, 25].

Due to the dynamic and evolving nature of the
network, we enable peers to create novel links with
non-neighbours; this is accomplished through a local,
random choice taken by the peer. Peers have a specific
chosen degree and try to maintain it during the system
evolution, in spite of nodes’ faults. In substance, nodes
select a desired degree (dd), whose value depends on the
specific characteristics of the node, e.g. computational
and network capacities, role of the node in the network.
Whenmodeling the network, dd values will be assigned
to nodes by utilizing some statistical distribution. This
permits to characterize the desired topology of the
network. As an example, for the sake of load balancing,
peers’ dds could be restricted to assume a value within
a limited range (or a single value). Instead, the use of
other desired degree distributions, such as power laws
(typical of scale-free nets), would mimic hybrid multi-
level P2P networks with the presence of hubs/super-
peers.
During the system evolution, peers that have an

actual degree, lower than their dd, periodically start a
discovery process to find a novel neighbour. We assume
that when a peer asks another one to establish a novel
link in the overlay, the latter refuses it only if its actual
degree is equal to its dd. Otherwise, it accepts the link
creation.
The distributed protocol discussed above is sum-

marized in Algorithms 1-2. Basically, when the actual
degree of a node is lower than dd (the precondition
in Algorithm 1), a discovery process is activated to
find novel neighbours. Algorithm 1 does not report
a specific implementation of the discovery of a non-
neighbour, since several alternatives are possible, not

Algorithm 2 Distributed Protocol: Upon Request for a
Novel Link
vars: actualDegree: current degree of the node

dd: desired degree of the node

precondition: message received for link creation

p← sendingPeer();
if (actualDegree < dd) then
sendPositiveAnswer(p);
createNovelLink(p);
actualDegree ++;

else
sendNegativeAnswer(p);

end if

strictly dependent on the protocol under consideration.
We just basically assume that the selection of the new
neighbour is accomplished by randomly picking up a
peer. Put in other words, a distributed oracle (or some
approximation of it, obtained through local interac-
tions) is employed which provides the complete list
of active peers. Possible solutions that factually imple-
ment such a discovery service range from the use of a
single (centralized or distributed) lobby service, simple
discoverymechanisms a-la Gnutella, up tomore sophis-
ticated P2P approaches, like those based on Distributed
Hash Tables (DHTs) [26, 27]. Once a novel peer has been
found, a request is sent to that peer. If a positive answer
is received, a novel link is created. Otherwise, the node
looks for another peer. Note that in the pseudo-code
a random sleep has been inserted, to state that such
procedure should be periodically executed while the
node seeks to reach an actual degree equal to its dd.
Algorithm 2 is executed upon request for a novel link

from a non-neighbour. The behavior is quite simple, if
the receiving node has an actual degree lower than its
dd, it accepts the request and a novel link is created.
Otherwise, it refuses the request.
Summing up, the protocol is quite general. By

tuning its parameters, we can generate very different
topologies, with nodes very (rather than nothing)
much reactive to changes in their neighborhood.
It is interesting to understand how this simple,
self-organizing distributed protocol is effective in
maintaining the system desired topology, based on the
variation of the parameters characterizing the protocol.
The next section will deal with this issue.

3. Modeling the System as a Complex Network
In this section, we show that the presented system
can be modeled as a complex network, through the
use of differential equations and generating functions.
Nodes’ failures are represented using an average rate
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ϕ. Moreover, we assume that the rate of creation of
a novel link is controlled by the parameter α. It is
the difference between α and ϕ that determines how
peers react to failures. The attachment and failure rates
α,ϕ do not depend on any specific characteristics of
the peers. Rather, random choices are made, being α,ϕ
not dependent on the node degree. This means that
the model does not consider any form of preferential
attachment, which would privilege nodes with higher
(lower) degrees [4], neither that nodes with higher
(lower) degrees are likely to fail, i.e. those nodes that
have much (less) work to do in the communication
network.

3.1. Preliminaries and Methodology

Here, a general overview is provided on the method-
ology employed to model the distributed protocol. The
idea is to define the evolution equations describing how
the system evolves in time. In practice, for each possible
degree, a differential equation is defined which charac-
terizes the probability that a peer, having such a degree,
may change its state. The model will be composed of an
infinite set of simultaneous linear differential equations
(one for each possible degree). These equations will be
turned into a single differential equation by exploiting
generating functions.

A probability generating function is of the form
F(x, t) =

∑
i≥0Di(t)xi , where Di(t) is the set of coeffi-

cients composing the power series (in our case, these
coefficients are the probabilities of having a certain
degree i, at time t), while x is a dummy variable,
employed for pure algebraic purposes. F(x, t) captures
all the information present in the original sequence
Di(t), as each of these probabilities can be recovered by
simple differentiation:

Di(t) = [xi]F =
1
i!
∂iF

∂xi

∣∣∣∣
x=0

.

The notation [xi]F represents the coefficient associated
to the term xi in the power series.

In general, many properties can be obtained by
evaluating some manipulation of the generating
function, at x = 1. For instance, having probabilities as
coefficients of the power series, a check to perform is to
assess whether the sum of all coefficients in F equals 1,
i.e F(1, t) = 1. Moreover, the average of the coefficients
composing the generating function can be measured
by evaluating the partial derivative with respect to x,
Fx = ∂F

∂x at x = 1, i.e. Fx(1, t) =
∑

i iDi(t).

Other useful algebraic properties, which will be used
in the rest of the paper, and easy to verify, are the

following ones∑
i≥0

(i + 1)Di+1(t)x
i = Fx,∑

i≥0
iDi(t)x

i = xFx,∑
i≥0

Di−1(t)x
i = xF. (1)

Then, rules of power series state that, given two power
series A, B, if [xi]A = ai , [xi]B = bi

[xi]
A

1 − x
=

i∑
j=0

aj , [xi]A·B =
i∑

j=0

ajbi−j . (2)

The use of generating functions will hence allow to
consider a single differential equation which comprises
all the evolution equations of the model. From its
solution it will be possible to extract the elements of the
power series, i.e. the degree distribution.
In the following, we will also consider the system

in its steady state, i.e. in the limit t →∞. This in fact
enables to calculate the probability that a node has a
given degree in the stationary state. Moreover, it avoids
the presence of the partial derivative of the generating
function with respect to the time variable t, hence
simplifying the mathematical analysis and the related
discussion.

3.2. The Protocol in Differential Equations
Let Di,j (t) = P (deg = i|dd = j, at time t) denote the
probability that a given node at time t has degree equal
to i, knowing that its desired degree is j. Note that,
following the protocol, peers with an actual degree
equal to their desired degree do not accept novel links;
hence, a probability higher than 0 is possible only when
j ≥ i. In general, the evolution of the degree of a given
peer can be modeled, using Di,j (t), as

∂Di,j (t)

∂t
=



ϕ(i + 1)Di+1,j (t) + ϕδi,0+
+2αDi−1,j (t)+
−[ϕ(i + 1) + 2α]Di,j (t) i < j

ϕδi,0 + 2αDi−1,i(t)+
−ϕ(i + 1)Di,i(t) i = j

0 i > j

(3)

with the assumptions that D−1,j = 0, i.e. the probability
that a peer has a negative degree is null, and that Di,0 =
0, i.e. it is not possible that the desired degree of a peer
joining the network is null (otherwise, it is meaningless
that it joins a P2P network).
In (3), a distinction is made between three cases,

depending on the values of i and j. The case i < j
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corresponds to the case when the node has a degree
lower than its desired degree. Hence, the first term on
the right of the equation corresponds to the probability
that the considered peer has degree equal to i + 1 and
one of the i + 1 neighbours fails. As a consequence,
the node passes from a degree equal to i + 1 to i.
The second term considers the probability that the
peer fails, thus increasing the number of nodes in the
network with degree equal to 0. The third term accounts
for the probability that the peer has degree i − 1, and
it either decides to create a novel connection with a
non-neighbour, thus increasing its degree of one novel
edge, or also that another peer asks the considered one
to become neighbours. Note that in this case we do
not insert any limit on the number of non-neighbours,
assuming that the total number of nodes is high (or
tends to ∞); such an assumption is quite common in
complex networks theory [4]. The remaining terms have
the same meaning of the preceding ones, but account
for the case when the node has degree i, and itself or one
of its i neighbours fail (hence, its degree downgrades to
0 or i − 1, respectively), or when a new edge is created
between two nodes, the considered peer is one of the
two, and the peer already has i neighbours (hence, its
degree upgrades to i + 1). The case i = j considers only
those transitions discussed above that correspond to
degrees equal to i or i − 1, avoiding the probability of
having a transition from (to) a degree equal i + 1 > j
(again, not possible). As previously stated, the case i > j
(i.e. an actual degree higher than the desired degree)
is not possible due to the protocol executed by peers;
hence, the probability is 0. As a final remark, in (3)
it is assumed that the probability that two transitions
which change the node degree occur simultaneously is
negligible, as usual.
As mentioned, it might be interesting to consider the

system in its steady state, assuming the existence of
the limit Di,j = limt→∞Di,j (t), which implies that the
variation on the probability to have a certain degree

goes to 0, i.e.
∂Di,j (t)

∂t = 0. Equation (3) thus becomes

ϕ(i + 1)Di,i = ϕδi,0 + 2αDi−1,i i = j (4)

[ϕ(i + 1) + 2α]Di,j = ϕ(i + 1)Di+1,j +

+ϕδi,0 + 2αDi−1,j i < j (5)

To solve these equations using generating functions,
consider for the moment the auxiliary system of
equations obtained by ignoring the limit imposed by
the desired degree. Let hence use different coefficients
D̂i,j (it will be possible to derive Di,j , once having
determined D̂i,j ). The equations to manage are

[ϕ(i + 1) + 2α]D̂i,j = ϕ(i + 1)D̂i+1,j +

+ϕδi,0 + 2αD̂i−1,j . (6)

There are two indexes associated to coefficients D̂i,j ,
i.e. the actual and the desired degree of a given node.
Therefore, we employ a 2-variable generating function

F(x, y) =
∑
i,j≥0

D̂i,jx
iyj ,

where x controls the actual degree of the peer, while y
controls the desired degree of the node.
Now, multiply (6) by xi and yj and sum over all

i, j ≥ 0. The result is that the infinite set of simultaneous
differential equations is turned into a single, novel
differential equation for the generating function F,

ϕ(x − 1)Fx + [ϕ − 2α(x − 1)]F =
ϕ

1 − y
. (7)

Such an equation is obtained by exploiting proper-
ties of generating functions (1) and observing that∑

i,j≥0 δi,0x
iyj = 1

1−y . As mentioned, Ft is not present
since we are considering the system directly in the
steady state. It is possible to verify that a solution of
this differential equation is

F(x, y) =
ϕ

2α(1 − x)(1 − y) −
F0e

2αx
ϕ

1 − x
, (8)

where F0 is an initial function to be determined, based
on the boundary conditions.

3.3. Degree Probability
The obtained function F is an unfortunate one, since
it is not defined for x = 1, and we already mentioned
that many properties might have been obtained by
evaluating some manipulation of F measured at x =
1. However, given (8), the elements composing the
generating function can be extracted by employing
classic results of power series. In particular, we may
first assume that F0 can be expanded in power series,
i.e. F0(y) =

∑
j≥0 cjy

j . Then, observe that

ϕ

2α(1 − x)(1 − y)
=

ϕ

2α

∑
i,j

xiyj ,

and, due to the mentioned rules (2) of power series, we
have

F0e
2αx
ϕ

1 − x
=
∑
j≥0

cjy
j
∑
i≥0

ei

(2α
ϕ

)
xi ,

where en(r) is the exponential sum function en(r) =∑n
k=0

rk

k! . By combining these results, a general formula
is obtained for the elements of the auxiliary system,
which is

D̂i,j = [xiyj ]F =
ϕ

2α
− cjei

(2α
ϕ

)
. (9)
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It is now possible to calculate Di.j from D̂i,j , by
determining coefficients cj in (9), such that Di,j = D̂i,j
when i ≤ j, and also in order to satisfy the boundary
equation (4), considering the case i = j. In particular,
when i = j, comparison of equations (4) and (6), shows
that if Di,i = D̂i,i is true, then it must be

2αD̂i,i = ϕ(i + 1)D̂i+1,i .

From this last equation, a formula can be obtained for
the general coefficient

ci =
ϕ

2α
ϕ(i + 1) − 2α

[ϕ(i + 1) − 2α]ei
(
2α
ϕ

)
+ ϕ

i!

(
2α
ϕ

)i+1 .
Thus,

Di,j =
ϕ

2α
− cjei

(2α
ϕ

)
. (10)

Now, Di,j represents the probability that a node has
an actual degree equal to i, knowing that its desired
degree is j. To find the probability Di that a node has
degree i, it is thus sufficient to employ the formula

Di =
∑
j

P (deg = i|dd = j)P (dd = j) =
∑
j

Di,jP (dd = j),

once having specified a desired degree distribution
P (dd = j), j > 0, during the design of the P2P system.

3.4. Nodes at Distance m, Network Diameter
Once having obtained a degree probability distribution
for the considered network, interesting measures
to calculate are the mean number of first, second
neighbours, and generally the number of neighbours at
distancem from a given chosen peer. Thesemetrics have
in fact a great importance to understand how, and how
fast, the network is able to disseminate information in a
P2P network.
Of course, having the degree probability distribution,

the average number of first neighbours z1 of a given
peer, i.e. the mean degree, can be calculated as z1 =
⟨k⟩ =

∑
k kDk . Then, an important result is that if the

network exhibits a small clustering, the probability that
one of the second neighbours of a peer is also a first
neighbour of it, is negligible in (very) large networks
[12]. This allows to easily calculate the mean number
of second neighbours as z2 =

∑
k(k − 1)kDk = ⟨k2⟩ − ⟨k⟩.

In general, the number of neighbours at distance m,
can be estimated as zm = (z2/z1)m−1z1. Moreover, when
z2 > z1 the net exhibits a giant component which,
roughly speaking, connects the majority of nodes in the
network.
Indeed, a way to obtain a network with small

clustering, regardless of the desired degree distribution,

is as follows [12]. For each node i in the network,
assign its desired degree ddi , following a desired degree
distribution. Then add to it ddi stubs, representing the
end of the links it would like to maintain. Finally,
create links by randomly connecting stubs of different
nodes (the reader may refer to [12] for a complete
discussion). This is the approach we adopt to create and
simulate networks with different desired topologies (as
discussed in the next section). Using these networks,
it is hence easy to calculate zm values. However, the
reader may argue that these nets do not represent “real”
existing P2P systems. Indeed, onemight think at several
examples of P2P architectures which do have clusters.
In such a case, the obtained results represent upper
bounds of the real estimations of zm. As a matter of fact,
studies on P2P nets reveal that long undirected chains
of nodes are very common in graphs of P2P applications
like WinMX [28].
In any case, when z2/z1 ≫ 1, there is an average

distance l representing the number of hops needed to
reach a node, starting from another one [12]. Since the
number of nodes reachable within l hops is almost the
total number of nodes in the network |Π|, we have

|Π| ≃ zl =
(z2
z1

)l−1
z1 ⇒ l ≃

log(|Π|/z1)
log(z2/z1)

+ 1. (11)

Empirical results showed that estimations obtained
using this last formula are close to correct measure-
ments for several real networks [12]. Hence, we will use
(11) in Section 4, to have an estimation of the diameter
of our considered P2P overlays.

4. Experimental Assessment
This section presents an assessment performed to
validate the model discussed in the previous section
and evaluate the ability of the outlined P2P system
to cope with node faults. A comparison is performed
between the analytical model and results obtained
through a simulation of the distributed protocol.
As shown in the reminder of the section, the
two approaches provide very similar outcomes. The
employed approaches are very different, being the
former purely analytic while the latter a simulator that
mimics the distributed protocol executed by a number
of peers. Hence, the similarity on the obtained results
confirms that the final equation of the mathematical
model can be easily employed to characterize the fault-
tolerance and thus the reliability of a system having a
defined desired topology.
As to the desired degree distribution, we consider

three different distributions and vary their related
parameters. Namely, the three considered scenarios are:
i) a fixed desired degree distribution, which would
produce a uniform graph with all nodes having the
same number of links; ii) a classic random graph
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where nodes are connected with others with a certain
probability [12]; iii) a power law distribution, which
would create a scale-free network [1, 4, 29, 30]. The
reason behind this choice is that there are several P2P
systems that form different topologies. Hence it is quite
common to test different kinds of overlays, such as
those mentioned above [31]. In particular, the literature
demonstrates that there are different communication
networks that have different topologies, while certain
similar architectures have common properties which
make them difficult to distinguish [32]. For instance,
Gnutella and eDonkey P2P networks are similar scale
free networks. Conversely, the graph of the P2P
application WinMX is composed of many nodes that
have a similar degree (i.e. a more uniform topology)
[28], and there is evidence that many file sharing P2P
systems do not exhibit a power law degree distribution
[33].

4.1. On the Simulator
A discrete-event simulator has been built to model the
defined distributed protocol. It has been implemented
in C code, by exploiting the GNU Scientific Library
(GSL), a library that provides implementation of several
mathematical routines for numerical and statistical
analysis, such as pseudo-random generators [34]. The
simulator provides the possibility of generating a
varying number of nodes. During the initialization
phase, a random network is created based on the chosen
desired degree distribution. Different techniques can
be employed to create such a random network [12,
30, 35]. As already discussed in Section 3.4, in this
case once having assigned a specific desired degree to
each node, based on the specific desired distribution,
a random mapping is made so that links are created
until each node has reached its own desired degree.
Hence, at the beginning of the evolution nodes already
have the number of links they would like to maintain
(this generally affects only the transient part of the
simulation).
The simulator creates a network with a fixed number

of nodes. This eases the measurement of the degree
nodes have in time, without the need to consider novel
nodes that join the network during the execution of the
protocol. Hence, once a peer fails, it is not removed from
the network; rather, all its links are removed. From that
moment, the node will try to create novel links with
novel peers, searching to reach its desired degree.
After the network initialization phase, the evolution

of the network starts. Nodes’ failures and the discovery
of other nodes for the creation of novel links have
been implemented as Poisson processes, whose rates are
regulated by the parameters α and ϕ, respectively. The
shown results represent the status of the system after a
specified simulation time. The length of the simulation

was 104 simulation steps. When not differently stated,
the number of nodes was set equal to 104. For each
specific configuration, we ran 30 different experiments.
Shown outcomes correspond to average results.

4.2. On the Model Parameters
The value of α and ϕ are strongly related. The value
of the attachment rate α has to be compared with
the failure rate ϕ. Indeed, it is possible to rewrite the
model using the ratio between the two parameters, yet
at the cost of making the model a little less clear (at
least at a first sight). As concerns their values, poor
experimental results are available for unstructured real
P2P networks. There are instead works that focused on
real measurement of structured P2P systems.
For instance, [36] focuses on KAD networks. That

study revealed that the amount of time a peer is
connected per day varies a lot from one day to the next.
Nevertheless, authors measured that the mean lifetime
of a peer in that network is quite high (higher than
2 hours in general), while the inter-time between two
sessions for the same user is 1.3 min. This supports
the fact that in our model, a failing node re-joins the
network almost instantaneously. Moreover, in certain
conditions they observed session times with means
of 266 and 670 minutes. [37] shows that the median
lifetime of a peer in Napster was approximately 60 min.
Using these values, we can estimate the failure rate ϕ
taking it as the inverse of these values, i.e. ϕ = 1/670 ≃
0.001, ϕ = 1/165 ≃ 0.006, ϕ = 1/60 ≃ 0.01. In the tests
that follow, we employ these kinds of values for the ϕ
parameter.
As concerns α, we keep values around α = 0.1, 0.5,

meaning that the time between a novel discovery of a
peer is around 2 − 10 min. This is perfectly reasonable
for a real P2P system.

4.3. Degree Distribution of Fixed Desired Degree
Networks
The first type of generated networks was based on a
fixed dd, i.e. peers have the same value of desired
degree dd = n. Forcing peers to have the same desired
degree dd allows to model those classic scenarios
in P2P environments where the software running on
peers is configured to have a given number of links
in the overlay, i.e. dd. This is quite common in real
P2P systems and it is usually accomplished for load
balancing purposes [22, 28].
The model restricts the event space to the case when

all nodes’ desired degree is constant, dd = n; an obvious
consequence is that Di,j = 0, j , n. Moreover, due to
the distributed protocol, Di,j = 0, i ≥ j. Hence, the sum
of all the values of Di,n when i is varied, restricts to∑

i≤nDi,n = P (deg = i|dd = n) = 1. In this case, we can
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hence simply consider in the model the values of Di,n =
P (deg = i|dd = n), for a fixed n.
Next Figures 1-2 show the probability that a given

node has a certain degree, based on the parameters
α,ϕ. All charts report both the node degree probability
itself, as well as the cumulative probability, i.e. the
probability that a node has a degree less or equal
to the considered value. For these two metrics, two
measurements are reported, obtained by using equation
(10) and through simulation. We concentrate on two
different types of networks, corresponding to two
desired degree values, i.e. dd = 30 (Figure 1) and dd =
100 (Figure 2). As shown below, the two networks have
the similar behaviors for the selected values of the rates
α,ϕ; the same holds for other similar dds.
By looking at figures, a first consideration is that

similar results are obtained using simulation and the
mathematical model. Then, very different outcomes
are measured, depending on α,ϕ values. In particular,
when the value of the failure rate ϕ is higher than
attachment rate α, in the steady state only low degree
values have a probability significantly higher than
0. This can be appreciated by looking at the first
chart of Figures 1-2, where α = 0.1, ϕ = 0.2. In both
cases, degree values that take some non-negligible
probabilities are those that range in the interval 0 −
6. The cumulative probabilities, in the considered
scenarios, reach values near to 1 at very low values.
This basically means that in the steady state almost
all peers tend to have experienced some failures and
they do not succeed in maintaining the desired network
topology. As mentioned before, our assumption is that
peers instantaneously come back in the system and try
to create some novel links, yet without being able to
gain some noticeable degree. This is due to the low
value of α. Moreover, since non negligible values are
very well below the considered desired degrees, the
obtained charts reported in Figures 1 and 2 are mostly
equal (but they are indeed slightly different), since the
dd value does not act as a bound for the link creation.
These first discussed results demonstrate that peers
must be able to react to changing conditions of the
system and self-organize. In fact, α can be interpreted
as a basic parameter that regulates how a peer is active
in the network.
Things start to change when α takes values higher

than ϕ. These settings mimic those situations according
to which peers actively create links, more rapidly
than failure rates. The second charts in Figures 1-
2 show results when α = 0.8, while keeping ϕ equal
to 0.1, lower than α. In this case, non-negligible
degree probabilities may be observed for degree values
higher than those obtained before, yet still without
reaching the desired degree (this is more evident
when dd = 100). It may be observed that in this
particular scenario results from the simulation and
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Figure 3. Diameter and average number of first neighbours of
fixed desired degree networks, when varying ϕ, using Equation
(11)

the mathematical modeling are not perfectly identical,
but slight differences can be appreciated. In substance,
simulations show that nodes tend to have a lower degree
than that predicted by the mathematical modeling.
Nevertheless, obtained results are well below the nodes’
desired degree.
Results completely change when ϕ is selected quite

below the value of α. In these scenarios, in the steady
state the probability that a node has a certain degree is
mostly uniform for all degrees in the range between 0
and the nodes’ desired degree. This can be appreciated
by looking at the two final charts of the considered
figures. In particular, with the following setting α =
0.5, ϕ = 0.01, dd = 30, it is quite probable that in the
steady state nodes have their desired degree, while
with dd = 100 probabilities of degree values lower than
dd are almost uniformly distributed. When ϕ = 0.001,
instead, the probability of having a degree equal to dd
in the steady-state reaches a high value also if dd = 100.
In substance, under this setting of α,ϕ, the desired
network topology is maintained in the steady state.
Figure 3 shows the estimated diameter of the

networks obtained when running the distributed
protocol with an average attachment rate α = 0.5, while
varying the value of ϕ, assuming a network composed
of 1000 nodes. The chart also reports the average
number of first neighbours z1 = ⟨k⟩ (measured through
the analytical model). Note that when ϕ has low values,
the diameter is very limited and nodes succeed in
maintaining a very high degree value, since the network
is assumed to be composed of only 1000 nodes, while
the desired degree of each peer is equal to 100. Then,
as the failure rate grows, there is a considerable growth
also on the network diameter.
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Figure 1. Degree probability and cumulative degree probability; results obtained through simulation (Sim) and the mathematical
modeling (Th); α = 0.1, ϕ = 0.2, dd = 30

4.4. Degree Distribution of Random Graphs
Here, we consider random graphs to model the desired
degree distribution of networks. This is a generalization
of the approach described above, with peers all having
the same probability to attach to other links. In
substance, when a random graph is generated, a link
between each pair of peers is created with a certain
probability p. Hence, based on this model the average
degree is ⟨k⟩ = p|Π|. It is well known that when the
number of peers |Π| is large, nodes’ degrees may
be well characterized using a Poisson distribution
⟨k⟩ie−⟨k⟩

i! . Several works employ this construction tool for
generating random graphs [12].
Figure 4 shows the degree distribution through the

analytical model (and simulation) obtained in the
steady state (after the mentioned number of simulation
steps), when the desired degree distribution models a
random graph with a probability p = 0.2 and with a
number of nodes |Π| = 1000. Figure 5, instead, reports
results when p = 0.8. As shown in both figures, when
parameters are set as α = 0.1, ϕ = 0.01, a non-negligible
probability is obtained only for values lower than 30,
being nodes not able to reach the average desired
degrees. Similar outcomes are measured when ϕ is

decreased down to 0.005; in this case, non-negligible
values are obtained for degrees up to 50. Hence, in this
case the desired topology is lost in the steady state.

The two considered types of random graphs behave
differently when the setting is α = 0.5, ϕ = 0.005 (third
chart of Figures 4-5). In fact, as shown in Figure 4, with
p = 0.2, peers have a non-negligible probability to reach
in the steady state degrees near the average degree ⟨k⟩ =
200. Conversely, in the latter setting (⟨k⟩ = 800, Figure
5) the chosen value of α does not permit to maintain
the nodes’ desired degree, in steady state. Similar
considerations can be made for the last considered
setting α = 0.8, ϕ = 0.005. In this case, when p = 0.2
a peak is obtained on the degree probability for the
average value 200. Hence, the network topology is
maintained for p = 0.2, but not for p = 0.8. These results
once again confirm that the value of α must be properly
tuned based on the average nodes’ desired degree and
the failure rate.

Figure 6 shows the estimated diameter (and average
number of first neighbours z1 = ⟨k⟩) of the considered
random graphs, obtained when α = 0.5, while varying
ϕ, again assuming a network composed of 1000 nodes.
Also in this case, being the average desired degree high,
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Figure 2. Degree probability and cumulative degree probability; results obtained through simulation (Sim) and the mathematical
modeling (Th); α = 0.1, ϕ = 0.2, dd = 100

with respect to the total number of nodes, when ϕ has
low values, the network diameter has very small values;
this values grows with ϕ, as expected.

4.5. Degree Distribution of Scale Free Networks

Scale free networks gained a lot of interest in recent
years, since it has been empirically noticed that power
law degree distributions Dk ∼ k−α are quite good to
model several types of real networks [1, 2, 8, 10, 38–
40]. These networks are often referred as scale-free
networks [4, 30]. They are characterized by the presence
of hubs, i.e. nodes with degrees higher than the average,
that have an important impact on the connectivity of
the net. Several works assert that scale-free networks
are quite resilient to random node faults, due to the
presence of hubs [11, 12]. Indeed, the majority of nodes
are those with small degree; thus, it is more likely that
these ones will fail, while the probability that all hubs
are eliminated is almost negligible.
The interest on scale-free networks in this work

relates to the fact that several P2P systems are indeed
scale-free networks. Gnutella is a main example [38].
Moreover, other P2P architectures exploit super-peers,

which strongly resemble those hubs of scale-free
networks [41–44].
To build scale-free networks, our simulator imple-

ments a construction method which has been proposed
in [29]. The interesting aspect of this algorithm is that
it differs from other proposals, which build networks
with a power law distribution by continuously adding
novel nodes and edges, hence having networks that
grow in time [1, 45]. Conversely, the method in [29]
employs a network of fixed size, characterized by two
parameters a, b. Given a, b, a network is built whose
number of nodes depends on these two parameters.
More specifically, the number of nodes y which have a
degree x is ⌊ ea

xb
⌋. Thus, the total number of nodes of the

generated network is

|Π| =
⌊e

a
b ⌋∑

x=1

ea

xb
,

being ⌊e
a
b ⌋ the maximum possible degree of the

network, since it must be that 0 ≤ log y = a − b log x.
Once the number of nodes and their degrees have been
determined, edges are randomly created among nodes
until their reaching their desired degrees. We remind
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Figure 4. Degree probability varying α,ϕ; results obtained through simulation (Sim) and the mathematical modeling (Th); Random
Graph model p = 0.2, |Π| = 1000, ⟨k⟩ = 200

that, for each node in the network, such an initial degree
is set as the desired degree dd of the node.

Figure 7 shows some examples of networks built with
our simulator, implementing the construction method
proposed in [29]. In particular, the chart reports, for
three different settings of a, b, the number of nodes
which have a given degree, in a log-log scale. It
is possible to appreciate how such distributions are
almost linear in a log-log scale, hence confirming they
all follow some power law function.

Next Figures 8-11 show the resulting degree distribu-
tion obtained through the analytical model and through
simulation, when employed over scale-free networks.
For each setting, we report the degree distribution both
in a linear scale (with the cumulative probability) and
in a log-log scale. The latter type of charts allows
to easily understand whether in the steady state the
network maintains scale-free properties (i.e. networks
have a power law degree distribution) when running the
distributed protocol. Five different types of networks
are considered, obtained by employing the following
pairs of parameters, i.e. a = 3, b = 0.5 (forming scale-
free networks with a number of nodes |Π| = 777, Fig-
ure 8), a = 4.5, b = 0.8 (|Π| = 876, Figure 9), a = 5, b =

0.9 (|Π| = 1079, Figure 10), a = 3.2, b = 0.5 (|Π| = 1167,
Figure 11), a = 3.2, b = 0.45 (|Π| = 2196, Figure 12). For
these networks, values of α,ϕ were varied.
Results show that indeed scale-free properties can be

maintained in the steady state when high attachment
rates are selected (see the two last scenarios in the
various figures, with ϕ = 0.005, while α = 0.5, 0.8,
respectively). Conversely, values of α reported in
the first two scenarios of each figure (α = 0.1, ϕ =
0.01, 0.005) demonstrate that when the attachment
rate is not sufficiently rapid to repair failures, the
typical topology of a scale-free network is lost. In
fact, the degree distribution in the log-log scale is not
linear. These are results common to all the considered
networks.
The reliability of scale-free nets was already demon-

strated in other works [2, 4, 11, 46]. However, they
usually considered attacks while keeping the network
almost static, without the possibility to react to these
nodes/links removals.2 Our assessment demonstrates

2The main reason is that these models are often employed for
studying, for instance, the spread of viruses or general percolation
properties in a net.
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Figure 5. Degree probability varying α,ϕ; results obtained through simulation (Sim) and the mathematical modeling (Th); Random
Graph model p = 0.8, |Π| = 1000, ⟨k⟩ = 800
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Figure 6. Diameter and average number of first neighbours of
random graphs, when varying ϕ, using Equation (11)

that the simple proposed distributed protocol enables
the maintenance of scale-free topologies also when
nodes are subjected to periodical failures, using a prop-
erly selected attachment rate that allows to randomly

select novel neighbours.3 As already mentioned, when
nodes are randomly selected to fail, there is a low
probability that a major portion of hubs of the network
is removed from the net (being hubs a low number of
nodes in the network) [4, 12]. Rather, it is more likely
that peers which fail are non-hubs with low degrees.
Under these circumstances, hubs that lose some neigh-
bours have time to react to these failures by finding
novel nodes to link with. This allows to maintain a
scale-free topology.
Finally, Figure 13 reports the estimated diameter

(together with z1) of scale-free networks built by
setting a = 3.2, b = 0.5, |Π| = 1167, obtained when α =
0.5, while varying ϕ. Also in this case the diameter of

3To avoid any confusion between the random peer selection of the
distributed protocol and the preferential attachment that may be
employed to build a scale-free network, note that we are not stating
that a simple random attachment allows to create a scale-free network
[1, 11]. Rather, in our setting the desired degree distribution of
peers follows a power law distribution. Then, the attachment rate
of the distributed protocol allows a given peer to randomly select
another one when it needs some additional link it previously lost (the
protocol does not depend on the desired topology). Similarly, the peer
receiving such a request accepts the novel link only if this allows to
approach its desired degree.
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Figure 8. Degree probability and cumulative degree probability varying α,ϕ on the left side; degree probability in log scale on the right
side; results obtained through simulation (Sim) and the mathematical modeling (Th); Scale Free networks a = 3, b = 0.5, |Π| = 777
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Figure 9. Degree probability and cumulative degree probability varying α,ϕ on the left side; degree probability in log scale on the right
side; results obtained through simulation (Sim) and the mathematical modeling (Th); Scale Free networks a = 4.5, b = 0.8, |Π| = 876
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Figure 10. Degree probability and cumulative degree probability varying α,ϕ on the left side; degree probability in log
scale on the right side; results obtained through simulation (Sim) and the mathematical modeling (Th); Scale Free networks
a = 5, b = 0.9, |Π| = 1079
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Figure 11. Degree probability and cumulative degree probability varying α,ϕ on the left side; degree probability in log
scale on the right side; results obtained through simulation (Sim) and the mathematical modeling (Th); Scale Free networks
a = 3.2, b = 0.5, |Π| = 1167
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Figure 12. Degree probability and cumulative degree probability varying α,ϕ on the left side; degree probability in log
scale on the right side; results obtained through simulation (Sim) and the mathematical modeling (Th); Scale Free networks
a = 3.2, b = 0.45, |Π| = 2196
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Figure 7. Degree Distribution of some scale-free networks using
the construction method proposed in [29]

the network grows with ϕ. It is worth noting that, as
discussed, in this case the desired topology of these
networks is different from that considered for random
graphs, being the former a desired topology following
a power law distribution, while the latter follows a
Poisson distribution. Our results show that, with these
settings, the average number of first neighbours z1
is (slightly) lower in scale-free networks (even if the
number of nodes in the considered network is a bit
higher than the 1000 nodes of random graphs). The
trend is however the same, i.e. the diameter grows
with ϕ, since for higher values of the failure rate, the
networks lose their scale-free properties, as shown in
previous charts.

5. Conclusions
This paper presented a mathematical model of self-
organizing overlay networks in faulty P2P systems. A
distributed protocol has been considered, where nodes
try to maintain a desired degree, coping with node
failures. An analysis of the protocol has been provided,
and numerical results coming from the obtained
mathematical tool have been compared with those
obtained through simulation. Outcomes coming from
the two different approaches are quite similar. Different
types of network topologies have been considered,
i.e. networks with nodes having the same desired
degree, random graphs and scale-free networks.
Results demonstrate that in presence of a non-

negligible failure rate, peers need to maintain a high
attachment rate to cope with node faults. Otherwise, in
steady state they would not be able to maintain their
desired degree. This factor is important also to control
the topology of the evolving network. Hence, a final
remark is that the mathematical tool provided in this
paper can be exploited so that peers may dynamically
adapt their attachment rate, based on the failure rate
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Figure 13. Diameter and average number of first neighbours of
scale-free networks, when varying ϕ, using Equation (11)

they are experiencing, taking into consideration the
desired degree they have, so as the preserve the desired
topology of the network.
The provided model can be extended in several ways.

In this model, failure and attachment rates are uniform
and do not depend on the characteristics of the nodes.
Of course, a possibility is to replace α,ϕ constants with
functions that may depend on several factors like, for
instance, the gap between the actual and the desired
degree, the actual degree itself, etc. When applied to the
attachment rate, these parameters would implement
some form of preferential attachment. When applied
to the failure rate, forms of targeted attacks may
be modeled. Then, the random selection of novel
neighbours could be replaced with mechanisms that
employ only some form of local search, e.g. by limiting
the peers’ selection over 2nd , or 3rd neighbours. This
would probably augment the network clustering.
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