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ON THE DEGREE OF CONVERGENCE OF PIECEWISE
POLYNOMIAL APPROXIMATION ON OPTIMAL MESHES

BY
H. G. BURCHARD(')

Abstract. The degree of convergence of best approximation by piecewise
polynomial and spline functions of fixed degree is analyzed via certain
/"-spaces Ng'" (introduced for this purpose in [2]). We obtain two o-results
and use pairs of inequalities of Bernstein- and Jackson-type to prove several
direct and converse theorems. For/in Ng'" we define a derivative D"-'f in
V, a = (n + p~l)~x, which agrees with D"ffot smooth/, and prove several
properties of D"'".

1. Introduction and summary of results. In this paper we prove direct and
converse theorems for piecewise polynomial and spline approximation, of
fixed degree, on optimal meshes in the Lp-norm, 1 < p < oo. There exists an
intimate relationship between this problem and certain /"-spaces Ng,n. These
were first introduced, in this connection, by Burchard and Hale [2], who
established direct theorems of the 0(k~")-)and. Here, k is the order of the
mesh, and n - 1 the degree of the polynomial segments. In the present paper,
we further analyze the spaces Ng,n. We obtain two direct "o" theorems
(o(k~n) and o(k~n+x) resp.), as well as other direct and converse theorems,
some of which give necessary and sufficient conditions for the degree of
convergence 0(k~e) with 0 < 0 < n (the suboptimal case) or n - 1 < 0
(n > 2). For 9 = n = 1 (the optimal case) direct and converse theorems do
not yet match up, except forp = oo, a problem solved by J. P. Kahane.

We mention that the o(fc-n+I)-result amounts to a significant weakening of
the hypothesis in a theorem of Freud and Popov, which in turn is an
improved extension of a theorem of Korneicuk [9]. Our o(k~")-theoxem
shows, roughly speaking, if D"~xf EB\ and D"~xf is a singular function,
then/ can be approximated more rapidly by piecewise solutions s of D"s = 0
than / with D"~xf E AC, D"f^ 0 (for o < 1, a = (n + p-')"1) in 1/ on a
bounded interval. The converse, with accompanying direct, theorems depend
on pairs of inequalities of the Bernstein- and Jackson-types. Our results are
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532 H. G. BURCHARD

analogous to the general approximation theorems proved by Butzer and
Scherer [4] for the case of linear approximation in £-spaces, cf. their paper for
the history of these methods. We obtain characterizations of Steckin-type and
in terms of the Peetre £-functional, the latter result being analogous to the
classical Bernstein theorem. However, a Zamansky-type characterization
seems to fail, due to the nonlinearity of the approximating classes. Finally, we
prove a thoerem on asymptotically optimal knot distributions.

Taking together the results of [2] and of the present paper the significance
of the spaces Ng'" for our problem appears to be established. It remains to
learn more about the local properties of the functions in these spaces. We can
define a derivative D"-°f for / in Ng,n (§5). This agrees with D"f if Dn~xf E
AC, and in general is an element of L°, a < 1. Only for a = 1 (p = oo, n — 1)
is the relationship clear: D '•'/ = £»/and N^0,1 = AC. In this case also N^-1 c
N00,1 = C n BV. This case was solved by J. P. Kahane [10]. We conjecture
that Ng,n c W in general. However (see below for the definition of
£,,„(/, *)),1>y [2]

f E W+x=>supk'>+xEp,n+x(f, k) < oo,
k

while for 9 > 0 we show in this paper

sup k"+%,n+x(f, *) < oo =*/ G Ng-".
In particular, then, N^""1"1 c Ng'", so there are no "large" gaps. Actually our
result (§4) is slightly sharper:

2*-I|>"3v.+i (/, *)]"< oo =>/ G Ng'",
k

while (§2)
fE^^limknEPtn+x(f,k) = 0.

k
We prove that this persists for approximation by splines with simple knots.
This in conjunction with our result that D"~xf E BV implies / G Ng'" for
a < 1 (§3) gives our improvement of the Korneicuk-Freud-Popov theorem.

Next we list the principal notations and definitions as well as those results
of [2] that are needed in this paper. For further details, cf. [2], which also
contains more about the history of the problem.

Notation. By "interval" we (usually) mean a bounded open interval. Let
(a, b) be an interval. A mesh u on (a, b) is of the form u — («0,..., uk),
a = m0 < • • • < uk = b. If the inequalities are strict, « is apartition.

It is convenient to also consider a mesh as a collection of intervals. Thus,
I Eu will always mean that / is one of the intervals (u¡_x, u¡), i = 1,... ,k.
We write #u = k for the order, X(ü) = max¡(u¡ — «,_,) for the mesh-size of
u. Let «bea positive integer. P"(u) (resp. S"(u)) is the collection of (real)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PIECEWISE POLYNOMIAL APPROXIMATION 533

piecewise polynomials (resp. splines) of degree (at most) n — 1 on the mesh u.
More precisely, s E P"(u) iff D"(s\i) = 0 when I E u, while í G S"(u) iff
s E P"(u) and D"~m~xs is continuous near u¡, if u¡ is repeated exactly m
times in u. For a given interval (a, b) let ttk (resp. 77¿) denote the collection of
all meshes (resp. partitions) of order k on (a, A). Let Pk = Uue„kPn(u),
Sk " U ,eflS"(«) and S£-x = U „^"(w). The members of S£x are splines
with simple knots. Observe that

Sk'   CS/C /"* C S^(jt_i)+iC S"k.
(If j G P"(w) is usually does not matter which values are assigned to s(u¡).
But it should be clear what is meant by "s is continuous at the knots" etc.)

Henceforth, fix an interval (a, A). If there is a need to vary (a, b) we shall
say so. By V, or V(a, A) if necessary, denote the usual (real) Lebesgue
spaces on the interval (a, A) for 0 < p < oo. It will be convenient to write X*",
or Xp(a, A), for 1/ when 1 < p < oo, and to let Xo0 = C[a, A]. If/ G I/, u a
mesh on (a, A) and k a positive integer let Epn(f, u) (resp. Epn(f, k),
Ep\„(f, k)) denote the IAdistance of/from P"(u) (resp. /£, S£-x). In particu-
lar, Epn(f, I) is simply the 1/(Z)-distance of/from the polynomials of degree
n — I. For 0 < t < oo and u ranging over all meshes on (a, b) let

BP,nAf, «) - 2 £,„(/. ')T>      W/) -lim supV(/< ■»)•
I Su \(u)-*0

In the last equation it clearly suffices to consider partitions. Let o = o{p,n)
= {n + p-1)"1. We abbreviate B„<J, u) = B,„(J, ")> *,,„(/) - *„,„,.(/)•
Also let

*,„(/)- «up *,„ (/,«),

with u ranging over all partitions on (a, A). If necessary we designate the
interval: || • \\p,(a,b), Np¡n(-\aM, etc.

1.1 Definition [2]. Let Np-" denote the collection of elements f of \p such
that Npn(f) < oo. We equip W with the norm

Mm-MC+ NpM)>       o = o(p,n).
So equipped W is an F-space.

For basic facts regarding /-spaces see [8, pp. 51 ff]. One verifies without
difficulty that W'" is a linear subspace of X', p(/, g) = \f - g\ps defines an
invariant metric on N*" under which N*" is a complete metric topological
vector space. In fact for t < 1, in particular for r = o, all the functionals
Bp,nA'>u\ Bp,nA')> NpA') satisfy the triangle inequality. They are also
(positively) homogeneous of degree t (resp. <j).

1.2 Remark. The topology on N',B is stronger than the relative topology
inherited from X'.

Given an open interval / (bounded or not) denote by LUoc (resp. AC, BV,
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534 H. G. BURCHARD

BV|0C, W"'1, W-Uoc) the collection of real Borel functions on / which are
locally (i.e. on each compact subinterval) integrable (resp. absolutely continu-
ous, of bounded variation, locally in BV, possess an absolutely continuous
(n - l)st derivative, are locally in W"'1). We use freely the symbol D"f to
denote the «th distribution derivative of /; thus, / G W"-1 iff D"f E V;
f E BV iff Df is a bounded Radon measure; etc. Functions which agree a.e.
are usually identified.

It is shown in [2] that W"-1 c N''". Accordingly, we make the following
definition.

1.3 Definition [2]. Let Ng-" denote the closure ofW-x in Np-n. Thus, Ng-" is
an F-space under the norm \ • \pn.

We do not know if Ng,n is a proper subspace of N*'" (except when 0=1,
i.e., p = oo, n = 1, see below). By 3.3 Ng'" is not locally convex for a < 1.
The following summarizes the main results of [2].

1.4 Theorem [2]. Let o = o(p, n). Iff E W-" then for k = 1, 2 ...

k"EpjH(f,k)<Np<n(f)l/'.
Iff E Ng-", then Bpi„(f) = limX(M)^0£„in(/, u) and

Y,mk^knEp<n(f,k) = Bp<n(f)x^.

If either f E W"'1 or f E X' with f E W"'Uoc and \D"f\ has a locally integrable
majorant in L° which is monotone near a and near b then f E Ng'" and

h,n (/) - CIWII-»     <*. = Ep.n ( t£ » (0.  I))-
For f to be in W>" it is sufficient that D"~xf G BV n X'.

It is shown below (§3), if o < 1 and Dn~xf E BV then/ G Ng'". For o = 1,
however, Ng0'1 = W1'1 c N00'1 = X" n BV. We shall frequently need the
following basic lemma, which is essentially Lemma 2.6 of [2]. We may omit
the proof.

1.5 Lemma. For every f in Ng'" and positive e there is a positive 8 such that
for all partitions u on (a, b) with X(u) < 8 there is s in S"+X(u) with \f — s\pn
< e.

We conclude this section by giving a sharper form to some remarks in [2]
on the relationship between the asymptotic behavior of Ep„(f, k) as k -* oo
and that of corresponding quantities for spline approximation, of which the
most interesting one is Epn(f, k). The result, apparently part of the folklore, is
that these agree, essentially. The method of proof is that of "pulling apart
knots", based on a result of de Boor [5], of which we need the following slight
extension.
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PIECEWISE POLYNOMIAL APPROXIMATION 535

1.6 Theorem. For x, t G R let g(x, t) = (x - OV1- For a mesn w =
(w0, . . . ,wn) with w0 < wn on R we define the normalized B-spline

vn(w; t) = g(wx, ...,wn;t)- g(wty>..., *■„_,; /)

in terms of divided differences (well-defined via the familiar integral formula).
Ifwo < wn-i and wi < w„> then v„ is a jointly continuous function of its n + 2
arguments in a neighborhood of w [5]. On the set of those w for which w0 < w„
the map w \-* vn(w; • ) is still a continuous map into If (a, A), 1 < p < oo.

Proof. For the first part of the theorem, see [5]. For the second part it will
suffice to consider the map v i-> <¡>(v; • ), where

<p(v; t) = g(vx, ...,v„;t),      vx<v2<-< v„,

and to show lim^H^o; • ) - <Ku°; ■ )\\Pi{a,b) " ° in case ©f -. ©f - • • • =
v°. Using the integral representation of <i> one finds for any mesh v that
<¡>(v; t)is(n - l)\ times (« - l)-dimensional Lebesgue measure of the set

{(x„ ...,*„_,):©, + x,(ü2- «,)+••• +x„_,(ün - «„_,) > t

and 0 < x, < • • • < x„ < 1},
(omitting the trivial case n = 1). This implies first that </>(u; 0 is uniformly
bounded, and secondly, if t~ < u? < í+, then one can find a positive 8 so
that <b(v; t) = <b(v°; t) for \v¡ - v°x\ < 8 (i = 1,..., n) and t < t~ ox t > /+.
From these facts the assertion follows immediately.   □

1.7 Corollary. Suppose s G Pk, for p = oo assume in addition that s E
C[a, A] = Xo0. 77¡e7i s is in the Xp-closure of S$ (resp. Stfn_X)forp = oo).

Proof. Suppose j g P"(u), #u = k, l<p<co (the proof forp = oo is
similar). Construct a mesh v = (vx,..., vK), such that each distinct interior
knot of u occurs n times in v. In addition, let v have n knots to the left of a
and « knots to the right of A. Let ^,(0 = vn(v¡, p,+1,..., v¡+„; t), i =
0,..., K — n. Then it is known that s has a unique representation s =
^-ü\vn,¡ [13]. Select a sequence of partitions wm = (w?,..., w%) such that
ü, = Hmm_00H'/m, i - 0,..., K, and let

K-n
sm = 2 «,"„(<•, •••- <„; •)•

i-O

Then (the restriction to (a, b) of) im belongs to Sk-X, and by 1.6 lim^Jli -
sm\\p,(a,b) = 0- (For p = oo interior knots of u need be repeated only n - 1
times in v).   □

1.8 Lemma. Suppose f G X00, j0 G /»£, n > 2. Then one can find sx in
Pk" n X», such that \\sx - /H«, < 2||j0 - /IL.

Proof. If j0 G P"(u), u a partition with #u = k, determine the unique s2
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536 H. G. BURCHARD

in P2(u) such that, if sx = s0 + s2, then sx(u¡) = i[s0(u¡ - ) + s0(u¡ + )] for
i = I,.. ., k — I (interior knots) while sx(a) = s0(a), sx(b) = s0(b). Then
sx E P£ n Xo0 and

ll'aü. - «?« Mq, ± )|0</<*
= max  x2\sn(ut + ) - sn(u¡ - )| < ||j0 -/H^.

0<i<*

Therefore, |K-/||M<2||io-/|L.   D

1.9 Corollary. For 1 < p < oo and for p = oo, n = 1

Ep\(f,nk)<Epjt(f,k)<Ep\(f,k).
Forp = oo ani/n > 2

i*JU/. (" -J)*) < £».«(/> *) < *».«(/> *)•
Hence, e.g., if9>0 then (1 < p < oo)

lim sup¿*£,in(/, *) < lim sup*fE¿(/, *)

< ««lim sup*9^,, (/,*:).

Similarly for "lim inf", or p = oo. £Awí èy 1.4, with 9 = n /// G Ng'" /Aen a//
//iwVpowiö of(k"Ep\n(fi k))k lie in the interval [Bp¡n(f)x/°, n»BPt„(f)x/°].

For the proof of (1.1) note lim^^ke/[k/nf = n" and

Ep\(f,k)< #,(/,«[£])<*.(/.[£])•

Also, [A:/«] ranges through all positive integers, if A: does.

2. In this section we show that EPt„+x(f, k) = a(k~n) iff E Ng-". By 1.9 the
same result follows for Ep\n+X(f, k). Freud and Popov [9] showed this under
the much stronger hypothesis that / G W"-1 with D"~lf satisfying an X'-
Zygmund condition. More on this in §3.

2.1 Remark. We are interested in properties of Bp„T(f). As a function of
the interval (a, b), Bp„tT(f)(ab) is additive in this sense: If a < ß < y and
/ G Xp(a, y) then

Bp,n,rU)(a,y) ~ Bp,n,rU\a,ß) + ^.«.t(/)(/S,y).
Let us again consider a fixed interval (a, b) and let 1 < p < oo. Trivially,
Bp,nj)(f) = 0 for/ in X'. Also, for 1 < p < oo, Bp„T(f) is a nonincreasing
function of t. This follows from [2, Lemma 2.9]:

(2.1) lim  *(/,/) = 0   if/eX>.

Hence, if we define
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PIECEWISE POLYNOMIAL APPROXIMATION 537

r„(/)-ini{T:2»,ÄT(/)-0},

then 0 < rpn(f) < p and Bpnr(f) = 0 for t > rpn(f). Furthermore if 0 < t
< p < oo then

Bp^{f, u) <xnaxEp¡n(f, I^B^Af* u).

If BP,n,Áf) < °°> tnen> using (2.1)' it follows that Bpnj¡if) = 0. We have
shown

R    m-f° if °° > T > UA
>-"*W        [OO   ifO<T<T^(/).

This makes it an interesting problem to seek to determine rpn(f). If / G W,n
then obviously rpn(f) < o(p, n) < 1. One might conjecture that this holds
for all/in X'. If/' G P£ n X* then rpn(f) = 0:

2.2 Lemma. /// GP;nXf,0<T< oo, then BpnT(f) = 0.

Proof. If / is an interval, u a mesh we abbreviate
(2.2) I\u   iiiEJ Eu,I cJ,
otherwise l\u. Now if/ G P"(u), #u = k and if w is any mesh on (a, A) with
X(w) < 8 then

Bp,n,r(f,">)=    2    Ep¡n(f,lY
iew.i-fu

<k        sup       £„,„(/, I)\
IC(a,b),\(I)<8

The lemma follows now from (2.1).   □
The next result has several interesting consequences, cf. 2.9, 5.6.

2.3 Proposition. Let o = o(p, n) and suppose f E Ng,n. Then Bpn+Xa(f) =
0.

Proof. Since o < 1, the functional Bpn+Xa(-) is a seminorm (§1), which is
trivially majorized by Bpn(-) = Bpna(-). By 1.5 we can find a sequence (sm)m
where sm G S£+w such'that Np„(f - im)->0 (w -» oo). By 2.2 Bpn+Xa(sm)
= 0 (all m). Thus for m = 1, 2,.'. .,

*,„+!,(/) = l*„,n+..„(/) - BpM(sm)\

< Bp,n+x,0(f-n < BpJf-s">) < *,,„(/- s").
Now let w-> oo.   □

Of course, rpn+x(f) < rpn(f) < o(p,ri) for/ in W'n. Recall that trivially
Tpn+X(f) < o(p, n + 1) < o(p,n) for/in N^"4"1 (shown to be contained in
Nfr" in §4).

Next, we see how BpnT(f) relates to the asymptotic behavior of Ep„(f, k).
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538 H. G. BURCHARD

2.4 Definition [2]. // u is any mesh on (a, b), or a subinterval, let

MP,n("./) = max £p>fl (/,/)•

If no confusion can arise we let p(u) = Ppn(u,f). We say u is Ep „-balanced for
fin X" ///£„,„(/, /) = p(u)for all I E u.

Given p and n, it was shown in [2] that for each / in X' and each positive
integer k there is an ^„-balanced mesh uk with #uk = k and that lim^,,,,
p(uk) = 0. This is used frequently in the sequel.

2.5 Lemma. Suppose f E Xp, n a positive integer, 0 < t < p. If u is a mesh
on (a, b) then

¿W (/> »)1/T < k%, (/>")•     e = 7 - 7 »     k - # ".

with equality iffu is Ep „-balanced for f

The proof is an application of Holder's inequality. The special case t =
a(p,ri), 9 = n, is in [2].

2.6 Theorem. Letf E Xp. Then for p, n, t, 9 as in 2.5
lims*pkeEp>n(f,k)<Bp^U)X/r.

fc-*oo

The proof would be an immediate consequence of 2.5 if it was true that
X(w*) -» 0 (k -» oo) for a sequence (uk)k of meshes Ep„-balanced for/. This
holds for "most" / in Xp [2, Lemma 2.11]. For general / in Xp we need the
following result, again required below in later sections, which is a stronger,
and more general, form of [2, Theorem 2.12].

2.7 Lemma. /// G Xp and e > 0 one can find 8 > 0 such that for all meshes
u on (a, b) with pp<n(u,f) < 8 there exists a mesh v on (a, b) such that X(v) < e
and

|W/,«)-W/,t>)|<e.
Proof. Abbreviate again p(-) = pj,„(•,/). The proof is a refinement of the

proof of [2, Theorem 2.12] and we may be brief. If i is a "trivial" interval, i.e.
Ep„(f, I) = 0, then / is contained in a maximal (open) trivial interval. These
can be arranged in a sequence (V¡)¡, V¡ = (a¡, /?,), and 2,X(I^) < oo. Let
lm = 2(>mX(l^), m = 1,2 ,... Then (lm)m is a null sequence; we do not rule
out that lm = 0 for some m. For any mesh u on (a, b) let um be the mesh
obtained by adjoining to u extra knots a,,..., am, ßx,..., ßm, and define

Xm(w) = maxjX(/):/GMm,/n U V,~Q>\.

One then shows
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PIECEWISE POLYNOMIAL APPROXIMATION 539

(2.3) |*,„,,(/, «) - iw(/, um)\ < 2ma(u)T,

(2.4) lim supXm(«) < lm.
n<«)-o

The proof of (2.3) is by induction over m, while (2.4) follows from (2.1) by a
compactness argument. Let e > 0. First choose m such that lm < e. By (2.4)
select 5, > 0 such that ¡i(u) < 5, implies Xm(u) < e. Finally choose 5 such
that

0< 5<min{ô1,(e/2ro)1/T}.

Let u be a mesh on (a, b) with (i(u) < 8. Then Xm(u) < e. Construct a mesh v
from um by filling in extra knots in the trivial intervals V¡, i = 1.m, say,
equidistantly. This can ge done so that X(v) < e. Moreover, Bpnr(f, um) =
BfJVif, v). It follows now from (2.3) that \Bp^(f, u) - BPt„¡T{f, v)\ < e.   O

2.8 Corollary. Letf G X'. Then
lim sup 5'if, u) = B     if),
n(«)-o

lim inf B     (/, Ú) - lim inf B'     (f, u).
n(u)-*0 X(u)-»0

In particular Bp¡n(f) = hxn^^B^if, u)forf E Ng-n.

Proof. Immediate from 2.7, (2.1) and for the last part, 1.4.   □
Proof of 2.6. Select a sequence (uk)k of ¿^„-balanced partitions, #«* =

k, for / (cf. the remark after 2.4). By 2.5 Bp<nTif, uk) = k%n(f, uk) >
kBEpn(f, k). Since p.(uk) ->0(k-* oo), 2.6 follows from 2.8.   □

2.9 Theorem. /// G Ng-n, then

(2.5) lim *-^i,+1 (/,*)-a

Proof. If / G N§" then Bpn+ho(f) = 0 by 2.3, o = o(p,n). By 2.6
hmk_taok9Ep„+x(f, k) = 0, 0 = I/o - 1/p = n. The theorem follows from
1.9.   □

Korneicuk's theorem asserts (2.5) for/ G Lip,, p = oo, n = 1. Freud and
Popov proved (2.5) for general p, n, f E W1,1 with Z)"-1/ satisfying an
X'-Zygmund condition [9]. By 1.3 W"-1 c Ng-n (" = " forp = oo, n = 1) hence
the Zygmund condition can be removed. For o < 1 it is clear from 1.4 that
Ng'n is much larger than W1,1. In the next section this becomes more evident,
cf. 3.4f.

We remark that a different and slightly more constructive proof of 2.9 can
be given by first approximating/in the metric of N*" by suitable 5 in S/1"1"1,1,
I = [(k + l)/2], and then finding an ^„-balanced approximation s in P," for
f - s (in the X^-metric). After that one "pulls apart" the knots of s + s,
considered as element of Sk¿l X).
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540 H. G. BURCHARD

3. The class of functions shown to belong to Ng'" in 3.1 is already known to
be included in Np-n by 1.4.

3.1 Theorem. Suppose o(p, n) < 1 andf E W~u with D"~xf in BV on the
interval (a, b). Then f E Ng'". If in addition Dn~xf is a singular function in the
sense of Lebesgue, i.e. £»"/ = 0 a.e., then Bp„(f) = 0 and limk_ta)k"Ep^(f, k)
= 0.

For the proof we need the following result. This has to do with "relative
completion", cf. Butzer and Nessel [3] for this concept and for similar results.
Our statement makes explicit reference to approximation via convolution
with an approximate identity since this is convenient for the application to be
made. We may omit the proof which is along standard lines. V(f)¡ denotes
the total variation of /on the interval £

3.2 Proposition. Let <p be a function in C°°(R) such that 9 > 0, /R«p(0 dt =
1, supp(<p) C [— 1, 1], and let 9k(t) = k<b(kt) for positive integer k. Assume

f E W"-''l'l0C(R) with D"-xfE BV(R). Let fk = /* 9k. If 1 < p < co and
a < 1 (for a=l add the requirement f E C(K)), then fk E C°°(R), lim^JI/
- fkWpKaj» - 0 and \\D%\\Xi,a¡b) < K(Z>"->/)R.

Proof of 3.1. Fix p, n with a = a(p, n) < 1. Assume / G W"-1,1 and
Dn-\j e BV on (a> b). Then / G N*" by 1.4 (if p = oo, then n > 1 and
/ G C[a, b]). By the Lebesgue decomposition theorem we can write / = fa +
fs where/, G W"-1, i.e. D% E V while D"~xf, is a singular function in the
sense of Lebesgue, i.e. the «th distribution derivative D"fs is a singular
bounded Radon measure on (a, b). Since fa E Ng'" by definition, we may
assume/^ = /,/, = 0. Let p — D"f and suppose n > 0. Since p is a measure
singular with respect to Lebesgue measure £ we can find a positive integer m
and disjoint intervals /,.Im contained in (a, b) such that for J = U?Li/,
one has

£(/)<r/   and   \p\((a, b) \J) < n,
| p| being the total variation measure of p. Define the Radon measure pQ on R
by

p0(£) - p(£ n /)
for Borel sets £ c R. Define a function/0 by

(3 1)     h(x)^DJf(a)(x-a)J/j\ + dJ     (x - t)"'1 pn(dt)

ifxER.
Here £"_1/(o) = Dn~xf(a + ),d„ = l/(n - 1)! and the integral vanishes for
x < a. Then D"-% E BV(R) and D% = p0. Notice that (3.1) still holds with
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the subscript "0" if a < x < A. From now on we write || p|| y¿aJ)) for the total
variation of the measure p. Thus, since p = D"f,

IHIrxMi * ^""'/W
On account of

\{p- Po)E\ = \p{E\J)\<\p\{E\J)
for all Borel sets E on {a, A) we find

Il M - folk..» -1M - Mol((a.6)) <|M|((fl.©)\/) < *
This implies by [2, Lemma 2.1]

(3-2) ||/-/olU,W < ̂       »pAf-foh,» < Mr,'
for some constant Af. It suffices, therefore, to obtain a close approximation to
fo in Ng-\ With <#>* as in 3.2 let/* - /„ * <?k, k = 1, 2_By 3.2/A G C°°(R)
and

Jim ||/o-/*IU,,» = 0,
(3.3) *-*"

\\D%\\XM<\\p4vM<U\\v&*J,>
Next, since /^ vanishes on R \ J, we see from (3.1) that/ôl, is a polynomial of
degree at most n — 1 if / is an interval included in some component of R \ /.
Similarly, if we let Jk = J + {— l/k, l/k) and if / is an interval included in
some component of R \ Jk, then

DJkli - [(D%) » <bk]\j = (po * fc)|, = 0,
since suppig) c [- l/k, l/k]. Hence fk\¡ is a polynomial of degree at most
n — 1. It follows that for an interval I

(3.4) EPtnifo-fk,I) = 0   if/n/*-0.
Now we can estimate Np„{f0 — fk\a¡by Let us choose 8 so that 0 < 5
< tj/(4/m). If w is any partition on {a, A) let

h-° - {/ G w: a(7) < Ô and / n Jk + 0},
wx = {I Ew:X{I) > 8).

We shall abuse notation and treat w°, wx as meshes. Let / = #wl. Clearly
/ < (A - a)/8. Because of (3.4) we have

Bp,n (fo - fk, "0 - B„ (/o - U, iv0) + B„ (/0 - A, w1).
Estimating as in 2.5, i.e. by Holder's inequality,

Bp,„ (fo - A, W) < /"»£„, (/0 - fk, wx)'

<ib-a)m8-'">\\f0-fk\\pM).
Also, by a different application of Holder's inequality, as in [2, Lemma 2.1],
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and since t(Jk) < tj + 2m/k,

B,Afo - fk' w°) < V (  2   A(/))      (  S  \\D% - D"fk\\v\
\/<=wo J \lsw° »

(3.5) < 4T(îj + 2m/* + 2m8)x-°\\pn - D%fVM)

<d„°(lV + 2m/k}   V||p||V,(,.«
(the last inequality by the choice of 8 and by (3.3)). Combining these
estimates and taking the sup over all w we get

Np» (/o - fk W) < d; ( f t, + 2m/*)    V|| p||^>(û,6)
+ (o-û)n<'5-"«'||/o-Ali;>(fl,fJ).

From this and (3.3) we see that we can choose k such that for some constant
Mx (depending on/):

||/o - fk\Ua,b) < V and Np¡„ (f0 - fk )(B>W < Mrf-.
Combining this with (3.2) and recalling 0 < o < 1 we obtain an estimate
1/ - fk\pMa,b) < *(i) where lim,_*+iKij) = 0. This shows / G Ng-". For the
proof of the remainder of the theorem, if again D"~xf is a singular function
and 17, m, J, f0, 8 are as above and w is a partition of (a, b) with X(w) < 8, let
w° = {/. G w: I n J 7e 0}. Then, estimating as in (3.5) and using (3.2),

Bp,n (/. y>) < Bp,n U - U w) + £>,„ (/„, w)

< N,Af-fo) + 4f ( 2 M/))    (- S irai*/)
Wenr»       '      We*0 '

<M«' + #(îi + 2mô)l-'||p0|r',,

<a/t,° + íí;(|t,)  Wk-+iOö-
Again, lim71^0+i//,(7j) = 0, thus Bpn(f) = 0. By 1.4 this implies

lim *"£„,„(/, *) = 0.      D

An examination of the preceding proof will show that if / satisfies the
hypothesis of 3.1 and /, suitably extends / to R (e.g. as in (3.1) with the
subscript "0" dropped) then

lim |/, - /, * 9k\pMa)b) - 0.

We conjecture that no such result can hold for all /in Ng'". In this connection
the following result is of interest. This also depends on Proposition 5.1 below.
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For simplicity we consider Ng,n(r), T the circle identified with [-it, it). Let
<¡> E C°(T), <f>>0, ]T$ dt = I, supp(<f>) c [-0.1, 0.1].

3.3 Corollary. /// G Nfrn(T), the map f-»/, = f(--t) is continuous
fromTtoNp'"(T),and

f * <t> - f /,<*>(') dtJT

exists as an Xp(T)-valued Riemann integral. Yet, for some f in Ng,n(7'), / * <f>
does not exist as an Ng'" ( T)-valued Riemann integral, no sequence of Riemann
sums for f * <b with mesh-size tending to zero converges in Ng,n(7") and F = {/,:
t E T), though compact, does not have a relatively compact convex hull in
Ng,n(7'). It follows that Ng,n(r) is not locally convex. (In all this o(p, n) < 1.)

Proof. Let g be the standard Cantor function on [0, 1], fx(t) = g({-
+ i cos /), and define recursively

fn+Át)=í'fÁX)dx-{-r fn(x)dx,Jq ¿T J-*

n » 1,2,..., - it < t < «r. Then Dn~xfn G C n BV, but Dn~xfn is singular,
D"fn is a positive singular measure on (-it, 0), negative on (0, it). For a
Riemann-sum R (u) for/ *</>,/ = fn,

*(«)= 2 ¿/K'/)A(/)> hEl,
leu

over the partition u of T, we have Dn'° R(u) = 0 by 3.1 and 5.1. If a sequence
(uk)k of partitions of T is given with X(uk) -> 0 as k -> oo, then if (R (uk))k is
a convergent sequence in Ng'"(r), then by 1.2 it is so in X^T), with identical
limit, which must be/ * <i> (as ordinary Lebesgue integral). This gives

(DJ) * <b = Dn (f * $) = D"-° (f * <b)
= lim .,.I>n-°R(uk) = 0,

k-»oo ^ >

which is impossible since the distribution derivative (D"f) * <p is a positive
measure (in fact C00) on (-n- + 0.1, -0.1). The special Riemann-sums R(u)
with t, so chosen that í¡<j>(t) dt = <b(tj)X(I) axe in the convex hull c\(F) of /,
and therefore cv(F) cannot be relatively compact. It follows that Ng,n(r) is
not locally convex [8].   □

It is remarkable that the preceding proof does not depend on the failure of
L° to be locally convex. This fact does imply, however, that Dn'° does not
have a continuous linear right inverse, i.e., ker D"° = {/ G Ng,n: Bpn(f) =
0} is not complemented in Ng'". It follows from the Baire category theorem
that the map fr^f*<b is continuous from LX(T) to Ng,n(r), hence from
Ng'"(7) to Ng^r).
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3.4 Corollary. Suppose o < 1 and f E W"~u with D""1/ G BV. Then
limk^00k"Ep„+x(f, k) = 0. If moreover D"~xf is a singular function then
lim^eo*"£¿(/,*) = 0.

This follows immediately from 1.9, 2.9 and the preceding result. Corollary
3.4 lends further emphasis to the fact that 2.9 is a considerable improvement
of the Korneicuk-Freud-Popov theorem, cf. remarks following 2.9. The
result in 3.4 that Ep„(f, k) = o(k~") if £»""'/ is a singular function, i.e.
D"f = 0 a.e. is what one would hope for since the approximators in Sk,x are
precisely those functions which have this property in the stronger form
"D"-Xf E BV, Dnf = 0 piecewise". By contrast, iff E W"-1, i.e. D"-Xf G AC,
then by 1.4, 1.9

Bp,n(f)l/"=cpJD"f\\a   and   (V/GNg'")

Bp,„(f)x/°< lim infk"Ep\„(f,k)

< lim sup*"£;,„(/,*) < 2n"BPi„(f)x/°.
k -»oo

3.5 Corollary. Suppose o < 1, / G W"-1,1 and D"~xf E BV. Then f = fa
+ fs, with D"-xfa G AC andD"-xfs singular, and

Bp,Áf) = BpAfa) = c;jDJSo = Jim k»EpJf, *).
This is an immediate consequence of 3.1 and 1.4. The following is a

companion of 3.5, which sharpens part of [2, Theorem 2.8].

3.6 Corollary. Suppose a < 1, / G W"-UJoc n X' and Dn~xf E BVloc.
Thenf = fa + f, with D"-% E ACIoc and D"-Xfs singular,

(3-6) lim inf Bp%n(/, u) = cp°JD»fa\\°a
A(u)—»0

and liminfk_t00k"Ep„(f, k) > CpJ-Dyjl" (the right-hand expression may be
CO).

We omit the proof. The result corresponding to (3.6) in [2] had only " > ",
but in fact " = " can be shown.

3.7 The case o = 1. In this case,p = oo, n = 1, and one can show that for
all/inX°° = C[a,b]

în/) = *oo,i CO = *«,,.(/)
= Jim n5oo,. (/. ") =   "m   £„,, (/, h)

X(u)-»0 f(u)-»0

with p(u) = pMtX(u,f), whether or not any of the quantities in (3.7) are finite.
It follows that
(3.8) Jim *£„,(/*)= i V(f)    (all/in Xo0).
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Note that EliX(f, k) = £«,,,(/, *). The result (3.8) is due to J. P. Kahane [10].
We remark that for o < 1 the analog of the second equality in (3.7) is
patently false by 3.1. The third and fourth equalities in (3.7) have been shown
for a < 1 only if / G Ng". We omit the proofs.

A comment is due regarding another result of J. P. Kahane in [10]. There,
the quantity

v*(f) -sup 2 WM -/(•*- i)D
u i-i

is introduced, with the sup taken over all partitions u on (a, b), \¡/ being a
continuous strictly increasing subadditive function on [0, oo) with \p(0) = 0.
Kahane proves a result analogous to (3.8) for V*(f). However, this is not
essentially more general than (3.8). Namely, either

(3.9) lim s\ipty(x)/x = oo
x-*0+

and then V*(f) < oo implies / is constant, or (3.9) is false; but then
V*(f)< oo iff V(f) < oo, for/in X00.

Finally, it is clear from (3.7) that N00'1 = BV n X00 and N^'1 = AC If this
case is typical we conjecture that W is the relative completion of Ng'" in X',
cf. 3.2 and the remark preceding it (however, for o < 1, Ng'" is not a £-space).
It is easy to see that the relative completion of Ng'" in Xp is included in N*".

4. In this section we prove degree of approximation theorems of the type
established by Butzer and Scherer [4] in the context of linear approximation
in Banach spaces, and analogous to classical results of Jackson, Bernstein and
Steckin. A Zamansky-type result, as contained in [4], appears to fail due to
the nonlinearity of the approximating classes Pk. The proofs depend on pairs
of inequalities of the Bernstein- and Jackson-types, as in [4]. The method of
"pulling apart knots," cf. 1.7 and 1.8, and a Bernstein-type inequality also
give the result that for/ to be an element of Ng-" it suffices that/ G Ng'"(7)
for each interval / of a partition on (a, b), and that/ G Xe0 in casep = oo.

The next three lemmas establish inequalities of the Bernstein-type. Here
N''" acts as the "smooth" space.

4.1 Lemma. If s E £¿, a = o(p, n) then Npn(s)x/a < k"\\s\\p.

Proof. Suppose s E P"(u), u a mesh on (a, b) with #u = * and let w be
any partition on(a, b). Using the notation of (2.2) and using Holder's inequal-
ity as in the proof of 2.5, for 1 < p < oo
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**.(*.*)-   2   EPAs>n'
I<=w,Hu

vo/P

< Jfc"(      2      EpAs,lA
* ¡e.w,!\u '

\° \a<k""Ep:n(s,w)"<k'"'\\s\\p.

Similarly forp = oo.   □
If s G P£ n X' this shows s G W (by 4.5 actually s G Ng-n).

4.2 Lemma. IfsEP£+x then
cpJD"s\\a < fe-||i||p.

For cpjl, see 1.4 D "s is defined only in the interior of mesh-intervals.

Proof. Suppose s E Pn+X(u), u a partition on (a, A), #u = k. If / is an
interval, I\u, then

(4.1) cp¡nX(I)l/°\D"s(Xl)\ = Ep¡n(s, I),       x7 G /

(this is a trivial consequence of the definition of c „). Hence, also using 2.5,

c,JD»s\\°. = 2 c;nX(/)|D"i(x/)|°
/eu

= 2 ¿w,(*>/)"= *„>>«)
/eu

< k"°EpAs,u)< k"\\s\\'p.   D
4.3 Lemma. If s E P£+x then Np<n(s)x/a < 2x'°kn\\s\\p.

Proof. Again, if j G Pn+X(u), #u = k, and w is any mesh, then by (4.1),
and estimating as in the proof of 4.1

bpAx>")=   2  c;^(i)\D'Six,)\'+    2    EpAs,i)°
¡ew,i\u iew.i^u

<cp°JD»s\\°<, + k'«'Ep<n(s,w)°.
By 4.2 this implies the lemma.   □

4.4 Remark. As is easy to see, if / G X'', and/|7 G Wtf) for all I in u, u
a partition on (a, A), then / G Np-n. The corresponding property for Ng,B lies
deeper.

4.5 Theorem.///belongspiecewise to Ng,n, i.e.,/ G Xp andf\¡ G Ng-n(/)/or
all I in u,u a partition on (a, A), fAevi / G Ng'". In particular Pf nX'c Ng-"
for positive integers m,k.

Proof. If o = 1, then Ng" = AC, cf. 3.7. It is easy to see that the theorem
holds in this case. Let a < 1. Thus p = oo implies n > 2. Observe that it
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suffices to consider the case #u = 2, since Ng'" is a linear space. Hence let
u = (a, c, b) and /, = (a, c), I2 = (c, b), f E X", f\, E Ng'"(/,),/ = 1, 2. By
1.5 we can find sequences (sj)¡,j — 1, 2, sj E 5"+1'' such that lim^^l/ —
sj\p„, = 0. Let us piece s'x and s2 together:

sl(t)-sj(t)    if t E IjJ = 1, 2.

It is then clear that s E 1/ and that lim^Jlj' - f\\p¿a¿) - 0. Forp = oo, s'
need not be continuous. However, one can in this case choose sj such that
s¡(c) = s2(c) (use 4.3 and the method of proof of 1.8), ensuring s' E Xo0.
Thus, in any case, / is the XMimit of the sequence (s1),. Furthermore, as is
easily seen,

np, (*' - A.,« < *m (*/ - /)/, + »pA4 - /)/,+ IIs' - /llîw)'
By hypothesis, this shows that / is the W'"-limit of the sequence (s1),. It
suffices, therefore, to show that s' E Ng-", / = 1, 2 .... Since s'\¡ — sj 6
W"''(^), this reduces the proof of the theorem to the case that/ G Pk + X n
X*, for some *. Let us assume this is so. By 1.7 we can find a sequence (f")m
in S;(:i-!) C Ng-" such that limffl^J|/ - f"\\p = 0. Notice that

/"• - /' G P»2k\x„+X), m,/-1,2.
Hence by 4.3

NpMm-f) < 2[2*(/t + I)]!/"1 -/'|£.
We have shown that (/m)m is Cauchy in Ng'". By 1.2 this implies that /is the
limit in Ng-" of the sequence (f")m, thus/ G Ng-".   □

It is natural to expect that Ng'" should possess the property expressed in 4.5
in view of its relationship to piecewise polynomial approximation. If fact 4.5
enters in an essential way into the proof of the next result.

4.6 Remark. Lemmas 4.1, 4.2, 4.3 have the form of Bernstein's inequality, if
we consider Np„(s), or ||£"j||0, as a measure of smoothness of s. In complete
analogy with the framework described by Butzer and Scherer [4], the inequali-
ties of 4.1 and 4.3 (not 4.2) can be paired with inequalities of Jackson's type.
These follow from 1.4:

(4-2) Ep>„(f,k)<k-"NPt„(f)x/°,

<4-3> Ept„+x(f,k)<k-"NpM(f)l/°'

for / in Np,n, the second inequality following trivially from the first. Next we
obtain a characterization of Steckin-type from inequalities 4.3 and (4.3).

Existence of best approximations in P£+l for /in X' is shown in [2] (* = 1,
2,...). Given p and n with 1 < p < oo we select sk(f) in £*"+1 (c X') such
that
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(4.4) Ep¡n+X(f, k) = ||/- sk(f)\\p,       K p < oo.
Forp = oo we choose sk(f) in P/t"+I n Xo0 by 1.8 such that

(4-5) ¿Wi(/,*) < II/" **(/)IL < 2*Wh(/,*)•
In either case we observe that í¿(/) G Ng'" by 4.5. For a real sequence (cA)A
we employ the notation ||cj|(i)? for the /'-norm and we let for 1 < q < oo

Í  °°    1        )l/"
kl«.f-(21ïl%lfJ   .

while ||cJw.M = ||cA||Woo.

4.7 Theorem. Lei 0 = o(p, ri), 1 < q < ao, 9 > no. Iff E \p, the follow-
ing are equivalent:

(4.6) \\k"Ep,n+x(f,k)\k).q<co,

(4.7) / G Ng-" and \\k9-"°NpAf - **(/))«(«.,< 00,

(4.8) / G Ng-" and ||2«'-'»>/V„(1 (/ - ^(/))||(A)9< 00.

Furthermore, (4.6) implies

(4-9) 2   {[^^,n+,(/^)]0<oo

(i.e., (4.6) wjïA ? = 1, 9 = /ia), aw¿ (4.9) is sufficient for f to be in Ng,n.

Proof. Throughout the proof we write sk = sk(f). (4.6) => (4.8): Assume
(4.6) holds. We first show this implies (4.9). By Holder's inequality, if
l/q + l/q' = 1, then for ck = k»°Ep¡n+x(f, k)°

2  TCk<\\k9-n°ck\\lkUq\\k"°-9\\lkU<.
k-i K

Since \\k"a~9\\(k),q. < 00, this proves (4.9). We leave it to the reader to verify
that for 1 < q < "00, 9 > 0 (and letting Ma denote, here and below, various
relative constants)

(4.10) ¡|2%fl+I(/, 2*n|(fc)?< Mo\k%,n+x(f, k)\kU.

For q = 1,9 = no this and (4.9) give

(4.11) fl2k'>°Epttt+x(f,2k)°<oo.
k-\

Now observe that

s^+x - i2* G P£+1

Hence, by 4.3 and (4.4) or (4.5)
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no")kno\\„ _  „   ii°**.(*♦' - 'aO < 2 • 3""2*"'||52*+1 - s^

<2.3-"2*-{||/-i2*+.|i;+||/-j

< Mx2k"°EPi„+x(f,2k)°.

It follows that for m > k

(4.12) Np¡n(s2„ - s?) <MX2 2""EP:„+X{f, 2')".
m-I
2

l=k

Since, of course, lim^JI/ - sk\\p = 0, (4.11) and (4.12) show that (s2„)m is a
Cauchy sequence in N'*", and in fact by 1.2 and 4.5 (s2-)m converges to/in
Ng'", thus/ G Ng'". We at once obtain from (4.12)

NpAf- **) < Mi 2 2">°EPtn+x(f,2')°.
l-k

This implies, using Minkowski's inequality, for no < 9,

l|2W'-%(/- ^)ll(»,< Mi   2 2<'-*><"°-<>2%n+1(/,2')°
*>k <*)«

<A/12o2/('»-9)[2<*+/>%)fl+I(/,2*+00|U?

< ! _ 2no-e |2%»+i (/. 2k)\k)q-

Now (4.6) and (4.10) imply (4.8).
(4.8) => (4.7). Assume (4.8). Let 2m < k < 2m+I, m > 1. Then we show

(4.13)       Npt„(f - sk) < M4 { #„,(/ - ij-,) + N„(f - s2^)}.
By the Jackson-type inequality (4.3)

(4-14)    £,,n+1(/,2* - 1)°< Ep>n+l(f- sk,k)"< k-"°Np,n(f-sk),
and therefore

¿Wl(/,2"r< 2-<"-1>"<W,,,1(/- Sy,-,).
This and 4.3 imply (observing s2*+i - skE P%ïA):

Npt„(s2^ - sk) < 2(2^2f\\s2^ - sk\\p

<M22*"»{\\s2^-f\\;+\\sk-jX}
< M32m""Ep<n+x(f,2m)''< M4NPt„(f-s2m.,).

From this we obtain (4.13). Next, (4.13) gives
kB-mNpAf-Sk)

< M5 {2<— W-^N^tf- Í2-.) + 2<"+,X'—>#,„(/- j2.+,)}
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for 2m < k < 2m+ '. For q = oo  it follows directly from the preceding
inequality that (4.8) implies (4.7). For 1 < q < oo we estimate (ignoring
*-l)

2 l[k9-»°Np,„(f-sk)]*
k-2

= 22 {[^-n^,(/-^r
m-l k = 2m

< M¡ S [2(-IX'—^(Z- Ja--.) + 2^^0-^N^if- s2^)Y
m-1

< J/6||2"<'—>#,,„(/- s2„)\\fm)q< oo

by Minkowski's inequality and by (4.8). This proves (4.7).   □
(4.7) => (4.6). Assume (4.7). The Jackson-type inequality (4.14) and the

obvious relation Epn+X(f, 2k) < £,,„+,(/, 2k - 1) give

(4.15)   J9Ep,n+x{f,J)°< 29k9-»°Np,n{f - sk),      j = 2k-l or/ = 2k.
Using this and (4.7) we can estimate

\\J%,n+AfJ)°\\U).q< W-v„V-»ùln.<
This completes the proof of the theorem.   □

4.8 .Remark. Our proof of 4.7 differs from the corresponding treatment by
Butzer and Scherer [4] in several details. The main difference is that in our
case there does not appear to be an analog of inequality [4, (3.12)]. We
overcome this in part by our inequality (4.13), no analog of which occurs in
[4]. However, it is for this reason that we are unable to prove a Zamansky-
type characterization.

4.9 Remark. (4.14), and hence (4.15), is correct whenever sk E P£+x n Xp.
This shows that (4.7) is also equivalent to (4.16):

(4.16)
for some sequence (sk)k, sk G P£+x n X*.

Next, we obtain several interesting corollaries.

4.10 Corollary. Let 1 < p < oo, n a positive integer. Then W,n+I c Ng-".
More precisely, iff G X^ and 0 < 9 < 1 then

f E N>'"+1 =* Ep¡n+Xif, k) = 0(k-"-")

k2 } [r£,,,,+1 (/,*)]"< oo^/g Ng-
*=1

EpAfk) = 0(k~").
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Proof. By 1.4 and 4.7.   Q

4.11 Corollary. Let p = oo, n a positive integer, / G Xe0. // (4.6) holds
(9 > no, 1 < q < oo) or (4.9) holds thenf E AC. The following are equivalent
for 9 > 1:
(4.17) ¡k'È„Af> %».„<«>>

(4.18) /G AC   and   \\k9~xVif- sk)\(kU< oo,

(4.19) /GAC   and   |2«'-»K(/- ^)|(Wf< oo.

//ere, ja = J¿(/) G P¿ n Xo0 = S£', a/«/ (4.5) Ao&fc with n = 1.

Proof. By 3.7 #«,,](/) = ¿ V(f) and N^1 = AC. Now apply 4.7 and 4.10.
D

This result can be improved as follows. It is almost trivial that for a
polynomial s of degree n

V(s)i=\\D4u< K\\s\Lj,       Mn = 2n.
This immediately implies on the interval (a, A)

(4.20) V(s) < A/^HjIL,       s E P£+x n X".
This inequality of Bernstein-type can be paired with the Jackson-type in-
equality
(4.21) E^„+x(f,k)<2-xk-xV(f)   if/eX«
which follows from 1.4 and (3.7). There is no difficulty in carrying over the
method of proof of 4.7, line by line, to the present situation, replacing the
inequality pair 4.3, (4.3) by (4.20), (4.21). The result is the following theorem.

4.12 Theorem. Let 1 < q < oo, 9 > 1. /// G Xe0, the following are equiv-
alent:

(4-22) ||*Xv+.(/>*)|L.?<<»>
(4.23) /GAC   and   |*»->K(/- *(/))|w,f< oo,

(4.24) /GAC   and   \lk^'V(f- *ai(/))|Wf< oo.
Furthermore, (4.22) implies

(4.25) 2 £»,„+1 (/>*)<«>
*-i

(i.e., (4.22) with q = 1,9 = 1) ana" (4.25) is sufficient for f G AC. //ere, s*(/) «
ai »n (4.5). In addition (4.22) Ao/ífe jjQf

(4.26) \\k9-xEu(Df,k)\\{kU<n.
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The proof of the last part is as in 4.9, noting that V(f) = \\Df\\x for/ in
AC. We point out that 4.12 reduces the case of p = oo to that of p = 1. We
can directly relate (4.26) to (4.6) for q = oo (not for 1 < q < oo). We thus
obtain the following result.

4.13 Corollary. Let n > 1,9 > n,f E Xo0. The following are equivalent:
(4.27) sup*e£M>n+.(/.^)<o°»

k

(4.28) / G AC   and   supk"-xEx „(Df, k) < oo,
* „

(4.29) / G AC, Df E N¿'"~'   and    sup*9-"JV, „_, (£>/ - sKx)) < oo,
k

where sW E £*", \\Df - si% = £,,„(£/, *).
(4.30) /GN?'"   and   supk9-nNgB„(f - sk)"< oo,

k

where sk = i/t(/)y£A"+I n X00 satisfying (4.5)

The proof follows from 4.7 and 4.12 (q = oo), noting o(oo, «) = l/n =
a(l,n- 1). We observe that

Neo,n(f)<NXt„.x(Df)   for/G AC
Thus, the implication (4.29) => (4.30) follows directly.

Next, we use the Peetre ^-functional to obtain a characterization analo-
gous to the classical Bernstein theorem.

4.14 Definition. Let 1 < p < oo and n be a positive integer, o = o(p, n). If
f EXp, 0 < t < oo, let

£„,„(/,/) = inf{\\f-g\\p + tNp>n(g):gEW-"}.
This functional, if not a special case, is at least closely analogous to the

.^-functional introduced by Peetre in the context of Banach spaces, cf. [4] for
references.

We state the following theorem, omitting the proof, which is based on the
Bernstein-type inequality 4.1 and the Jackson-type inequality (4.2), and which
does not present any novel problems. We only consider the case q = oo.

4.15 Theorem. Let 0 < 9 < I, f EXp, 1 < p < oo. The following are
equivalent:
(4.31) sup*tf"£/I,B(/,*)<oo,

k

(4.32) sup r%M(t,f)< oo.
0<r< 1

We add the following comments. Kpn(t,f) is analogous to a higher mod-
ulus of continuity. It is not hard to see that the following are equivalent for/
in X': (i) / is a polynomial of degree n - 1 or less; (ii) Np^(f) = 0; (iii)
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Kpn(t,f) = 0 for some t in (0, oo); (iv) limt_0+t~xKPi„(t,f) = 0. Furthermore,
if (4.32) holds with 9=1, then / G N*" (and conversely) and thus (4.31)
holds with 9=1. The latter property implies, as in Bernstein's theorem,

sup    [t\logt\]~XK   (t,f)< co,
0</<2-"

which is, of course, weaker than (4.32) with 9=1.
4.16 Remark. Examples of functions in Xp\Np,n axe most easily con-

structed using (3.6), since it is shown in [2] that / G Np,n iff /EX' and
BpAf) < °°- Thus> an example in [1] which is in W1>Uoc n L1 but has
Il ¿/Il 1/2 = oo is in L1 \ N1'1. As shown in [7], /(/) = |log(0|_I, belonging to
X°°(0, i), has ||Z)2/||I/2 = oo hence is in Xo0 \ N00,2. The latter example has a
monotone and negative second derivative.

5. In this section we consider the dependence of Bpn(f)(ab) on the interval
(a, A). This quantity is of interest because of 1.4. Besides, it was shown in [2]
that if/ G X', then/ G N*" iff Bpn(f) < oo.

5.1 Proposition. Let 1 < p < oo, n a positive integer. There is a linear,
continuous map Dne: Ng-n^.L°, o = o(p, n), such that D"-°f= D"f if f E
W'1 and

BpAf),= Cp:n\\D"'°f\\ao,,
for every interval I c (a, A). These properties determine Dn,a uniquely.

Proof. Let/,,/2 G W"-1. By 1.4

c;jd% - d%\\; = b,m -h) < N,Afi-fi)-
Being uniformly continuous from W"'1 with Ng,n-metric to L", D" has a
unique continuous linear extension, D",a: Ng,n-»L0. Also, for an interval
/ C (a, A), if (fk)k is a sequence in W"'1 converging to /in Ng,n,

KWfCi - BPAfk)t cm^/ir*./ - nö%ii°o./i
< c;jD»-°f - D%\\'9J ^0   as k -» oo,

hence B^if), = hmk^BpMk)i = ÇJD'fWlj.   D
5.2 Corollary. If f E Ng'", then Bpn(f)¡ is an absolutely continuous

interval function.

Proof. BpA(J), = c;jI\Dn-°f{t)\'' dt, and |Z>«--/|' G L1.   D
Note that n and o determine p, so there is no ambiguity in the notation

Dn-°. By 3.5 if/ G W"-x-x, Dn~xf E BV, then D"-°f = D"fa, where Dn~xfa is
the absolutely continuous part of D"~xf. In particular, Dn-"f = 0 if £>""'/ is
singular (if o < 1). 1.4 shows that Dn'"f may be nonintegrable.

As was observed in the proof of 4.2, if s G Pn+'(«) then
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(5.1) c;jD%\%-Bpjt(s,u),
with D"s defined in the interior of the intervals of u. This suggests an
interesting method of computing D",af, and hence Bpn(f). In preparation, we
prove several lemmas.

5.3 Lemma. /// G Ng'" and u a partition on (a, b) we denote by su(f) a best
approximation to f in Pn+X(u) in the Lp-metric (which is unique for 1 <p <
oo), i.e.

Ep*+i(f>«)-\\f-Su(f)\\,-
Then for f in Ng'"

Bp>„(f) = Jim c;jD\(f)\\
A(u)-»0

Proof. We have (5.1) and

\BPAf> «) - *pA*u(f)> «01 < BPAf-'M), u)
- 2 £„,(/-*.(/).')-2 **»+i(/.')"

¡eu leu

- BPin+u (f,u).
By 2.3, limX(ttM)JB,jn+,,„(/, u) = £,,„+,,„(/) = 0.   D

This lemma is already of considerable interest, since it shows that, at least
for/ G Ng-", Bpn(f) can be approximated via the "inscribed polygons of best
approximation" su(f) of degree «. However, more can be said.

5.4 Lemma. Suppose f E C"[a, b], I c (a, b), d„+x = 1/n!, a = o(p, n).
Then Ept„+X(f, I) < d^xX(I)^U(Dnf, X(I)).

Proof. Let / = (a, ß). Let s(x) = 2;_0Zy/(a)(;c - a)>/f\. By Taylor's
formula,

\s(x) - f(x)\ < d„+xX(I)nu(Dy, X(I)),       xEl.

Forp = oo, this is the assertion. For 1 < p < oo,

P-A\p.i< d„+xX(I)nU{D"f,X(I))\fßdt"
. a

which gives the lemma.   □

5.5 Lemma. In the situation of 5.4, ifsj is the (unique) best 1/-approximation
tofinPn+1(I),then

\\DnsI-D"f\\ooJ<Mp^{DJ,X(I))
for some constant Mp„.

Proof. By a result of G. M. Phillips [12], cf. [2, (1.8)], if g G C"[a, b], then
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Eptn(g,I) = cp<nX(lf0\D"g(i)\,
for some £ in [a, ß], I = (a, ß). Thus,

Ep,n+l(f,I) = E,Af-s,>l) = c,,nA(/)1/o|Z>»(/- s,m\
and hence for t E I, since D"s¡ is constant,

\D%(t) - Dnf(t)\ <\D%(Ç) - D"f(i)\ +\D"f(i) - D»f(t)\
< Ep¡n+x(f,I)/[cp<nX(I)X/°] +u(D%X(I))

< Mp^(Dnf,X(I)),

by5A,MPin = (l + dn+x/cpJ.   O

5.5 Corollary. /// G C[a, A], /Aen

\\DJ- D\(f)\\x< MPinU(D%X(u)),
for all partitions u on (a, A). Again, D\(f) is undefined at the knots ofu.

We now obtain a much sharper statement than Lemma 5.3.

5.6 Theorem. /// G Ng*", o = o(p, n), then

^\\D"-ttf-D\(f)l=o.

Proof. Let/ G Ng-". By [2, Lemma 2.1], if/ G W-1, then Npn(f) < d¿(b
- a)x-"\\D"f\\ax. Since C[a, A] is dense in L1, we conclude that Ng,n is in fact
the W-closure of C[a, A]. Thus, find a sequence (fk)k in C[a, A] such that
limk_t00\f - fk\pn = 0. If u is any partition on (a, A), then

||z>»*/-0V/)C
(5>2) <\\D»>°f- D"fkl+\\D"[su(f) - su(fk)]l+\\D"fk - D\(fk)l.
By 5.1 and (5.1) this gives

c;n||D"-'/- D\if)\\\ Npt„if-fk) + BpAsu(f) - *«(/*),")
+ (A - a)\\D% - D\(fk)\\\

The third term on the right is bounded by

(A - a)Mp^(Dnfk,X(u))0

on account of 5.5. Also, estimating as in the proof of 5.3

BpAsu(f) - *„(/*). ") < Bp,n+xAf «) + ^,+i,(/*, u)
+»pAf-fk)-

Combining these inequalities,
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c;n||£"'7- D\(f)\\'a< 2Np>„(f-fk) + (b- a)M^{D%,X(u))°
+ Bp,«+\,a(f> ") + Bp,n + l,o(fk> "Y

If now e > 0, we can choose * so large that Np„(f — fk) < e/8 and a
positive 8 such that each of the last three terms on the right in the above
inequality is < e/4 for X(w) < 5, since D"fk E C[a, b] and by 2.3. This shows

cl„\\D"-°f - D\(f)l< e   ifX(u)<8.   D»
It is now very tempting to conjecture that 5.6 has a converse, namely, that

convergence in L" of D\(f) implies/ G Ng'" or at least/ G Np,n. Also, does
su(f) converge to / in Ng'" (as X(h)-»0)? We are unable to answer these
questions. At any rate, 5.1 and 5.6 suggest a certain similarity between Ng'"
and the Sobolev spaces Wm'?, q > 1. Of course for o = 1, Dx,x = Dx and by
(3.7), Nrf-1 = AC = W1-1.

We next prove a result on asymptotically optimal knot distributions. We
cannot yet prove its usefulness for computational purposes. This, however,
has been done under much more restrictive assumptions by McClure [11],
Burchard [1], de Boor [6] and Dodson [7].

5.7 Theorem, (i) Suppose f G Ng-", and Bpn(f)iaJ)) j- 0. Let H(t) =
Bp,n(f)(a,,)/Bp,n(f)(a,b)> a < t < b. H is the uniform limit of functions Hk
defined as follows: For each * = 1, 2,... let uk be an Ep „-balanced partition
for fon (a, b), cf. 2.4 ff, #uk = k,uk = (uk,..., uk), let If = («/_„ uf) and
define

,,   E,Af>'î)'    BpAf,«k)   ., c tk.   ,8Át) = ̂ Uñ-mV "e/^-1--*'

Hk(t)=fgk(x)dx/Bpt„{f,uk).

Each of H, Hk is the absolutely continuous distribution function of a probability
measure on (a, b). The density G of H is given by

G(t)=\D"'°f(t)\°/\\D"'%,(a,by
Furthermore Hk(uk) = //*, the proportion of intervals of uk to the left of uk.

(ii) The partitions uk are asymptotically optimal:

lim *"£„,„ (/, *) = lim *"£,.„ (/, uk) = £,,„(/){£, G (0, co)    [2].
Ar-»oo A-»oo

(iii) The uniform convergence (Hk)k -» H implies the weak*-convergence of
the corresponding probability measures (vk)k-+ v, in the weak* topology of the
dualofCn(a, b) = {9 G C[a, b]: 9(a) = 9(0) = 0}.

Proof, (i) Evidently H, Hk are absolutely continuous, nondecreasing,
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vanish at a and take the value 1 at b. Furthermore Ppt„(uk,f) tends to zero,
* -» oo, c/. 2.4, and as shown in [2]

YxmJp,„{fiuk) = Bp,„(f)laM.

(This follows from 2.8.) By hypothesis Bp„(f){ab) > 0. To prove uniform
convergence of (Hk)k to H, it therefore suffices to show uniform convergence
of (hk) to h, where

*(0-^- (/W
**(') -/'&(*) *- 2 *,„(/> 4* )*+ ̂v- ç,(/. //* )*

if Í G [«,*_„«,*].

For uk_x < t < uj let us introduce the partition

«*(0-K.«*-1.0
on (a, t). Also let /*(i) - (uj_x, t). Then

*,,,(/> "*('))- 2 *„(/» // )'+ Ep,n(/, /* (<))*•
y-i

This leads to the estimate

(5.3) |£,,„(/, «*(/)) - MOI < M«*)'.
p(-) = Pp¡n(-,f). Furthermore, again for uk_x < t < uk, let wk(t) be the
partition

(«o*, ...,uk_ x,t,wj+x,..., wk)

with wk = b and such that vm(t) = (r, w,*.,,..., wk) is equidistant. Here,
m = m*(í) is chosen so large that, according to 1.4 and (2.1)

\BpAf\,*)-*pAf>»m(t))\ <*(«")'>
and
(5.4) P(«m(0) < *(«*)*•

This implies, with (5.3),

|A(0 - hk(t)\ <\h(t) - £,,„(/, uk(t))\ + 2p(uk)'

<|^,(/W)-^n(/,iv*(i))|
+ \BpAf)«M - B,Af, »"(O)! + 2p(«*)"

<\B,Af\aM - BpAf> "*('))| + M"')'-
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By (5.4), p(wk(t)) < p(uk). Since n(uk) tends to zero, it now follows from 1.4
and 2.8 that limk_tx\\h - AJ|M = 0.

(ii) This is shown in [2]. The result follows also from 1.4, 2.5 and 2.8.
(iii) Since C0(a, A) is separable, the probability (Radon-)measures form a

metrizable compact space in the weak*-topology. Using this and the fact that
C'[a, A] is dense in C0(a, A) one obtains the result.   □

Related work. Cf. [17] and [18] for related work by Ju. A. Brudnyi and J.
Bergh and J. Peetre. Cf. also Bergh and Peetre's review of [17] (Zentralblatt,
vol. 299, no. 41007). These authors refer to W and generalizations as spaces
of functions of generalized bounded variation. There is some overlap between
their results and those of the present paper and of [1], [2], some of which were
announced already in 1973 [15] and 1974 [16]. However, many of our results
here and in [2] appear to depend on the (smaller?) spaces Ng'", which Brudnyi
and Peetre and Bergh do not apparently consider.
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