
ON THE DEGREE OF VARIATION IN CONFORMAI,
MAPPING OF VARIABLE REGIONS^)

BY
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1. Introduction. Suppose C is a closed Jordan curve and the function
w=f(z) maps the circle \z\ <1 conformally onto the interior £ of C;/(z) is
analytic in \z\ <1 and continuous in \z\ ¡£1. It is well known that the func-
tion/^) varies continuously in the closed circle | z\ g 1 under a suitable con-
tinuous deformation(2) of C. It is of interest, however, to go beyond this
merely "qualitative" statement and to estimate the degree of variation oifiz)
in this dependence upon the change in C. If Ci is a "neighboring" closed
Jordan curve and if w=/i(z), normalized in the same manner as/(z), maps
\z\ <l conformally onto the interior of C, it is desired to find an upper
bound for |/(z) — /i(z) | for | z] ^ 1 which measures the effect of the deforma-
tion of C.

This problem has been treated with some degree of completeness in the
case of "nearly circular" regions, that is, in the special case in which C is a
circle. The principal contributions here were made by L. Bieberbach [l],
1924, A. R. Marchenko [10], 1935, and Jacqueline Ferrand [4], 1945.
Marchenko's and Ferrand's estimates are, in a certain sense, best possible
results.

The general problem of two arbitrary regions presents a more diversified
aspect because of the various degrees of smoothness which may be imposed
upon one or both of the boundary curves. Under suitable differentiability as-
sumptions regarding the curve C one can reduce the problem to the "nearly
circular" case by a conformai transformation. In this way A. Markoushevitch
[ll], 1936, extended Marchenko's result to the more general configuration
of two Jordan curves. A different approach is used by J. Ferrand in [4],
where a theorem on "nearly polygonal" curves(3) is presented. The method
indicated here is based on appraisals of the change of the harmonic measure

Presented to the Society, November 24, 1945, under the title: On the modulus of continuity
of the mapping function at the boundary in conformai mapping; received by the editors November
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(:) A part of this work was done while the author was connected with the Institute for
Numerical Analysis, National Bureau of Standards, and it was sponsored (in part) by the
Office of Naval Research.

(2) See, for example, Gattegno and Ostrowski [5, section 14]. Numbers in brackets refer to
the bibliography at the end of the paper.

(3) That is, one of the curves lies between two simple closed polygons, one of which is ob-
tained from the other by dilation from an interior point, the ratio being a number close to 1, and
the other curve is a polygon.
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of a side of a polygon under certain deformations (displacement of the sides)
of the polygon.

The main object of the present paper is the study of the problem in more
general cases in which either no restrictions or only weak conditions are
placed on the boundary; in particular, the regions considered need not be
bounded by Jordan curves. The principal tools in this paper are: (i) estimates
for the oscillation of the mapping function of the unit circle onto a bounded
region, which are valid in the neighborhood of the boundary (see §2); (ii)
some auxiliary theorems, in which the mapping function of two regions,
one of which is contained in the other, are compared with each other in any
circle | z| gp < 1 (see Lemmas 3 and 6).

As a first result, Marchenko's theorem is extended to a "nearly circular"
region which is not necessarily bounded by a Jordan curve (§3). §§4 and 5
deal with the general situation of two arbitrary regions. §6 contains a result
on regions bounded by Jordan curves with continuously turning tangents
which is easily obtained by the method developed in this paper.

2. The oscillation of the mapping function at the boundary. Suppose that
£ is a simply connected bounded region and that the function w=/(z) maps
the circle | z| < 1 conformally onto £. Let \z0\ = 1. Then we define for 0 <r < 1

w(r; zo) =     sup      | /(zi) - /(z2) | ( | Zi | < 1, | z21 < 1)

and

co(r) =   sup   o)(r; z0).

We call w(r) the oscillation o//(z) at the boundary, and we are interested in
obtaining estimates for w(r). Related questions were investigated by J. Wolff
[16, pp. 217-218], J. Ferrand [3, pp. 150-154], and M. Lavrientieff [7](4).
Their results, however, do not entail direct estimates for co(r). In order to
obtain such estimates we shall introduce in the following a function r¡(b),
associated with the boundary of £, in terms of which we shall express our
bounds for io(r). We shall establish two theorems (Theorems I and II), and in
the proof of the first of these we shall make use of the above mentioned
result by Wolff and Ferrand (Lemma 1).

(4) J. Ferrand (1942) proved the following: If Zi and z2 are points in {|z—z0| <r, |z| <1 j,
|zo| =1, 0<r<l, and if/(0) =w0, then o>i=/(zi) and ti'2=/(z2) may be separated from w0 by a
cross-cut in R of length ¿í¡(2?r.4/log (1/r))1", where A is the area of R. The earlier result of
J. Wolff (1934) is similar but not stated quite in this way (see Lemma 1 below). Lavrientieff
introduced, for Wi, w2 in R, a "distance p[wi, w2] with respect to R and w0" (u'0=/(zo)) and
showed that for |zi| <1, |z2[ <1, p[/(zi); /(z2)]S const./(| log |zi-z2| | )1/2. The "distance"
p[w¡, Wí] is defined as min (pi, p2) where pi is the greatest lower bound of the lengths of all
arcs in R, which connect Wi and w2, and p2 is the greatest lower bound of the lengths of all
cross-cuts of R which separate Wi and w2 from Wo.
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Several estimates have been given in the literature for the oscillation of
the inverse function(6), that is, the function which maps £ onto \z\ <l. We
shall make use of one of these results (see Theorem III).

2.1. Estimate of w(r) in the general case. We begin with the following
definition.

Definition. Suppose £ is a simply connected bounded region which con-
tains the origin 0. Let c be a cross-cut of £ which does not pass through 0,
and let £ be the one of the two subregions of £ which does not contain O.
Denote by X the diameter of c and by A the diameter of T. For any 5 > 0 con-
sider all possible cross-cuts c of £ with X ̂  ô and define

17(5) = sup A.
|X|£I

The function w(ô) is in a certain sense a measure for the "irregularity" of
the boundary of £. If the boundary of £ is a simple closed curve, then it is
easily seen that lim5,o via) =0. The converse, however, is not necessarily true
(consider, for example, the region obtained by removing one radius from the
interior of the unit circle). We shall call ?j(5) the structure modulus of the
boundary of R.

Theorem I. Suppose that R is a simply connected bounded region which con-
tains the origin and that w=/(z) maps the circle | z| < 1 conformally onto R such
that /(0) =0. If A denotes the area of R, then the oscillation offiz) at the bound-
ary,

(211) "ws'((í|ta)'")' 0<r<1-
This theorem is easily proved by means of the following lemma(6).

Lemma 1. Suppose that the circle \z\ <lis mapped conformally onto a simply
connected region R of finite area A. Let z0 be a point on \z\ =1 and kr the part of
the circle \z — z0\ =r which is contained in \z\ <1. Then for every r, 0<r<l,
there exists api,r^ pi ^ rxn, such that the image of kn is a cross-cut of R of length

2tA V'2
Vlog l/r)

Proof. Let w=fiz) map \z\ <1 conformally onto £. We introduce polar
coordinates about z0 and write, for 0 <p < 1,

/ 2ttA y

/,- f i/'wii&i- f 1 nu+f")I*».
J k„ J *„

(6) E. Lindelöf [9, 1915, pp. 15-18], M. Lavrientieff [7, 1936, formula (a)], J. Ferrand
[3, 1942, pp. 165-171].

(8) This lemma is essentially due to J. Wolff [l6, pp. 217-218].
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Here lpt^ + °°. By the inequality of Schwarz:

(2.13)  ÍI  f   ¡fizo + Peu) \2pd6 f pdO g icp  f   \fizo + Peie) \2Pdd.
d kp d fcp J ¡fep

Let 0<r<l. Integrating with respect top from r to r112 we obtain

2 2
•» rl/2     ¿ r» rl/2     ¿ p rl/2        ^

I        — dp <  j        — ¿p S t f || /'(»o + peie) \2pd6 < irA.
dr P d0 p Jo d k„

Hence there exists a pi, r^pi^r1'2, such that

2 rrlh- dp    i 2     i
hi I        — = — ¿Pilog— < t¿.

J r       p        2 r

Since the image of kPl has finite length /Pl it is easily seen that it forms a cross-
cut of £.

Proof of Theorem I. Let Tr denote the image of the region {¡z —z0|
<r, |z| <1} in the w-plane, and let pi be determined by Lemma 1 so that
(2.12) holds, r^pi^r1'2. Then Tr is contained in TPl. Now kP1 (Lemma 1) is
mapped onto cross-cut cn of £ whose diameter is not greater than ln. Since
£P1does not contain the origin, it follows from the definition of 77(0) that the di-
ameter of TPl and hence that of Tr does not exceed rjihi) = l((2rrA/log(l/r))112).

Now if Zi and z2 are points of \z\ <1 which are in \z — z0\ <r, then/(zi)
and/(z2) are in Tr, and therefore |/(zi) — /(z2) | ^vihi)- This proves (2.11).

2.2. Estimates of w(r) for linear 17(6). A more accurate estimate for w(r)
may be obtained if some information regarding the order of magnitude of
77(6) is available. A particularly simple form is

(2.21) 77(a) ̂ k8 + Vo forá | 5„,

for some ô0>0; here a and 770 are constants(7), k>0, 770 5:0. For this case we
prove the following theorem.

Theorem II. Suppose that R, to=/(z), and w(r) are defined as in Theorem
I. Suppose furthermore that the structure modulus of the boundary of R satisfies
(2.21) and that D is the diameter of R. Then for every /¿j£ 1,

(2.22) w«^+(1 + ^¡)" (a = -^)'

where m is a constant which depends only on k, p., 50, and D. In fact, if h
= min (So, D/k) andp0 = exp [ — w2D2/25l], one may take

(') The case ijo = 0 occurs, for example, when the boundary of R consists of a finite number
of Jordan arcs which possess continuously turning tangents and which form a finite number
of corners (that is, angles different from 0 and 27r), such as the interior of the unit circle with a
finite number of slits: arg w=B¡, l/2g|w| ál, t' = l, 2, ■ ■ ■ , n.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1950] CONFORMAL MAPPING OF VARIABLE REGIONS 339

-«/ e"\112                                                                 f       xV    "I
2hex.po ( — )    ,       when    0 < r :S r0 = po exp-p.

— a     (<   1/2
. Dpo (e )    , when   r0 < r < 1(8).

Remarks. 1. The value of m is least when u= 1.
2. Owe has, from (2.22), limr..o w(r) :S(l-)-2//¿1/2)77o area" since p is arbitrary

one may let p—>oo area oree obtains limr,0 w(r) ^770.
In the proof of this theorem we shall use the following lemma.

Lemma 2. Suppose that the hypotheses of Theorem II are satisfied. Let s0
be a fixed point, | Zo| = 1, and let Tp denote the image of the region { \ z — z0\ <p,
\z\ < 1} under the transformation w =/(z). Let Ap be the diameter of T„ and lp the
length of the image of the circular arc kp: {\z — z0|=p, ]z| <1). Then for
P^p„ = exp [-ir2D2/2ol\

(2.23) Ap Ú dp + t,o(9).

Proof. If lp^ôo, then (2.23) follows from the hypothesis (2.21). If, how-
ever, lp>50, then an application of Lemma 1 shows that for every p there
exists a pi, such that p ijjpi ^p1/2 and (^4 is the area of £)

/ 2wA  X1'2      /    tt2£2   X1'2

"l ~ \log 1/p/       ' \2 log 1/po/\\ogl/p/ \21ogl/p0y

Hence

AP1 g dn + 770.

But since TPGTP1, we have AP:£AP1 and on the other hand lPl^8o<lp. Hence

Ap ^ AP1 ^ dP1 + 770 ̂  dp + 770.

Proof of Theorem II. We use the same notation as in Lemma 1, and
repeat the argument leading to inequality (2.13), or

f   I f'iz) \2pdd (z = zo + peie).

Let
.2

dp.g(*) = r-
Jo    Pp

Then we have

(s) By the method of Theorem II one may obtain bounds for w(r) (better than those re-
sulting from Theorem I) for other choices of j;(S), for example, -n(S) =#', 0</3<l.

(9) If So^D, then we may let S0—>» (since -n(S)=r¡(D) for S^D) and take po = l. Then
Lemma 2 is trivial and the proof of Theorem II is somewhat simplified.
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gix) úrr  r   f   \f'(z)\2pd6dp.
J a    d ke

The integral on the right (apart from the factor tt) represents the area of
Tx, the image of the region {\z — z0\ <x, \'z\ <1} in the w-plane, and it does
not exceed therefore the value 7r(AI/2)2, where Ax is the diameter of Tx. For
scgpo we have, by Lemma 2, Ax^kIx + t)o, and therefore

7T2
gix) ^ — (*lx + 770)2, x ^ po.

4

The function gix) is positive, monotone increasing, and continuous for
O^x^l, and, for almost all theses: l2x = xg'ix). Hence

g(x)   á  - iKixg'ix))1'2 + T,»)2.
4

If we set

2
(2.24) K77i = 770,       7 = —>

then we may write this inequality in the form

(2.25) yigix)y'2S ixg'ix))1'2 + vi.

Suppose that there exists a number £, 0 ^ £ <po, such that

(2.26) yigix))112 â 2771 for x ^ £ (S is the least such number).

Then we have, from (2.25), iyigix))ll2 — vi)2^xg'ix), x=i£, or

1 g'ix)

x      iyigix))1'2 - 771)2

Integration over the interval pá^ápo, where p^£, yields

po        /"• g'ix)dxi^sf
p       Jpp      J,   iyigix))1'2 - vi)2

or

72 .    po ..    t(«(po))1/2 - 7,1        r 1 1 1
log — s log-h 771-.

p 7(g(p))1/2 - ui        iyii(p))1'2 - m    y(g(po))112 - mJ2

Because of (2.26), the second term on the right does not exceed 1. Hence

(2.27)
P0Y"2 ^ 7(g(po))1/a - Vi

y(g(p))112 - vi(?) *
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The assumption (2.26) implies that

(2.28) y(g(P))112 - m à -j (g(p))112, p â g.

Furthermore, by Lemma 2,

GKpo))1'2^ ApoSS -(*„ + 771).2 7

If /p0^5o, we have

(2.29) y(g(po))112 - vi è Oo.

However, if /PO>§o, then there exists, by Lemma 1, a number pi¡Zp0 such that
lP1 è 80. Then we have

(g(po))1'2 Ú (g(pi))112 S -Jam S - (/„ + 7,1) ̂  — (5„ + 7,1),
2 7 7

by hypothesis (2.23), and (2.29) is again true.
Thus we find from (2.27) by use of (2.28) and (2.29)

(2.210) 7(g(p))1/2 á 2e5«Y—Y    , £^ p á Po.

We also note: it follows from (2.27), (2.28), and the inequality 7(g(po))1/2
£y-iir/2)D = D/K that we may replace, in (2.210), 2e50 by 2c£/k. Thus, we
may write, in any case, 2eh in place of 2eS0, where Ä = min (ôo, D/k).—The
inequality (2.210) presupposespe£. If p<£then

(2.211) (g(p))1/2 < — •
7

Hence for every p, 0 <p 5=po,

2eh/p\^2       2771\(P\W 2771
\Po/ 7

(2.212) (Kp))1/2 Ú
y \po/ 7

This inequality has been derived under the assumption that there exists a
¿jsuch that (2.26) holds. However, if there is no such £ then (2.211) is true for
all p, 0<p^po, and the inequality (2.212) is again valid for all these p.

Now let p>l. Then

/.
— dx< gip)

p/p  x

and hence, for a suitable pi, p/pupi'èp,
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4 log p á gip).
We obtain therefore from (2.212), substituting the values of y and 771 from
(2.24),

ehKTr     / p \7 /2 77770

hl - iiog pyAJo)    + (log py» '

We write now r —p/p and take p = e»1*1* where p is not less than 1 and a con-
stant. Then

/ e"Y'2 / r y2'2        2rj0

Since pi^po we have, by Lemma 2, AP1^/c/P1-|-77o. Furthermore, since r^pi,
it follows that co(r) gAr^AP1. Thus, for r^pae'»1^,

(2.213)      co(r) á WP1 + 170 =S 2efei— J    l—j      + voU + — J.

This proves (2.22) with the value of rez as given forrero. If r>r0 the value of
m is so chosen that mra^D and (2.22) is obviously true.

2.3. Oscillation of the inverse mapping function. In §5 we shall need an esti-
mate for the oscillation of the inverse mapping function. We shall use the
following theorem (10).

Theorem III. Suppose that R is a simply connected bounded region which
contains the origin O and that a is the distance of O from the boundary B of R.
Let z = 4>iw) map R conformally onto the circle \z\ <1 so that <£(0)=0. // Wi
and w2 are points in R which are separated from O by a circular cross-cut of R
of radius r, 0<r<o/2, whose center lies on B, then

I <j>iwi) - <t>iw2) I g Mr1'2.

Here M is a constant which depends only on o and the diameter of R.

3. Application to nearly circular regions. In 1935 A. R. Marchenko [lO]
established the following theorem:

Suppose C is a closed Jordan curve which lies in the ring 1 ;= | w\ ^ 1-f-e
for some e, 0<e<l. Consider any arc of C which subtends a chord whose
length does not exceed e. Let X be the least upper bound of the diameters of
all such arcs, whereby, in each case, the arc with the smaller diameter is
chosen. If w—fiz) maps the circle \z\ <1 conformally onto the interior of C
such that/(0) =0 and/'(0)>0, then there exist two absolute constants K and
£1 such that for \z\ ^ 1 :

(10) See J. Ferrand [3 (1942) pp. 166-171 ]. A result which contains this theorem was given
earlier (1936) by Lavrientieff [7, formula (a)].
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| /(z) - z | ^ Kt log — + £iX.
E

This inequality is the best possible as to the order of magnitude(n) in e
and in X.

As an application of Theorem II we shall extend this theorem to the case
of a "nearly circular" region whose boundary is not necessarily a Jordan
curve.

3.1. Statement of the result. We shall prove the following

Theorem IV. Suppose R is a simply connected region which contains the
origin and whose boundary is contained in the ring

1   <  |  W\   <   1  + 6

for somet, 0<e<log (8/tt). LetXbe a number with the following property: Any
two points in R whose distance is less than e may be connected by an arc in R
whose diameter does not exceed X. If w =/(z) maps the circle \ z | < 1 conformal-
ly onto R such thatf(0)=0,f'i0)>0, then

(3.11) | /(z) - z | ^ ire log — + (ki¿) + 2\ (l + a

where a = ie'Tr)113 and &(e) is bounded^12) for 0<€<1.

Since e^X and &(e) is bounded for 0<€<1, the right-hand side of (3.11)
is clearly of the form Ke log (l/e)+£iX(13).

3.2. Two lemmas. The following lemma will be used in the proofs of
several theorems in this paper.

Lemma 3. Suppose that H is a simply connected region which contains the
origin and whose boundary lies in the ring

1 ,     i
(3.21) -g\w\gl + t (e>0).

1 + €

If hiz) maps \z\ <1 conformally onto H such that Ä(0)=0, h'i0)>0, then for
I«| ̂ P<1

, / 2 1 + P \(3.22) | hiz) -z\ =gp(l + —log--W.
\ ir 1 — p)

(u) In [4], 1945, J. Ferrand announced a new proof of Marchenko's Theorem according
to which 2/ir is the best possible value for K.

(12) In fact k(e) = 1 -{-e'+e'+Tve'il +log 4+4(1 +eY + e log 1/i).
(13) The factor ir of e log (1/c) is larger than the value announced by J. Ferrand for Mar-

chenko's theorem. However, the factor of 2X is "asymptotically" (as e—>0) the best possible
in the sense that it approaches 1 when e/X—>0; simple examples show that it cannot be less
than 1.

(tH
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Proof. The function h(z)/z is regular for | z\ < 1 if defined as/'(0) for z = 0.
Since the boundary of H lies in (3.21),

1
1 +e

hiz)
á 1 + « (1*1 <D

and therefore

log
Kz)

5= e.

The branch of log (ft(z)/z) =log (Â(z)/z) 4-1 arg ihi¿)/z) for which argÄ'(O) =0
is single-valued and regular for \z\ <1. Hence by an inequality of Carathéo-
dory (see, for example, [2, p. 45, (76.3)]):

•« s.(1+±l0fi±£)
\ 7T 1   —  pi

log- for ¿ /» < 1.

Since for any complex a

1 I < I a I el*"

we have (taking a = log Lhiz)/z) the inequality (3.22).
For the proof of Theorem IV we shall need one more lemma.

Lemma 4. 7/ £ is a region which satisfies the hypotheses of Theorem IV,
then the structure modulus of the boundary of R,

viS) á 5 + 2X for 5 < 1.

Proof. Let c be a cross-cut of £ whose diameter 5<1. Then c does not
pass through the origin O; c decomposes £ into two subregions and we denote
by T the one which does not contain 0. The arc c may or may not intersect
the circle \w\ = 1. If it does, let y denote the set of all arcs of \w\ =1 which
are in £ and whose end points are points of c. Since 5 < 1, the set y is contained
in an arc of the unit circle which is less than tt. Let T be the union of c and y,
r — c+y. Then the diameter of Y is equal to ô. To see this consider two points w
and ai' on T. If both are on c, then clearly | w — w' [ ^ ô ; if both are on y, then
\w — w'\ is smaller than the distance of suitable end points of the two arcs
on which w and w' lie, and since these end points are on c, we have again
| w — w' | ^5. Suppose now that w is on c, w' on y ; let a, & be the end points of
the arc of y on which w' lies. Then the circle about w with radius r equal to
the larger of the two numbers [ w — a\ and | w — b\ must contain the (open)
arc [ab] (<ir) of the unit circle, as is easily seen from the fact that raô<l
and the radius of [ab] is equal to one. Hence again \w — w'\ ^5. Thus the
diameter of T does not exceed 5; but since T contains c as subset, it must be
equal to S.
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Now the proof of the lemma is easily completed. Let w0 be a boundary
point of T not on c. Then there is, in any neighborhood of w0 a point wt in
T such that 1< | Wi \ < 1 +e. Draw the radius of the unit circle through Wi and
denote by w2 its intersection with the circle. Since | Wi — w2\ <e it is possible,
by hypothesis, to connect Wi and w2 by an arc ß in £ whose diameter does not
exceed X. This arc may or may not intersect c. If it does intersect c at a point
w3, say, then | Wi — w3| ^X. If ß does not intersect c, then w2 is a point of y,
and | wx — w2\ ^eáX. Thus, it is always possible to find a point w0 of T (and
w0 is either w2 or w3) such that

I Wi — coo I ^ X.
If W is another boundary point of T, not on c, then there exists in every

neighborhood of wó a point wi in £and a point w0' on T such that

| w{ - coo' | ^ X.

Hence | wi — w' | ^ | «o- «o' | -f-2Xá5 + 2X and therefore also

| w0 - Wo | á S + 2X.

If w0' is a point on c, then

[ Wi — Wo' | á | Wi — oo | + | "o — w0' | is X + 5,

and hence

| Wo — Wo' | ¡s X + 5.

Finally, if w0 and w¿ are points of c then clearly \w0 — wó \ ^5. Thus, the
diameter of the boundary of T and hence that of T itself does not exceed
S + 2X. This completes the proof.

3.3. Proof of Theorem IV. We apply Theorem II to the function w=fiz)
of Theorem IV. By Lemma 4, we may take k = 1, 50 = 1, 770 = 2X; furthermore
2>S2(1+«), a = 2/ir2. Since 2e>£, we have for 0<r<l:

(3.31) m ^ 2e e4<1+«> V)1'2 = 2 exp    1 + 4(1 + e)2 +
t]-

Let z = peu, Zi=pie'e, r = 1 — pi. We choose r so that mra = e, or

(3.32) r - 1 - pi - (—j     < e4.

Then we have by Theorem II, if pi gp < 1 :

(3 - 33) I fig) - fizi) I g t + (l + — J 2X.

Now
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(3.34) | /(s) - z | á | fiz) - fizi) | + | fizi) -zi\+\zi-z\.

Here \z — Zi| 5=1— pi. Furthermore, by Lemma 3,

/ 2 1 + Pi\ / 2 2m1'"\
|/(zi) -zi| ^e^(l + — log--    :geWl + — log—— )

\ x 1 — pi/ \ 7T e1"»  /

1
:£ te1 + iree' log-1- Tree' log (2w).

€

Since e'^l+ee' we have, using (3.31),

1 1
I /(zi) — Zi | ^ «x log-1- e27ree log-f- te'

(3.35) *
+ ee'xílog 4 + 1 + 4(1 + é)2 + —V

Thus we find from (3.34) by use of (3.33), (3.35), and (3.32)
1 ee'Trp     / 2 \

(3.36) | fiz) - z | ^ ex log — + ekie) + — + ^1 + — j 2X,

where ife(e) = l+f3 + ef-r-7re<(l+ log 4+4(l+e)2 + e log (1/e)). The sum of the
two terms involving p will be least if ee'iru/2 = (2/p1/2)2X, which gives
p= ((4/e«7r) ■ (2X/e))2'3 2: 1. Substituting this value for p into the right-hand side
of (3.36) we obtain (3.11). This proves the theorem for p^ \z\ <1, and by the
principle of the maximum modulus it is therefore true for \z\ < 1.

4. Arbitrary regions. We consider now the general case in which the
mapping functions of two arbitrary regions are compared with each other.

4.1. Statement and discussion of results. Let £i and £2 be two simply con-
nected bounded regions and let £i and £2 denote their boundaries. We define
first the "inner distance" £j(£i, £2) of £i and B2: Let £ be a point of £i
which lies in R2 and let ¿(£, £2) denote the (shortest) distance of £ from £2.
Then we set di = maxp^Bl-R2 á(£, £2). Similarly, let Q be any point on £2,
which lies in £1, diQ, £x) the (shortest) distance of Q from £1 and ¿2
= maxQgB2-ii, diQ, £1). (If £2 is contained in £1, then ¿1 = 0, and similarly
if £1 lies in £2, then d2 = 0.) We define now(14)

DiiBi, B2) = DiiB2, £1) = max (¿1, d2).

Using this definition we state first the following theorem:

Theorem V. Suppose £1 and R2 are simply connected bounded regions which
contain the origin. Suppose furthermore that the inner distance of their bound-

('*) For this definition see [12]. It should be noted that Di(B¡, B2) does not necessarily
satisfy the "triangle inequality."
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aries, Di(Bi, B2) <e for some e, 0<e<l, 0<e<cr/64, where o is the distance
of O from £1 and £2. Let r¡i(^) and 772(6) denote the structure moduli of Bi and £2,
respectively.

If w=/i(z) and w=f2iz) map the circle \ z\ < 1 conformally onto £1 and £2,
respectively, such that /x(0) =/2(0) = 0, f{ (0) > 0, fi (0) > 0, then for \z\ < 1

(4.11) +*(Gí^)')}
log (l/e)

Here Ai and A2 are the areas of £1 and £2, respectively, and k is an absolute
constant ( = 16e).

As a corollary one obtains at once the following result: Suppose £„
(re = 1, 2, • • • ) and £0 are simply connected bounded regions, all of which con-
tain the origin 0. Denote by B„ the boundary of Rn (re = 0, 1, 2, ■ • • )• Suppose
that (i) Di(Bn, £0)—>0 as re—><x> ; (¡i) the structure moduli of £„, 77„(ô)—>0 as
h—>0, uniformly for all w = 0, 1, 2, • ■ • ; (iii) /Äe areas An of £„ are uniformly
bounded. If w=fn(z), normalized by the conditions /„(0)=0, f/(0)>0, maps
|z| <1 conformally onto £„, then(u)

(4.12) /n(z) —>/o(z) as n—+ 00, uniformly in \ z | ^ 1.

J/iÄe £„ (w = 0, 1, 2, • • • ) are closed Jordan curves, these three conditions
are also necessary for (4.12).

We must prove the necessity. Suppose that wn(t), O^t^b, are parametric
representations of £„ (re = 0, 1, 2, ■ • ■ ) and that

(4.13) wn(t) —> w(t) as re —> °°, uniformly for 0 ^ t á ô

(for example, wn(t) =fn(eit), 0^t^2rr). Then it is clear that conditions (i)
and (iii) are satisfied. To prove (ii) we must show that for every €>0 there
exists a 5o > 0 such that

77„(5) < « if 0 < 5 ^ do for all re = 0, 1, 2, • • • .

Suppose this were not true. Then there would exist an e0 > 0 and, for every
k — i, 2, • • • , a curve Bnk of the sequence with the following property: there
is a cross-cut cnk of Rnk (of the interiors of Bnk), whose diameter is less than
l/k, such that the subregion Tnt of £„s formed by cnk and £„t which does not
contain the origin has the diameter

(4.14) A„k = 6„.
(15) A somewhat more general sufficient condition for (4.12) is obtained if the hypothesis

(ii) is replaced by the following two assumptions: lims_o iio(¡>) =0 and lim sup«-«, r)»(5) áf (ä)
where limj^o ij(5) =0.
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Suppose that the end points of cnk have the parameter values tk and t¿, re-
spectively, 0¿tk<tk ^b. We may assume that

lim tk = r,    and     lim t¿ = r' (O^t^t'^í)
k—* oo t—> m

exist. Hence

lim  Wnk(tk)   =   Wo(t), lim  Wnkitk)   =   Wo(t').
t—» oo fc—» 00

Since the diameter of cnk is less than l/k and thus approaches 0 as k—><»,
wehavewo(r) =w0(r'), hence, r=r'or t' = t + &, that is, r = 0, r' = b. By chang-
ing the origin of the ¿-scale we can avoid the second possibility. Because of
(4.13), the arcs7t: w = wnhit), hút^t¿, will lie in any given neighborhood of
Wo(t) for sufficiently large k; the same is true of the arcs cnk and hence also
of the subregions of R„k formed by c„, and y„k. For sufficiently large k, these
subregions will not contain the origin, and hence will be the £„4. Thus the
diameter of Tnk, A„t—>0 as k—>oo, contrary to (4.14).

Some of the known theorems on the convergence of the mapping func-
tions of variable regions bounded by Jordan curves are easily derived from
our corollary. We indicate this for T. Radó's theorem [13](16), which states
that a necessary and sufficient condition for (4.12) is that the Frechet distance
dn between the boundary curves £„ and Bo approach 0 as re—><». We need to
show only the sufficiency. The assumption that lim„,M dn = 0 implies the
existence of parametric representations w„(¿) of £„ such that (4.13) holds, and
we have just shown that (4.13) implies the conditions (i), (ii), and (iii).

Next we state a result concerning a more restricted class of regions, for
which we obtain a sharper estimate than (4.11).

Theorem VI. Suppose £t and £2 are regions which satisfy the hypotheses of
Theorem V. Suppose, furthermore, that the structure moduli of their boundaries
£i, £2 satisfy the inequalities

7?l(5)   á  KO + 77i, r72(5)   ^  KÔ + r]2, 5   ̂   So,

for some 50, where k, 771 ,and tj2 are constants, k>0, 7712:0,772 = 0. Iffiiz) andftiz)
are defined as in Theorem V, then for \z\ < 1 :

(4.15) I /,(*) - /,(*) I g kL1'2 log —J +£1(7,1 + 7,2), a = —,

where K and Kx are constants; K depends only on So, k, the larger of the di-
ameters of £1 and £2, and the minimal distance <s of 0 from Bx and B2; Ki de-
pends only on a.

The proofs of Theorems V and VI will be given in sections 4.3 and 4.4;

(16) Other examples are a theorem of Courant and a theorem of Markoushevitch, both of
which—as is shown by Markoushevitch [ll, pp. 874-875]—are equivalent to Radó's result.
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section 4.2 contains lemmas used in this proof.
4.2. Tvoo lemmas. We shall use the following lemma which is an immedi-

ate consequence of a lemma due to G. Szegö [14, p. 191, (11) ](17).

Lemma 5. Suppose that the function z = <piw) maps the simply connected
region R conformally onto the circle \z\ < 1 so that 4>i0) =0. If w is a point in
R whose distance from the boundary of R is less than e, then

1-|*(«0| á 4(£|<P'(0)|)"2,

that is, the image <i>(w) lies in the ring

1 - 4(e |<p'(0) |)1'2 Sjg| < 1.

The following lemma has possibly some interest beyond its immediate use
in the proofs of this section.

Lemma 6. Suppose R and T are two simply connected bounded regions ; T is
contained in R and contains the origin 0. Let a be the distance of O from the
boundary B of R and let every boundary point of T be within distance efrom B,
where t<o/6A. Suppose that w=fiz) and w = g(z) map | z\ <1 conformally onto
R and T, respectively, so that f (0) =g(0) =0 and f'(0)>0, g'(0) >0. Then for all
\z\ UP, l/2<p<l:

/eX1'2/ 2 l + p\w(2(l-p))
(4.21) |/(*)-*(*) | £4e(-)     (l + -log--)-4-—

\ <r /      \ x 1 — ft/       1 — p

where w(r) is the oscillation o//(z) at the boundary.

Proof. Let <7>(w) denote the inverse function of/(z). Since £ contains the
circle \w\ <o, we have

(4.22) 0 < 0'(O) ^ I/o-.

The function f = </>(w) carries T into a subregion II of |f| <1 which contains
0, and, by Lemma 5 and (4.22), the boundary of H lies in the ring

(4.23) 1-4Í— J     aS | f | < 1.

Letf = A(z) map \z\ <1 conformally onto H such that A(0)=0, ä'(0)>0.
We apply Lemma 3 to A(z) (since 4(é/<r)l/2< 1/2 we notice that 1—4(i/o-)1/2
>l/(l + 8(e/(r)1/2) and we may replace the e of Lemma 3 by 8(e/ff)1/2). Thus
we find:

/«Y'V 2 1 + p\(4.24) |A(8)_g|á8eí-J     y- + -^Sj-Z-), P-

(") The main content of this lemma follows from Theorem III, but it has the advantage
that the factor of e"2 is given numerically.
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Now we have g(z) =f(h(z)) and therefore, for \z\ =p<1

(4.25) f(z) - g(z) = f(z) - f(h(z)) =   f*  f'(t)dt,
J h C«)

the integration being taken along the straight line segment 5 from h(z) to z.
Since, by the lemma of Schwarz, \h(z)\ ú\z\, s lies in the circle |z| ^p.
Hence

max |/'(f) | ^rnax \f'(t)\ = |/'(fi) |
re» in s«

for some fi with | f11 = p. Let r = 1 — p. Then

«•* | /'(fi) |2 á  f     f ' | /'(fi + Reie) \2RdddR,
J a   do

and the last integral represents the area of the image of the circle | z — fi| <r
under the transformation w=/(z). If Çi=pei$1, then this circle is contained in
the region A: {|z — eWl\ <2r, \z\ < 1}, and the double integral is smaller than
the area of the image of A. Since the diameter of this image does not exceed
w(2r), we obtain finally

HI/'2

7rr2|/'tti)|2^
w(2r)

or

, ,      "(2(1 - P))(4-26) l/'O-Ol*-^--V.2(1 - p)

If we note from (4.25) that

I/(*)-«(*) |   ̂ |Ä(z)-z||/'(fi)|,
we find (4.21) from (4.24) and (4.26).

Remark. Suppose £ and £ are two regions as in Lemma 6 : T is contained
in £ and contains the origin 0, and every boundary point of T is within a
distance of e from the boundary B of £. Suppose that any function z = <jj(w)
which maps £ onto \z\ <1 such that<?S(0) =0 satisfies the following condition:
If w is a point in R, Wo a point on B nearest to R, then

(4.27) 1 - | <tj(w) | ^ K\ w - w0\->

where K and y are constants, 0<7^1. If f(z) and g(z) are defined as in the
lemma, and if 2Key <1, then for \z\ i=p, l/2<p<l,

2 ,      l+p\ «(2(1 -p))
!/(*)-*(*)! SKe-*e[l +

/ 2 1+p\ 0,(2(1-
(1 + 7l0grr;)-T^
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For the condition (4.27) implies that £" =^>(w) carries T into a region H
whose boundary lies in the ring

(4.28) i — jew» as lr| < JU
and if this inequality is used in place of (4.23), the proof of this remark is
merely a repetition of that of Lemma 6.

4.3. Proof of V. Let T be the largest subregion of the intersection of £i
and £2 which contains the origin O; T is simply connected and every bound-
ary point of £ is within distance e from the boundary of £i and of £2. Let
w = giz), normalized by the condition g(0) =0, g'(0) >0, map the circle | z\ <1
conformally onto T. Then by Lemma 6, for |zi| Sp, l/2<p<l,

»'»/        2 ,      1 + PW2(1 -p))
(4.31)       | /,(zi) - g(zi) | g 4e (I)' 2 (l + ^ log j-~)

P

(* = 1, 2)
where oik(r) denotes the boundary oscillation oifk(z).

Let Zi be a fixed point, | Zi| =p, and let z be such that p< \z\ <l, arg z
= arg Zi. Then, by Theorem I, for r= I —p,

//   2rcAh   \1/2\
(4.32) | fk(z) - fkizi) | ^ Mr) è v* ̂ lo )    )        (A - 1, 2).

Now

(4.33)

log (1/r),

/i(z) - /,(f) | ^ | /i(z) - /i(zi) I + I /i(2i) - gizi) I
+ I g(«0 - M*ù I + I /*(*0 - /*(«) I •

By choosing r = l — p = e1/4/2 and using the estimates (4.31) and (4.32), we
obtain easily the desired inequality (4.11) for all z inpiS |z| <1. By the prin-
ciple of the maximum modulus it holds then also for all \z\ ^p.

4.4. Proof of VI. This proof differs from the preceding one only insofar
as Theorem II will be used in order to estimate 03k(r) and the relation be-
tween r = 1 —p and e will be changed. If g(z) has the same meaning as in §4.3
we obtain from (4.31) and Theorem II, applied with p = 1 : For | Zi| ^p

, /« Y'Y 2 2X1| fkizi) - gizi) | g 8e ( —)     (l + — log— )— imi2r)« + 3r,k),      ¿=1,2,
\a /      \ it r / 2r

where m is a constant which depends only on So, k, and the larger of the di-
ameters of £i and £2. We choose now 2r = e1/2 log (4/e)>e. Then a short
calculation yields the inequality:

(4.41) | fkizi) - gizi) l^-^^m^1'2 log -iy+ 3i,t].
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Let z be a point in p<|z| <1 such that arg z = arg Zi. Then, again by
Theorem II,

(4.42) | fkiz) - fkizi) | Ú mr" + 3Vk = — ( e112 log — j + 3r,k.

Using (4.33) in conjunction with (4.41) and (4.42) we obtain the desired
inequality (4.15) with £ = 2tw(l + 14e/o-1/2), £i = 3(l + 14e/<r1'2). It holds for
\z\ ^p, and hence by the principle of the maximum modulus for all | z\ ^p.

5. Arbitrary regions: inverse mapping function. We consider now the
analogous problem for the inverse function. As is to be expected the result
obtained is sharper than the one for the direct mapping function.

Theorem VII. Suppose that R and S are two simply connected bounded
regions such that SGR and w = 0 lies in S. Let 77(6) denote the structure modulus
of the boundary Bs of S and cr the distance of O from Bs. If B is the boundary of
R, suppose that DiiB, Bs) <e, 0<e<l, e<o/64.

Let z=<piw) and z = i^(w), normalized by the condition <ji(0) =^(0) =0,
<p'(0) >0, \p'(0) >0 map R and S conformally onto \z\ < 1.

(a) If 7}(b) ̂k5, then for wGS:
2

(5.1) I <b(w) - iKw) I ^ Kt1'2 log —
e

where K is a constant which depends only on k, cr, and the diameter of R.
(b) In the general case, for wGS,

(5.2) I ¿(w) - Hw) I á £(t7(í1/6))1/2

where L is a constant which depends only on o and the diameter of R.

Proof, (i) Let CP0 denote the level curve |^(w)| =p0<l of 5 where £(Cpo,
B) <e. Let w0 be a point on CPt, z0 =^(w0) =p0ei9°. Let Zi =piei8°, 0 <pi <p0 < 1.
If Zi=^(wi), then

(5.3) I ̂ (wo) — ̂ (wi) I = po — pi < 1 — pi.
Since Zo and Zi lie in the region {\z—ei6"\ ^ 1— pi, |z|<l} it follows that

Wo and Wi are within a subregion £ of S which does not contain O and whose
diameter is not greater than 771, where in case (a), by Theorem II,

L.-L.)771 = mil - pi)a,

and in case (b), by Theorem I,

(5'4) —'(Ud/B-J  )•
Here m is a constant which depends only on k and the diameter £(18) of
£, A is the area of 5. Let w2 be a point on £ at a distance not greater than e
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from w0. We assume here at first that r¡i+e<<r. Then there exists a subarc
of the circle \w—w2\ =771+6, which forms a cross-cut c of £ and separates
Wo and Wi from w = 0. By Theorem III we have, therefore:

(5.5) \<b(wo) - <p(wi) I g Mit + 771)1'2 (M=M(<r,D)).

(ii) The function Ç = qb(w) carries 5 into a subregion H of the unit circle
which contains the origin. From Lemma 5 and the fact that <t>'(0) g l/<r we
infer that the boundary of H is contained in the ring

/eY/2     ,    ,
i-4(-)  s;k <i.

Let Ç = k(z) map \z\ <l conformally onto H so that h(0)=0 and Ä'(0)>0.
Then by Lemma 3 (applied with the e of the lemma replaced by 8(e/o-)I/2)

. . / e Y'2/ 2 1 + pA ,     ,|*i- a(*i)| = 8e(—) (1 + 7log7T—)-      kl = 'i-

It is easily seen that <p(wi) = h(zi). Hence

. .       /éV'V      2      1 + pA(5.6) I *(»,) - ¿(wi) I = I zi - hizi) I Ú 8e   —       I 14-— log-   .
\<r /     \ it 1 — pi/

(iii) Now the proof is easily completed. Using the inequality

I 4>iwo) — \¡/(w„) I á I (¡>iwo) — <b(wi) I + I <7>(wi) - ^(wi) I
+ I ̂ (wi) — iA(wo) I

e obtain from (5.5), (5.3), and (5.6)

I <b(wo) - \Hw0) I
/ tV'2/        2 I + pi\

(5.7) ^M(t + Viy'2+(l-pi) + Se(~)    (i + —log---).
\ O- /        \ -K 1   —   pi/

In the case (a) we choose ?re(l —pi)" = e, so that 771+e = 2€<o-, and a simple
estimate leads to (5.1) for wGCpo. In case (b) we choose pi, so that
2tt^1/| log (1 -pi) I =t2ß for some ß>0. Then the right-hand side of (5.7) does
not exceed

e2" £1 f2? Li
M(t + 77^))1/2 H-1-■ i1'2"2" ^ M(2ti(t^))il2 -I-1-e1'2-2",

2tt^       a1'2 ~ 2ttV       a1'2

where £1 depends only on the diameter of £. Here we take (3=1/5 and obtain
(5.2) for w£CP0, provided e + rj(ells) <o. But if e-f-r?^1'6) ^<t, then

(18) By Theorem II, m depends on the diameter D, of 5, but since D, ¿D, the value of m
is not decreased if D, is replaced by D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



354 S. E. WARSCHAWSKI [September

| 4>(w) - fiw) | á — -nit1*) g — D^^it1'5))1'2.
a cr

Since CPo may be taken so that p0 is arbitrarily close to 1, the theorem holds
for all wGS, by the principle of the maximum modulus.

6. Regions with smooth boundaries. The estimate for degree of proximity
of the mapping functions of two neighboring regions may be sharpened con-
siderably if the boundaries of these regions are Jordan curves possessing con-
tinuously turning tangents.

Theorem VIII. Suppose that 6/ and C2 are closed Jordan curves which con-
tain the origin in their interiors and satisfy the hypotheses :

(a) Ck (A = l, 2) has continuously turning tangents, and the tangent angle
oikis), considered as function of the arc length, has the modulus of continuity
ß(t), that is,

| ak(s ±t) - ak(s) | £ ß(t), t > 0,

where ß(t) is nondecreasing and lim(^o ßit) =0.
(b) If Wi and w2 are points on Ck and As is the ishorter) arc of Ck between

them, then there exists a constant a such that As/\ w¡ — w2\ Sa.
(c) The diameter of Ck does not exceed D and the distance of 0 from G and

C2 is at least <r.
(d) DiiCi, C2)<e for somet, 0<e<l.
If w=fkiz) maps the circle \z\ <l conformally onto the interior Rk of Ck

and if fk(0) =0, fi(0)>0, then there exists for every 5, 0 <ô < 1, a constant M¡
which depends only on 5, a, o, D, and the function ß(t)—and in no other way
upon Ci and C2—such that for \ z | ;£ 1

(6.1) \fi(z)-f2(z)\SMst1-\

Proof. Under the present assumptions on Ck there exists for every 6,
O<0<1, a B, which depends only on 6, a, o,D, and the function ß(t), such that
for |zo|=l, |z|^l(19),

(6.2) — | a - zo |1+< á | hiz) - /»(so) | ^ £ | z - z011"9.
B

Let z = (j>kiw) be the inverse of w=fkiz), Then, for any w in Rk, w0 on &

(6.3) 1 - \<j>iw)\ á U(wo) - 4>(w)\ g B'\ w - wo|1/(1+9)    (£' = B^w).

Now let T be the largest subregion of £i£2 which contains O. T is
simply connected and every boundary point of T is within distance e from
G and C2. Let w = giz), g(0)=0, g'(0)>0, map |z| <1 conformally onto T.

(") These inequalities are well known, see for example [8, p. 1408]. In [15] it is shown
that B depends only on the parameters indicated. Cf. also [6, p. 35 (VIII)].
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We  assume  at  first that  2B'e1Kl+e)<l.  Then   by  the  remark  following
Lemma 6, we have, because of (6.3), for |zi| ^p, l/2<p<l,

, , / 2 1 + pi\«(2(l - pi))
I fkizi) - gizi) | á 2>V't'+«í   1 -f- - log--)-^-— ■

\ x 1  — pj        I — pi

By the right-hand inequality of (6.2), w(r) ^2Br1~e and therefore:

(6.4) | fkizi) - gizi) | =£ Áé'0*n (í + — log i±-^) (1 - pi)-"
\ T I   —   pj

where A =4BB'e. We choose now 1— pi = e. Then we note first that

»(«•logy) a.
2         1 + pi e / e \      2t~e

1-1-log-< 2 log — = 2e"
7T 1   —  Pi t

Thus we obtain from (6.4)

(6.5) | fkizi) - gizi) | S-eci-î»-2.»)/(i-w
6

Let |zo| =1, arg z0 = arg z%. Then by (6.2)

(6.6) | /»(so) - fkizi) | á £(1 - Pi)1"" = Bt1-».

Given 5, choose 0 so small that (l-20-202)/(l+0) =5. Then using (4.33)
and applying (6.5) and (6.6), we obtain the desired result (6.1) for the case
that 2£'e1«1+«<l. If eè (2£')-(1+«, then we have trivially for |*| £1

\fi(z) -/,(«)|   ^   [2£(2£')1+*]e.
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