On the degree of singularity of one-dimensional analytically irreducible noetherian local rings

By
Tadayuki Matsuoka
(Communicated by Professor M. Nagata, February 10, 1971;
Revised, April 17, 1971)

Let R be the local ring of an algebraic curve at a point, \bar{R} its integral closure and c the conductor of R in \bar{R}. The length $l(\bar{R} / R)$ of the R-module \bar{R} / R is called the degree of singularity of R, and it has been proved by many algebraic geometers that if R is a Gorenstein ring, then the following equality holds:

$$
\begin{equation*}
l(\bar{R} / R)=l(R / c), \text { or equivalently } 2 l(\bar{R} / R)=l(\bar{R} / \mathrm{c}) \tag{1}
\end{equation*}
$$

(cf. the Introduction in [2]). Recently, in the case where R is a one-dimensional analytically irreducible (not necessarily geometric) local ring such that R and \bar{R} have the same residue field, E. Kunz has proved that R is a Gorenstein ring if and only if the value semigroup of R is symmetric. In the course of the proof it is implicitly demonstrated that R is a Gorenstein ring if and only if the equality (1) holds (cf. [4]).

In this paper, under the same assumption as in the above result of Kunz, we shall prove the following theorem which contains the above result as a special case:

If R is a Macaulay local ring of type μ (i.e., $M C \mu$ ring in the
sence of H. Bass [1], cf. [5]), then the following inequalities hold:

$$
d \leq \delta \leq \mu d, \text { or equivalently } 2 d \leq c \leq(\mu+1) d
$$

where $\delta=l(\bar{R} / R), d=l(R / \mathrm{c})$ and $c=l(\bar{R} / \mathrm{c})$ (Theorem 2 in $\S 3$).

§ 1. Preliminary.

Let R be a one-dimensional analytically irreducible noetherian local ring with maximal ideal m . Let \bar{R} be the integral closure of R in the quotient field K and c the conductor of R in \bar{R}. It is known that \bar{R} is a finitely generated R-module and is a discrete valuation ring (for instance, see Exercise 1, $\S 33$, Chap. V, [6]). Let v be the valuation of K with the valuation ring \bar{R}. We will use the following notations: For a subset S of $K, v\{S\}=\{v(x) \mid x \in S-0\}$ and $v(S)$ $=\inf \{v(x) \mid x \in S\}$. For an ideal \mathfrak{a} in $R, \mathfrak{a}^{-1}=\{x \in K \mid x \mathfrak{a} \subseteq R\}$ a fractional ideal of R in K. For an R-module $M, l(M)=$ the length of M. For a finite set $F, \# F=$ the number of the elements of F.

Let A be an r-dimensional Macauly local ring with maximal ideal \mathfrak{n}. We say that A is a Macaulay local ring of type μ if $\mu=l\left(\operatorname{Ext}_{A}^{r}(A / \mathfrak{n}, A)\right)$. Hence A is a Gorenstein local ring if and only if A is a Macaulay local ring of type one.

We shall use later the following Rees' theorem (cf. [2] or [7]):
Let A be a noetherian local ring and \mathfrak{a} an ideal in A. Let x_{1}, \ldots, x_{n} be an A-sequence in \mathfrak{a} and \mathfrak{b} the ideal generated by x_{1}, \ldots, x_{n}. Then:

$$
\operatorname{Ext}_{A}^{p_{A}}(A / \mathfrak{a}, A)= \begin{cases}0, & 0 \leq p<n \\ \operatorname{Hom}_{A}(A / \mathfrak{a}, A / \mathfrak{b}), & p=n\end{cases}
$$

Throughout this paper, R is a one-dimensional analytically irreducible noetherian local ring such that R and \bar{R} have the same residue field, and we will use constantly the same notation as above.

§2. The type of R.

Although the following two lemmas are contained in [4], we give
the proofs for the convenience of the reader.

Lemma 1. If $v(x)=v(y)$ for x and y in K, then $v(x-a y)>v(y)$ for some unit a in R.

Proof. Since x / y is a unit in \bar{R} and since R and \bar{R} have the same residue field, there is a unit a in R such that $x / y-a$ is in the maximal ideal of \bar{R}. Hence we have $v(x-a y)>v(y)$. q.e.d.

Lemma 2. Set $c=v(c)$. Then $c=\{x \in K \mid v(x) \geq c\}$ and $v\{R\}$ $\supseteq\{c+n \mid n=0,1,2, \ldots\}$. Moreover, $c-1$ is the largest integer not belonging to $v\{R\}$.

Proof. The proof of the first part is easy and we omit it. Suppose that $c-1 \in v\{R\}$. Let t be an element in \bar{R} such that $v(t)=1$. By Lemma 1 we have $v\left(x-a t^{c-1}\right)>c-1$ for some x in R and for some unit a in R. Hence we have $t^{c-1} \in R$. Let y be an element in \bar{R}. By Lemma 1 there is an element z in R such that $v(y-z)>0$. Then $(y-z) t^{c-1} \in R$ because $v\left((y-z) t^{c-1}\right) \geq c$. Hence we have $y t^{c-1}=(y-z) t^{c-1}+z t^{c-1} \in R$. This shows that $t^{c-1} \in \mathrm{c}$. Therefore $c-1 \geq v(c)=c$. This is a contradiction. q.e.d.

Lemma 3. Let M be an R-module such that $K \supseteq M \supseteq R . \quad$ If $v\{M\}=v\{R\}$, then $M=R$.

Proof. Let x be an element in M. Since $v(x)=v(y)$ for some y in R, by successive applications of Lemma 1 there is an element z in R such that $v(x-z) \geq c$ where $c=v(c)$. Hence by Lemma 2 we have $x \in R$.
q.e.d.

We remark that if M is a finitely generated R-module contained in K, then $v(M)$ is an integer. In this case $v\{M\}-v\{R\}$ is a finite set.

Lemma 4. Let M be a finitely generated R-module such that $K \supseteq M \supseteq R$ and $M \neq R$. Let $v\{M\}-v\{R\}=\left\{m_{1}, \cdots, m_{\lambda}\right\}, m_{1}<\cdots<m_{\lambda}$, and set $M_{i}^{\prime}=\left\{x \in M \mid v(x) \geq m_{i}\right\}$. Let M_{i} be the R-module generated by M_{i}^{\prime} and R. Then $v\left\{M_{i}\right\}=\left\{m_{i}, \ldots, m_{\lambda}\right\} \cup v\{R\}$ and $M_{1}=M$.

Proof. Let x be an element in M_{i} and $x=x^{\prime}+y, x^{\prime} \in M_{i}^{\prime}$ and $y \in R$. Since $v(x)=v(y)$ or $v(x) \geq v\left(x^{\prime}\right) \geq m_{i}$, we have the first assertion. Let x be an element in M such that $v(x)<m_{1}$. Since $v(x) \in v\{R\}$, by Lemma 1 we have $v(x-y) \geq m_{1}$ for some y in R. Hence we have $x-y \in M_{1}^{\prime}$ and therefore we have $x \in M_{1}$. q.e.d.

Proposition 1. Let M be a finitely generated R-module such that $K \supseteq M \supseteq R$. Then $l(M / R)=\#(v\{M\}-v\{R\})$.

Proof. Set $\lambda=\#(v\{M\}-v\{R\})$. We proceed by induction on λ. In case when $\lambda=0$, by Lemma 3 our assertion is obvious. Assume that $\lambda>0$. Let $v\{M\}-v\{R\}=\left\{m_{1}, \cdots, m_{\lambda}\right\}, m_{1}<\cdots<m_{\lambda}$, and let M_{i} be the R-module defined in Lemma 4. Let N be a submodule of M such that N contains M_{2} properly. We first show that $v\{N\}=v\{M\}$. Let x be an element in N such that $x \notin M_{2}$. Suppose that $v(x-y) \neq m_{1}$ for any y in R. Since $v(x) \in v\{R\}$, by Lemma 1 we have $v(x-z) \geq m_{2}$ for some z in R. Hence we have $x \in M_{2}$. This is a contradiction. Therefore $v(x-y)=m_{1}$ for some y in R, and this shows that $v\{N\}$ $=v\{M\}$. Next we show that $N=M$. Let x be an element in M such that $v(x)<m_{2}$. If $v(x-y)=m_{1}$ for some y in R, then there is an element z in N such that $v(x-y)=v(z)$. By Lemma 1 we have $v(x-u) \geq m_{2}$ for some u in N, and hence we have $x \in N$. If $v(x-y)$ $\neq m_{1}$ for any y in R, then $v(x) \in v\{R\}$, and hence by Lemma 1 there is an element z in R such that $v(x-z) \geq m_{2}$. Whence we also have $x \in N$. This shows that $N=M$. Therefore we have $l\left(M / M_{2}\right)=1$. On the other hand, by Lemma $4 v\left\{M_{2}\right\}-v\{R\}=\left\{m_{2}, \cdots, m_{\lambda}\right\}$. Hence, by our induction hypothesis, $l\left(M_{2} / R\right)=\lambda-1$. Therefore we have $l(M / R)$ $=\lambda$.
q.e.d.

Corollary. Let M be a finitely generated R-module such that $K \supseteq M \supseteq R$. Then for every submodule N of M such that $N \supseteq R$, $l(M / N)=\#(v\{M\}-v\{N\})$.

Remark. Let r and s be integers in $v\{R\}$ such that $r \leq s$. Set $\mathfrak{a}=\{x \in R \mid v(x) \geq r\}$ and $\mathfrak{b}=\{x \in R \mid v(x) \geq s\}$. For \mathfrak{a} and \mathfrak{b}, by the same way as the proof of Proposition 1, we have $l(\mathfrak{a} / \mathfrak{b})=\#(v\{\mathfrak{a}\}-v\{\mathfrak{b}\})$.

Theorem 1. R is a Macaulay local ring of type $\#\left(v\left\{\mathrm{~m}^{-1}\right\}-v\{R\}\right)$.

Proof. Since R is a one-dimensional noetherian local integral domain, R is a Macaulay local ring. Let a be a non-zero element in \mathfrak{m}. Then $(a R: \mathfrak{m})=a \mathfrak{m}^{-1}$ (cf. Rechenregel 4, §1, [3]). Hence by Rees' theorem we have:

$$
\operatorname{Ext}_{R}^{1}(R / \mathrm{m}, R) \simeq(a R: \mathrm{m}) / a R=a \mathrm{~m}^{-1} / a R \simeq \mathrm{~m}^{-1} / R
$$

This shows that $l\left(\operatorname{Ext}_{R}^{1}(R / \mathrm{m}, R)\right)=l\left(\mathrm{~m}^{-1} / R\right)$. Therefore our assertion follows from Proposition 1.
q.e.d.

§3. The degree of singularity.

Let $v\{R\}=\left\{v_{0}, v_{1}, \cdots, v_{d-1}\right\} \cup\{n \in Z \mid n \geq c\}, 0=v_{0}<v_{1}<\cdots<v_{d-1}$ $<c=v(\mathfrak{c})$, where Z is the set of integers. Set $\mathfrak{a}_{i}=\left\{x \in R \mid v(x) \geq v_{i}\right\}$ and $\mathfrak{a}_{d}=c$. Obviously \mathfrak{a}_{i} is an ideal in R and $\mathfrak{a}_{0}=R, \mathfrak{a}_{1}=\mathfrak{m}$. Next we remark that $\mathfrak{c}^{-1}=\bar{R}^{1)}$. In fact, let x be an element in c^{-1}. Suppose that $x \notin \bar{R}$. Since $v(x)<0$, we have $c-1-v(x) \geq c$. Let t be an element in \bar{R} such that $v(t)=1$. By Lemma 2 we have $z=t^{c-1-v(x)} \in c$. Since $x c \subseteq R$, we have $x z \in R$. Hence $c-1=v(x)+v(z) \in v\{R\}$. This contradicts Lemma 2. Therefore $c^{-1} \subseteq \bar{R}$. Since the opposite inclusion is obvious, we have $\mathrm{c}^{-1}=\bar{R}$.

Consider the following ascending chain of (fractional) ideals:

$$
\begin{equation*}
\mathfrak{c}=\mathfrak{a}_{d} \subset \mathfrak{a}_{d-1} \subset \cdots \subset \mathfrak{a}_{1} \subset R \subset \mathfrak{a}_{1}^{-1} \subset \cdots \subset \mathfrak{a}_{d-1}^{-1} \subset \mathfrak{a}_{d}^{-1}=\bar{R} . \tag{2}
\end{equation*}
$$

1) We can show that the ideal \mathfrak{a}_{i} is divisorial, i.e., $\mathfrak{a}_{i}=\left(\mathfrak{a}_{i}^{-1}\right)^{-1}$ for every i.

Since $v\left\{\mathfrak{a}_{i-1}\right\}-v\left\{a_{i}\right\}=\left\{v_{i-1}\right\}$, we have $l\left(\mathfrak{a}_{i-1} / \mathfrak{a}_{i}\right)=1$ by the remark after Corollary to Proposition 1. Hence we have $l(R / c)=d$. We also remark that $l(\bar{R} / c)=c$ because R and \bar{R} have the same residue field. Set $\delta=l(\bar{R} / R)$ and $\delta_{i}=l\left(\mathfrak{a}_{i}^{-1} / \mathfrak{a}_{i-1}^{-1}\right)$. By the above chain (2) the following equalities hold:

$$
\begin{equation*}
c=d+\delta \quad \text { and } \quad \delta=\sum_{i=1}^{d} \delta_{i} . \tag{3}
\end{equation*}
$$

Proposition 2. With the same notation as above, $c-1-v_{i-1}$ is the largest integer belonging to $v\left\{a_{i}^{-1}\right\}-v\left\{a_{i-1}^{-1}\right\}$. Therefore $\delta_{i} \geq 1$.

Proof, Set $w=c-1-v_{i-1}$. By Lemma $2 w+v_{i-1}=c-1 \notin v\{R\}$, and hence we have $w \notin v\left\{a_{i-1}^{-1}\right\}$. Let x be an element in K such that $v(x)=w$. Let y be an element in \mathfrak{a}_{i}. If $v(y)=v_{j}$ for some $j, i \leq j$ $\leq d-1$, then $v(x y)=c-1+\left(v_{j}-v_{i-1}\right) \geq c$. If $v(y) \geq c$, then obviously $v(x y) \geq c$. Hence by Lemma 2 we have $x y \in R$ and whence $x \in \mathfrak{a}_{i}^{-1}$. This shows that $w \in v\left\{\mathfrak{a}_{i}^{-1}\right\}$. Therefore we have $w \in v\left\{\mathfrak{a}_{i}^{-1}\right\}-v\left\{\mathfrak{a}_{i-1}^{-1}\right\}$. Next we have to show that if $n \in v\left\{\mathfrak{a}_{i}^{-1}\right\}-v\left\{\mathfrak{a}_{i-1}^{-1}\right\}$, then $n \leq w$. In order to see this, it is enough to show that if $n>w$, then $n \in v\left\{a_{i-1}^{-1}\right\}$. Assume that $n>w$. Let z be an element in K such that $v(z)=n$. Let y be an element in \mathfrak{a}_{i-1}. If $v(y)=v_{j}$ for some $j, i-1 \leq j \leq d-1$, then $v(z y)=n+v_{j}>w+v_{j} \geq c-1$. If $v(y) \geq c$, then $v(z y) \geq c$. Hence by Lemma 2 we have $z y \in R$, and whence $z \in a_{i-1}^{-1}$. This shows that $n \in v\left\{\mathfrak{a}_{i-1}^{-1}\right\}$. The second part follows from the first part and Corollary to Proposition 1. q.e.d.

Corollary. With the same notation as above, the integer $c-1$ belongs to $v\left\{\mathfrak{m}^{-1}\right\}-v\{R\}$. Moreover, R is a Gorenstein ring if and. only if $v\left\{\mathfrak{m}^{-1}\right\}=\{c-1\} \cup v\{R\}$.

Proof. The first part is a special case of Proposition 2. The second part follows from the first part and Theorem 1. q.e.d.

Proposition 3. With the same notation as above, if R has type μ, then the inequality $\delta_{i} \leq \mu$ holds for every i.

Proof. Since $l\left(\mathfrak{a}_{i-1} / \mathfrak{a}_{i}\right)=1, \mathfrak{a}_{i-1} / \mathfrak{a}_{i}$ is isomorphic to R / \mathfrak{m} as R modules. Hence we have the exact sequence

$$
0 \rightarrow R / \mathrm{m} \rightarrow R / \mathfrak{a}_{i} \rightarrow R / \mathfrak{a}_{i-1} \rightarrow 0 .
$$

This exact sequence gives us the following long exact sequence:

$$
\begin{aligned}
& \cdots \rightarrow \operatorname{Hom}_{R}(R / \mathrm{m}, R) \rightarrow \operatorname{Ext}_{R}^{1}\left(R / \mathfrak{a}_{i-1}, R\right) \rightarrow \\
& \quad \operatorname{Ext}_{R}^{1}\left(R / \mathfrak{a}_{i}, R\right) \rightarrow \operatorname{Ext}_{R}^{1}(R / \mathrm{m}, R) \rightarrow \cdots
\end{aligned}
$$

Since the conductor contains a non-zero element a, by Rees' theorem we have

$$
\operatorname{Ext}_{R}^{1}\left(R / \mathfrak{a}_{j}, R\right) \simeq\left(a R: \mathfrak{a}_{j}\right) / a R=a \mathfrak{a}_{j}^{-1} / a R \simeq \mathfrak{a}_{j}^{-1} / R
$$

and $\operatorname{Hom}_{R}\left(R / \mathfrak{a}_{j}, R\right)=0$ for every j. Therefore the above long exact sequence is reduced to the following exact sequence:

$$
0 \rightarrow \mathfrak{a}_{i-1}^{-1} / R \rightarrow \mathfrak{a}_{i}^{-1} / R \rightarrow \mathrm{~m}^{-1} / R \rightarrow \cdots .
$$

This shows that $a_{i}^{-1} / a_{i-1}^{-1}$ is isomorphic to a submodule of $\mathrm{m}^{-1} / R .{ }^{2)}$ Therefore we have $\delta_{i} \leq \mu$. q.e.d.

Theorem 2. With the same notation as above, if R has type μ, then the following inequalities hold:

$$
2 d \leq c \leq(\mu+1) d
$$

Proof. Since $1 \leq \delta_{i} \leq \mu$ by Propositions 2 and 3, our assertions follow directly from the equalities (3). ${ }^{3)}$
q.e.d.

[^0]Corollary. With the same notation as above, R is a Gorenstein ring if and only if the equality $2 \delta=c$ holds.

Proof. The only if part follows from Theorem 2 and (3). Assume that $2 \delta=c$. By (3) we have $d=\sum_{i=1}^{d} \delta_{i}$. Since $\delta_{i} \geq 1$, we have $\delta_{i}=1$ for every i and hence $\mu=\delta_{1}=1$.
q.e.d.

§4. Examples.

In general, the equality $c=(\mu+1) d$, or equivalently $\delta=\mu d$, in the second inequality in Theorem 2 does not hold. However, it may happen that the equality does hold even if R is not a Gorenstein ring. Note that $\delta=\mu d$ if and only if $\delta_{i}=\mu$ for all i. Hence, for instance, if $d=1$, then the equality $\delta=\mu d$ trivially holds. To see these facts we give the following examples.

Let k be an algebraically closed field and t an analytically independent element over k. Let n_{1}, \ldots, n_{q} be positive integers such that $\operatorname{gcd}\left(n_{1}, \cdots, n_{q}\right)=1$. Set $x_{i}=t^{n_{i}}, i=1, \cdots, q$. Let C be the affine algebraic curve with generic point $\left(x_{1}, \ldots, x_{q}\right)$ over k and R the local ring of C at the origin. Then R is an analytically irreducible local ring and the integral closure \bar{R} in the quotient field $K(=k(t))$ is the regular local ring $k[t]_{(t)}$. Hence R and \bar{R} have the same residue field k. Let r be an integer in $v\{R\}$. Set $\mathfrak{a}=\{x \in R \mid v(x) \geq r\}$ and $\mathrm{I}(\mathfrak{a})$ $=\{n \in Z \mid n+v\{a\} \subseteq v\{R\}\}$. We show that

$$
\begin{equation*}
v\left\{\mathfrak{a}^{-1}\right\}=\mathrm{I}(\mathfrak{a}) . \tag{4}
\end{equation*}
$$

Proof of (4): Let y be an element in \mathfrak{a} and write $y=f / g$ where f and g are in $k\left[x_{1}, \ldots, x_{q}\right]$ and $g \neq 0$ at the origin. We first note that two monomials in x_{1}, \ldots, x_{q} coincide with each other if and only if they have the same value. Hence we can write

$$
f=b_{1} m_{r_{1}}(x)+\cdots+b_{s} m_{r_{s}}(x)
$$

where $b_{i} \in k, b_{1} \neq 0, m_{r_{i}}(x)$ is a monomial in x_{1}, \ldots, x_{q} with value r_{i}, and $v(y)=r_{1}<\cdots<r_{s}$. Since the value of $m_{r_{i}}(x)$ is not less than
$r, m_{r_{i}}(x) \in \mathfrak{a}$, whence r_{1}, \ldots, r_{s} are in $v\{\mathfrak{a}\}$. Let n be an integer in $\mathrm{I}(\mathfrak{a})$. Since $n+r_{i} \in v\{R\}, t^{n} m_{r_{i}}(x)=m_{n+r_{i}}(x)$. Therefore $t^{n} f=\sum b_{i} m_{n+r_{i}}(x) \in R$, that is, $t^{n} y \in R$. This shows that $t^{n} \in \mathfrak{a}^{-1}$, whence $n \in v\left\{\mathfrak{a}^{-1}\right\}$. Thus we have $\mathrm{I}(\mathfrak{a}) \subseteq v\left\{\mathfrak{a}^{-1}\right\}$. Since the opposite inclusion is obvious, we have the assertion.

By using (4) we can compute δ_{i} and μ because $\delta_{i}=\#\left(v\left\{a_{i}^{-1}\right\}\right.$ $\left.-v\left\{a_{i-1}^{-1}\right\}\right)$.

Example 1. In case where $q=3$ and $n_{1}=3, n_{2}=4, n_{3}=5$, we have $v\{R\}=\{0\} \cup\{n \in Z \mid n \geq 3\}, c=3, d=1, \mu=\delta_{1}=2$.

Example 2. In case where $q=3$ and $n_{1}=3, n_{2}=10, n_{3}=11$, we have $v\{R\}=\{0,3,6\} \cup\{n \in Z \mid n \geq 9\}, c=9, d=3, \mu=\delta_{i}=2$ for $i=1,2,3$.

Example 3. In case where $q=4$ and $n_{1}=11, n_{2}=12, n_{3}=13$, $n_{4}=15$, we have $v\{R\}=\{0,11,12,13,15,22,23,24,25,26,27,28,30\} \cup\{n \in Z \mid n \geq 33\}$, $c=33, d=13, \mu=\delta_{1}=\delta_{5}=3, \delta_{4}=\delta_{12}=\delta_{13}=2$ and the others δ_{i} are all equal to 1 .

In Examples 1 and 2, the equality $c=(\mu+1) d$ holds, though R is not a Gorenstein ring. In Example 3, the equality does not hold. The author knows few of examples such that R is not a Gorenstein ring and $d>1, c=(\mu+1) d$.

Addendum: Theorem 2 and Corollary to Theorem 2 can be generalized to the analytically unramified local ring case. We shall give the proof in a forthcoming paper.

Ehime University

References

[1] H. Bass, Injective dimension in noetherian rings, Trans. Amer. Math. Soc. 102 (1962), 18-29.
[2] H. Bass, On the ubiquity of Gorenstein rings, Math. Zeitschr. 82 (1963), 8-28.
[3] R. Berger, Úber eine Klasse unvergabelter lokaler Ringe, Math. Ann. 146 (1962), 98-102.
[4] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751.
[5] T. Matsuoka, Some remarks on a certain transformation of Macaulay rings, J. Math. Kyoto Univ. 11 (1971), 301-309.
[6] M. Nagata, Local rings, Interscience, New York, 1962.
[7] D. Rees, A theorem of homological algebra, Proc. Camb. Phil. Soc. 52 (1956), 605-610.
[8] P. Roquette, Ưber den Singularitätsgrad eindimensionaler Ringe. II, J. Reine Angew. Math. 209 (1962), 12-16.
[9] P. Samuel, Singularités des variétés algébriques, Bull. Soc. Math. France 79 (1951), 121-129.

Added in Proof: During the symposium on algebraic geometry held on September 6-9, 1971, at Zaô, Yamagata, Mr. K. Watanabe kindly informed me that the results of the present paper are closely related to Herzog and Kunz's latest work, Die Wertehalbgruppe eines lokalen Rings der Dimension 1, S.-B. Heidelberger Akad. Wiss. Math. -naturw. 1971, 2 Abh.. And I found that my paper has some considerable overlap with theirs, but my investigation had been done independently of this Herzog-Kunz's paper.

[^0]: 2) In the proof of Lemma 1 in [8] P. Roquette proved this fact by a method different from ours.
 3) In [4] E. Kunz proved the inequality $2 d \leq c$ by considering the valuesemigroup of R, and in [9] P. Samuel had already pointed out that if the embedding dimension of R is greater than two, it may happen the strict inequality $2 d<c$.
